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Geometric Optics

| Introduction

Geometric opticsisthat field of optics devoted to the analysis of the transformation of light
rays by optical elements such aslenses or mirrors. This definition requiresthat alight ray
be defined. Thefollowing ishow an engineer would define alight ray. Let L represent a
very small light source (i.e., apoint source). Suppose this illuminates a screen O through a
hole in an intermediate screen S. The result will be an image of L on O as shown below.
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Figure 1.

Note that light is drawn asif it traveled aong straight line paths (Thiswill be proven in the
geometric optics limit later in these notes). Only aportion of O isilluminated by L. Asthe
hole in S shrinks in diameter the illuminated portion of O also shrinks. This process may
be continued until the hole is on the order of 0,1 to 0,3 mm in diameter (for holes of
smaller size diffraction effects comeinto play and the spot size on O beginsto increase).
Thus, we may image a very narrow ray of light (ray diameter on the order of 0.1-0.3 mm)
traveling in astraight linefrom L to O. Because of this straight line path property the
behavior of light can be analyzed geometrically, hence, geometric optics. In most optical
instruments the beams of light are fairly wide which allows a geometric optics analysis and,
consequently, makes geometric optics a very important area of optics.

Before proceeding to develop the principles of geometric opticsit isinteresting to show that
light doestravel in astraight line and that thisis consistent with the wave equation and
Maxwell’ s equations.

Starting with the wave equation

vip="20 @

We can now assume a solution of the form

o(F,t) = A(r)e - ®)

where L(F) isthe optical path traveled by the light from some reference source (usually the
origin of the coordinate system) and may be rigorously defined as

P

L(r)= Jn(s)ds
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where B isthe starting point of theray, P, isthefina point of the ray, and n(s) isthe
index of refraction integrated along theray path from P, to B,, i.e,, alineintegral. In

general aray refersto anormal to a propagating wave front which isasurface. Using (2)
we evaluate

qub _ {V . V(ea+ikL)}e—ikct
where we have written A(F) = e*” for notational convenience. Continuing,

V2¢ — {V ) [ea+ik'-v(a+ ikL)]}e—ikct _ {[V(a+ ikL)]2 N Vz(a+ ikL)}eaHkL—ikct

V2o ={[V(a+ikL)[ + V*(a+ikL)}p 3)
Likewise, evaluating 2—23—? using (2)

n’d% _n’, .

o Cz( ike? )¢ (4)

Substituting (3) and (4) into (1) we obtain

((Va)* +2ikVa: VL - K*(VL)* + V?a+ikV°L)p = —n*k’p
Equating the real parts

((Va)* = K*(VL)* + V?a)p = -n’k*

(K*(VL)* - n*k?)o =[(Va)® + V?a]p

(VL) ~ne]o= 4’}:

where we have used k = 27” Taking thelimit as A — 0 we get the result that
(VL) =n*=0or

;|(Va)® + V?alp

(VL)* =n? (5)
Thisresult isknown as the eikonal equation and impliesthat light travelsin straight lines, at
least in the zero wavelength limit. Taking the square root of (5)

VL=nt
where 7 will be shown to be the unit tangent to L(r).



Figure 2.

Suppose many rays leave surface 20 attime t,. The surface 2 consists of al points
reached by rays starting from 20 inatimeinterval (t—to). Thus, for any ray leaving
Y. . L(")=c(t—t,) - by definition the optical distance between >~ and ' . Pick any
point B, beyond the surface 2 . Theoptical path from P’ to B' is L(F) by definition of
). . Theoptical distancefrom B to B, is dL = n|R' B|=ndr - 7 where 7 istangent to
theray PP a r. (Itisassumed that for |dr| small, B' P will be parallel to PP at the
surface ) )

du=ndr-7 (6)
Note now that , in genera, dL = idx+&dy+idz or
oX oy oz
dL=VL-dr (7
Equating (6) and (7) we again get the eikonal equation
VL-dr =nt-dr
VL=n7T (8

The derivative of any function f along some curveis % = Vf -a where a isthe unit

vector tangent to the curve and s isthe displacement along the curve. Let T bethe unit
tangent as defined by (8), then

I _vizovi e Ywivr 9)
ds n n



Now pick f = % The reason for this will become clear shortly.

g( 8L) {8L da L Jdo o 88L}
ds

X X KK N dNK Iz dZd

sl

ds
Rearranging,

L d°L 8L ad 8L ddd
x 8x2 8y8x&y Jz X dz

O ORORE)

ds\ox ) 2nox |\ ax 0z

E(&Lj 18VL|2 10 2:@

ds\ox /) 2nox 2n oXx oX

since |VL| =n?. This manipulation may be repeated for f = %‘/ and f = %I; and the

) 1

— |==VL-V
oXx) n (
ady_1jd
ox n

results summed to give

d d, _
(VL) =Vn=—(n7) (10)

If the medium is homogeneous this reduces to az =0, i.e,, T=constant (since

S
homogeneity is equivalent to n=constant). If the tangent vector to a curve is constant that
that curve must be astraight line; this, inthe A = 0 limit light raystravel in straight linesin
homogeneous media.

This result together with Fermat’ s principle permits one to derive the fundamental
properties of reflection and refraction. Fermat’s principleisthat aray of light will traverse
amedium in such away that the total optical path assumes an extreme value. Stated
mathematically,

oL= S{Tn(s)ds} =0

Pl
where the & operation indicates avariation in the following quantity and ds isthe
differential distance along the ray path connecting P, to B,.

Toillustrate how this principle may be used consider the case of alight ray from B, being
reflected off asurface S to asecond point P, as shown below.
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Figure 3.

The optical path L isgiven by
L= n(\s”az +x2 +/b? +(d—x)2)
Differentiating,

dL=n E“‘;2x+£“;—2(d— X)(-1);dx =0
2Ja?+x° 2./b?+(d-x)°

Note that for our purposes the variational operator ( ) isequivaent to the differential
operator d( ). Neglecting thetrivia solution dx = 0 we must have
X d-x
va?+x® b2 +(d-x)°

: . X : d-x

From thefigure sinf, = ——— and sin6, = ———— where 6, and 0, are
boal e * b2+ (d-x) ' ’

measured with respect to anormal to the reflecting surface. Thus, sin@, = sing, or, the

angleif incidence equals the angle of refraction.

Itisavery similar problem to derive Snell’s Law governing refraction. The geometry isas
given below.
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Figure 4.

As before construct the optical path function L.

L=na?+x +n, /b +(d - x)°
Differentiating,

dL=n,— L +n,— d-x _

Jai+xt T b?+(d-x)
by Fermat’s Principle. Thisrequires that
1 N (d=x)
Va2 +x? b+ (d = x)

or n,;sin@, =n,sing, (where 6, and 6, are measured with respect to the surface S) which
isSnell’s Law.

In general, Snell’s Law and the law of refraction are valid for arbitrarily curved surfaces as
long as the angles are measured with respect to a perpendicular to the tangent to the curved
surface.

l1. Optical Transformations and the Ray Matrix

In generd the effect of an optical element such as areflecting or refracting surface upon an
incident ray can be modeled as atransformation of the incident ray’s lope and
displacement with respect to the optic axis. Specifically,

nr,'= Anr,'+Br,

r,=Cnr,'+Dr
The unprimed letters represent the ray’ s displacement from the optic axis (usualy the axis
of symmetry for optical systems), primed letters the ray’ s lope with respect to the optic



axis, the subscript “1” the incident ray, the subscript “2” the reflected or transmitted ray
depending upon the particular optical element, n, the index of refraction of the medium the
incident ray istraveling in, and n, the index of refraction of the medium the transmitted or
reflected ray istraveling in.

The quantities A, B, C and D describe the effect of the optical element upon the incident
ray. The transformation may be conveniently written in matrix form as

L' | [A Blny
r, | |C D| r
The sguare matrix containing A, B, C and D is commonly referred to as the ray matrix and
will be shown to be capable of describing many optical elements.

To demonstrate the derivation of the elements of the ray matrix we will consider the
propagation of aray in the direction from the z=z, to the z=z,=z,+d planes as shown
below.
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Figure 5.

At point P, theray has displacement r, from the optic axis and sloper,” with respect to the
optic axis. Because theray propagates along a straight line the doper,’” will be the same as
r,’; however, the displacement r, at the z, plane will not ber, but, rather, r,+r,’d. Thus, a
length d of open space may be characterized by the set of transformations

nr,'=nr;

r,= %(nrl')+ r,
or in the equivalent matrix form
e L]
AN

(The quantity d/n is often referred to as the reduced distance.) This result defines the basic
ray matrix describing the trandation of aray through space; hence, we define the basic
trandlation ray matrix T to be



1 0
n

Before devel oping any more ray matricesit will be necessary to state some sign
conventions commonly used with ray matrices:

1.
2. distances measured in the direction light istraveling are positive;
3.
4

oo

light proceeds from left to right unless otherwise indicated;

adistance is aways measured from arefracting surface or a principle plane (to be
defined later);

. aradius of curvature is positive if the direction from the vertex of a surface to the center

of curvatureisfrom left to right (Note: the vertex of acurved refracting surface isits
intersection point with the optic axis.);

surfaces are numbered in the order in which light passes through them; and
areflecting surface requires the use of anegative index of refraction for the medium
following the surface to account for the change in the direction of the ray or the
“folding” of the optical system asit is sometimes called.

We will now derive the ray matrix for amirror using the paraxial ray approximation that the
displacement of the ray from the optic axis and its dope with respect to the optic axisis
small. Thisassumptionis not as restrictive as it sounds and many interesting optical
systems can be examined using the paraxia ray approximation. Returning to our derivation
we will consider the mirror diagrammed below.

optic axis

Figure 6.



By sign convention #4 the distance from V to C isfrom right to left indicating that the
mirror curvature is negative. For triangle CBE we then have

: h
sin(f—-0)=—
(B-9)=%
By the paraxial ray approximation thisreducesto -6 z% or
h
0=pB——
P R

There are many waysto do the geometry. Here will will use the theorem from geometry
that the exterior angle of atriangleis equa to the sum of the two interior anglesto write
B =a+26. Using our previous expression for 6 inthisresult and solving for 8 we get

ﬂ=a+4ﬁ—%)
ﬁ:2%—a

By our adopted sign convention r,'= +L and r,'= —L so that
AE DE

r'=tana = o

r=—tanf~-p
where we have agai n invoked the paraxial ray approximation. Substituting these results
into the expression for 8 we get

-1, = +2£R
Noting that r, = r, = h we may multiply through by n (the index of refraction) to obtain
. . 2n
nr,' =nr'——r
2 1 R

Thus, the ray matrix R is

2n
R=I1 &
0 1
where R istheray matrix for amirror of curvature R<0. The more genera formfor R is
2n
r=|1 R
0 1

where R isasigned quantity.

Let us now develop the ray matrix for the curved dielectric interface illustrated below. Note
that this system has a positive radius of curvature according to our adopted convention.



~ Bl\fx - refracted ray

optic axis

AF =R
AB=n,
AC=n,
AG=r,

Figure7

Construct AB along the path of OA. The distance AB may be drawn proportional to n,
and, for our purposes, we may take AB = n,. In like fashion locate C on the refracted ray
AC suchthat AC=n,. Notethat BD = ABsing, = n siné, and that

CE = ACsing, =n,sing,. But n;siné, = n,sing, by Snell’s Law which means that

BD = CE and, therefore, that BC || DE. Let o be asindicated in Figure 7 and consider
triangle AFG. It followsthat cog7 — )= % =—cog(a) or cosx) = —r—é. Let us now

examinetriangle ABC in greater detail (See Figure 8).

By definition, r,'=tan B, and r,'= tan 3,. Re-writing using tan(x) = sin(x)
cox(X)
r' cosfB, =sinf; _AB
. AC AC
r, cosf, =sinf, = —=
2 ﬁZ ﬁZ AC n2

-10-



Figure 8.

Rewriting again
A B =nr'cosp,
A C =n,r,' cosp,

Notethat sinf3, = % or B C =BCsinf,. Along the x-axis

AB=AC+BC, N
or, substituting our expressions for these quantities,
(nyr,")cospB, = (n,r,')cosp, + BCsin B,

(NOTE: Thisisacomplex way of deriving these matrices.)

But B, =« —g so sin(B,) = sin(oc — %) = —cos(«). From the previous page
cos(a) = —% o that

nr,' cosp, = nr,' cosp, + %K:

Examining the diagram again we see that along AF we have
BC = AE - AD = n, cos@, — n, cosé,

nr,' cosp, = nyr,' cosf, + %{(n2 cos6, — n, cosé, ) (11)

We may now linearize this using the paraxial ray approximations cosp, = cosf3, = 1and
cosf, = cosf, =1. Theresultis

(n,r')=(nr) —arn, (12)
where we have defined a = % This coefficent ais known as the optical power of the
surface and has natural units of meter™. Thisunit isknown in the optical industry asa
diopter and is often indicated by writing P = % instead of a as above.

-11-



Deviations from (12) for areal lens are called abberations and may be predicted by using a

3 5
Taylor series expansion of cosx in (12). Recall that cosx:l—xg+xg+... where |x| < 1.

We used only thefirst term cosx = 1 to derive (12). Most optical aberrations that are
significant in real optical systems can be described by retaining third and fifth order terms
in the cosine expansion.

Equation (12) together with r, =, allows usto write the refraction matrix R 4 .cion

1 -
Refraction = 0 1

Itisuseful at this point to compare this result with the ray matrix for reflection from a
curved surface

1 +&
R eftection = R
0 1

Notethat if n, =—n, in R 4.cion NN Rgracion = Retteion- 1 NISISthe basis for sign
convention #6 and allows reflection to be represented as a special case of refraction.

TheLens

A lensis simply two curved dielectric interfaces separated by a small distance d as shown
below.

» Optic_axis

Figure 9
The ray matrix describing such alens can be developed by following alight ray through the
lens. At the front surface of the lensthe ray is refracted by a surface of positive radius of

curvature. If theinput ray isdescribed by r, and r,' the resulting ray (rz,rz') can be
computed using the refraction matrix

. n—nJrn, .
|:n2r2 } _ [l - " :||:rhrl } _ R1|:nlrl }
> 0 1 N n

Thisistheray entering the lens. The light ray incident on the second lens surfaceis found
by considering the trand ation of (rz,rz') as it passes through the lens, i.e.,

' 1 0 ' .
|| g L | nn
{rs }_!n_z 1][ > }_TR[ rl}

-12-




The second dielectric interface refracts thisray to yield

n4r4l 1 - nl — n2 n2r3l nlrll
[U }zL 1r2 [rs }:RZTR[ rl}

The overall transformation of theincident ray is described by the system matrix S= RTR.
Before examining this matrix in detail it is convenient to define the following powers of the

lensrefractive surfaces. B = d- il (the refractive power of thefirst surface) and

n

k= LSl (the refractive power of the second surface). Using these definitions the

r2
system matrix S may be written as
1-4p -R-R+ AR
S_ n2 r‘I2
- d d
—_ 1__Fi
L n2 n2
In general, any optical system can be described by a system matrix S where
b
S=
B

The quantities a, b, ¢ and d are called the Gaussian coefficients of the system. Their
significance will become apparant when we describe image formation.

Thematrix S hasthe interesting property that det S=ad —bc=1. To show that thisis so
recall that Sisaproduct of trandation and refraction matrices. The determinant of a
refraction matrix is 1; likewise, the determinant of atrandation matrix is1. Sincethe
determinant of a product matrix is the product of the determinants, i.e.,

det( AB) = det( A)det(B), where A and B are 2x2 matrices. Theresult isthat any system

matrix describing a paraxia ray system using combinations of refracting, reflecting and
trandating matrices will have a unity determinant.

| mage Formation

Consider an optical system described by the system matrix S of Gaussian coefficents, i.e.,

s=| P~
|-d ¢
Let us now write the transform for this system for incident raysin aplane F, located /, to
the left of the optical system and P, located 7, to the right as indicated below.

-13-
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I | 2

I \/1 4 S @ V2 I |

I I

- l, - general - l, =

| optical |
object system image
plane plane

The transformation of aray between these planes can be given by

ol il ]

b+al, -a
e = b/, +all,—d-ct, c—al,
Notethat 7, ismeasured from V, and is negative; hence the minus sign.

Point B in B, (theimage plane) is called theimage of point A in B (the object plane) when
r, = Br, independent of the slope of theincomingray AC. J isaconstant andisthe

r’ r,
system magnification. Let the system input be {nil } and the output {nlr ? } The resulting
1 2

transformation leading to r, is
r,=(bl, +all, —d—cl)nr' +c—al, )
For r, to be independent of r,'it is necessary that
bl,+all,—d—-ct; =0
Solving for 7, inthis expression
_d+cly
> b+al,

The magnification 8 = f isthen given by

1

ﬁ:r_zzc_agzzc_a(d+cﬁlj_cb—ad

r, b+al,) b+al,
To simplify this result recall that det(S,,, ) =cb—ad=1. Thus,
1
p= b+al,

-14-



B may be either positive or negative. A negative B merely indicates an inverted image.
1
We can now rewrite S, as ,p, = [E a]
0 B
Theplanes B, and P, such that this matric describes the ray matrix transformation
between the planes are called conjugate planes. The principa planes are conjugate planes
for which = +1 (+1inthefollowing derivation), i.e., a 1:1 imaging relationship. Using
B =+1wesolvefor 7, and 7,

pot o1 S S
b+al, a
c-1

ﬂzc—a€2:1 = gZZT

¢, and ¢, locate the principal planesin terms of the elements a, b and c of the system
matrix S. The principal points are the intersections of the principal planeswith the optic

axis. For |ater reference note that at the principal pointswe have (nyr,') = %(nlrl') —ar, or

r,'=r,'. Any ray passing through the principal point in the object plane with slope r," will
pass through the principal point in the image plane with the same slope. Points satisfying
this 1:1 relationship in points are called nodal points.

It is common practice to locate the object and image planes relative to the principal
planes rather than the vertices of the optical system. Let the distances from the vertices to

the principal pointsbedenoted by L, and L,. Then /,=s +L and /,=s,+L,.

principal
/ planes \
|<— §—la— | — <« |, —>le—s—>}
| | | | | | _
| |
[ 0 - ¢ -

As L, and L, locate the principal planesthey satisfy

1= =c-aL,
b+al,
Using this result
1 1 1
B=

b+a€1:b+asi+aL1:1+as_L

B=c-al,=c—as,—aL,=1-as,
The system matrix may now be written as

l+as -a
&’1F’2 - |: 0 1_ a%:|

We will now derive the simplelenslaw

-15-



1 1 1

s s
where f, isthefocal length of the system for light incident from the left. The classical
definition of the focal length of asystem Sisthat any incident light rays parallel to the optic
axisat B, will crossthe optic axisat apoint D adistance f, from the second principal
plane.

U U,
R n | B
| n, |
B C
/ |
d d
A q |
| S D
® ® -
| f, -!
< S general |
| optical S, -
system

Let R and P, be conjugate planes such that the focal point of S isthe conjugate
point of P, (the intersection of a conjugate plane with the optic axis is the conjugate point).
We now need to determine s,. Suppose ray AB isnot parallel to the optic axis. If ABisa

distance d' away from the optic axisat F, and d a u,. Theslopeof AB isthen

,_d-d

r . Since r;'= 0 by the problem definition it followsthat s — — ('S, iSnegative

S
. , 1+as .
from thedrawing). To relate thisto s, werecall that det(SplPZ) = 1-as, =1 or, rewriting,
1.1
S § a

As s — —o weseethat s, — a. All that remainsisto relate f, and a to have the classical
lenslaw. Thismay be done by noting that between the principal planes u,and u,

nr,'=nr'—ar

. AY —d d

orusingr,=d, r'=0, r)=—=—=—— wege

=G =t LT, T Y

a=+-—>=

f,

Thisisexactly theclassical lenslaw whenever n, =1

1_1.n

s s §h
The system S has a second focal point such that light rays passing through this point with
any slope will be transformed into parallel rays, i.e., r,'=anything, r,'=0.

-16-



principal

u;/ planes \:

2

R R
! * 'S
I I
I I
I =
le I
| 2 general |
I £ optical S, -
system

To solve this problem we first establish the image-object relationship between the conjugate
planes B and B,. By analogy with the previouscase r,'= 0 implies s, — +eo. Using

1.1 + 1 gives s =—a. Torelate ato f, we usethe transformation

S § a
nr,'=nr' —an
wherer, =d, r'= +—? r,'= 0 giving nl[

+d
_f, -

j:ad, or
f

1

a=_"

f
These two expressionsfor a givethelenslaw
1 1. n_n

s s f, f
For later reference we will derive the Newtonian form of the lens law:
XX, =— f22

principal

From the drawing we write:
§=h+tx=-T+%
s=f+x%

Substituting this into the lens law where n, = n, =1.000 we get
XXy == fz2

-17-



Example: Plano-convex lens

R =co R, =-2.5cm
AB=d =0.6cm

optic

A B axis

n,=15

n, =1.00 n,

From page 13 the system matrix for planes passing through A and B perpendicular to the

optical axisis:
d d
1-—F, -R-R+ —RR
S — n2 r-]2
AB T
d g dp
n2 n2
For the given lens
P n,—n :1.5—1:O
r oo
P - n-n, :1—1.520.2
r, -2.5
4_06_o4
n, 15
s - 1-(04)(0.2) -02| [092 02| [b -a
e 0.4 1] (04 1| |-d c

Asacheck on our calculations

det(S,s) = (0.92)(1) — (0.2)(0.4) = 0.92+ 0.08 = 1.00
The location of the principal planesis given by
~1-b 1-092

4, =+0.4
a 0.2
=871 171
a 0.2

The principal planes are then located as shown below

-18-



optic
axis

R R
Thistype of lensis often found in optical instruments because a high quality flat surfaceis
much easier to produce than a spherical surface; hence, a good plano-convex lensis
cheaper than a comparable quality biconvex lens.

Thelocation of the principal planes for some common lens shapes are shown below.

H H,

o
1!
(@)

optic
axis axis
11
1
11
1
- I I -
optic 1 optic
axis 1 axis
11
1
11
1
11
R-p-Feo R=P<0;p,=0

-19-



In these sketches H, and H, are principal planes, P, and P, are the refractive powers of
the first and second surfaces respectively, and P=F, + B,, i.e,, athin lenswhere d = 0.

Simple magnifier:
We will now analyze a plano-convex lens as a ssmple magnifier as shown below.

T k-

N

K
’

’

’
/7 7
’
’

I

o

I

N

) I N " RN P

Several features of this drawing are worth mentioning regarding graphical ray tracing.
Note that the lensis assumed to be athin lens, i.e., the distance between the principal
planes H, and H, issmall (= 0). Inthe drawing the object to beimaged islocated s in
front of H,. To locate the image we trace two rays from the object and graphically
determine their intersection—this intersection locates the image. Thefirst ray will be drawn
parallel to the optic axis. By the definition of principa planesthis ray must pass through
the focal point A. The second ray is drawn from the object to the principal point of H,.
On page 17 we notes that principal points are nodal points; hence, the ray will leave the
principal point of H, with the same slope asit had crossing H,. These rays may be
extended indefinitely until they intersect. A perpendicular to the optic axis from this point
of intersection will locate the image.

As shown in the drawing the object islocated near thefirst focal plane. The eye of the
observer islocated near the second focal plane. 6, isusually agood measure of the

apparant size of theimage. Tan(6, ) = r_)z( or, because of the paraxial ray approximation,
2

-20-



The magnification is given by ﬁzl—%. If, asisusualy the case, >>1then

2
B = —fi. Substituting this result into the expression for 6, we get 6, = r—lf since
2 —h
S
- rl
-, ( fz] n_n o :
0,=—== =——. A comfortable viewing distance for theeyeis

1
X S, - f2 fz - f1
approximately 10 inches (about 250mm). Theangle 6' that the object would subtend if we

n

viewed it from a distance of 250 mm unaided is 6' = 25(;1m - Common usage defines the

magnification of the lens as
r.l

M = 0, _ f, __ 250mm
' ) f,
250mm

Note that since f, is negative (see drawing) M > 0 and the image is upright.

The Compound Microscope

We will now consider amore complicated instrument, a compound microscope consisting
of two lens separated by adistance d as shown by the following figure.

[
N

%)

optic
axis

1T
vl

i
T T B s B

Items indicated by capitals are referring to the overall optica system; small lettersrefer to
items characterizing the individual optical elements. Between planes h, and h,
d 1 1 d

1 17 |[1-— —=-—=+—
S, - 1 - {1 0}1 -l f f4d f,f, :[b —a}
Wiy 4 2
o 19 o 1 d 1-+ -d c

2
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1 1 1+iziwhered:f2+f4+£
Fz fz f4 fz f4 fz f4

f,f
F=__24
? /
1-b 1_(1_?j df
_+—P_ 4/ _Ya
- a b ‘
f,f,
1 1_(?_ J df
_C- 2 hat’)
L, 3 - 7 =+
f,f,
For atypical microscope f, = f, =16mm and ¢ =160mm
L=- (16+16+160mm)(16mm) _ 19.2mm
160mm
L=+ (16 + 16+ 160mm)(16mm) _ +19.2mm
160mm

Let us now locate the object relative to the system focal points. As before for good viewing
the virtua image will beat x, = —250mm. Then, using the Newtonian form of the lens

law x,x, = —F7.

2 2
R (1'6)0 =+0.01024mm

whichisalmost at thefirst focal point F . The system magnification is

M= 250 = _20 L indicating an inverted image. For the numbersgiven M = —156.

F2 f2 f4

Let us now examine the intermediate image formed by thefirst lens. The object isvery
near the system focal point F, so that, relativeto f,, x, =-1.6mm. Using the Newtonian
lenslaw
2 2
X, = B a6y =160mm

x -16
Thisindicates that the image is formed approximately at the focal point of the eyepiece.
Thisintermediate image isrea and inverted. The eyepiece may now be treated asasimple

magnifier with magnification M, = —@ = +@. For the objective lens the
1 2
magnification M, =1— 2. _—(. The system magnification M isthen seen to be

f, &
approximately equal to the product of the eyepiece and objective magnifications.

The Telescope

A telescopic system is defined to be an optical system having a dope transformation that is
independent of r,, i.e., of the form n,r,' = kn;r,' where k isaconstant. Let usconsider the
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optical system of the diagram below and examine the conditions under whichitis
telescopic.

R

U

S

- _ L _ _ __

optical
system

- A general ’,
I

b -a
If Sisagenera matrix of Gaussian coefficients, i.e., [ 4 c } then

1 0 3 1 0 b+aﬁ -a
Sp, = & 1 |: i a} —ﬁ 1|~ g
o n, —d c] bleyalsle g ¢l c_ale

r‘|2 nl r‘|2 nl r‘I2
The slope transformation between B, and P, isthen

(002)=[ b+ o) o,

For this transformation to be independent of r, it isnecessary that a= 0; hence,

(n,r,") =b(nyr,'). Note that once a is set equal to zero it remains zero for any choice of ¢,
and 7,, i.e, itisinvariant under trandation. Consider the system shown below composed
of two thin lenses separated by adistance d.

L, L,

A A
| | | |
| * | | * | =
- f,— -, f, -

- d =

Y Y

Between lenses L, and L,
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1 1 1-— ———+—

S, = 1 _f_ |:1 O:| 1 _f_ — f, f, f, ff,
1Ly 4 d 1 2 d
0 1 0 1 d 1-—

For this system to qualify as telescopic
1

1,1 d_
f, f, ff,
Using this equality we can re-write § | as
—% 0 P, 0
SLlez N = i
faf, —e| |BTR o

f,

where we have defined p, = —%. Note that the telescopic system requirement resulted in
4

d=f,+f,,i.e, thefocal pointsof the two lenses must coincide. Writing out the

transformations

rz': parll
I.
=0+ )+

o

where we assumed that n, =n, =1.

The quantity p, isknown asthe angular magnification. In general, telescopes are capable
of resolving objects at great distances because of their ability to magnify the small angular
separation between such objects. With § | being telescopic consider the transformation

between aplane H, located /, totheleft of L, and H, located 7, to theright of L,

p, O P, 0
S_IlHZ - |:f1 g.):|[ fz + 1:4 i]{—:; (]).:| - [EZ Py + fz + f4 - ﬁ i]
2 P. ! P Py

o

For image formationwelet 7,p, + f, + f, — b 0. Then, the transformation between H,

o

and H, is
r‘2'= parl'
1
I’2 = p—al’l

Notice that high magnification and good angular separation are competing processes. The

larger p, is (better angular resolution) the smaller the system magnification (pi) is. The
proper design of atelescopic system involves atrade-off between angular resolofjti onand
magnification.

Let us examine the longitudina magnification % as opposed to the transverse
1

magnification r_z' Differentiating the expression /,p, + f, + f, _4h =0 we get

1 o
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A,

Alp,—=2=0
P,

A, 1

Al P

For the system examined al magnifications are independent of image and/or object
distances and the image isreal and inverted. Any such telescopic system having the same
signed magnifications as derived hereis called Gailean.
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Stops and Apetures

Up to now we have only been concerned with the image location and size. Two other
important considerations are the system field of view and the brightness of the image.
Stops are related to the determination of each of these factors and, in general, stops are
defined to be those elements in the optical system that determine what fraction of the light
from an object point will actually reach the corresponding image point.

Let usfirst examine an on-axis point as shown below.

For points P, and P, x,x, = (-4)(+1) = —4cm? = — 2 = —(2cm)* = —4cm?. To the
observer a P, it appearsthat A, and B, limit the rays coming from B. We shall now
show that the apeture A, B, ismerely theimage of AB,. To relate the apeturesfirst note
that they satisfy the Newtonian lenslaw x,x, = —f7 since x, = +1, X, =—4, and f, =+2.
If point A, istheimageof A then their distances from the optic axis are related by

B=1-as, = ﬁ where a:fi and s and s, are measured from the principal planes
2
of thelens. For athin lensrecall that the principal planes coincide. To put B inamore

tractableformwrite s, = f, + X, and s = x, + f;. Substituting these expressionsinto those

for Bweget B = —% = % where we have used the fact that f, = —f,. Notethat this
2

equality is equivalent to thelenslaw as —% = f = XX, = —f,7. With the numbers given
2

inthedrawing 8 =+2. To show that their heights do obey thisrelation and have theratio
of 2:1 we note that the siope of BA is 16M¢ .= é . Thedistance of B, from the optic
6
. 1 gtm 2 :
axisisthen 6x == 1.2cm. Theslopeof BB, is 2 3m=g- Thedistance of A, from
the optic axisisthen Scmx % = 2cm which istwicethat of A confirming the

magnification of 2. Actually this derivation could have been proved for arbitrary locations
of the stop.

Returning to the cone of light rays coming from B itisseenthat AB, congtitutesthe
apeture stop since it limits the angular spread (0) of the rays coming from B, that will be
imagedto P,.
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