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Geometric Optics

I. Introduction
Geometric optics is that field of optics devoted to the analysis of the transformation of light
rays by optical elements such as lenses or mirrors.  This definition requires that a light ray
be defined.  The following is how an engineer would define a light ray.  Let L represent a
very small light source (i.e., a point source).  Suppose this illuminates a screen O through a
hole in an intermediate screen S.  The result will be an image of L on O as shown below.

L

S O

Figure 1.

Note that light is drawn as if it traveled along straight line paths (This will be proven in the
geometric optics limit later in these notes).  Only a portion of O is illuminated by L.  As the
hole in S shrinks in diameter the illuminated portion of O also shrinks.  This process may
be continued until the hole is on the order of 0,1 to 0,3 mm in diameter (for holes of
smaller size diffraction effects come into play and the spot size on O begins to increase).
Thus, we may image a very narrow ray of light (ray diameter on the order of 0.1-0.3 mm)
traveling in a straight line from L to O.  Because of this straight line path property the
behavior of light can be analyzed geometrically, hence, geometric optics.  In most optical
instruments the beams of light are fairly wide which allows a geometric optics analysis and,
consequently, makes geometric optics a very important area of optics.

Before proceeding to develop the principles of geometric optics it is interesting to show that
light does travel in a straight line and that this is consistent with the wave equation and
Maxwell’s equations.

Starting with the wave equation
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We can now assume a solution of the form

f r t A r eik L r ct,( ) = ( ) ( )-( ) (2)

where L r( ) is the optical path traveled by the light from some reference source (usually the
origin of the coordinate system) and may be rigorously defined as
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where P1 is the starting point of the ray, P2  is the final point of the ray, and n(s) is the
index of refraction integrated along the ray path from P1 to P2 , i.e., a line integral.  In
general a ray refers to a normal to a propagating wave front which is a surface.  Using (2)
we evaluate

� = � ◊�( ){ }+ -2f e ea ikL ikct

where we have written  A r ea r( ) = ( )  for notational convenience.  Continuing,

� = � ◊ � +( )[ ]{ } = � +( )[ ] + � +( ){ }+ - + -2 2 2f e a ikL e a ikL a ikL ea ikL ikct a ikL ikct
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Substituting (3) and (4) into (1) we obtain

�( ) + � ◊� - �( ) + � + �( ) = -a ik a L k L a ik L n k2 2 2 2 2 2 22 f f

Equating the real parts
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where we have used k = 2p
l

.  Taking the limit as l Æ 0  we get the result that

�( ) - =L n2 2 0 or

�( ) =L n2 2 (5)

This result is known as the eikonal equation and implies that light travels in straight lines, at
least in the zero wavelength limit.  Taking the square root of (5)

� =L nt
where t  will be shown to be the unit tangent to L r( ).
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Figure 2.

Suppose many rays leave surface 
0Â at time t0 .  The surface Â consists of all points

reached by rays starting from 
0Â in a time interval t t-( )0 .  Thus, for any ray leaving

Â , L r c t t( ) = -( )0  - by definition the optical distance between 
0Â  and Â .  Pick any

point P1 beyond the surface Â .  The optical path from P0'  to P1'  is L r( ) by definition of

Â .  The optical distance from P1'  to P1 is dL n P P ndr= = ◊1 1' t  where t  is tangent to

the ray P P0  at r .  (It is assumed that for dr  small, P P1'  will be parallel to P P0  at the

surface Â .)

dL ndr= ◊t (6)

Note now that , in general, dL
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 or

dL L dr= � ◊ (7)

Equating  (6) and (7) we again get the eikonal equation
� ◊ = ◊L dr n drt
� =L nt (8)

The derivative of any function f  along some curve is 
df

ds
f a= � ◊  where a  is the unit

vector tangent to the curve and s  is the displacement along the curve.  Let t  be the unit
tangent as defined by (8), then
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f f

L

n n
L f= � ◊ = � ◊ � = � ◊�( )t 1

(9)



-4-

Now pick f
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.  The reason for this will become clear shortly.
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Rearranging,
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since � =L n
2 2 .  This manipulation may be repeated for f
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results summed to give

d

ds
L n

d
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n�( ) = � = ( )t (10)

If the medium is homogeneous this reduces to 
d

ds

t = 0, i.e., t =constant (since

homogeneity is equivalent to n=constant).  If the tangent vector to a curve is constant that
that curve must be a straight line; this, in the l = 0 limit light rays travel in straight lines in
homogeneous media.

This result together with Fermat’s principle permits one to derive the fundamental
properties of reflection and refraction.  Fermat’s principle is that a ray of light will traverse
a medium in such a way that the total optical path assumes an extreme value.  Stated
mathematically,
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where the d  operation indicates a variation in the following quantity and ds  is the
differential distance along the ray path connecting  P1 to P2 .

To illustrate how this principle may be used consider the case of a light ray from P1 being
reflected off a surface S  to a second point P2  as shown below.
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Figure 3.

The optical path L  is given by

L n a x b d x= + + + -( )( )2 2 2 2

Differentiating,

dL n
a x

x
b d x

d x dx=
+

+
+ -( )

-( ) -( )
Ï
Ì
Ô

ÓÔ

¸
ý
Ô

þÔ
=1

2
1

2
1
2

1
2 1 0

2 2 2 2

Note that for our purposes the variational operator d( ) is equivalent to the differential
operator d( ).  Neglecting the trivial solution dx = 0 we must have

x

a x

d x

b d x2 2 2 2+
= -

+ -( )
From the figure sinq1 2 2

=
+
x

a x
 and sinq2 2 2

= -
+ -( )
d x

b d x
 where q1 and q2 are

measured with respect to a normal to the reflecting surface.  Thus, sin sinq q1 2=  or, the
angle if incidence equals the angle of refraction.

It is a very similar problem to derive Snell’s Law governing refraction.  The geometry is as
given below.
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Figure 4.

As before construct the optical path function L .

L n a x n b d x= + + + -( )1
2 2

2
2 2

Differentiating,
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by Fermat’s Principle.  This requires that

n
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1 2 2 2 2 2

1

+
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+ -( )
or n n1 1 2 2sin sinq q=  (where q1 and q2 are measured with respect to the surface S) which
is Snell’s Law.

In general, Snell’s Law and the law of refraction are valid for arbitrarily curved surfaces as
long as the angles are measured with respect to a perpendicular to the tangent to the curved
surface.

II. Optical Transformations and the Ray Matrix

In general the effect of an optical element such as a reflecting or refracting surface upon an
incident ray can be modeled as a transformation of the incident ray’s slope and
displacement with respect to the optic axis.  Specifically,

n r An r Br2 2 1 1 1' '= +
r Cn r Dr2 1 1 1= +'

The unprimed letters represent the ray’s displacement from the optic axis (usually the axis
of symmetry for optical systems), primed letters the ray’s slope with respect to the optic
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axis, the subscript “1” the incident ray, the subscript “2” the reflected or transmitted ray
depending upon the particular optical element, n1 the index of refraction of the medium the
incident ray is traveling in, and n2 the index of refraction of the medium the transmitted or
reflected ray is traveling in.

The quantities A, B, C and D describe the effect of the optical element upon the incident
ray.  The transformation may be conveniently written in matrix form as
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The square matrix containing A, B, C and D is commonly referred to as the ray matrix and
will be shown to be capable of describing many optical elements.

To demonstrate the derivation of the elements of the ray matrix we will consider the
propagation of a ray in the direction from the z=z1 to the z=z2=z1+d planes as shown
below.

d
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y

r1

P1

P2

r2

r1 1' tan= q

r2 2' tan= q

n n n1 2= =

Figure 5.

At point P1 the ray has displacement r1 from the optic axis and slope r1’ with respect to the
optic axis.  Because the ray propagates along a straight line the slope r2’ will be the same as
r1’; however, the displacement r2 at the z2 plane will not be r1 but, rather, r1+r1’d.  Thus, a
length d of open space may be characterized by the set of transformations

nr nr2 1' '=

r
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nr r2 1 1= ( ) +'

or in the equivalent matrix form
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(The quantity d/n is often referred to as the reduced distance.)  This result defines the basic
ray matrix describing the translation of a ray through space; hence, we define the basic
translation ray matrix T to be



-8-

T d
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Before developing any more ray matrices it will be necessary to state some sign
conventions commonly used with ray matrices:
1. light proceeds from left to right unless otherwise indicated;
2. distances measured in the direction light is traveling are positive;
3. a distance is always measured from a refracting surface or a principle plane (to be

defined later);
4. a radius of curvature is positive if the direction from the vertex of a surface to the center

of curvature is from left to right (Note: the vertex of a curved refracting surface is its
intersection point with the optic axis.);

5. surfaces are numbered in the order in which light passes through them; and
6. a reflecting surface requires the use of a negative index of refraction for the medium

following the surface to account for the change in the direction of the ray or the
“folding” of the optical system as it is sometimes called.

We will now derive the ray matrix for a mirror using the paraxial ray approximation that the
displacement of the ray from the optic axis and its slope with respect to the optic axis is
small.  This assumption is not as restrictive as it sounds and many interesting optical
systems can be examined using the paraxial ray approximation.  Returning to our derivation
we will consider the mirror diagrammed below.

optic axisa
A C D E

b
V

h

B

q
q

R

Figure 6.
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By sign convention #4 the distance from V to C is from right to left indicating that the
mirror curvature is negative.  For triangle CBE we then have

sin b q-( ) = h

R

By the paraxial ray approximation this reduces to b q- ª h

R
 or

q bª - h

R
There are many ways to do the geometry.  Here will will use the theorem from geometry
that the exterior angle of a triangle is equal to the sum of the two interior angles to write
b a q= + 2 .  Using our previous expression for q  in this result and solving for b  we get

b a b= + -Ê
Ë

�
¯2

h

R

b a= -2
h

R

By our adopted sign convention  r
h

AE1' = +  and r
h

DE2' = -  so that

r1' tan= ªa a
r2' tan= - ª -b b

where we have agai n invoked the paraxial ray approximation.  Substituting these results
into the expression for b  we get

- = - +r r
h

R2 1 2' '

Noting that r r h2 1= =  we may multiply through by n  (the index of refraction) to obtain

nr nr
n

R
r2 1

2
' '= -

Thus, the ray matrix R-  is
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where R-  is the ray matrix for a mirror of curvature R<0.  The more general form for R  is

R
n

R=
È
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Í
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û
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1
2

0 1
where R  is a signed quantity.

Let us now develop the ray matrix for the curved dielectric interface illustrated below.  Note
that this system has a positive radius of curvature according to our adopted convention.
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Figure 7

Construct AB along the path of OA.  The distance AB may be drawn proportional to n1

and, for our purposes, we may take AB n= 1.  In like fashion locate C on the refracted ray
AC  such that AC n= 2 .  Note that BD AB n= =sin sinq q1 1 1 and that
CE AC n= =sin sinq q2 2 2 .  But n n1 1 2 2sin sinq q=  by Snell’s Law which means that
BD CE=  and, therefore, that BC DE|| .  Let a  be as indicated in Figure 7 and consider

triangle AFG.  It follows that  cos cosp a a-( ) = = - ( )r

R
1  or cos a( ) = - r

R
1 .  Let us now

examine triangle ABC in greater detail (See Figure 8).

By definition, r1 1' tan= b  and r2 2' tan= b .  Re-writing using tan
sin
cos

x
x

x
( ) = ( )

( )

r
A B

n1 1 1
1

' cos sin
' 'b b= =

r
A C

AC

A C

n2 2 2
2

' cos sin
' ' ' 'b b= = = .
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Figure 8.

Rewriting again
A B n r' ' ' cos= 1 1 1b
A C n r' ' ' cos= 2 2 2b

Note that sin
' 'b0 =

B C

BC
 or B C BC' ' sin= b0 .  Along the x-axis

A B A C B C' ' ' ' ' '= +
or, substituting our expressions for these quantities,

n r n r BC1 1 1 2 2 2 0' cos ' cos sin( ) = ( ) +b b b

 (NOTE: This is a complex way of deriving these matrices.)

But b a p
0 2
= -  so sin sin cosb a p a0 2

( ) = -Ê
Ë

�
¯ = - ( ) .  From the previous page

cos a( ) = - r

R
1  so that

n r n r
r

R
BC1 1 1 2 2 2

1' cos ' cosb b= +

Examining the diagram again we see that along AF we have
BC AE AD n n= - = -2 2 1 1cos cosq q

n r n r
r

R
n n1 1 1 2 2 2

1
2 2 1 1' cos ' cos cos cosb b q q= + -( ) (11)

We may now linearize this using the paraxial ray approximations cos cosb b1 2 1@ @ and
cos cosq q1 2 1@ @ .  The result is

n r n r ar2 2 1 1 1' '( ) = ( ) - (12)

where we have defined a
n n

R
= -2 1 .  This coefficent a is known as the optical power of the

surface and has natural units of meter-1.  This unit is known in the optical industry as a

diopter and is often indicated by writing P
n n

R
= -2 1  instead of a as above.
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Deviations from (12) for a real lens are called abberations and may be predicted by using a

Taylor series expansion of cos x  in (12).  Recall that cos
! !

...x
x x= - + +1
3 5

3 5

 where x < 1.

We used only the first term cos x @ 1 to derive (12).  Most optical aberrations that are
significant in real optical systems can be described by retaining third and fifth order terms
in the cosine expansion.

Equation (12) together with r r2 1=  allows us to write the refraction matrix Rrefraction

R
a

refraction =
-È

ÎÍ
ù
ûú

1

0 1
It is useful at this point to compare this result with the ray matrix for reflection from a
curved surface

R
n

Rreflection =
+È
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Í
Í

ù

û
ú
ú

1
2

0 1
Note that if n n2 1= -  in Rrefraction  then R Rrefraction reflection= .  This is the basis for sign
convention #6 and allows reflection to be represented as a special case of refraction.

The Lens
A lens is simply two curved dielectric interfaces separated by a small distance d as shown
below.

n1 n1
n2

d

optic axis_

Figure 9
The ray matrix describing such a lens can be developed by following a light ray through the
lens.  At the front surface of the lens the ray is refracted by a surface of positive radius of
curvature.  If the input ray is described by r1  and r1' the resulting ray r r2 2, '( ) can be
computed using the refraction matrix
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This is the ray entering the lens.  The light ray incident on the second lens surface is found
by considering the translation of r r2 2, '( ) as it passes through the lens, i.e.,

n r

r
d

n

n r

r
TR

n r

r
3 3

3
2

2 2

2
1

1 1

1

1 0

1
' ' 'È

ÎÍ
ù
ûú
=
È

Î
Í
Í

ù

û
ú
ú
È
ÎÍ

ù
ûú
= È

ÎÍ
ù
ûú



-13-

The second dielectric interface refracts this ray to yield

n r
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The overall transformation of the incident ray is described by the system matrix S R TR∫ 2 1 .
Before examining this matrix in detail it is convenient to define the following powers of the

lens refractive surfaces: P
n n

r1
2 1

1

∫ -
 (the refractive power of the first surface) and

P
n n

r2
1 2

2

∫ -
 (the refractive power of the second surface).  Using these definitions the

system matrix S may be written as

S

d

n
P P P

d

n
PP
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n

d

n
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- - - +
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È
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In general,    any     optical system can be described by a system matrix S where

S
b a

d c
=

-
-
È
ÎÍ

ù
ûú

The quantities a , b , c  and d  are called the Gaussian coefficients of the system.  Their
significance will become apparant when we describe image formation.

The matrix S  has the interesting property that det S ad bc= - = 1.  To show that this is so
recall that S  is a product of translation and refraction matrices.  The determinant of a
refraction matrix is 1; likewise, the determinant of a translation matrix is 1.  Since the
determinant of a product matrix is the product of the determinants, i.e.,
det det detAB A B( ) = ( ) ( ), where A  and B  are 2x2 matrices.  The result is that any system
matrix describing a paraxial ray system using combinations of refracting, reflecting and
translating matrices will have a unity determinant.

Image Formation

Consider an optical system described by the system matrix S  of Gaussian coefficents, i.e.,

S
b a

d c
=

-
-
È
ÎÍ

ù
ûú

Let us now write the transform for this system for incident rays in a plane P1 located   l1 to
the left of the optical system and P2  located  l2  to the right as indicated below.
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r1

P1 P2

r2

A

C
D

B

S

  l2  l1

V1 V2

general

optical

systemobject

plane

image

plane

The transformation of a ray between these planes can be given by

S
b a

d cP P1 2

1 0

1

1 0

12 1
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È
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S
b a a

b a d c c aP P1 2

1

2 1 2 1 2

=
+ -

+ - - -
È
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ù
ûú

l

l l l l l

Note that l1 is measured from V1 and is negative; hence the minus sign.

Point B in P2  (the image plane) is called the image of point A in P1 (the object plane) when
r r2 1= b  independent of the slope of the incoming ray AC .  b  is a constant and is the

system magnification.  Let the system input be 
n r

r
1 1

1

'È
ÎÍ

ù
ûú
 and the output 

n r

r
1 2

2

'È
ÎÍ

ù
ûú
. The resulting

transformation leading to r2  is

  r b a d c n r c a r2 2 1 2 1 1 1 2 1= + - -( ) + -( )l l l l l'
For r2  to be independent of r1' it is necessary that

b a d cl l l l2 1 2 1 0+ - - =
Solving for l2  in this expression
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 is then given by
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To simplify this result recall that det S cb adP P1 2
1( ) = - = .  Thus,
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+
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1b al
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b  may be either positive or negative.  A negative b  merely indicates an inverted image.

We can now rewrite SP P1 2
 as P P

a
1 2

1

0
=

-È

Î
Í
Í

ù

û
ú
ú

b
b

The planes P1 and P2  such that this matric describes the ray matrix transformation
between the planes are called conjugate planes.  The principal planes are conjugate planes
for which b = ±1 (+1 in the following derivation), i.e., a 1:1 imaging relationship.  Using
b = +1 we solve for   l1 and   l2

  
b =

+
=1

1
1b al

Þ
  
l1

1= - b

a

  b = - =c al2 1 Þ
  
l2

1= -c

a
  l1 and   l2  locate the principal planes in terms of the elements a , b  and c  of the system
matrix S .  The principal points are the intersections of the principal planes with the optic

axis.  For later reference note that at the principal points we have n r n r ar1 2 1 1 1

1
' '( ) = ( ) -

b
, or

r r2 1' '= .  Any ray passing through the principal point in the object plane with slope r1'  will
pass through the principal point in the image plane with the same slope.  Points satisfying
this 1:1 relationship in points are called nodal points.

It is common practice to locate the object and image planes relative to the principal
planes rather than the vertices of the optical system.  Let the distances from the vertices to
the principal points be denoted by L1 and L2.  Then   l1 1 1= +s L  and   l2 2 2= +s L .

l2l1

L2 s2L1s1

principal

planes

As L1 and L2 locate the principal planes they satisfy

1
1

1
2=

+
= -

b aL
c aL

Using this result

b =
+

=
+ +

=
+

1 1 1
11 1 1 1b a b as aL asl

b = - = - - = -c a c as aL asl2 2 2 21
The system matrix may now be written as

S
as a

asP P1 2

1

0 1
1

2

=
+ -

-
È
ÎÍ

ù
ûú

We will now derive the simple lens law
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1 1 1

2 1 2s s f
= +

where f2  is the focal length of the system for light incident from the left.  The classical
definition of the focal length of a system S  is that any incident light rays parallel to the optic
axis at P1 will cross the optic axis at a point D  a distance f2  from the second principal
plane.

P1 P2

A

C

D

B

S

general

optical

system

d'
d

u1

s1

s2

d

u2

f2

n1 n2

Let P1 and P2  be conjugate planes such that the focal point of S  is the conjugate
point of P2  (the intersection of a conjugate plane with the optic axis is the conjugate point).
We now need to determine s1.  Suppose ray AB is not parallel to the optic axis.  If AB is a
distance d'  away from the optic axis at P1 and d  at u1.  The slope of AB is then

r
d d

s1
1

'
'= -

.  Since r1 0' =  by the problem definition it follows that s1 Æ -�  ( s1 is negative

from the drawing).  To relate this to s2  we recall that det S
as

asP P1 2

1
1

11

2

( ) = +
-

=  or, rewriting,

1 1 1

2 1s s a
= +

As s1 Æ -�  we see that s a2 Æ .  All that remains is to relate f2  and a  to have the classical
lens law.  This may be done by noting that between the principal planes u1and u2

n r n r ar2 2 1 1 1' '= -

or using r d1 = , r1 0' = , r
Y

X

d

f

d

f2
2 2

' = = -
+

= -D
D

 we get

a
n

f
= + 2

2

This is exactly the classical lens law whenever n2 1=
1 1

2 1

2

2s s

n

f
= +

The system S  has a second focal point such that light rays passing through this point with
any slope will be transformed into parallel rays, i.e., r anything1' = , r2 0' = .
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P1 P2

general

optical

system

u1

s1

s2

u2
principal

planes

f1

To solve this problem we first establish the image-object relationship between the conjugate
planes P1 and P2 .  By analogy with the previous case r2 0' =  implies s2 Æ +� .  Using
1 1 1

2 1s s a
= +  gives s a1 = - .  To relate a  to f1  we use the transformation

n r n r ar2 2 1 1 1' '= -

where r d1 = , r
d

f1
1

' = +
-

, r2 0' =  giving n
d

f
ad1

1

+
-

Ê
ËÁ

�
�̄ = , or

a
n

f
= - 1

1

These two expressions for a  give the lens law
1 1

2 1

2

2

1

1s s

n

f

n

f
- = = -

For later reference we will derive the Newtonian form of the lens law:
x x f1 2 2

2= -

s2s1

principal

planes

f1 f2 x2x1

From the drawing we write:
s f x f x1 1 1 2 1= + = - +
s f x2 2 2= +

Substituting this into the lens law where n n1 2 1 000= = .  we get
x x f1 2 2

2= -
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Example:                 Plano-convex lens

A B

optic

axis

R1 = � R cm2 2 5= - .

n1 1 00= . n2

AB d cm= = 0 6.

n2 1 5= .

From page 13 the system matrix for planes passing through A  and B  perpendicular to the
optical axis is:

S

d

n
P P P

d

n
PP

d

n

d

n
P

AB =
- - - +

-

È

Î

Í
Í
Í
Í

ù

û

ú
ú
ú
ú

1

1

2
2 1 2

2
1 2

2 2
1

For the given lens

P
n n

r1
2 1

1

1 5 1
0= - = -

�
=.

P
n n

r2
1 2

2

1 1 5
2 5

0 2= - = -
-

=.
.

.

d

n2

0 6
1 5

0 4= =.
.

.

S
b a

d cAB =
- ( )( ) -È

Î
Í

ù

û
ú =

-È
ÎÍ

ù
ûú
=

-
-
È
ÎÍ

ù
ûú

1 0 4 0 2 0 2

0 4 1

0 92 0 2

0 4 1

. . .

.

. .

.
As a check on our calculations

det . . . . . .SAB( ) = ( )( ) - ( )( ) = + =0 92 1 0 2 0 4 0 92 0 08 1 00
The location of the principal planes is given by

  
l1

1 1 0 92
0 2

0 4= - = - = +b

a

.
.

.

  
l2

1 1 1
0 2

0= - = - =c

a .
The principal planes are then located as shown below
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A B

optic

axis

0 4. cm

P1 P2

This type of lens is often found in optical instruments because a high quality flat surface is
much easier to produce than a spherical surface; hence, a good plano-convex lens is
cheaper than a comparable quality biconvex lens.

The location of the principal planes for some common lens shapes are shown below.

optic

axis

H2H1

P P
P

1 2 2
0= = >

optic

axis

H2H1

P
P

1 2
= - ; P P2

3
2

0= >

optic

axis

H2H1

P P
P

1 2 2
0= = <

optic

axis

H2H1

P P1 0= < ; P2 0=
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In these sketches H1  and H2  are principal planes, P1 and P2  are the refractive powers of
the first and second surfaces respectively, and P P P= +1 2 , i.e., a thin lens where d ª 0.

Simple magnifier:
We will now analyze a plano-convex lens as a simple magnifier as shown below.

A
optic

axis

r2

s2

x2

f2f1

s1x1

r1

H1 H2

q2

q1

Several features of this drawing are worth mentioning regarding graphical ray tracing.
Note that the lens is assumed to be a thin lens, i.e., the distance between the principal
planes H1  and H2  is small (ª 0 ).  In the drawing the object to be imaged is located s1 in
front of H1 .  To locate the image we trace two rays from the object and graphically
determine their intersection—this intersection locates the image.  The first ray will be drawn
parallel to the optic axis.  By the definition of principal planes this ray must pass through
the focal point A .  The second ray is drawn from the object to the principal point of H1 .
On page 17 we notes that principal points are nodal points; hence, the ray will leave the
principal point of H2  with the same slope as it had crossing H1 .  These rays may be
extended indefinitely until they intersect.  A perpendicular to the optic axis from this point
of intersection will locate the image.

As shown in the drawing the object is located near the first focal plane.  The eye of the
observer is located near the second focal plane. q2 is usually a good measure of the

apparant size of the image. Tan
r

x
q2

2

2

( ) =
-

 or, because of the paraxial ray approximation,
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q2
2

2

ª
-
r

x

The magnification is given by b = -1 2

2

s

f
.  If, as is usually the case,  b >> 1 then

b ª - s

f
2

2

.  Substituting this result into the expression for q2 we get q2
1

1

ª
-
r

f
 since

q2
2

2

2
1

2 2

1

2

1

1

= - =

Ê
ËÁ

�
�̄

-
@ =

-
r

x

s

f
r

s f

r

f

r

f
.  A comfortable viewing distance for the eye is

approximately 10 inches (about 250mm).  The angle q'  that the object would subtend if we

viewed it from a distance of 250 mm unaided is q' ª r

mm
1

250
.  Common usage defines the

magnification of the lens as

M

r

f
r

mm

mm

f
= =

-
= -q

q
2

1

1

1 1

250

250
'

Note that since f1  is negative (see drawing) M > 0 and the image is upright.

The Compound Microscope

We will now consider a more complicated instrument, a compound microscope consisting
of two lens separated by a distance d  as shown by the following figure.

optic

axis

H1

F1 f1

h1 h2 h3 h4

H2

F2
f4f2 f3

  l

Items indicated by capitals are referring to the overall optical system; small letters refer to
items characterizing the individual optical elements.  Between planes h1 and h4

S f
d

f

d

f f f

d

f f

d
d

f

b a

d ch h1 4

1
1

0 1

1 0

1
1

1

0 1

1
1 1

1
4 2

4 2 4 2 4

2

= -È

Î
Í
Í

ù

û
ú
ú
È
ÎÍ

ù
ûú

-È

Î
Í
Í

ù

û
ú
ú
=

- - - +

-

È

Î

Í
Í
Í
Í

ù

û

ú
ú
ú
ú

=
-

-
È
ÎÍ

ù
ûú
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- = - - + =1 1 1

2 2 4 2 4 2 4F f f

d

f f f f

l
 where  d f f= + +2 4 l

  
F

f f
2

2 4= -
l

L
b

a

d

f

f f

df
1

4

2 4

41
1 1

= - =
- -
Ê
ËÁ

�
�̄

-
= -

l l

  

L
c

a

d

f

f f

df
2

2

2 4

41
1 1

= - =
- -
Ê
ËÁ

�
�̄

-
= +

l l

For a typical microscope f f mm2 4 16= =  and   l = 160mm

L
mm mm

mm
mm1

16 16 160 16
160

19 2= - + +( )( ) = - .

L
mm mm

mm
mm2

16 16 160 16
160

19 2= + + +( )( ) = + .

Let us now locate the object relative to the system focal points.  As before for good viewing
the virtual image will be at x mm2 250ª - .  Then, using the Newtonian form of the lens
law x x F1 2 2

2= - .

x
F

x
mm1

2
2

2

21 6
250

0 01024= - = - ( )
-

= +.
.

which is almost at the first focal point F1. The system magnification is

  
M

F f f
= = -250 250

2 2 4

l
 indicating an inverted image.  For the numbers given M ª -156.

Let us now examine the intermediate image formed by the first lens.  The object is very
near the system focal point F1 so that, relative to f1 , x mm1 1 6= - . .  Using the Newtonian
lens law

x
f

x
mm2

2
2

1

216
1 6

160= - = ( )
-

@
.

This indicates that the image is formed approximately at the focal point of the eyepiece.
This intermediate image is real and inverted.  The eyepiece may now be treated as a simple

magnifier with magnification M
f fe = - = +250 250

1 2

.  For the objective lens the

magnification 
  
M

s

f fo = - ª -
1 2

2 2

l
.  The system magnification M  is then seen to be

approximately equal to the product of the eyepiece and objective magnifications.

The Telescope

A telescopic system is defined to be an optical system having a slope transformation that is
independent of r1 , i.e., of the form n r kn r2 2 1 1' '=  where k  is a constant.  Let us consider the
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optical system of the diagram below and examine the conditions under which it is
telescopic.

P1 P2

S

general

optical

system

l1 l2

If S  is a general matrix of Gaussian coefficients, i.e., 
b a

d c

-
-
È
ÎÍ

ù
ûú

, then

S
n

b a

d c n

b a
n

a

b
n

a
n n

d c
n

c a
n

P P1 2

1 0

1

1 0

12

2

1

1

1

1

2

2

1

1

2

2

1

1

2

2

=
È

Î
Í
Í

ù

û
ú
ú

-
-
È
ÎÍ

ù
ûú -
È

Î
Í
Í

ù

û
ú
ú
=

+ -

+ - - -

È

Î

Í
Í
Í
Í

ù

û

ú
ú
ú
ú

l l

l

l l l l l

The slope transformation between P1 and P2  is then

  
n r b a

n
n r ar2 2

1

1
1 1 1' '( ) = +

Ê
ËÁ

�
�̄( ) -l

For this transformation to be independent of r1  it is necessary that a = 0 ; hence,
n r b n r2 2 1 1' '( ) = ( ). Note that once a  is set equal to zero it remains zero for any choice of  l1

and   l2 , i.e., it is invariant under translation.  Consider the system shown below composed
of two thin lenses separated by a distance d .

d

L1 L2

f1 f2 f3 f4

Between lenses L1 and L2
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S f
d

f

d

f f f

d

f f

d
d

f

L L1 2

1
1

0 1

1 0

1
1

1

0 1

1
1 1

1
4 2

4 2 4 2 4

2

= -È

Î
Í
Í

ù

û
ú
ú
È
ÎÍ

ù
ûú

-È

Î
Í
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ù

û
ú
ú
=

- - - +

-

È
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Í
Í

ù

û

ú
ú
ú
ú

For this system to qualify as telescopic
1 1

0
2 4 2 4f f

d

f f
+ - =

Using this equality we can re-write SL L1 2
 as

S

f

f

f f
f

f

p

f f
p

L L1 2

2

4

2 4
4

2

2 4

0 0
1=

-

+ -

È

Î

Í
Í
Í
Í

ù

û

ú
ú
ú
ú

= +
È

Î

Í
Í

ù

û

ú
ú

a

a

where we have defined p
f

fa = - 2

4

.  Note that the telescopic system requirement resulted in

d f f= +2 4 , i.e., the focal points of the two lenses must coincide.  Writing out the
transformations

r p r2 1' '= a

r f f r
r

p2 2 4 1
1= +( ) +'
a

where we assumed that n n2 1 1= = .

The quantity pa  is known as the angular magnification.  In general, telescopes are capable
of resolving objects at great distances because of their ability to magnify the small angular
separation between such objects.  With SL L1 2

 being telescopic consider the transformation
between a plane H1  located   l1 to the left of L1 and H2  located  l2  to the right of L2

  

S
p

f f
p

p

p f f
p p

H H1 2

1 0

1

0
1

1 0

1

0
1

2 2 4 1 2 2 4
1= È

ÎÍ
ù
ûú +
È

Î

Í
Í

ù

û

ú
ú -
È
ÎÍ

ù
ûú
= + + -
È

Î

Í
Í

ù

û

ú
úl l l

l
a

a

a

a
a a

For image formation we let l
l

2 2 4
1 0p f f

pa
a

+ + - = .  Then, the transformation between H1

and H2  is
r p r2 1' '= a

r
p

r2 1

1=
a

Notice that high magnification and good angular separation are competing processes.  The

larger pa  is (better angular resolution) the smaller the system magnification (
1
pa

) is.  The

proper design of a telescopic system involves a trade-off between angular resolution and
magnification.

Let us examine the longitudinal magnification 
D
D
l

l
2

1

 as opposed to the transverse

magnification 
r

r
2

1

.  Differentiating the expression 
  
l

l
2 2 4

1 0p f f
pa
a

+ + - =  we get
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D D
l

l
2

1 0p
pa
a

- =

  

D
D
l

l
2

1
2

1=
pa

For the system examined all magnifications are independent of image and/or object
distances and the image is real and inverted.  Any such telescopic system having the same
signed magnifications as derived here is called Gailean.
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Stops and Apetures

Up to now we have only been concerned with the image location and size.  Two other
important considerations are the system field of view and the brightness of the image.
Stops are related to the determination of each of these factors and, in general, stops are
defined to be those elements in the optical system that determine what fraction of the light
from an object point will actually reach the corresponding image point.

Let us first examine an on-axis point as shown below.

For points P1 and P2  x x cm f cm cm1 2
2

2
2 2 24 1 4 2 4= -( ) +( ) = - = - = -( ) = - .  To the

observer at P2  it appears that A2  and B2  limit the rays coming from P1.  We shall now
show that the apeture  A B2 2  is merely the image of A B1 1 . To relate the apetures first note
that they satisfy the Newtonian lens law x x f1 2 2

2= -  since x1 1= + , x2 4= - , and f2 2= + .
If point A2  is the image of A1  then their distances from the optic axis are related by

b = - =
+

1
1

12
1

as
as

 where a
f

= 1

2

 and s1 and s2  are measured from the principal planes

of the lens.  For a thin lens recall that the principal planes coincide.  To put b  in a more
tractable form write s f x2 2 2= +  and s x f1 1 1= + .  Substituting these expressions into those

for b  we get b = - =x

f

f

x
2

2

2

1

 where we have used the fact that  f f1 2= - .  Note that this

equality is equivalent to the lens law as - = Þ = -x

f

f

x
x x f2

2

2

1
1 2 2

2 .  With the numbers given

in the drawing b = +2.  To show that their heights do obey this relation and have the ratio

of 2:1 we note that the slope of PA1 1 is 1 5
1
5

cm
cm = .  The distance of B1 from the optic

axis is then 6
1
5

1 2¥ = . cm .  The slope of P B2 1 is 

6
5

3
2
5

cm

cm = . The distance of A2  from

the optic axis is then 5
2
5

2cm cm¥ =  which is twice that of A1  confirming the

magnification of 2.  Actually this derivation could have been proved for arbitrary locations
of the stop.

Returning to the cone of light rays coming from P1 it is seen that A B1 1  constitutes the
apeture stop since it limits the angular spread (q ) of the rays coming from P1 that will be
imaged to P2 .


