
-1-
Copyright 1997 F.Merat

FLOATING POINT TRIGONOMETRIC FUNCTION

IMPLEMENTATION

History:

Trigonometric functions are NOT part of microprocessor

instruction sets; however, they are among the most useful

functions for real world applications such as robotic control.

We may imagine a robot elbow which is free to rotate 360

degrees. A sensor (called a rotary encoder) is mounted on

the robot elbow which measures the angle in binary. For

the particular sensor we will use a 360 degree rotation is

divided into 65536 (216) discrete angular increments, i.e. any

anglular position of the robot can be represented as a 16-

bit (word) integer. The details of the angular numbering

scheme are shown below:

16,384 = 90°

0 = 0°
32,768 = 180°

49,152 = 270 degrees

65,536 = 360°

Quadrant IQuadrant II

Quadrant III Quadrant IV

angle θ

Figure 1 - Definition of angular measurements

-2-
Copyright 1997 F.Merat

Note that according to the above figure each angular

increment is equal to 360 degrees/65,536 = 5.5x10 -3

degrees = 9.587x10-5 radians. The sensor's actual input to

the computer is a 16-bit word with the following format:

0 1 0 0 01 1 1 0 1 0 0 1 0 1 1

15 0

quadrant - 00, 01, 10 or 11

magnitude of
sine known at
these angles

fractional part of
angle. Sine function
evaluation requires
interpolation if non-
zero.

The sine of the input angular word (described above) can

be computed using a known table of 64 values and

interpolating to get a more accurate answer. Assuming your

input angle is x, you will estimate sine(x) as F(x) according

to the following formula:

F(x) = f(x[13:8]) + (x-x[16:8]) * D(x[13:8])

where x[13:8] are the six bits of x corresponding to the 64

known values of sine x in a table in your program, f()

represents the actual value of one of the 64 known sine

values, and D() is a table of differences between each of

-3-
Copyright 1997 F.Merat

the sine functions. This could be written, in a more

conventional fashion, as

F(x)=f(xi) + (x-x i) D(xi)

Note that (x-xi) is the fractional part of the angle between

two known points,xi and xi+1, and is the least significant byte

of the input word x. Remember that the sine is negative in

quadrants III and IV.

The values of f(xi) and D(xi) are supplied as tables of

numbers.

Your output, i.e. F(x), must be converted to a special form

called floating point to be used by other programs. A

"floating point" representation writes a number as a

mantissa and a signed exponent according to

x = mantissa * 2exponent

where * denotes multiplication and the mantissa is

restricted to the range [0.5,1]. This means that the mantissa

is always greater than or equal to 1/2 but less than 1. To

help you with understanding this concept consider the

representation of x=3 in our notation.

-4-
Copyright 1997 F.Merat

x = 310 = 11.0002 = 0.112 x 2+2 = 0.C00016 x 22

Similarily,

x = -310 = -0.C00016 x 2+2

x = 3.110 = 0.C66616 x 2+2

x = 1/810 = 0.800016 x 2-2

x = -409610 = -0.800016 x 2+12= -0.C00016 x 2+0C

(Note that the exponent is now written as +OC16)

x = -409510 = -0.FFE016 x 2+11= -0.C00016 x 2+0B

(Note that the exponent is now written as +OB16)

Your program ahould convert the number x, which is your

interpolated sine value, into "floating point" as defined

above and store it in memory according to the following

format.

15 0

MANTISSA

(word)

Word #1

Sign of mantissa

(byte)

Signed exponent

(byte)

Word #2

-5-
Copyright 1997 F.Merat

Note that this is a two word format. The sign need be only a

single bit but, for convenience, we have defined it to be a

byte. To help you understand this format several examples

(corresponding to the previous numberical examples) are

shown below.

X=3 $C000

$00 $02

X=3.1 $C666

$00 $02

X=-3 $C000

$FF $02

X=1/8 $FFE0

$FF $0B

X=-4096 $8000

$FF $0C

-6-
Copyright 1997 F.Merat

X=-4095 $FFE0

$FF $0B

Programming considerations:

The data tables of known sine values will be supplied to

you beginning at address $2000. To access these data

tables use the following assembler directive at the top of

your program.

XREF TBL, DTBL

This tells the assembler that these labels will be defined by

another program which will be included by the linker. To

include these data tables in your program use the

command:

ld68k -L -o lab4 data,lab4 >lab4.llis

when linking your program. Note that lab4.s contains your

program, and data.s contains your sine data. The data

tables are stored in memory beginning at $2000 so don't

put your program on top of the data tables. Put your

program at $1000 or something similarily far away from the

data tables. You can access individual elements (which are

one word in length) of the tables in the following manner:

-7-
Copyright 1997 F.Merat

 LEA TBL, A0 put pointer to TBL

 in A0

 MOVE #2, D0 index to TBL in D0,

 use 0,4,8,etc.

 MOVE.W (A0,D0),D1 get the (D0/2+1)-th

 element of TBL

What you put into D0 is your offset (i.e. element) in TBL. D0

is defined by you and must be in the range of 0-63 since

the table only has 64 elements in it. The reason for using

long word offsets, i.e.4,8, etc. is that a zero word is stored

between each actual element in TBL. This extra space is

reserved for additional data which might appear in another

lab. For this lab you will only want to access the evenly

spaced words in TBL skipping the zeros. The difference

table DTBL is in the same format and you can repeat the

above using LEA DTBL,A0 to access the data table DTBL.

TBL is the start of the sine function table for quadrant I only.

Each entry consists of 2 bytes (formatted as one word)

followed by a filler word of decimal value zero - there are

128 values in the table of which you will only use 64. DTBL

is a table of differences corresponding to the elements of

TBL and also has 128 values. However, because of the

dynamic range, i.e. smallness of the differences as

compared to the values in TBL, you will have to do some

-8-
Copyright 1997 F.Merat

additional math when using the difference table. Specifically,

you can multiply (x-x[16:8]) * D(x[13:8]) using a MUL

command to generate a long word result. But, the most

significant word of this result, which is what will be added to

f() must be shifted 13 bits to the right to align the binary

points for addition. Be careful here since you must also

convert your long word multiplication result to a word before

shifting the binary point for correct addition.

-9-
Copyright 1997 F.Merat

Actual Tables of Data:
index TBL DTBL

1 0 12867

0 0

2 402 12859

0 0

3 804 12843

0 0

4 1205 12820

0 0

5 1606 12789

0 0

6 2006 12751

0 0

7 2404 12704

0 0

8 2801 12650

0 0

9 3196 12589

0 0

10 3590 12519

0 0

11 3981 12443

0 0

12 4370 12358

0 0

13 4756 12267

0 0

14 5139 12168

0 0

15 5520 12061

0 0

16 5897 11948

0 0

17 6270 11827

-10-
Copyright 1997 F.Merat

0 0

18 6639 11699

0 0

19 7005 11564

0 0

20 7366 11422

0 0

21 7723 11273

0 0

22 8076 11117

0 0

23 8423 10955

0 0

24 8765 10786

0 0

25 9102 10611

0 0

26 9434 10429

0 0

27 9760 10241

0 0

28 10080 10046

0 0

29 10394 9846

0 0

30 10702 9640

0 0

31 11003 9427

0 0

32 11297 9210

0 0

33 11585 8986

0 0

34 11866 8758

0 0

35 12140 8524

-11-
Copyright 1997 F.Merat

0 0

36 12406 8285

0 0

37 12665 8040

0 0

38 12916 7792

0 0

39 13160 7538

0 0

40 13395 7280

0 0

41 13623 7017

0 0

42 13842 6750

0 0

43 14053 6479

0 0

44 14256 6205

0 0

45 14449 5926

0 0

46 14635 5644

0 0

47 14811 5359

0 0

48 14978 5070

0 0

49 15137 4778

0 0

50 15286 4483

0 0

51 15426 4186

0 0

52 15557 3886

0 0

53 15679 3584

-12-
Copyright 1997 F.Merat

0 0

54 15791 3280

0 0

55 15893 2973

0 0

56 15986 2665

0 0

57 16069 2356

0 0

58 16143 2044

0 0

59 16207 1732

0 0

60 16261 1419

0 0

61 16305 1104

0 0

62 16340 789

0 0

63 16364 474

0 0

64 16379 158

0 0

-13-
Copyright 1997 F.Merat

EXAMPLE SINE FUNCTION CALCULATIONS

input angle:

θin = $03E8 = 00 000011 11101000

The quadrant is 002 → θin is a first quadrant angle

The index is 0000112 → the index is $3,therefore the fourth

entry in TBL and DTBL will be used to

calculate the angle

The fraction is 111010002 → this number will be used for

interpolation

The form of TBL and DTBL:

index TBL* DTBL*

0 0 12867

(0°) 0 0

1 402 12859

(1.41°) 0 0

2 804 12843

(2.82°) 0 0

3 1205 12820

(4.23°) 0 0

4 1606 12789

-14-
Copyright 1997 F.Merat

(5.64°) 0 0

* TBL and DTBL are shown in decimal

CALCULATING THE SINE DIRECTLY FROM THE TABLE

From this table and using simple interpolation we can

directly calculate the sine of $03E8.

To begin we determine the angle involved. Since index=3

the angle is between 4.23° and 5.64°, i.e. 4.23° plus some

fraction of 1.41°. There are $FF increments between 4.23°
and 5.64° so the fraction $E8 indicates that the fractional

angle is $E8/$FF*1.41° or, after converting to decimal,

232/255*1.41° = 1.28°. The angle in question is then 4.23°
(index=3) + 1.28° = 5.51°.

The answer is then sine(5.51°)*16384 = 1573.18 = $0625.

Note that the sine must be multiplied by 215=1638410 to

make sure that sine(90°) corresponds to bit 15 in the binary

representation of the sine, i.e. 0100 0000 0000 00002.

-15-
Copyright 1997 F.Merat

Each quadrant is 90°

index = 0

index = 1

index = n

index = n+1

index = 63
index = 62

fraction=0

fraction=j
fraction=j+1

fraction=254
fraction=255

fraction=1

Distribution of angles using <quadrant, index,fraction>

notation

-16-
Copyright 1997 F.Merat

CALCULATING THE SINE USING A TAYLOR SERIES

From this table the correct values of TBL and DTBL to be

used for the calculation are:

TBL($3) = 120510 = $04B5

DTBL($3) = 1282010 = $3214

The first calculation is to multiply fraction times DTBL($3)

using the MULU instruction

From θin, fraction is 111010002 = $E8. Assuming $E8 is in

Dx and $3214 is in Dy, the result of the instruction MULU

Dx,Dy will be

Before the MULU

0 0 E 80 0 E 8register Dx

3 2 1 4register Dy

015

015

After the MULU

register Dy 0 0 2 D
1631

6 2 2 0
015

-17-
Copyright 1997 F.Merat

To complete the calculation we need to add this to TBL($3).

If we assume that we have put TBL($3) into register Dz we

would have

register Dz X X X X
1631

0 4 8 5
015

The problem is that the original binary points of TBL and

DTBL are NOT the same (see next page) so that we

cannot directly add these numbers together. We will keep

the format of TBL and shift the MULU result in register Dy so

that the numbers can be correctly added together.

The number in Dy is

 0000 0000 0010 1101 0110 0010 0010

00002

which needs to be shifted 13 bits to the right before it can

be correctly added to Dz. A LSR of 13 bits results in the

new contents of Dy:

0000 0000 0000 0000 0000 0001 0110 10112 = $016B

which can now be directly added to Dz (word length) to give

$0620, the correct answer.

register Dy 0 0 0 0
1631

0 1 6 B
015

register Dz X X X X
1631

0 4 B 5
015

register Dz X X X X
1631

0 6 2 0
015

-18-
Copyright 1997 F.Merat

This was a first quadrant angle, sines in other quadrants can

be computed using the appropriate trig identity:

In the second quadrant:

sine(x) = sine(180°-x) or, in hex, sine(x) = sine($8000-

x)

In the third quadrant:

sine(x) = - sine(x-180°) or, in hex, sine(x) = - sine(x-

$8000)

In the fourth quadrant:

sine(x) = - sine(360°-x) or, in hex, sine(x) = -

sine($10000-x)

NOTE: you should set the sign bit of your result after

computing the angle.

-19-
Copyright 1997 F.Merat

FIXED POINT ARITHMETIC

The math used in the sine lab is an example of fixed point

arithmetic.

The numbers from TBL are in the format:
0715

binary point is here

×2
0

The original format for numbers from DTBL was:
0715

binary point is here

×2
0

162331

This format was fine except that there were no 1’s in any bit

higher than bit 18. So, to save memory space I decided to

only use the shaded bits, i.e.
0715

binary point is here

×2
0

162331

which are only 16 bits so they could be represented as a

single word as shown below

binary point is here

0715

×2
-13

-20-
Copyright 1997 F.Merat

This format saves most of the significant information in

DTBL.

Now consider what happens when the offset is multiplied by

this number from DTBL using a MULU instruction, i.e.

multiply

binary point is here

0715

×2
-13

by
binary point is here

0715

×2
00 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

to yield the 32-bit result
0715

×2
-13

162331

binary point is here

Now this cannot be directly added to the entry from TBL
0715

binary point is here

×2
0

because they are in different formats. The first thing to do

is make the exponents the same, i.e. we have to get rid of

the 2-13 exponent by shifting the number in the register 13

bits to the right. This requires a little thought—the location

-21-
Copyright 1997 F.Merat

of the binary point does not change as a result of this shift

BUT the exponent has now become 20.
0715

×2
0

162331

binary point is here

The format of the lower word in the register is the same as

the entry from TBL so that the numbers can now be added

together as 16-bit binary numbers in the format:
0715

binary point is here

×2
0

