
-213-
Copyright 1997 F.Merat

STACK

A stack is a first in, last out buffer usually implemented as a block of n
consecutive bytes (it doesn’t have to be bytes—it could be words or long
words). In the example below, the stack is composed of words.

word width

n words
stack pointer is address
of last filled word location

a push operation decrements the
stack pointer by 1 word (2 bytes)

a pop operation increments the
stack pointer by 1 word (2 bytes)

Addresses increase in
this direction on the 68000

 NOTES ABOUT 68000 STACKS
On the 68000 stack addresses begin in high memory ($60000 for example) and
are pushed toward low memory ($50000 for example). Other machines might
do this in the reverse order.

A stack can be implemented as bytes or longwords. The normal 68000 stack
pointer is in A7 (Don’t use this register for anything else!!!). If you want to use a
special stack which is byte or long word in width you will need to use another
register; A7 is only for word width stacks.

 USES FOR STACKS

• data storage This application is similar to an array, but is
more useful for handling input/output
information.

• program tracking & control The stack is usually used to pass variables
to and from subroutines and for storage of
local variables.

-214-
Copyright 1997 F.Merat

ALLOCATING THE STACK IS THE PROGRAMMER’S
RESPONSIBILITY!

This means that the programmer is responsible for reserving memory for stack
operations and for properly initializing the value of the stack pointer at the top of
the stack memory area.

For example, the following code will allocate memory for a stack of 200 words
DS.W $200

BOTTOM EQU *

To initialize the stack pointer, put the high memory address of the stack into A7
MOVE #BOTTOM,A7

To “push” something onto the stack,
the stack pointer must be
decremented by one word and then
<source> can be put on the stack.

MOVE <source>,-(SP)

To “pop” something off the stack, the
information must be fetched from the
stack, the stack pointer incremented
by 1 word, and the information put into
<destination>.

MOVE (SP)+,<destination>
old SP

new SP data

word

The stack is usually put just ahead of the program in embedded microprocessor
systems. This is not true for personal computers such as the Macintosh. They
put the stack in very high memory (just under the heap) and put program
information in low memory. For example, the program would begin just after the
memory reserved for the stack in an embedded system.

DS.W $200
BOTTOM EQU *

<program code begins here>

A major problem with stacks is that the programmer makes them too small. The
word size of a stack is a measure of the greatest number of data items that might
be put into it.

stack overflow attempt to push below the bottom end of the stack

stack underflow attempt to pop an item from an empty stack

-215-
Copyright 1997 F.Merat

EXAMPLE: BACKWARD ECHO PROGRAM
This program will accept a character string terminated by a carriage return-line
feed (CR-LF), place it into a stack buffer (temporary storage area), and output
the string in reverse order to a computer terminal.

Functional specification (pseudocode)

initialize stack
push CR onto stack; push LF onto stack

inloop
if (TRMSTAT[0] ≠ 1) then goto inloop ;wait for input from

;keyboard - this is polled
i/o

get next char
if (char = CR) goto outloop ;CR denotes end of input
push char onto stack
goto inloop

outloop
if (TRMSTAT[1] = 1) then goto outloop ;wait for busy display
pop char from stack
output char ;ideal application for

CharOut
if (SP less than initial SP) then goto outloop ;anything left in stack?

TRMSTAT and TRMDATA are special memory locations which are connected to
the hardware of a computer terminal. Bit 0 of TRMSTAT whether a character
has been input from the keyboard: 1 indicates a character has been input and
can be found in TRMDATA, 0 indicates that nothing has been input since the
last read of TRMDATA. Bit 1 of TRMSTAT indicates whether the terminal
display is busy outputting the character last placed into TRMDATA. A 1
indicates that the terminal is still busy and is not ready for the next character to
be output. TRMDATA is used for input and output of ASCII data. When read,
TRMDATA indicates input from the keyboard whereas a write to TRMDATA will
send the character to the display.

TRMSTAT $10040

TRMDATA $10042

1 if character has been input

1 if screen output busy

read: character from keyboard

write: character output to display

-216-
Copyright 1997 F.Merat

This is a stack for my
 data so I will use A6
 NOT A7 for the stack
pointer.

char

$A

$D

START→

(A6) →

(A6) →

(A6) →

word

Note that the stack builds
down in memory.

Program accepts
input:
AB...YZ<cr>
then outputs
ZY...BA<lf><cr>

char
entered?

push char

Yes

Yes

No

START

initialize SP

push $D (CR) onto stack

push $A (LF) onto stack

char
=CR?

No

Yes

screen
ready?

No

pop stack to screen

stack
empty?

No

-217-
Copyright 1997 F.Merat

MC68000 CODE

INCLUDE io.s ;include io definitions

TRMSTAT EQU $10040 ;terminal status register

TRMDATA EQU $10042 ;terminal data register

ORG $4000 ;start program here

DS.W 200 ;save 200 words for a stack

START EQU * ;assign an address to START

LEA START,A6 ;initialize SP to START address

CLR.L D0

MOVE #$D,-(A6) ;push CR onto stack

MOVE #$A,-(A6) ;push LF onto stack

LOOP EQU *

BTST #0,TRMSTAT ;character entered?

;bit[0]=1 when character waiting

BEQ LOOP ;no input, keep waiting

MOVE.B TRMDATA,D0 ;have input, get char entered

CMP #$D,D0 ;is char entered a CR?

BEQ OUT ;YES, goto to output routine

MOVE D0,-(A6) ;NO, push char onto stack

BRA LOOP ;and repeat input loop

OUT EQU *

MOVE (A6)+,D0 ;pop char from stack

JSR CharOut ;output character

CMPA START,A6 ;is stack empty?

BNE OUT ;NO, keep outputting chars

BRA START ;YES, get new line

END START

NOTE: CMPA is a new instruction.

-218-
Copyright 1997 F.Merat

EXAMPLE: RPN CALCULATOR (problem 6.3)
This program implements a reverse Polisn (RPN) calculator using a stack.

Examples of input:
11* equals 1 AND 1
10+ equals 1 OR 0

The operands ‘0’ and ‘1’ have ASCII values $30 and $31 respectively.
Convert ASCII to binary by subtracting ‘0’, i.e. ASCII $30 from the
ASCII value. Reverse the process for input.

The program uses:
MULTIPLICAND 8-bit number to be multiplied

Functional specification (pseudocode)

PRODUCT = 0; /*clear PRODUCT*/

OPSTK

INPUTBUF

A1

A0

op stack

copies to stack

-219-
Copyright 1997 F.Merat

MC68000 assembly code for RPN calculator program:

ORG $5000

BUFSIZ EQU 80 ;input buffer size

OPSTK DS.B 20 ;size of operations stack

INPUTBUF DS.B BUFSIZ

START LEA INPUTBUF,A0 ;load address of input buffer into

A0

MOVE.W #BUFSIZ,D0 ;set D0 to size of input buffer

; (A0) = address of input, (D0.W) = max number of characters to read

; on input (D0.W) is # of characters to input

JSR STRIN ;get input

JSR STROUT ;echo input

SUBQ #2,D0 ;adjust character count for DB

instruction

LEA INPUTBUF,A1 ;set A1 to top of stack

SCANNEXT CMPI.B #’0’,(A0) ;input=‘0’?

BLT.S EVALUATE ;if input<0 then input is operator

MOVE.B (A0)+,-(A1) ;push input onto stack

SUBI.B #’0’,(A1) ;convert stack entry to binary

BRA.S CHKCNT ;test for more input

EVALUATE MOVE.B (A1)+,D2 ;pop the operand stack

MOVE.B (A1)+,D1 ;

CMPI.B #’*’,(A0)+ ;is operand an ‘*’?

BEQ ANDOP ;Yes it is - goto AND operand

OR.B D1,D2 ;otherwise OR arguements

BRA.S PUSHOP

ANDOP AND.B D1,D2 ;AND arguements

PUSHOP MOVE.B D2,-(A1) ;push result onto stack

CHKCNT DBF D0,SCANNEXT

PUTANS ADDI.B #’0’,(A1) ;convert stack to ASCII

MOVEA.L A1,A0 ;set up pointer to output, i.e. A0

MOVE.W #1,D0 ;set up # of characters to output,

i.e. D0.W

JSR STROUT

JSR NEWLINE

-220-
Copyright 1997 F.Merat

PC RELATIVE ADDRESSING MODES

Bcc
DBcc

Both of these branches use relative
addressing allowing a program to work
anywhere in memory independent of
absolute addresses.

program counter with displacement
d(PC) d is a 16-bit 2’s complement displacement (-32K to +

32K bytes) which is sign
extended

program counter with index and displacement

d(PC, Ri.W)
d(PC, Ri.L)

Ri can be wither an address or data
register. The register is sign extended if
<size> is .W. Note that the displacement
is -128 to +127 bytes.

Consider the instruction
MOVE.W $500(PC),D4
This is a two word instruction. Assume that (PC) = $1000 at

start of instruction.
1. fetch first instruction word
2. increment PC, PC=PC+2
3. decode instruction
4. then add $500 to $1502
5. (PC)=$1004 at end of instruction

PEA implements call by reference parameter passing

PEA <ea> pushes an address onto stack
Equivalent to the instruction
MOVE.L <ea>,-(SP)

-221-
Copyright 1997 F.Merat

CMPM compare memory

CMPM.<size> (Ay)+,(Ax)+
Both source and destination MUST be in post increment mode.

RTR return and restore instruction
Word is popped from the stack and the least significant byte
(LSB) of this word is put into the CCR. Long word is popped
from the stack and placed into the PC.

Should execute
MOVE.W CCR,-(SP)
at beginning of program

Problem: How to save registers (subroutine needs to use
registers also)

Solution: Push all registers onto stack after JSR
Pop all registers off stack before RTS

MOVEM.<size> <register list>,<ea>
MOVEM.<size> <ea>,<register list>

Push registers onto stack.
MOVEM.<size> <register list>,-(SP)
Pop registers off stack.
MOVEM.<size> (SP)+,<register list>

Register list (no commas)
D0,D2,D3,D4,A0,A1,A6
is equivalent to
D0/D2-D4/A0-A1/A6
where you use the ‘/’ instead of a comman to seperate
registers and ‘-’ indicates a range of registers, i.e. D2-D4
indicates all data registers from D2 to D4.

<size> = .W or .L
When <size>=.W all registers are sign extended first.

-222-
Copyright 1997 F.Merat

SUBROUTINES

General format of calling and returning from a subroutine

<call> SUBROUTINE

NEXT:

SUBROUTINE

<return>

code for subroutine

<next instruction>

<main program code>

<main program code>

Problem: How do we know where to return to when the subroutine is completed?
Solution: store the address of the next instruction after the call (as well as the current

value of the registers and any local variables) on a stack

PROGRAMMER IS RESPONSIBLE FOR SETTING THE STACK POINTER AND
ALLOCATING MEMORY FOR THE STACK. THIS IS NORMALLY A7.

Examples of calling a subroutine:

BSR <label> where label MUST be a label with no more than a 16-bit
signed offset, i.e. within ±64K of the BSR instruction

JSR <ea> where <ea> must be a memory addressing mode, i.e. <ea>
cannot be a data or address register. This is the most
common form of calling a subroutine.

Both forms put the address of the next instruction on the 68000 stack into A7, i.e.
they push the long word address of the next instruction after the call onto the stack.

Examples of returning from a subroutine:

RTS pops a long word, an address, off the stack (in A7) and and
loads the PC with that address.

 WARNING If the stack pointer is not pointing to the correct return address you will not
return to the next instruction after the subroutine call.

WHY USE A SUBROUTINE

• If you use the same code at different points in your program, the use of a
subroutine will result in a savings of program memory.

• Use of subroutines results in modular program design which is easier to
comprehend, debug, etc.

-223-
Copyright 1997 F.Merat

ISSUES IN WRITING SUBROUTINES

linkage this is the address at which the program resumes
after executing the subroutine

argument transmission how do you supply the subroutine with values for its
arguments

coding subroutines should always be written as pure
procedures with no self-modifying code

Linkage:

Both of the following instructions
JSR SUB ;jumps to a subroutine anywhere in memory
BSR SUB ;jumps to a subroutine within a limited addressing range

are equivalent to the instruction sequence
MOVE.L address of next instruction,-(SP)
JMP SUB

which pushes the return address onto the stack and jumps to the subroutine code. SP is a
mnemonic for the stack pointer and means the same as A7 on the 68000.

The following instruction
RTS ;return from subroutine

is equivalent to the instruction
JMP (SP)+ ;does not affect condition codes of SR

which jumps to the next instruction after the JSR (assuming the SP is correctly placed) and
pops the return address off the stack.

-224-
Copyright 1997 F.Merat

EXAMPLE:

ORG $1000 ;beginning of CODE section

JSR SAM ;jump to subroutine SAM

<next instruction>

<rest of program>

SAM <subroutine code> ;keep for comparison

RTS

Example of the above subroutine call sequence:
NOTE: There is NO saving of any register contents, the SR, or any local variables.

just before executing the
instruction JSR SAM

just after executing the
instruction JSR SAM

just after execution of the
instruction RTS

SP: $6416
PC: $1000

SP: $6412
PC: $1064

SP: $6416
PC: $1004

STACK:

$6416

$6414

$6412

SP→

STACK:

$6416

$6414

$6412SP→

*long word return address

$ 0000
 1004 *

STACK:

$6416

$6414

$6412

SP→

PROGRAM:

$1004

$1002

$1000PC→

next
instruction

JSR
SAM*

PROGRAM:

$1004

$1002

$1000

* 4 byte instruction

JSR
SAM*

PROGRAM:

$1004

$1002

$1000

PC→ next
instruction

SUBROUTINE:
SAM
begins→
here

$1068

$1066

$1064

SUBROUTINE:

PC→

$1068

$1066

$1064

SUBROUTINE:

$1068

$1066

$1064

HOW TO PASS PARAMETERS TO SUBROUTINES

-225-
Copyright 1997 F.Merat

• using registers data registers—call by value
(uses actual data values)
put arguments in data registers before JSR

• using registers address registers—call by reference
(uses actual data values)
put the addresses of the arguments in address
registers before JSR

• in-line coding • put arguments immediately after JSR, address of
arguments passed via return address on stack

• put addresses of arguments immediately after JSR,
address of arguments passed via return address on
stack

• arguments listed in a table or array, pase base
address of table to subroutine via an address register

• using the stack (this is the preferred method)
Optionally use LINK and UNLK instruction to create
and destroy temporary storage on stack.

-226-
Copyright 1997 F.Merat

The MOVEM instruction
This instruction saves or restores multiple registers. If you have a small assembly language
program this instruction allows you to save to values of registers NOT used to pass
parameters.

MOVEM has two forms:

MOVEM register_list,<ea>
MOVEM <ea>,register_list

Example:

SUBRTN EQU *
MOVEM D0-D7/A0-A6,SAVEBLOCK
• • •
MOVEM SAVEBLOCK,D0-D7/A0-A6
RTS

where SAVEBLOCK is local memory. This is bad practice in general since SAVEBLOCK
could be overwritten.

Example:

SUBRTN EQU *
MOVEM D0-D7/A0-A6,-(SP)
• • •
MOVEM (SP)+,D0-D7/A0-A6
RTS

This is the most common method of using the MOVEM instruction to save registers on the
stack and restore them when the subroutine is done. This is especially useful for re-entrant
and/or recursive subroutines. A recursive procedure is one that may call or use itself. A
re-entrant procedure is one that is usable by interrupt and non-interrupt driven programs
without loss of data.

The MOVEM instruction always transfers contents to and from memory in a predetermined
sequence, regardless of the order in which they are listed in the instruction.

address register indirect with pre-decrement
transferred in order A7→A0,D7→D0

for all control modes and address register indirect with post-increment
transferred in order D0→D7,A0→A7

This allows you to easily build stacks and lists.

-227-
Copyright 1997 F.Merat

POWR subroutine

This subroutine accepts two input parameters, a base and an exponent, and calculates the
function baseexponent.

 Functional specification (pseudocode)

POWR (base, exponent)

D1=base ;input arguments
D2=exponent ;exponent must be an integer

initialize D3 to 1 ;
exponent=exponent-1
while exponent≥0 D3=base*D3 ;compute using continued

;product of base
end POWR.

 Basic documentation of POWR (see p.3 of lab manual)

Subroutine documentation:
name: POWR
function: computers baseexponent where exponent is an

interger using continued product
input/output: input:

D1=base, D2=exponent
output:
D3=result

registers destructively addressed: D2,D3
memory requirements: none
subroutines called: none
length of subroutine (bytes): 40

-228-
Copyright 1997 F.Merat

POWR (parameter passing using data registers)

;Program to compute the power of a number using subroutine.
;Power MUST be an integer. A and B are signed numbers.
;Parameter passing via data registers.

MOVE A,D1 ;put base into D1
MOVE B,D2 ;put exponent into D2
JSR POWR ;call subroutine POWR
LEA C,A5 ;put address of where to put answer

into A5
MOVE D3,(A5) ;save answer

DATA EQU *
A DC.W 4
B DC.W 2
C DS.W 1

POWR MOVE.L #1,D3 ;put starting 1 into D3
LOOP EQU *

SUBQ #1,D2 ;decrement power
BMI EXIT ;if D2<0 then quit subroutine
MULS D1,D3 ;multiply out
BRA LOOP ;and repeat as necessary

EXIT EQU *
RTS

Behavior of the stack Basic flow chart of POWR

Note that the initial value of the stack
pointer must be set by the programmer even
if we don’t explicitly use it for anything.
The 68000 MUST have a value for A7
when subroutines are used. In this case,
RTS uses it to return to the LEA
instruction.

original SP→

in subroutine, SP→
4 byte
return

address

exp < 0

No

Yes

exp ← exp - 1

D3=D3*base

D3 ←

Done

POWR (parameter passing using address registers)

;Program to compute the power of a number using subroutine.

-229-
Copyright 1997 F.Merat

;Power MUST be an integer. A and B are signed numbers.
;Parameter passing via address registers.

LEA A,A1 ;put address of base into A1
LEA B,A2 ;put address of exponent into A2
JSR POWR ;call subroutine POWR
LEA C,A5 ;put address of where to put answer

into A5
MOVE D3,(A5) ;save answer

DATA EQU *
A DC.W 4
B DC.W 2
C DS.W 1

POWR EQU *
* only difference is that following instructions are address register indirect

MOVE (A1),D1 ;get base
MOVE (A2),D2 ;get exponent
MOVE.L #1,D3 ;put starting 1 into D3

LOOP EQU *
SUBQ #1,D2 ;decrement power
BMI EXIT ;if D2<0 then quit subroutine
MULS D1,D3 ;multiply out
BRA LOOP ;and repeat as necessary

EXIT EQU *
RTS

-230-
Copyright 1997 F.Merat

POWR (parameter passing using inline coding of data)

;Program to compute the power of a number using subroutine.
;Power MUST be an integer. A and B are signed numbers.
;Parameter passing via inline coding of data.

* no longer load parameters into registers BEFORE subroutine call
JSR POWR ;call subroutine POWR

* parameters are inline AFTER subroutine call
DATA EQU *
A DC.W 4 ;base
B DC.W 2 ;exponent
C DS.W 1 ;result

* the rest of the program would go here

POWR EQU *
MOVE.L (SP),A5 ;put return address into A5
MOVE (A5)+,D1 ;get A, increment A5 to point to B
MOVE (A5)+,D2 ;get B, increment A5 to point to

where to put result
MOVE.L #1,D3 ;put starting 1 into D3

LOOP EQU *
SUBQ #1,D2 ;decrement power
BMI EXIT ;if D2-1<0 then quit subroutine
MULS D1,D3 ;multiply out
BRA LOOP ;and repeat as necessary

EXIT EQU *
MOVE D3,(A5)+ ;(C)=answer,

;(A5)=return address
MOVE.L A5,(SP) ;put correct return address on stack
RTS

Behavior of the stack How program memory is arranged

original SP→

in subroutine, SP→
4 byte
return

address

Return address on stack is address of
A, NOT the next program instruction
which would be several bytes
beyond this.

$1068

$1066

$1064

subroutine should return here →

A

B

C

JSR
instruction

$106E

$106C

$106A

A5 will
start here
in subroutine→

POWR (parameter passing using inline coding of addresses)

;Program to compute the power of a number using subroutine.
;Power MUST be an integer. A and B are signed numbers.
;Parameter passing via inline coding of addresses.

-231-
Copyright 1997 F.Merat

JSR POWR ;call subroutine POWR
* addresses of parameters are put inline AFTER subroutine call

DC.L A,B,C ;address of A,B and C are inline
* the rest of the program would go here

DATA EQU *
A DC.W 4 ;base
B DC.W 2 ;exponent
C DS.W 1 ;result

POWR EQU *
MOVE.L (SP),A5 ;put return address into A5
MOVE (A5)+,A1 ;get address of A, increment A5 so

(A5)=address of B
MOVE (A5)+,A2 ;get address of B, increment A5 so

(A5)=address of C
MOVE (A1),D1 ;put A into D1
MOVE (A2),D2 ;put B into D2

MOVE.L #1,D3 ;put starting 1 into D3
LOOP EQU *

SUBQ #1,D2 ;decrement power
BMI EXIT ;if D2<0 then quit subroutine
MULS D1,D3 ;multiply out
BRA LOOP ;and repeat as necessary

EXIT EQU *
MOVE.L (A5)+,A3 ;increment A5 to point to correct

return address, put address of C into
A3

MOVE D3,(A3) ;put answer into C
MOVE.L A5,(SP) ;restore correct return address onto

stack
RTS

-232-
Copyright 1997 F.Merat

Behavior of the stack How program memory is arranged

original SP→

in subroutine, SP→
4 byte
return

address

Return address on stack is address of
A, NOT the next program instruction
which would be several bytes
beyond this.

$1068

$1066

$1064

subroutine should return here →

B

JSR
instruction

$106E

$106C

$106A

C
$1074

$1072

$1070

A

A5 will start
here in subroutine→

-233-
Copyright 1997 F.Merat

POWR (parameter passing using the address of a parameter array in an address
register)

;Program to compute the power of a number using subroutine.
;Power MUST be an integer. A and B are signed numbers.
;Parameter passing via the address of a parameter array in an address register.

LEA ARG,A5 ;put address of argument array in A5
JSR POWR ;call subroutine POWR

* the rest of the program would go here

ARG EQU *
A DC.W 4 ;base
B DC.W 2 ;exponent
C DS.W 1 ;result

POWR EQU *
MOVE (A5),D1 ;put A into D1
MOVE 2(A5),D2 ;put B into D2

* table means use address register indirect with displacement and/or offset

MOVE.L #1,D3 ;put starting 1 into D3
LOOP EQU *

SUBQ #1,D2 ;decrement power
BMI EXIT ;if D2-1<0 then quit subroutine
MULS D1,D3 ;multiply out
BRA LOOP ;and repeat as necessary

EXIT EQU *
MOVE D3,4(A5) ;put answer from D3 into C
RTS

How program memory is arranged:

$1068

B
$106E

$106C

$106A

C
$1074

$1072

$1070

A
ARG and A5 point here→

2(A5) points here→

4(A5) points here→

-234-
Copyright 1997 F.Merat

POWR (parameter passing by placing parameters on stack)

;Program to compute the power of a number using subroutine.
;Power MUST be an integer. A and B are signed numbers.
;Parameter are passed on the stack.

MOVE.W A,-(SP) ;push A onto stack
MOVE.W B,-(SP) ;push B onto stack
JSR POWR ;call subroutine POWR
MOVE.W (SP)+,C ;pop answer from stack resetting SP

to original value
* the rest of the program would go here

ARG EQU *
A DC.W 4 ;base
B DC.W 2 ;exponent
C DS.W 1 ;result

POWR EQU *
MOVE.W 6(SP),D1 ;put A into D1
MOVE.W 4(SP),D2 ;put B into D2

MOVE.L #1,D3 ;put starting 1 into D3
LOOP EQU *

SUBQ #1,D2 ;decrement power
BMI EXIT ;if D2-1<0 then quit subroutine
MULS D1,D3 ;multiply out
BRA LOOP ;and repeat as necessary

EXIT EQU *
MOVE.W D3,6(SP) ;put answer on stack on top of A
MOVE.L (SP),2(SP) ;move return address two bytes up in

stack
ADDQ.L #2,SP ;increment SP by 2 bytes
RTS

-235-
Copyright 1997 F.Merat

How the stack is manipulated by this program:

The stack just after JSR has
been executed

$1068

$1066

$1064

original SP →

B

return
address

$106E

$106C

$106A

$1070

A

SP after
putting parameters →
on stack

final SP
→

The stack just before the
RTS is executed. Notice
how the stack had to be
corrected by two bytes to
account for the fact that two
parameters were passed to
POWR but only one
parameter was returned

$1068

$1066

$1064

original SP →
C

return
address

$106E

$106C

$106A

$1070

SP after RTS →

return address & SP
 moved two bytes →

-236-
Copyright 1997 F.Merat

Recursive subroutine

This subroutine accepts one input and computes the factorial of that number using recursive
procedure calls on the stack.

 Functional specification (pseudocode)

FACTOR(input)
factorial=input ;number input
push factorial on stack ;save the current number on

;stack
factorial=factorial-1 ;decrement the number
if number≠1 call FACTOR ;continue putting on stack?
 else {end FACTOR} ;this ends up with factorial=1
temp=pop stack ;pop number from stack
factorial=factorial*temp ;compute factorial
end FACTOR.

 Basic documentation of FACTOR (see p.3 of lab manual)

Subroutine documentation:
name: FACTOR
function: computes the factorial of a given number
input/output: input: D0.W

output: D0.W
registers destructively addressed: D0
memory requirements: none
subroutines called: none
length of subroutine (bytes): 40 (estimated)

FACTOR (parameter passing using data register D0)

;Program to compute the factorial of a number using subroutine.
;Parameter passing via data registers.

DATA EQU $6000 ;data segment
PROGRAM EQU $4000 ;program segment

ORG DATA
NUMB DS.W 1 ;number to be factorialized
F_NUMB DS.W 1 ;factorial of number

ORG PROGRAM
MAIN MOVE.W NUMB,D0 ;get number

JSR FACTOR ;goto factorial routine
MOVE.W D0,F_NUMB ;store result

* subroutine FACTOR (parameter passing using data register D0)
* Computes the factorial of a number.
* Initial conditions: D0.W=number to compute factorial of.
* 0<D0.W<9
* Final conditions: D0.W=factorial of input number

-237-
Copyright 1997 F.Merat

* Register usage: D0.W destructively used
* Sample case: Input D0.W=5
* Output D0.W=120

FACTOR MOVE.W D0,-(SP) ;push input number onto stack
SUBQ.W #1,D0 ;decrement number
BNE.S F_CONT ;reached 1 yet?
MOVE.W (SP)+,D0 ;yes, factorial=1
RTS ;return

F_CONT JSR FACTOR ;no, call FACTOR
MULU (SP)+,D0 ;multiply only after stack contains all

numbers
RETURN RTS

Stack usage by subroutine FACTOR

original SP→

after last call, SP→

4 byte
return address

4 byte
return address

4 byte
return address

4 byte
return address

4 byte
return address

5

4

3

2

1

word

