
Exam #3 Review p. 1 November 10, 1997

(1) Logical and arithmetic shift
operations (may be combined with
another problem)

2. What is in D1 after the following machine code
executes?
(D1.L) = __________________

 MOVE.W #$10B3,D1
 MOVE.W #24,D2
 ASL.L D2,D1
 ASR.L D2,D1

ANSWER:

(D1.L) = $FFFF FFB3

MOVE.W #$10B3,D1 ;put data into D1
MOVE.W #24,D2 ;put shift into D2, $18
ASL.L D2,D1 ;shift to the left to clear
 ;all but lower byte,
 ;(D1)=$B3000000
ASR.L D2,D1 ;now shift it back to the
 ;right sign-extending all the
 ;way, (D1)=$FFFFFFB3

Exam #3 Review p. 2 November 10, 1997

2. What is output by the following program?

MASK EQU $000F
VALUE DC.B $5F
RESULT DS.W 1

 LEA RESULT,A1
 CLR.L D0
 MOVE.B VALUE,D0
 MOVE.L D0,D1
 ROL.W #4,D0
 LSR.B #4,D0
 JSR HexOut

EXPLANATION:

The number $0000050F is output.

 LEA RESULT,A1 ;address where to put
 ;result
 CLR.L D0 ;clear register
 ;(D0) = 0000 0000
 MOVE.B VALUE,D0 ;get byte
 ;(D0) = 0000 005F
 MOVE.L D0,D1
 ROL.W #4,D0 ;move byte to D0[4:11]
 ;(D0) = 0000 05F0
 LSR.B #4,D0 ;shift D0[4:7] to
 ;D0[0:3]
 ;(D0) = 0000 050F
 JSR HexOut ;print it

Exam #3 Review p. 3 November 10, 1997

(2) program loops including DBcc and
Bcc instructions

9. Consider the following program segment. You may
assume that
(D0) = $FFFFFFFF,
(D1) = $FFFFFFFF and
(D2) = $FFFFFFFF
before the program segment is executed.

START MOVE.W #13,D1 ;A
 MOVE.W #10,D2 ;B
 MOVEQ #0,D0 ;set product to zero
 ANDI.L #$0000FFFF,D1 ;set most significant
 ;word of D1 to zero
ONE: LSR.W #1,D2 ;check LSB of B
 BCC.S TWO ;branch if zero was
found
 ADD.L D1,D0 ;add if one
TWO: LSL.L #1,D1 ;shift multiply A left
one bit
 TST.W D2 ;check if B is zero
 BNE.S ONE ;if not do it again
 TRAP #0 ;quit

(a) Produce a pseudocode listing or a
flowchart that explains what the above
program does.

Exam #3 Review p. 4 November 10, 1997

ANSWER:
This program does software multiplication of A
and B using a shift and add algorithm.
 D1.W <--A. ;
 D2.W <--B. ;multiplier
 D0 <--0. ;product
 D1[15-31] <--0. ;use masking to clear this
 Shift D2 right 1 bit. ;move next bit of
 ;multiplier into SR
ONE: if D2[0]=0 then ;if the LSB was 1 then
 goto TWO ;no product, skip it
 else ;else
 D0 <--D0+D1 ;add D1 to sum
TWO: Shift D1 left 1 bit. ;multiply by 2
 ;before summing
 if D2.W≠0 then ;Any bits left in
multiplier?
 goto ONE. ;If yes then repeat

(b) Specify what is in D0, D1, and D2 after the
above program is executed.
(D0.L) = _________________
ANSWER: (D0.L)=$ 00000082
 (this is the product)
(D1.L) = _________________
ANSWER: (D1.L)=$ 000000D0
 (this was not altered by the program)
(D2.L) = _________________
ANSWER: (D2.L)=$ FFFF0000
 (it counted down)

Exam #3 Review p. 5 November 10, 1997

9. Consider the following program segment:

INPUT DC.B %01010011
 MOVE.B INPUT,D0
 BCLR #7,D0
 MOVE.B D0,D1
 MOVEQ #0,D2
 MOVEQ #0,D3
LOOP: LSR.B #1,D1 ;(a)
 ADDX.B D3,D2
 TST.B D1
 BNE.S LOOP
 BTST #0,D2 ;(b)
 BEQ CLEANUP
 BSET #7,D0
CLEANUP:

(a) What does the code beginning at (a) do, i.e. what
is the function of the program?

(b) Specify what is in D0, D1, D2 and D3 when you
reach the instruction labeled (b).
(D0.L) = _________________
(D1.L) = _________________
(D2.L) = _________________
(D3.L) = _________________

(c) What is in D0 after the above program is
executed?
(D0.L) = _________________

Exam #3 Review p. 6 November 10, 1997

ANSWERS:

(a) What does the code beginning at (a) do, i.e. what
is the function of the program?

This program performs a parity check almost like the
one done in class. The byte to be checked is copied
to D1, D2 is used to sum the 1's in INPUT, D3 is used
as a dummy for an ADDX instruction. The bits are
checked by shifting them to the right into the X bit
of the SR. Then the bit is added to sum through the
command ADDX.B D3,D2. Since D3 is always zero we are
adding the X bit to D2 and summing the bits that are
1. Since 53 contains an even number of 1's, the result
is that there is no change in the original number.

(b)
(D0.L) = $ xxxxxx53
(D1.L) = $ xxxxxx00
(D2.L) = $ 00000004
(D3.L) = $ 00000000

(c)
(D0.L) = $ xxxxxx53

Exam #3 Review p. 7 November 10, 1997

3. The following code forms the sum of the one’s
complements of 20 word length numbers beginning at
address ARR. Rewrite the code to be more efficient
using postincrement addressing in A0 AND a DBxx
instruction.

 ORG $3000
 MOVEA.L #ARR,A0
 MOVEQ #0,D1 ;word address
 MOVEQ #20,D2 ;counter
 MOVEQ #0,D0 ;sum in D0

LOOP: MOVE.W (0,A0,D1.W),D3
 NOT.W D3 ;complement
 ADD.W D3,D0 ;add it
 ADDI.W #2,D1 ;increment word address
 SUBQ.W #1,D2 ;decrement counter
 BNE LOOP

ANSWER:
 LEA ARR,A0 ;could still remain MOVEA
 MOVEQ #19,D2 ;use counter in D2 for
 ;DBxx. I looked carefully
 ;for the use of 19, NOT 20
 MOVEQ #0,D0 ;sum register
LOOP MOVE.W (A0)+,D3 ;increment addresses
 NOT.W D3
 ADD.W D3,D0
 DBRA D2,LOOP ;decrement and branch
The actual register contents after running this
program are:
(D0)=$A1C0
(D1)=$0026
(D2)=$0000
(D3)=$EDCB

Exam #3 Review p. 8 November 10, 1997

4. Consider the following program. The numbers in
the table are SIGNED numbers.

 ORG $400
ARR DC.W $0001, $23A2, $BAEE, $3400, $0000,
 DC.W $2312, $FF23, $40FF, $22D1, $AB00
N EQU 10

 ORG $450
 LEA ARR,A0
 MOVE.W #N,D1
 MOVE.W (A0)+,D0
 SUBQ #1,D1
AGAIN CMP.W (A0)+,D0
 BLE GO
 MOVE.W (-2,A0),D0
GO DBRA D1,AGAIN

(COMMENT: This program uses a BLE which will not be on
the exam, but the rest of the problem is reasonable)

Exam #3 Review p. 9 November 10, 1997

If (D0)=$AAFF1234, what is in (D0.L) AFTER the above
program is executed.
(D0.L) = ________________

ANSWER:

 ORG $450
 LEA ARR,A0 ;loads the table starting
 ;address
 MOVE.W #N,D1 ;load D1 with the table
 ;index
 MOVE.W (A0)+,D0 ;get the first table
 ;element, put it in D0,
 ;and increment the table
 ;address
 SUBQ #1,D1 ;decrement the table index
 ;for the DBRA instruction
AGAIN CMP.W (A0)+,D0 ;compare the next table
 ;entry with that already
 ;in D0, increment the
 ;table address
 BLE GO ;signed branch, branch if
 ;D0<=next table entry then
 ;goto GO
 MOVE.W (-2,A0),D0 ;otherwise, go back and
 ;get the last entry and
 ;put it in D0, DON’T
 ;decrement address. This
 ;keeps the minimum entry
 ;out of ARR which is $00
GO DBRA D1,AGAIN ;repeat until entire table
 ;is done

(D0.L) = $AAFFAB00 since $AB00 is the smallest element
in the table. This is potentially confusing since
negative numbers are smaller, i.e. less, than zero
since a BLE was used. I would give a lot of partial
credit for answering $AAFF0000

Exam #3 Review p. 10 November 10, 1997

4. What are the values of A0, D1 and the Z bit of the
CCR after the following program is executed?

 ORG $4000
 MOVE CHAR,D0
SEARCH LEA.L BUFFER,A0
 MOVE.W #BUFSIZ,D1
 BRA IN
SLOOP CMP.B (A0)+,D0
IN DBEQ D1,SLOOP
 RTS

(COMMENT: VERY GOOD PROBLEM STUDY IT WELL!)

 ORG $4100
BUFSIZ EQU 8
BUFFER DC.B '0','E','E','A','P','2','8','2'
CHAR DC.B 'A'

(D0.L) = _____________
(A0.L) = _____________
Z (of the CCR)=_______

Exam #3 Review p. 11 November 10, 1997

ANSWER:

 ORG $4000
* Find the first occurrence in BUFFER of the
* character in D0. Return with Z=0 if character not *
found, or with Z=1 and A0 pointing just past
* character if found.
 MOVE CHAR,D0
SEARCH LEA.L BUFFER,A0 ;point to start of
 ;buffer
 MOVE.W #BUFSIZ,D1 ;get size of buffer
 BRA IN ;check for bufsize=0
SLOOP CMP.B (A0)+,D0 ;got a match?
IN DBEQ D1,SLOOP ;fall through on match
 ;or D1=-1
 RTS ;return Z=1 if char
 ;found

 ORG $4100
BUFSIZ EQU 8
BUFFER DC.B '0','E','E','A','P','2','8','2'
CHAR DC.B 'A'

(D0.L) = ASCII code for 'A'
(A0.L) = $0000 4104
Z (of the CCR) = 1

Exam #3 Review p. 12 November 10, 1997

(1) math instructions: can include
multiply, divide and extend
instructions

7. Assume that (D0)=$FFFFFFFB and (D1)=$FFFFFFF6
before EACH of the following instructions is executed.
(a) What is in D0 and D1 after the instruction
MULU D0,D1 is executed?
(D0.L) = _____________________
(D1.L) = _____________________

(b) What is in D0 and D1 after the instruction
DIVS #5,D1
is executed?
(D0.L) = _____________________
(D1.L) = _____________________

ANSWERS:

(a)
(D0.L) = $FFFFFFFB
(D1.L) = $FFF10032 or 4293984306 decimal (only certain
calculators will return such a large number)

(b)
(D0.L) = $FFFEFFFB
(D1.L) = $0000FFFE

This question is dividing -10 ($FFF6, the dividend) by
5 (the divisor). The result of this computation is -
10/5 = -2 with a remainder of 0. These numbers are
then placed into D1.L as shown above.

Exam #3 Review p. 13 November 10, 1997

7. Assume that (D0)=$FFFFFFFB (-5) and (D1)=$0000001B
(27) before EACH of the following instructions is
executed.
(a) What is in D0 and D1 after the instruction
MULU D0,D1 is executed?
(D0.L) = _____________________
(D1.L) = _____________________

(b) What is in D0 after the instruction
DIVS D0,D1 is executed?
(D0.L) = _____________________
(D1.L) = _____________________

ANSWERS:
(a)
(D0.L) = $FFFFFFFB (-5)
(D1.L) = $001AFF79

(b)
(D0.L) = $FFFFFFFB
(D1.L) = $0002FFFB (2,-5)

This question is dividing 27 (the dividend) by -5 (the
divisor). The result of this computation 27/-5 = -5
with a remainder of +2 which are placed into D1.L as
shown above.

Exam #3 Review p. 14 November 10, 1997

5.Consider the following program segment:

 MOVE.L #NUMBER,D0
 DIVU #3,D0

(a) If NUMBER EQU $50005533 what is the result of
the instruction?
(D0).L = __________________

(b) If NUMBER EQU $00010000 what is the result of
the instruction?
(D0).L = __________________

ANSWERS:
(a) (D0) = $50005533 An overflow is detected because
of the size of the operand. D0 is not changed.

(b) (D0) = $00015555 This number successfully
divides. The quotient is $0001 with a remainder of
$5555

Exam #3 Review p. 15 November 10, 1997

5. The following program processes signed words
beginning at DATA. What is in D3 after the following
program is executed?

 ORG $5100
N EQU 3
DATA DC.W $FFF0,$0002,$000A

 ORG $5000
START CLR.L D1 ;clear register
 MOVE #N,D1
 LEA DATA,A1
 CLR.L D2
 CLR.L D3
 MOVE.L D1,D4
 SUBQ.W #1,D4
LOOP2 MOVE.W (A1)+,D2
 ADD.W D2,D3
 DBRA D4,LOOP2
 EXT.L D3
 DIVS D1,D3
 END

(D3.L) = ______________

Why is the EXT.L instruction necessary before the
DIVS?

Exam #3 Review p. 16 November 10, 1997

ANSWER:

 ORG $5100
N EQU 3
DATA DC.W $FFF0,$0002,$000A

 ORG $5000
START CLR.L D1 ;clear register
 MOVE #N,D1 ;number of numbers,
 ;(D1)=0000 0003
 LEA DATA,A1 ;address of numbers
 CLR.L D2 ;clear upper half of D2
 CLR.L D3 ;clear sum
 MOVE.L D1,D4 ;set counter
 SUBQ.W #1,D4 ;to N-1
LOOP2 MOVE.W (A1)+,D2 ;get number
 ADD.W D2,D3 ;sum it
 DBRA D4,LOOP2 ;do it till N-1
 EXT.L D3
 DIVS D1,D3
 END

(D3.L) = ______________ANSWER: $FFFF FFFF

The format of the answer is [remainder|quotient]
The program computes the average of the N words
beginning at DATA. In this case the program sums
$FFF0 (-16), $0002 and $000A to get $FFFFFFFC (-4) in
D3. The average is computed by the DIVS which divides
$FFFFFFFC (-4) by N (3) to get $FFFF (-1) with a
remainder of $FFFF (-1). Note that the remainder has
the same sign as the dividend, i.e. negative.

The EXT.L instruction is necessary before the DIVS
because we are dealing with word length signed
numbers. A DIVS assumes that the dividend will be a
signed long word; hence, D3 has to be sign extended to
get the correct signed answer.

Exam #3 Review p. 17 November 10, 1997

1. The following instructions are executed
sequentially. What is in D0, D2 and D3 after this
program segment is executed?

 ORG $1000 ;problem 1
 CLR.L D0 ;clear the register
 MOVE.W #$D200,D0 ;put dividend in
 MOVE.W D0,D2 ;duplicate the dividend
(word)
 MOVE.L #$00020145,D1 ;divisor
 DIVU D1,D0 ;unsigned divide
 EXT.L D2 ;preserve the sign
 MOVE.L D2,D3 ;make problem more
interestng
 DIVS D1,D3 ;signed divide

(D0.L) = ________________
(D2.L) = ________________
(D3.L) = ________________

ANSWERS:
The first divide is an unsigned divide. The quotient is put
in the lower half of D0, the remainder is put in the upper
half. In decimal:$0000D200 = 53,760 and $0145 = 325

The division of 53760 by 325 gives 165 with a remainder of
135, or in hex,$00A5 with a remainder of $0087. The result
would then be (D0.L) =$008700A5

The EXT sign extends $D200 to a long word. So,
(D2.L)=$FFFFD200.

The second divide is a signed divide. The quotient is put in
the lower half of D0, the remainder is put in the upper half.
In decimal: $FFFFD200 = -11,776 and $0145 = 325 as before

The division gives -36 with a remainder of -76, or in hex,
$FFDC with a remainder of $FFB4. The result would then be
(D0.L) =$ FFB4FFDC

Exam #3 Review p. 18 November 10, 1997

(3) basic operation of stacks and
subroutines

14. Insert the appropriate code after RETURN: to allow
the subroutine to restore registers and properly
return to the next executable instruction.

 MOVE.W #3,LIST2
 JSR PRINTIT
 DC.L LIST2
 MOVE.W #4,LIST2
 <rest of program>

PRINTIT: MOVE.L A6,-(SP)
 MOVEA.L SP,A6
 MOVEM.L D0-D1/A0-A1,-(SP)
RETURN: <code to do something goes here>
* begin your code here
* <your code>
 RTS

LIST2: DS.L 1
 END

Exam #3 Review p. 19 November 10, 1997

ANSWER:
The stack looks like this AFTER the MOVEM
instruction.:

SP--> [D0]
 [D1]
 [A0]
 [A1]
 [A6]
 [Return Address]

The stack width is shown as long word width here for
convenience.

A solution for the code in PRINTIT is:
PRINTIT: MOVE.L A6,-(SP)
 MOVEA.L SP,A6
 MOVEM.L D0-D1/A0-A1,-(SP)
RETURN:
* The following three commands properly manipulate
* the stack.
 MOVEM.L (SP)+,D0-D1/A0-A1 ;pop the saved
 ;registers
 ;off the stack
 ADDA.L #4,SP ;flush the
 ;value of
 ;A6 put on
 ;the stack
 ADD.L #4,(SP) ;increment
 ;the return
 ;address to
 ;return past
 ;the DC.L
 RTS

A number of clever people did
MOVEM.L (SP)+,D0-D1/A0-A1/A6
which is perfectly fine.
Scoring: -4 points for missing the return address.

Exam #3 Review p. 20 November 10, 1997

15. The following program fragment pushes two word
length variables onto the stack as input to the
subroutine TEST shown below. The subroutine returns
one word length output on the stack.

The correct code for using TEST is shown below:
GO: MOVE.W A,-(SP) ;pass A to test
 MOVE.W B,-(SP) ;pass B to test
 JSR TEST
 MOVE.W (SP)+,C ;get C from test

You are to provide the requested information for
subroutine TEST.
* (a) Finish the next two instructions to correctly
* get * A and B from the stack

TEST MOVE.W _____,D1 ;get A
 MOVE.W _____,D2` ;get B
* code here computes something,result is in D3.W
IT:
* (b) Put your instructions here to properly return
* from the subroutine

 RTS
ANSWERS
* (a)
TEST MOVE.W 6(SP),D1 ;get A
 MOVE.W 4(SP),D2` ;get B

* (b) Put your instructions here to properly return
* from the subroutine
 MOVE.W D3,6(SP) ;put C on top
 ;of A
 MOVE.L (SP),2(SP) ;move return address
 ;down two bytes
 ADDA #2,SP ;move SP down two
 ;bytes
 RTS

Exam #3 Review p. 21 November 10, 1997

immediately what the
after the answer
subroutine call: should do:

 SP --> [return] []
 [address] [________]
 [] SP --> [return]
 [________] [address]
 [B] []
 [________] [________]
 [A] [C]
 [________] [________]
orig SP ->[] orig SP -> []

These stacks are shown as byte width. Note that the
solution places C on the stack in place of A, moves
the SP up in memory 2 bytes, and changes the SP to the
new value.

Exam #3 Review p. 22 November 10, 1997

16. The user stack is as shown below. The instruction
 MOVEM.L (SP)+,D4/A0/D2/A6/A5
is executed. Indicate the values of of the indicated
registers.

SP --> [$1111]
 [$0000]
 [$FFFF]
 [$1234]
 [$0002]
 [$0040]
 [$FFFC]
 [$0001]
 [$A021]
 [$0100]
 [$0002]
 []
 []
 []

ANSWER:
(A0.L) = $00020040

(A5.L) = $FFFC0001

(A6.L) = $A0210100

(D2.L) = $11110000

(D4.L) = $FFFF1234

Exam #3 Review p. 23 November 10, 1997

17. Given the program segment shown below, answer the
following questions:

 MOVEM.L D0/A0,-(SP)
A: MOVE.W 16(SP),D0 ;get input
 ADD.W D0,D0
 MOVEA.L 12(SP),A0
 MOVE.W D0,(A0) ;save output
 MOVE.W (SP),10(SP)
 MOVEM.L (SP)+,D0/A0
 ADDA.L #10,SP
 RTS

SP --> [$0000]
 [$000A]
 [$0000]
 [$2000]
 [$0672]
 [$1000]
 [$0000]
 [$2020]
 [$0012]
 [$0000]
 [$12E8]
 [$1020]

If the stack is as shown above just before the
instruction labeled A is executed:

(a) What is the value of the input to the subroutine?
(b) What value will the subroutine output for the
input in (a)?
(c) Where is the output put? (be specific)
(d) To what address will the subroutine return

Exam #3 Review p. 24 November 10, 1997

ANSWERS:
* A commented program helps dramatically
 MOVEM.L D0/A0,-(SP)
A: MOVE.W 16(SP),D0 ;get input,$0012
 ADD.W D0,D0 ;double input
 MOVEA.L 12(SP),A0 ;get $00002020
 ;put in A0
 MOVE.W D0,(A0) ;save output
 ;to $00002020
 MOVE.W (SP),10(SP) ;replace $1000 by
 ;$0000
 MOVEM.L (SP)+,D0/A0 ;restore registers
 ADDA.L #10,SP ;point to $000012E8
 RTS

SP --> [$0000] these two
 [$000A] are D0
 [$0000] these two
 [$2000] are A0
 [$0672]

(a) $0012 SCORING: -1 if off by one word
(b) $0024
(c) ($00002020.W)=$0024
(d) $000012E8

Exam #3 Review p. 25 November 10, 1997

14. What, if anything, is wrong with the following
program?

 ORG $1000 ;main program
MAIN NOP
 JSR SUB ;call subroutine
 MOVE.W (SP)+,D0 ;get result from stack
 <more code> ;more instructions here

 ORG $2000 ;subroutine
SUB MOVE.W #$01,-(SP) ;place result on stack
 RTS ;return from subroutine

 END MAIN

ANSWER:
The main program is expecting a result to be on the
stack AFTER the return address.
SP---> [return]
 [address]
However, the subroutine puts #01 on the stack like
this.
SP---> [$01]
 [return]
 [address]
The RTS will use the top of the stack as the return
address, but the top of the stack contains the
subroutine result, which will result in an incorrect
return address.

Exam #3 Review p. 26 November 10, 1997

15. Assume (A2) = $053F0A, (D2)=$0004, and (D1)=$FF00.
Show the contents of memory after the following
instruction is executed.
 MOVEM.W D1-D2/A2,(A2)

($53EFE)=$ 0A ($53F07)=$ AA
($53EFF)=$ EE ($53F08)=$ EE
($53F00)=$ 03 ($53F09)=$ AB
($53F01)=$ 82 ($53F0A)=$ 02
($53F02)=$ 0A ($53F0B)=$ 82
($53F03)=$ EE ($53F0C)=$ 12
($53F04)=$ 30 ($53F0D)=$ 00
($53F05)=$ 00 ($53F0E)=$ BC
($53F06)=$ FF ($53F0F)=$ 2D

ANSWER:
The register (word length contents) are put in memory
in post increment form in the order D1, D2, A2.This
results in the following memory changes.

($53EFE)=$ 0A ($53F07)=$ AA
($53EFF)=$ EE ($53F08)=$ EE
($53F00)=$ 03 ($53F09)=$ AB
($53F01)=$ 82 ($53F0A)=$ 02 <---$FF
($53F02)=$ 0A ($53F0B)=$ 82 <---$00
($53F03)=$ EE ($53F0C)=$ 12 <---$00
($53F04)=$ 30 ($53F0D)=$ 00 <---$04
($53F05)=$ 00 ($53F0E)=$ BC <---$3F
($53F06)=$ FF ($53F0F)=$ 2D <---$0A

Exam #3 Review p. 27 November 10, 1997

16. The following program fragment pushes two word
length variables onto the stack as input to the
subroutine COMPUTE shown below. What are the
necessary values for M, N, ADDRC and PARAM for this
subroutine to properly work as shown.

* PROGRAM BEGINS HERE
MAIN MOVEQ #4,D2
 MOVE.L #$34,D5
 MOVE.L #$FFA2,D6
 MOVE.W D5,-(SP)
 MOVE.W D6,-(SP)
 PEA C
 JSR COMPUTE
 MOVE.L C,D7 ;do something with C
 TRAP #0 ;stop program

M EQU ? ;what are the values
 ;of these constants?
N EQU ?
ADDRC EQU ?
PARAM EQU ?
PARAM2 EQU ?

COMPUTE
 MOVE.W (M,A7),D0
 EXT.L D0
 MOVE.W (N,A7),D1
 EXT.L D1
 MOVE.L (ADDRC,A7),A0
 ASL.L #1,D0
 ADD.L D1,D0
 MOVE.L D0,(A0)
 MOVE.L (SP),(PARAM,SP)
 ADD.L #PARAM2,SP
 RTS

C DS.L 1

 END

Exam #3 Review p. 28 November 10, 1997

 ANSWER: The stack looks like this inside the
subroutine COMPUTE:

 SP---> [RA]
 []
 []
 [____]
 [C]
 []
 []
 [____]
 8(SP) -> [B]
 [____]
 [A]
 [____]

The correct answers to properly retrieve the data are:
M 10
N 8
ADDRC 4
PARAM 8
PARAM2 8

Exam #3 Review p. 29 November 10, 1997

The fully commented program is:
* PROGRAM BEGINS HERE
MAIN MOVEQ #4,D2
 MOVE.L #$34,D5 ;get data
 MOVE.L #$FFA2,D6 ;now get more data
 MOVE.W D5,-(SP) ;push data A on stack
 MOVE.W D6,-(SP) ;push data B on stack
 PEA C ;put address of
 ;C on stack
 JSR COMPUTE
 MOVE.L C,D7 ;do something with C
 TRAP #0 ;stop program

M EQU 10 ;what are the values
 ;of these constants?
N EQU 8
ADDRC EQU 4
PARAM EQU 8
PARAM2 EQU 8

COMPUTE
 MOVE.W (M,A7),D0 ;get A
 EXT.L D0
 MOVE.W (N,A7),D1 ;get B
 EXT.L D1
 MOVE.L (ADDRC,A7),A0 ;get address of C
 ASL.L #1,D0 ;compute M*2
 ADD.L D1,D0 ;add N
 MOVE.L D0,(A0) ;save to memory
 MOVE.L (SP),(PARAM,SP) ;clear stack
 ADD.L #PARAM2,SP ;flush the stack
 RTS

C DS.L 1

 END

Exam #3 Review p. 30 November 10, 1997

17. The subroutine SWAP takes the addresses of two
long words passed by registers and adds the word
length contents of their addresses according to the
following program fragment:

START: LEA X,A0 ;pass X and Y
 ;by reference
 LEA Y,A1
 JSR SWAP ;add them in D2
 MOVE.W D2,D0 ;put output into D0
 JSR HEXOUT_LONG ;print sum
 TRAP #0 ;it’s all over

SWAP MOVE.W (A0),D2
 MOVE.W (A1),D3 ;get Y
 ADD.W D2,D3
 MOVE.W D3,(A1) ;put sum into Y
 RTS

X DC.W 12
Y DC.W 5
 END START

Rewrite the subroutine so that all input and output
parameters are passed on the stack as shown below.

START: MOVE.L #X,-(SP) ;pass X and Y by reference
 MOVE.L #Y,-(SP) ;could also use PEA
 JSR SWAPPER ;add them
 MOVE.W (SP)+,D0
 JSR HEXOUT_LONG ;print it out
 TRAP #0 ;it’s all over

SWAPPER
* your code goes here
 RTS

X DS.L 1
Y DS.L 1
 END START

Exam #3 Review p. 31 November 10, 1997

ANSWER:

The stack inside the subroutine looks like this.

 SP---> [RA]
 []
 []
 [____]
 []
 [addr]
 move [Y]
SP here ->[____]
 []
 [addr]
sum here->[X]
 [____]

Code to properly manipulate the stack:
SWAPPER:
 MOVEA.L 4(SP),A1 ;get address of X
 MOVEA.L 8(SP),A2 ;get address of Y
 MOVE.W (A1),D2 ;now get X
 ADD.W (A2),D2 ;now compute X+Y
 MOVE.W D2,10(SP) ;move answer.W to
 ;bottom word of
 ;X address
 MOVE.L (SP),6(SP) ;move return address
 ;to just below sum
 ADD.L #6,SP ;flush stack
 RTS

Exam #3 Review p. 32 November 10, 1997

4. Answer the questions about the program given below.

 ORG $4000
SUBR MOVEM.L A0/A3/D2,-(SP)
 ADDA #$8,SP
 MOVE.L (SP)+,A1
 ADD.L (SP)+,A2
B: NOP ;(a)
 ADDA.W #OFFSET,SP
 MOVEM.L (SP)+,A3/D2/A0
 RTS

(a) Draw a picture of what is on the stack at (a)
beginning with the return address (assuming SUBR has
just been called). Be sure to specify the width of
the stack and your SP on your drawing.

 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
SP--> []

Exam #3 Review p. 33 November 10, 1997

(b) Specify OFFSET (a signed hex number) so that the
MOVEM and RTS instructions correctly function when the
subroutine returns.

ANSWER:
 ORG $4000
SUBR MOVEM.L A0/A3/D2,-(SP) ;SP1
 ADDA #$8,SP ;SP2
 MOVE.L (SP)+,A1 ;SP3, gets A3 from stack
 ;puts into A1
 ADD.L (SP)+,A2 ;SP4, gets RA from stack
 ;puts into A2
B: NOP ;(a)
 ADDA.W #OFFSET,SP ;
 MOVEM.L (SP)+,A3/D2/A0 ;
 RTS

(a) In predecrement (push) mode the registers are
ALWAYS pushed on the stack in the order
A7,A6,...,A2,A1,D7,D6,...,D1.

 -->| word |<---
 [______]
 []
 [______]
 []
 [______]
 []
 [______]
 []
 [______]
 [D2]<--SP1
 [______]
 [A0]
 [______]
 [A3]<--SP2=SP1+8 -->into A1
 [______]
 [RA]<--SP3 -->into A2
 [______]
SP--> []<--SP4

Exam #3 Review p. 34 November 10, 1997

(b) The SP is at the original value but needs to go -
16 bytes to properly pop D2, etc. off the stack.
Hence, OFFSET = - 16 (decimal) = $FFF0

Exam #3 Review p. 35 November 10, 1997

5. A subroutine SUB2 is called with parameters passed
and returned on the stack.
 ORG $5000
 MOVE.L ARG,-(SP) ;push ARG onto stack
 MOVE.W #4,D2
 LEA DATA2,A0
 PEA (A0,D2.W)
 JSR SUB2 ;call subroutine SUB2
 MOVE.W (SP)+,C2 ;pop answer from stack
END2

ARG DC.L 4 ;base
B2 DC.W 2 ;exponent
C2 DS.W 1 ;result

SUB2
 MOVE.L xx(SP),D1 ;put ARG into D1

 MOVE.L #1,D3 ;put starting 1 into D3
LOOP2 SUBQ #1,D2 ;decrement power
 BMI EXIT ;if D2-1<0 then quit
 ;subroutine
 MULS D1,D3 ;multiply out
 BRA LOOP2 ;and repeat as necessary

EXIT MOVE.W D3,yy(SP)
 MOVE.L (c) ;move return address to
 ;correct location for
 ;return
 ADDQ.L (d) ;increment SP to final
 ;value
 RTS

Exam #3 Review p. 36 November 10, 1997

(a) What should be the value of xx to correctly
retrieve ARG from the stack?
xx=___________
(b) Specify the value of yy to properly put D3 on the
stack so that it can be POPed from the stack and put
into C2 AFTER the subroutine return.
yy=___________

Specify the missing operand fields to make the
subroutine work as described.

(c) ___________
(d) ___________

Exam #3 Review p. 37 November 10, 1997

ANSWERS:
Commented program:

 ORG $5000
 MOVE.L ARG,-(SP) ;push ARG onto stack
 MOVE.W #4,D2 ;get another argument
 LEA DATA2,A0
 PEA (A0,D2.W) ;push address onto stack
 JSR SUB2 ;call subroutine SUB2
 MOVE.W (SP)+,C2 ;pop answer from stack
END2

ARG DC.L 4 ;base
B2 DC.W 2 ;exponent
C2 DS.W 1 ;result

SUB2
 MOVE.L xx(SP),D1 ;put ARG into D1

 MOVE.L #1,D3 ;put starting 1 into D3
LOOP2 SUBQ #1,D2 ;decrement power
 BMI EXIT ;if D2-1<0 then quit
 ;subroutine
 MULS D1,D3 ;multiply out
 BRA LOOP2 ;and repeat as necessary

EXIT MOVE.W D3,yy(SP) ;put answer on stack on
 ;top of ARG
 MOVE.L (c)(SP),6(SP) ;move return address
to
 ;correct location for
 ;return
 ADDQ.L (d)#6,SP ;increment SP to final
 ;value
 RTS

Exam #3 Review p. 38 November 10, 1997

(a) The value of xx to correctly retrieve ARG from the
stack is +8 See diagram below (6 points)

 [_________]
 SP --> [Return] Stack for Return
 [Address] []
 [] []
 [_________] []
 [address] []
 [] [_________]
 [] [Return]<--SP
 [_________] [Address]
 [] []
 [ARG] [_________]
 [] [C]
 [_________] [_________]
orig SP-> [] []

(b) The value of yy to properly put D3 on the stack so
that it can be POPed from the stack and put into C2
AFTER the subroutine return is $0A (6 points)

(c) (SP),6(SP) (4 points)
(d) #6,SP (4 points)

The most common answers were:
(a) 8
(b) 8
(c) (SP),4(SP)
(d) #4,SP

Exam #3 Review p. 39 November 10, 1997

6. A student has decided to use in line coding of data
to pass parameters to a subroutine. The main program
shown below calls the subroutine SUBR. The stack
pointer is initially at $8000. Answer the following
questions.

 ORG $6000
main MOVE.W #6,D1
 MOVE.W #5,D2
 ADD D1,D2
JSR SUBR
A DC.L 4
B DC.W 2
C DS.W 1
* Your subroutine should return to the following
instruction.
DOIT MOVE.W (SP)+,C
 END main

SUBR MOVEM.L D1/D3,-(SP)
*(b) put A into D1, B into D2

INST MOVE.L #1,D3
 MULS D1,D3 ;answer in D3
*(c) now put answer on stack

 RTS

Exam #3 Review p. 40 November 10, 1997

(a) What is on the stack when the PC is at the label
INST? Explicitly show all stack contents AND
addresses. The inital SP (before the program is
executed) is shown.

 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
 []
original SP--> []

(b) What instruction(s) must go into the box to put
the word at A into D1 and the word at B into D2?
(c) What instruction(s) must go into the box such that
the subroutine will return the answer in D3 onto the
stack such that it it popped off the stack at DOIT.

Exam #3 Review p. 41 November 10, 1997

ANSWERS:
Commented code:

 ORG $6000
main MOVE.W #6,D1 ;just for reference
 MOVE.W #5,D2
 ADD D1,D2
JSR SUBR
A DC.L 4 ;pass these parameters
B DC.W 2
C DS.W 1
* Your subroutine should return to the following
instruction.
DOIT MOVE.W (SP)+,C
 END main

SUBR MOVEM.L D1/D3,-(SP) ;save registers
*(b) put A into D1, B into D2

* ANSWER
 MOVE.W (SP),D1 ;put A into D1
 MOVE.W 4(SP),D2 ;put B into D2
A lot of students gave the above answer which is
wrong. The address for A is on the stack and the
first instruction is correct but 4(SP) is the address
of something else. You have to add the byte offset to
the address of A to get the correct address..

Exam #3 Review p. 42 November 10, 1997

* There were a large number of unanticipated ways in
* which students inserted the correct A and B into D1
* and D2 respectively. We gave full credit for these
* unexpected methods. This part was worth 6 points.
* UNEXPECTED ANSWERS
 MOVE #A,D1
 MOVE #B,D2

 MOVE A,D1
 MOVE B,D2

 MOVE.L 8(SP),A0
 MOVE.L (A0)+,D1
 MOVE.W (A0),D2

* A was technically a long word but we did not take
off any points for that.

INST MOVE.L #1,D3
 MULS D1,D3 ;answer in D3
*(c) now put answer on stack

* ANSWER
 MOVE.L (SP),-2(SP) ;move D1 down stack
 ADDQ.L -2,SP ;move SP down
 MOVE.L 6(SP),4(SP) ;move D3 down
 MOVE.L $A(SP),8(SP) ;move RA down
 MOVE.W D3,$C(SP) ;put answer in place
 MOVEM.L (SP)+,D1/D3 ;restore registers
* Several answers were possible. This part was
worth
* 6 points.

 RTS

Exam #3 Review p. 43 November 10, 1997

(a)
 BEFORE AFTER
 [] $7FF6 []
 [] $7FF7 []
 [] $7FF8 []
 [] $7FF9 [_______]
 [] $7FF2 [D1]<--SP
 [_______] $7FF3 []
 SP--> [D1] $7FF4 []
 [] $7FF5 [_______]
 [] $7FF6 [D3]
 [_______] $7FF7 []
 [D3] $7FF8 []
 [] $7FF9 [_______]
 [] $7FFA [Return]
 [_______] $7FFB [Address]
 [Return] $7FFC []
 [Address] $7FFD [_______]
 [] $7FFE [D3]
 [_______] $7FFF [_______]
 [] $8000 []

This part of the answer determined parts (b) and (c)
and was worth 8 points.

(b) See above
(c) See above

Some comments on grading are in order.
The ordering of the registers due to the MOVEM
instruction was worth 2 points.
The position of the stack pointer in the diagram was
worth 1 point.
Not moving the stack back to make room for the answer
was worth 5 points.
Forgetting the MOVEM in part (c) was worth 2 points.
Making the stack grow in the wrong direction was worth
2 points.
A long word answer for D3 was worth 1 point.

Exam #3 Review p. 44 November 10, 1997

Probably NOT on this exam:

7. Consider the recursive routine FACTOR. What are
the contents of the stack and A0 after the first TWO
(2) calls of the subroutine. You may assume that
(SP)=$8000 when the program begins execution.

DATAX EQU $7600
PROGRAM EQU $7000
 ORG DATAX
NUMB DC.W $A ;number
F_NUMB DS.W 1 ;answer

 ORG PROGRAM
MAIN MOVE.W NUMB,D0 ;get number
 JSR FACTOR ;compute
 MOVE.W D0,F_NUMB ;store answer
 TRAP #0

FACTOR LINK A0,#-2
 MOVE.W D0,-2(A0)
 SUBQ.W #1,D0
 BNE F_CONT
 MOVEQ #1,D0
 BRA RETURN
F_CONT JSR FACTOR
 MULU -2(A0),D0
RETURN UNLK A0
 RTS

DONEIT END

Exam #3 Review p. 45 November 10, 1997

ANSWER: Commented program:
DATAX EQU $7600
PROGRAM EQU $7000
 ORG DATAX
NUMB DC.W $A ;number
F_NUMB DS.W 1 ;answer, factorial of
number

 ORG PROGRAM
MAIN MOVE.W NUMB,D0 ;get number
 JSR FACTOR ;compute
 MOVE.W D0,F_NUMB ;store answer
 TRAP #0

FACTOR LINK A0,#-2
 MOVE.W D0,-2(A0)
 SUBQ.W #1,D0 ;decrement number
 BNE F_CONT ;not end of factorial
process
 MOVEQ #1,D0 ;factorial:=1
 BRA RETURN
F_CONT JSR FACTOR ;continue factorial
process
 MULU -2(A0),D0 ;factorial:=N*(N-1)
RETURN UNLK A0
 RTS
DONEIT END

Exam #3 Review p. 46 November 10, 1997

 [_________]
 SP --> [$09]
 [_________]
 FP --> [A0]
 []
 []
 [_________]
 [Return]
 [Address]
 [#2]
 [_________]
 [$0A]
 [_________]
 [A0]
 []
 []
 [_________]
 [Return]
 [Address]
 []
 [_________]
orig SP -->[]

The location of the SP and FP were worth 2 points
each. The length (size) and content of each item on
the stack were worth 1 point each.

