
Exam #4 Sampler Fall 1997 - 1 -

EEAP 282

Exam #4 Sampler
 LINK/UNLK
7. Consider the recursive routine FACTOR. What are
the contents of the stack and A0 after the first TWO
(2) calls of the subroutine. You may assume that
(SP)=$8000 when the program begins execution.

DATAX EQU $7600
PROGRAM EQU $7000
 ORG DATAX
NUMB DC.W $A ;number
F_NUMB DS.W 1 ;answer

 ORG PROGRAM
MAIN MOVE.W NUMB,D0 ;get number
 JSR FACTOR ;compute
 MOVE.W D0,F_NUMB ;store answer
 TRAP #0

FACTOR LINK A0,#-2
 MOVE.W D0,-2(A0)
 SUBQ.W #1,D0
 BNE F_CONT
 MOVEQ #1,D0
 BRA RETURN
F_CONT JSR FACTOR
 MULU -2(A0),D0
RETURN UNLK A0
 RTS

DONEIT END

Exam #4 Sampler Fall 1997 - 2 -

ANSWER: Commented program:
DATAX EQU $7600
PROGRAM EQU $7000
 ORG DATAX
NUMB DC.W $A ;number
F_NUMB DS.W 1 ;answer, factorial of
number

 ORG PROGRAM
MAIN MOVE.W NUMB,D0 ;get number
 JSR FACTOR ;compute
 MOVE.W D0,F_NUMB ;store answer
 TRAP #0

FACTOR LINK A0,#-2
 MOVE.W D0,-2(A0)
 SUBQ.W #1,D0 ;decrement number
 BNE F_CONT ;not end of factorial
process
 MOVEQ #1,D0 ;factorial:=1
 BRA RETURN
F_CONT JSR FACTOR ;continue factorial
process
 MULU -2(A0),D0 ;factorial:=N*(N-1)
RETURN UNLK A0
 RTS
DONEIT END

Exam #4 Sampler Fall 1997 - 3 -

 [_________]
 SP --> [$09]
 [_________]
 FP --> [A0]
 []
 []
 [_________]
 [Return]
 [Address]
 [#2]
 [_________]
 [$0A]
 [_________]
 [A0]
 []
 []
 [_________]
 [Return]
 [Address]
 []
 [_________]
orig SP -->[]

The location of the SP and FP were worth 2 points
each. The length (size) and content of each item on
the stack were worth 1 point each.

Exam #4 Sampler Fall 1997 - 4 -

7. Consider the recursive routine FACTOR. What are the contents of
the stack and A0 after the first TWO (2) calls of the subroutine. You
may assume that (SP)=$8000 when the program begins execution.

DATAX EQU $7600
PROGRAM EQU $7000
 ORG DATAX
NUMB DC.W $A ;number
F_NUMB DS.W 1 ;answer

 ORG PROGRAM
MAIN MOVE.W NUMB,D0 ;get number
 JSR FACTOR ;compute
 MOVE.W D0,F_NUMB ;store answer
 TRAP #0

FACTOR LINK A0,#-2
 MOVE.W D0,-2(A0)
 SUBQ.W #1,D0
 BNE F_CONT
 MOVEQ #1,D0
 BRA RETURN
F_CONT JSR FACTOR
 MULU -2(A0),D0
RETURN UNLK A0
 RTS

DONEIT END

Exam #4 Sampler Fall 1997 - 5 -

ANSWER:
Commented program:
DATAX EQU $7600
PROGRAM EQU $7000
 ORG DATAX
NUMB DC.W $A ;number
F_NUMB DS.W 1 ;answer, factorial of
number

 ORG PROGRAM
MAIN MOVE.W NUMB,D0 ;get number
 JSR FACTOR ;compute
 MOVE.W D0,F_NUMB ;store answer
 TRAP #0

FACTOR LINK A0,#-2
 MOVE.W D0,-2(A0)
 SUBQ.W #1,D0 ;decrement number
 BNE F_CONT ;not end of factorial
process
 MOVEQ #1,D0 ;factorial:=1
 BRA RETURN
F_CONT JSR FACTOR ;continue factorial
process
 MULU -2(A0),D0 ;factorial:=N*(N-1)
RETURN UNLK A0
 RTS
DONEIT END

 [_________]
 SP --> [$09]
 [_________]
 FP --> [A0]
 []
 []
 [_________]
 [Return]
 [Address]
 [#2]
 [_________]
 [$0A]
 [_________]
 [A0]
 []
 []

Exam #4 Sampler Fall 1997 - 6 -

 [_________]
 [Return]
 [Address]
 []
 [_________]
orig SP -->[]

The location of the SP and FP were worth 2
points each. The length (size) and content
of each item on the stack were worth 1 point
each.

Exam #4 Sampler Fall 1997 - 7 -

14. (Lawson 282) This program calls a subroutine using LINK and UNLK
instructions. What is on the stack after

(a) the instruction JSR is executed
(b) the instruction LINK is executed
(c) the instruction UNLK is executed
(d) the instruction RTS is executed

ORG $1000
N EQU 8
M EQU 8

ADD.L #-N,SP
MOVE.L ARG,-(SP)
PEA X
JSR SUBR
ADD.L #8,SP
MOVE.L (SP)+,D1
MOVE.L (SP)+,D2

ARG DC.L $01234567
X DS.B 200

SUBRLINK A1,#-M
MOVE.L LOCAL1,-4(A1)
MOVE.L LOCAL2,-8(A1)
ADD.L #1,-4(A1)
MOVEA.L 8(A1),A2
MOVE.L OUTPUT1,16(A1)
UNLK A1
RTS

LOCAL1 DC.L $98765432
LOCAL2 DC.L $87654321
OUTPUT1 DC.L 'ABCD'

END

Exam #4 Sampler Fall 1997 - 8 -

 INTERRUPTS & EXCEPTIONS:
12. The following code is executed with (SR)=$2000, (USP)=$4000,
(SSP)=$7000, and (D2.L)=$00008000. The system has 32K ($8000) of
memory, i.e. there is no memory at any address such as $8001 which
is greater than $8000.
 ORG $5500
00005500 21FC 0000 551C BEGIN: MOVE.L #ROUT,$08
 0008
00005508 4FF9 0000 8000 LEA $8000,SP ;set SSP to
32k ($8000)
0000550E 3F7C 0007 0006 MOVE.W #7,-(SP) ;move back to
$7FFE
00005514 2EF8 4000 MOVE.L $4000,(SP)+ ;move forward

to >32k, generates bus
error exception

00005518 0642 0045 ADD #$45,D2 ;generic
instruction and rest
of program

 ROUT: ;bus error
service routine
0000551C 4FEF 001A LEA $8010,SP ;put new

value into SP, does
not cause bus error

00005520 4E73 RTE ;program
return, causes bus
error since address is
greater than $8000,
68000 HALTS

What happens when the program is executed? Be sure to state what,
if any, exceptions occur, where they occur and why they occur.

12. When you execute the instruction TRAP #0, where (i.e. at what
address) does the 68000 expect to find a service routine?

ANSWER: The exception vector number is 32+0. According to the
rules for exceptions, the exception vector table address is then
$32x4=$80

Exam #4 Sampler Fall 1997 - 9 -

10. The following program is assembled and loaded at address
$A000. The programmer calls a TRAP #1 exception which is to access
the parameters placed on the stack by his/her program. Assume the
program starts in USER mode.
 * THIS IS THE USER'S PROGRAM
 ORG $A000
 START2:
 * put input parameters on stack
0000A000 2F3C 0000 0003 MOVE.L #3,-(SP) ;parameter 1
0000A006 2F3C 0000 A500 MOVE.L #BUF,-(SP) ;parameter 2
0000A00C 2F3C 0000 0200 MOVE.L #512,-(SP) ;parameter 3
0000A012 2F3C 0000 0002 MOVE.L #2,-(SP) ;parameter 4
0000A018 4E41 TRAP #1
0000A01A 4E71 NOP

 ORG $A500
0000A500 BUF: DS.B 512
 * service routine for TRAP #1.
 ORG $A700
 TRAP1:
0000A700 48E7 80C0 MOVEM.L D0/A0-A1,-(SP)
 STACKS:
 * code for processing TRAP goes here

 * instructions for part (b) go here
0000A004 4E69 MOVE.L USP,A1 ;A1 points at
uk

0000A006 2029 0008 MOVE.L 8(A1),D0 ;get data
with P
0000A00A 4CDF 0301 MOVEM.L (SP)+,D0/A0-A1
0000A00E 4E73 RTE
 END

(a) Draw a picture of the system and user stacks at the point
labeled STACKS: in the TRAP #1 service routine.
ANSWER:

SSP→ D0

USP→ parameter
(4)

A0

parameter
(3)

A1

parameter
(2)

SR

RA
parameter

(1)
$ 0000
A01A

Note: these stacks are shown as word width instead of the usual byte width for brevity.

(b) Immediately after the label STACKS: in the TRAP #1 service
routine the programmer wants to access the data labeled parameter

Exam #4 Sampler Fall 1997 - 10 -

2 that was put on the stack in the user program and put it into D0.
Give 68000 code for doing this.
ANSWER:

MOVE.L USP,A1 ;A1 points at user
stack

MOVE.L 8(A1),D0 ;get data with
offset of 2 long
words

Exam #4 Sampler Fall 1997 - 11 -

11. At START: the system stack pointer is $A000 and the status
register is $2000. The exception vector table has been loaded with
the addresses of all appropriate service routines. Assume that all
service routines return to the next line. The following program
segment is executed.

START: LEA $8000,SP ;1
MOVE.L #$9000,$700D ;2
DC.W $FFFF ;3
ORI.W #$8000,SR ;4
MOVE.W D0,D1 ;5
ANDI.W #$F000,D1 ;6
ANDI.W #$7FFF,SR ;7
MOVE.W #7,$7EEE ;8

On a line by line basis, indicate what the state of the processor is and
any exception processing that will take place.

line description of what happens
1: no exception processing, sets the supervisor stack

pointer to $8000; in SUPERVISOR mode
2: exception processing, odd address exception,

instruction is NOT executed
3: exception processing, 1111 unimplemented instruction

TRAP
4: no exception processing, turns TRACE bit ON
5: instruction does not directly cause an exception; TRACE

exception occurs
6: instruction does not directly cause an exception; TRACE

exception occurs
7: instruction turns the TRACE bit off; TRACE exception

occurs
8: moves $0007 to address $7EEE, no TRACE!!!

10. Explain what is wrong with the following program fragment
and correct it. (SR)=$2000

LEA $4000,USP ;cannot access the USP in supervisor
mode

ADDX D0,D1

ANSWER: The SR indicates that the 68000 is in supervisor mode. An

Exam #4 Sampler Fall 1997 - 12 -

LEA cannot have a USP destination; only a MOVEA can have such a
destination. Convert to:

LEA $4000,A0 ;can use any intermediate destination
register

MOVE.L A0,USP ;give full credit for MOVEA.L as well
IMMEDIATE MODE IS NOT
ALLOWED AND IS A WRONG
ANSWER.

ADDX D0,D1

We took off 1 point for a MOVEA; it was a good attempt.

Exam #4 Sampler Fall 1997 - 13 -

13. Assuming the CPU is in supervisor mode, what does the
following code segment do. Be as specific as you can with the
information given.

LEA $20000,A0
MOVE.L A0,USP
MOVE.L #$10000,-(SP)
CLR.W -(SP)
RTE

Answer: The LEA puts $20000 into A0. The first MOVE.L then sets
the value of the USP to the value in A0 ($20000). The second
MOVE.L puts the longword $10000 onto the (supervisor) system
stack. The CLR basically pushes $0000 onto the system stack. The
RTE interprets the 6 bytes on the system stack as a value of the status
register and pc and proceeds to pop them off the stack, setting the
SR=$0000 (putting the 68000 into user mode) and setting to
pc=$10000 starting the program at that memory location. The stack
looks like
[$0000] ← the system stack pointer is here before the LEA
[$0001]
[$0000]
[$????] ← the system stack pointer will be here
Scoring: For each instruction -2 points, -4 points for not knowing
what program did.

13. A 68000 microcomputer with 1 MByte RAM has the memory
contents shown below. Where does the 68000 start executing code
AFTER a RESET occurs.

address contents
$00 $00
$01 $01
$02 $20
$03 $0A
$04 $07
$05 $FF

Exam #4 Sampler Fall 1997 - 14 -

$06 $10
$07 $E0

ANSWER: The PC is set to the contents of $4, i.e. $07FF10E0, and
begins executing the code which begins there.

Exam #4 Sampler Fall 1997 - 15 -

11. The 68000 is in supervisor mode and executes the following
program fragment.

MONITOR EQU $8146 ;starting address of
user program

MOVE.L #$3C00,-(SP) ;load starting address
of $3C00 onto system
stack

MOVE.W#$8000,-(SP) ;now load a SR which
is configured for user
mode, trace on,
interrupt level 0

RTE ;pop the SR and PC off
the system stack; start
the program in user
mode at PC=$8146

JMP MONITOR ;execute main user
program

ORG $8146 ;jumps here
LOOP BRA LOOP ;infinite loop

(a) What do the two MOVE instructions do? A picture of the
appropriate stack is expected.

ANSWER: Load the system stack with
SP--->[$8000]
 [$0000]
 [$3C00]

 (b) What does the RTE instruction do?
ANSWER: pops the SR=$8000 off the stack and starts program
execution at $$3C00 with the TRACE turned off in user mode.

 (c) Will the JMP MONITOR instruction ever be executed? Why or
why not?
ANSWER: Probably not since the program jumps off to $0000 3C00.

Exam #4 Sampler Fall 1997 - 16 -

1. Consider the following program segment: (10 points
total)

EXCEPT EQU $000C
 XREF STOP

START: LEA $8000,SP
NEXT MOVE.L #QA,EXCEPT
 LEA $10001,A1
INST: JMP (A1)
 JMP STOP

QA ADDA.L #14,SP
 MOVE.L #INST+1,-(SP)
 MOVE.W #$2000,-(SP)
 RTE

 END

(a) What does the instruction labeled NEXT do?

ANSWER: Loads the exception vector for an address error with the
address of the exception service routine QA.

 (b) What is the effect of running the above program?

ANSWER: The LEA instruction causes an odd address error which
causes an odd address exception and a subsequent jump to QA.
During the course of executing QA a second odd address error occurs
with MOVE.L #INST+1,-(SP) and the program causes odd address
errors forever.

6. A 68000 microcomputer with 32 MByte RAM has the
memory contents shown below. Where does the 68000
start executing code AFTER a RESET occurs.

address contents
 $00 [$00]
 $01 [$01]
 $02 [$00]
 $03 [$06]

Exam #4 Sampler Fall 1997 - 17 -

 $04 [$00]
 $05 [$07]
 $06 [$10]
 $07 [$00]

ANSWER: (7 points) The PC is set to the contents of $4,
i.e. $00071000, and begins executing the code which
begins there.

Exam #4 Sampler Fall 1997 - 18 -

2. You are executing the following program fragment which begins
at $2000 with (SR)=$2700.

 ORG $2000
 MOVEA.L #$9000,SP
* (c) put instructions to load the exception vector
* table here
 MOVE.L #$1700,$2C ;4 points
 MOVE.L #Y,-(SP) ;<--(b)
 MOVE.L #X,-(SP) ;<--(b)
 DC.W $F123 ;<--(a)
 NOP
 MOVE.L D1,Z
 BRA EXIT4

 ORG $1700
EXCPT NOP

* (d) instructions which retrieve X and Y from stack
DOIT MOVE.L 6(SP),D0 ;* put X into D0
 ;4 points for (e)

 MOVE.L 10(SP),D1 ;* put Y into D1

* (e) instructions to cause return to EXIT4
JUMP MOVE.L #EXIT4,2(SP) ;put EXIT4 on stack
 ;4 points

 RTE

 ORG $4200
Z DS.L 1
X EQU $0100
Y EQU $A000

EXIT4 NOP
 END

(a) An exception occurs when the 68000 attempts to execute the
instruction beginning with the word $F123. Which exception occurs
and what is its vector number?

Answer : (4 points total) It is a $1111 exception (2 points) which is

Exam #4 Sampler Fall 1997 - 19 -

vector number 11 (2 points).

(b) The instructions labeled (b) put X and Y on the stack. Which stack
are they put on?
ANSWER: (4 points) the system stack since the program started with
SR=$2700 which indicates that the supervisor bit is set.

(c) You want to service this exception with the EXCPT routine
beginning at $1700. Place the instructions into the box labeled (c)
which will properly load the exception vector table for this to
happen.

(d) Assume that you have answered parts (a) and (b) correctly and the
68000 starts to execute your exception service routine beginning at
$1700. Place the instructions in the box labeled (d) which will retrieve
X and Y from the stack .
NOTES: (1) I want the values of X and Y, not their addresses.

(2) Instructions of the form MOVE.L #X,D0 will receive
 zero credit.

(e) You want EXCPT to be an exception service routine which returns
to EXIT4. Place the instructions in the box labeled (e) which will
cause the exception to return, NOT to the “next instruction,” but to
EXIT4.

10. You have decided that you want to write a routine to elegantly
stop your program in the db68k debugger. You write the following
program:

 ORG $3000
EXIT5 LEA EXITMSG,A0 ;load location of
beginning
 ;of message
 JSR PutString ;routine to print
message
 STOP #$2500 ;processor goes into
HALT
 ;mode - wakes up only
 ;for level 5

Exam #4 Sampler Fall 1997 - 20 -

interrupts
EXITMSG DC.B ‘PROGRAM EXECUTION BEING TERMINATED.
‘,0
ENDMSG EQU *

What do you need to do (give MC68000 code) to make this program
execute in response to a TRAP #$F instruction in your main
program, i.e. how do you set up the exception vector table to make
the 68000 execute this fragment by a TRAP #$F call? Give explicit
 68000 code for doing this .

ANSWER: The exception vector number is 32+F=47. According to
the rules for exceptions, the exception vector table address is then
47x4=188=$BC. You would then need to put the following instruction
(or something equivalent) near the beginning of your program:
ANS MOVEA.L #$5200,$BC ;load location of
 ;exception handling routine

You lost 5 points if you did not give me an instruction like the above.
If you did not include an address you lost four points. You got three
points for coming up with the vector number; an additional two
points for the exact address, i.e. $BC.

Exam #4 Sampler Fall 1997 - 21 -

3. The following rather clever program is used to determine the size
of memory in a single board 68000 computer system. Explain how it
works. (10 points total)

VB EQU $08
NULL EQU $00
 INCLUDE io.s

 ORG $11000
* initialize registers and exception vector table

 LEA MSG,SP ;SP for exception
 ;processing
 MOVE.L #ENDM,VB

 LEA ENDPROG,A0

* routine to test memory size by generating a bus
error
SIZE MOVE.W #7,(A0)+ ;write data to
memory
 BRA SIZE ;until bus error

* bus error exception service routine
ENDM MOVE.L A0,D0 ;store first
address
 ;past RAM in A0
 LEA MSG,A0
 JSR PutString
 SUBQ.L #8,D0 ;delete storage
for
 ;RESET vector
 JSR HexOut ;display it

 ORG $11500
 DS.B 100 ;small stack
MSG DC.B ‘Bytes of available RAM:’null

ENDPROG: NOP
 END

ANSWER: This rather clever program simply writes to memory until
it runs our of memory. When it runs out of memory a BUSERROR is
generated which causes a jump to the BUSERROR service routine.

Exam #4 Sampler Fall 1997 - 22 -

This routine pops the last address of memory off the stack, subtracts
8 bytes for the RESET vector, and then displays the value.

Exam #4 Sampler Fall 1997 - 23 -

4. The following program is assembled and loaded at
address $4000. The programmer calls a TRAP #1
exception which is to access the parameters placed on the
stack by his/her program. Assume the program starts in
USER mode. (15 points total)

 * THIS IS THE USER'S PROGRAM
 ORG $4000
 START2:
 * put input parameters on stack
00004000 2F3C 0000 0003 MOVE.L #3,-(SP) ;param 1
00004006 2F3C 0000 A500 MOVE.L #BUF,-(SP) ;param 2
0000400C 2F3C 0000 0200 MOVE.L #512,-(SP) ;param 3
00004012 2F3C 0000 0002 MOVE.L #2,-(SP) ;param 4
00004018 4E41 TRAP #1
0000401A 4E71 NOP ;end of user program

 ORG $4500
00004500 BUF: DS.B 512
 * service routine for TRAP #1.
 ORG $4700
 TRAP1:
00004700 48E7 80C0 MOVEM.L D0/A0-A1,-(SP)
 STACKS:
 * code for processing TRAP goes here

 * instructions for part (b) go here
 * YOUR ANSWER GOES HERE

0000400A 4CDF 0301 MOVEM.L (SP)+,D0/A0-A1
0000400E 4E73 RTE
 END

(a) Draw a picture of the system and user stacks at the point labeled
STACKS: in the TRAP #1 service routine.
ANSWER: SSP-> [D0]
 [________]
 USP -> [param(4)] [A0]
 [________] [________]
 [param(3)] [A1]
 [________] [________]
 [param(2)] [___SR___]
 [________] [_$0000__]
 [param(1)] [_$401A__]
 [________] []
 [] []
Note: these stacks are shown as word width
instead of the usual byte width for brevity.

(b) Immediately after the label STACKS: in the TRAP #1 service

Exam #4 Sampler Fall 1997 - 24 -

routine the programmer wants to access the data labeled “param 2”
that was put on the stack in the user program and put it into D0.
Give 68000 code for doing this.
ANSWER:
 MOVEA.L USP,A1 ;A1 points at user stack
 MOVE.L 8(A1),D0 ;get data with offset
 ;of 2 long words

Exam #4 Sampler Fall 1997 - 25 -

5. Consider the following program located at $5000. The
accompanying interrupt service routine (ISR) beginning at $5500 is
for a 68230 driven digital clock similar to your lab #6. You want the
68000 to execute the routine which begins at $5500 in response to any
interrupt generated by the 68230. Assume that the 68230’s TIVR
register has been loaded with the number $80 and that the 68000 is in
supervisor mode. (10 points total)

 ORG $5000
ANSWER ????? ;(b)
 MOVE.W #$2200,SR ;(a)
LOOP BRA LOOP

 ORG $5500
TIMER: MOVE.L A0,-(SP) ;ISR
 ADDQ.W #1,TOT_TIME
 LEA TBASE,A0
 BSET #0,(TSR,A0)
 MOVE.L (SP)+,A0
 RTE

TOT_TIME DS.W 1
TBASE EQU $10021
TSR EQU 20

(a) What does instruction (a) do?
ANSWER: The instruction labeled (a) changes the interrupt mask to
%010 which disables all external interrupts below level 3. Note that
the 68000 MUST be in supervisor mode for you to be able to do this.

(b) What is the function of the TIVR register in the 68230?
ANSWER: It specifies the vector number of the appropriate service
routine for the 68230.

(c) The code at $5000 performs several important initialization steps.
Put an instruction at (b) which properly loads the Exception Vector
Table so that the routine TIMER will be executed in response to
these 68230 interrupts.
ANSWER: The routine should be located at 4x$80 = 4x128=512=$200
ANSWER MOVE.L #$5500,$200

Exam #4 Sampler Fall 1997 - 26 -

9. You execute the following problem. Which exception is caused by
this program and why?

 INCLUDE io.s ;include i/o
routines
 ORG $10000
START LEA HWORLD,A0 ;load address of
string
 JSR STRLENGTH ;calculate string
length
 JSR PutString ;output it
 NOP ;rest of your
program

 ORG $10200 ;subroutine
STRLENGTH MOVE.L A0,-(SP) ;put address on
stack
 MOVEQ #0,D0 ;initialize counter
LOOP TST.B (A0)+ ;is byte $0?
 BEQ OUT ;if yes then finish
 ADDQ.W #1,D0 ;else increment
counter
 BRA LOOP ;and continue
looping
OUT: RTS ;get out of here

HWORLD: DC.B ‘Hello world!’,0
 END

ANSWER:
You put the address of the string on the stack above the return
address and never pop it off the stack before the return. As a
consequence the program returns to the address of HWORLD and
attempts to execute a string. This will typically cause an illegal
instruction exception since “He” does not correspond to a valid
instruction.

Exam #4 Sampler Fall 1997 - 27 -

 RISC/ARCHITECTURE

7. Indicate whether the following statements are true or
false. (1 point per answer)

True Fals

e

All computers which contain a pipeline are
characterized as RISC.

F

RISC processors contain a few specialized
registers.

F

RISC processors are faster than CISC
processors.

F

RISC processors use only one data type, i.e.
words.

F

All RISC instructions are the same length. T

RISC processors have many instructions for
accessing and manipulating memory.

F

8. Consider a 4 stage pipelined processor which has processing units
for fetch,decode,execute, and writeback. NOTE: A writeback means
that the results are then written to a register.
 (a) Sketch the temporal execution of a typical instruction sequence.

fetch I1 I2 I3 I4 I5 I6

decode I1 I2 I3 I4 I5

execute I1 I2 I3 I4

writeback I1 I2 I3

time
#1

time #2 time #3 time #4 time #5 time #6

 (b) Sketch the corresponding operation of a conditional branch
instruction and explain why such instructions degrade pipeline
performance.

fetch I1 I2 I3

decode I1 I2

execute I1

Exam #4 Sampler Fall 1997 - 28 -

writeback I1

time
#1

time #2 time #3 time #4 time #5 time #6

 (c) Discuss the following statements.
 (i) All branch statements cause pipeline “bubbles.”
ANSWER: No, all unconditional jumps are fine. Only conditional
branches cause bubbles.
(ii) The Decrement and Branch form of branch is “well suited” for
pipeline processors.
ANSWER: Since the Decrement and Branch instruction always
branches (except for the last time when it quits and falls through)
it only creates one bubble and is highly efficient when pipeline
processed.

Exam #4 Sampler Fall 1997 - 29 -

10. What is the output of the following program? Does it ever
terminate? Assume that the program starts in supervisor mode?

V1010 EQU $28
VTRAP0 EQU $80
VTRACE EQU $24

START LEA $8000,SP ;1-set the SSP
 MOVE.L #EMU,V1010 ;2-%1010 instruction trap
 MOVE.L #PR,VTRAP0 ;3-TRAP #0
 MOVE.L #TRACE,VTRACE ;4-trace exception

 MOVEQ #0,D7 ;5-put 0 into D7
 JSR INIT_PORT ;6-initialize 6850
 DC.W $A000 ;7-force 1010 exception
 ORI.W #$8000,SR ;18-RTE returns here
 ;19-turns trace on
 MOVE.W #1,D0 ;20-do meaningless moves
 ;21-trace prints 1
 MOVE.W #2,D0 ;22-trace prints 2
 MOVE.W #3,D0 ;23-trace prints 3
 ANDI.W #$7FFF,SR ;24-this is a priviledged
 ;instruction - turns
 ;off trace
 JSR STOP ;25-stops program

ID BRA ID

PROGCNT EQU 6

EMU LINK A6,#0 ;8-ISR stack frame
 MOVEM.L D0/D7/A0,-(SP) ;9-now save registers
 MOVEQ #7,D7 ;10-set D7=7
 MOVE.L (PROGCNT,A6),A0 ;11-put RA into A0
 MOVE.W (A0),D0 ;12-get offending $A000
 JSR HexOut ;13-print it out
 ADDI.L #2,(PROGCNT,A6) ;14-add 2 to RA on stack
 MOVEM.L (SP)+,D7/D0/A0 ;15-restore registers
 UNLK A6 ;16-unlink
 RTE ;17-pop SR & PC

TRACE TRAP #0 ;calls TRAP0
 RTE

PR MOVE.L D7,-(SP) ;save D7 on stack

Exam #4 Sampler Fall 1997 - 30 -

 JSR HexOut ;print out D0
 MOVE.L (SP)+,D7 ;restore D7
 RTE

 END

NOTE:
HEXOUT Prints to the debugger screen the hex word in D0.

ANSWER: This program executes the 27 instructions shown in
sequence. The printout is
$A000 will actually print $FFFFA001
$0001 $00000001
$0002 $00000002
$0003 $00000003
<program stops>

Either column would be perfectly acceptable.

-3 points, not realizing that DC.W at 7 forces a 1010
exception and goes to EMU
-2 points, not getting the print of $A000 in emu
-2 points, returns to 18/19 and turns TRACE on
-2 points, lines 20/23 print $0001, $0002, and $0003
-1 point, lines 24 and 25 turn off trace and stop program

Exam #4 Sampler Fall 1997 - 31 -

FOR YOUR REFERENCE THE EXCEPTION VECTOR TABLE IS:

vector number
(Decimal)

address (Hex) assignment

0 0000 RESET: initial supervisor stack
pointer (SSP)

1 0004 RESET: initial program counter
(PC)

2 0008 bus error
3 000C address error
4 0010 illegal instruction
5 0014 zero divide
6 0018 CHK instruction
7 001C TRAPV instruction
8 0020 priviledge violation
9 0024 trace
10 0028 1010 instruction trap
11 002C 1111 instruction trap
12* 0030 not assigned, reserved by

Motorola
13* 0034 not assigned, reserved by

Motorola
14* 0038 not assigned, reserved by

Motorola
15 003C uninitialized interrupt vector
16-23* 0040-005F not assigned, reserved by

Motorola
24 0060 spurious interrupt
25 0064 Level 1 interrupt autovector
26 0068 Level 2 interrupt autovector
27 006C Level 3 interrupt autovector
28 0070 Level 4 interrupt autovector
29 0074 Level 5 interrupt autovector
30 0078 Level 6 interrupt autovector
31 007C Level 7 interrupt autovector
32-47 0080-00BF TRAP instruction vectors**
48-63 00C0-00FF not assigned, reserved by

Motorola
64-255 0100-03FF user interrupt vectors

NOTES:

Exam #4 Sampler Fall 1997 - 32 -

* No peripheral devices should be assigned these numbers
** TRAP #N uses vector number 32+N

The following logic functions may be needed at various points
throughout the exam.

A B A OR B A AND
B

A EOR B

0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

