EEAP 282 INTRODUCTION TO MICROPROCESSORS

COURSE OUTLINE

Торіс	Class notes	Ford & Topp, 2nd Ed.
Informational (1 lecture)		
a. Course syllabus	1-4	
b. grading policies	5	
c. CWRUnet ethics code	6-8	
d class notes	9	
e. CWRUnet	10	
1. connecting via PPP		
2. connecting to the Kern Lab		
f. Where microprocessors came from	11	
Number systems and computer math (3		
lectures)		
a. representing numbers in binary	12	16-17
b. decimal-binary conversion, flow charts	12-18	17-19,21-22
and pseudo code		
c. binary fractions, hexadecimal	19,20	17-18
d. binary arithmetic, carrys, and overflow	21-23	24-25
e. fixed length binary numbers, 2's	24-25	25-37
complement numbers		
f. signed overflow, sign extension	26-32	37-45
g. representing characters in binary	33	45-47
h. logical functions	34-35	51-53
UNIX (1 lecture)		
a. commands	37-38	
b. file structure	39-43	
c. help	44	
d mail	45	
e. news	46	
f. vi editor	47-49	
Basic computer architecture & operation (3		
lectures)	53-54	
a. fetch-execute cycle	55	59-61
b. CPU	56-57	61,64-65
c. memory	62	61-64
d. bus		66-68
e. program counter	60	00-00
f. instruction coding	61	
	01	

the 68000 microprocessor architecture (2		
lectures)		
a. basic 68000 architecture	58	73-74
b. 68000 register set	59	75-78
c. memory organization	62	74-75
d. basic 68000 machine code	63-65	79-80
programming		10 00
e. MOVE, ADD, SUB instructions	66-68	80-83
f. disassembly of instructions	69-73	90-92
g. Programmer's Reference Manual	74-77	00 02
h. extension words, machine cycles	79-83	87-90
Basic 68000 assembly language		
programming (3 lectures)		
a. the debugger	78	
b. Example: simple program		102-104
c. 68000 programming syntax		104-107
d. assembler directives	90-95	107-112
e. the Status Register	84-89	149-153, 643-
je na se		646
f. how to run programs	96-97	112-118
g. Example: how to assemble, link and	98-110	
debug a program		
Advanced 68000 assembly language		
programming (8 lectures)		
a. addressing modes		
1. direct, immediate, absolute	111-122	119-123
2. address register direct	123-126	123-126
address register indirect	127-135	126-128, 213-
		216,223,228
 b. Example: program w/labels 	136-143	
c. error messages	144-145,148	136-139
d. Examples: programs w/errors	149-151	
e. Kern Lab i/o routines	152-154	129-133
f. simple branching	155-158	153-160
g. bit manipulation	157	196-197
h. structured programming	159	170-174
i. DBcc instruction	160-165	180-183
j. signed branching	166-167	164-170
k. unsigned branching	155-158	176-178
I. Example: parity program	168-170	197-199
m. Examples	171-177	400 404
n. Rotate and shift instructions	178-183	160-164
o. Examples: rotate & shift	184-194	188-189
p. Math Instructions	195-199	189-194
q. Examples: math instructions	200-205	

Stacks and	subroutines (7 lectures)		
	and stack operations	212-213	217-221
	nple: backward echo	214-216	
	nple: RPN calculator	217-219	221-223
	elative addressing	220	231-236
e. MOV	'EM instruction	221-222,	276-281
		227,251-252	
f. subro	outines	223-225	269-276
g. pass	ing parameters	253,226-235	287-291
h. recur	rsion	237-238,255-	475-487
		256	
i. stack	rames	239-243	291-296
	nple: LINK/UNLK	244-247	296-300
k. C/Pa	scal subroutine calling	248-250	465-472
conv	entions		
I. jump	tables	254	455-465
m. Exan	nple: display 68000 registers	257-260	300-302
Systems pro	ogramming (7 lectures)		
a. micro	pprocessor states (NORMAL,	261-262	642-645
	EPTION and HALTED.)		
b. user/	/supervisor mode, priviledged	262-263	645-648
	uctions		
c. exce	ption processing	264-266	648-655
d. Exan	nple: trace exception	267-268	673-676
e. Exan	nples: reset/startup exceptions	269-273	655-659
	& error handling	274-278	660-664, 676-
	-		686
g. Exan	nple: single step exception	279-283	689-694
	nples: 1010 and 1111 instruction	285-288	664-669
traps			
Advanced N	Aicrocomputer Architectures		
	ectures)		
a. RISC	and pipelined architectures		
	60x RISC processors		
	Pentium		
d. Texa	is Instruments TMS320		
			ł

The total is 42 lectures with three reserved for in-class exams. This outline is tentative. If more time is spent on certain topics, the time spent on the remaining topics will be reduced.

Textbook:

MC68000 Assembly Language & Systems Programming for the 68000 Family, Second Edition

William Ford and William Topp

This textbook is available from the University Bookstore.

The following references will be available for purchase from the CWRU Electronic stores (3rd floor of Glennan) shortly after school starts:

M68000 Family Programmer's Reference Manual M68000/AC Rev 2 Programmer's Reference Card

Office Hours:

Room 515 Glennan.

Monday & Wednesday 2:30- 3:15 10 minute meetings, Be prepared, be concise. Other times by appointment.

Honor Code:

All students are expected to abide by the CWRU Computing Code of Ethics and Student Code of Ethics. Sharing of ideas and comparison of answers on homework is acceptable, but copied work will not be accepted. In-class exams will be closed book and closed notes unless specifically stated. All work must be your own. Any reasonable suspicion of an honor violation will be reported to the Office of Collegiate Affairs.

Grading Policies:

Homework assignments, quiz due dates, etc. will be assigned via email and bulletin board. Failure to read your e-mail will not be an acceptable excuse. Assignments will be due at 5PM on the specified day. Late assignments will be penalized 10% per day late (weekends and holidays will not be counted for penalty purposes). Solutions will be posted on the Web. No student who fails to turn in two programming assignments without supporting evidence (medical excuse, etc.) will pass the course. Handing in an assignment late or incomplete is better than not doing it. Appropriate exceptions will be made for network and other computer failures. Grade Changes:

A student requesting that the grade of an assignment or exam problem be reconsidered must provide the instructor with the following information **in writing** within two class periods after the work is returned to the class:

- 1. The number of the problem(s) to be reconsidered;
- 2. A description of your mistakes made in the problem(s); and
- 3. The reason that you feel that you should receive additional points for the problem(s), i.e. material the instructor did not see that was on the exam or homework paper.

Note: The entire exam or homework may be reconsidered by the instructor at this time.

Grading

This course uses outcome based grading. You are expected to show a minimum competency in computer usage (including CWRUnet and the Web), as well as competency in microprocessor architecture and programming. Your grade will be based upon the following scale. A modest number of extra credit assignments may be made throughout the course of the semester.

Total points >90%	Α
Total points >80%	В
Total points >70%	С
Total points >60%	D

Tentative Lab Assignments and due dates:

- 1. Learning to use the lab hardware/software September 12th*
- 2. 68000 instructions and the SR
- 3. polled i/o
- 4. packet construction
- 5. floating point division routine
- 6. exception driven time sharing kernel
- 7. unimplemented instruction

September 12th* September 19th* October 6th* October 17th* October 31st* November 17th* December 1st*

NOTE: These labs may be replaced with others at my discretion.

<u>EXAMS</u>

ALL regular exams will be <u>closed book</u>, <u>closed notes</u>. Students will ONLY be allowed to use the 68000 Microprocessor Programmer's Reference Manual and Programmers Reference Card during exams; no other reference materials will be allowed.

GRADING POLICY

Exam #1	12%
Exam #2	12%
Exam #3	12%
Exam #4	12%
Programming assignments	30%
Computer Quizzes†	22%

September 26th* October 15th* November 12th* December 5th*

†These are open book exams which will be adminstered and graded over the Web. This is an experimental component of the class. We plan to have the on-line quizzes ready shortly and will use the tentative schedule for quizzes:

Quiz #1	September 10th
Quiz #2	September 15th
Quiz #3	September 22nd
Quiz #4	October 6th
Quiz #5	October 17th
Quiz #6	October 24th
Quiz #7	November 3rd
Quiz #8	November 10th
Quiz #9	November 21st

* All dates are tentative and subject to change.

The teaching assistants are:

Kapil Sharma	kxs81@eeap.cwru.edu
Wenhui Zhao	wxz14@eeap.cwru.edu
Zhao Xiang Pan	zxp5@eeap.cwru.edu