
-165-
Copyright 1997 F.Merat

INTRODUCTION TO BRANCHING

 UNCONDITIONAL BRANCHING

There are two forms of unconditional branching in the MC68000.

 BRA instruction

BRA <label> Program control passes directly to the instruction
located at label. The size of the jump is restricted to
-32768 to +32767.

Example:

LOOP: <instruction>
•
•
•

BRA LOOP ;program control passes to the instruction at LOOP

FORMAT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 1 1 0 0 0 0 0
0

8-bit displacement (BRA.S)

16-bit displacement (BRA.L) if 8-bit displacement = 00000000

 JMP Instruction

JMP <ea> Program controls jumps to the specified address.
There is no restriction on the size of the jump.

FORMAT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 1 0 0 1 1 1 0 1
0

mode register1
<effective address>

Examples:
JMP AGAIN ;absolute long addressing mode
JMP (A2) ;address register indirect addressing mode

-166-
Copyright 1997 F.Merat

 CONDITIONAL BRANCHING

 The Bcc instructions

dependent upon the value of a bit in the Status Register

bit instruction action
Z BEQ <label> branch if SR indicates zero, i.e. Z=1
Z BNE <label> branch if SR indicates a non-zero

number, i.e. Z=0
N BMI <label> branch if SR indicates a negative

number, i.e. N=1
N BPL <label> branch if SR indicates a positive (this

includes zero) number, i.e. N=0
V BVS <label> branch if SR indicates that overflow

occurred, i.e. V=1
V BVC <label> branch if SR indicates that no overflow

occurred, i.e. V=0
C BCS <label> branch if SR indicates that

carry/borrow occurred, i.e. C=1
C BCC <label> branch if SR indicates that

carry/borrow did not occur, i.e. C=0

NOTE: You don’t test the X bit.

The general form of a Bcc

branch instruction
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 1 1 0 1 1 1 0 1
0

mode register1
<effective address>

4-bit condition code 8-bit (or 16-bit) 2's complement offset

opcode
where bits 11-8 indicate the branch condition code, i.e. BHI=0010, BNE=0110,
etc.

The offset is relative to the current value of the PC. Recall that the PC is
incremented in the read cycle of the instruction. Note that most assemblers
automatically use a 16-bit offset using an extension word to automatically
handle forward branching.

-167-
Copyright 1997 F.Merat

 BIT MANIPULATION INSTRUCTIONS
Can be used to change the value of and test individual bits of a binary word?

BTST #N,<ea>
BTST Dn,<ea>

value of the tested bit is placed into Z
bit of status register

BSET #N,<ea>
BSET Dn,<ea>

sets the value of the specified bit to 1

BCLR #N,<ea>
BCLR Dn,<ea>

sets the value of the specified bit to 0

BCHG #N,<ea>
BCHG Dn,<ea>

changes the value of the specified bit,
0→1 or 1→0

The number of the bit to be tested can be specified as an immediate constant,
i.e. #N, or it can be contained in a data register. The allowed range of bits to be
tested is 0-7 for a memory location , i.e. it only tests bytes of memory, or 0-31 for
a data register .

The BTST instruction is a good way to set a bit prior to a conditional branch.

-168-
Copyright 1997 F.Merat

INSTRUCTIONS WHICH TEST NUMBERS

 TEST INSTRUCTION
Can be used to set Status Register bits before a branch instruction. SInce it has
only one argument it is called a unary operation.

TST.<size> <ea>

size can be B, W or L
<ea> cannot be an address register

Action Sets N and Z according to what is found in <ea>. Clears C and V.

 COMPARE INSTRUCTION
Can be used to set Status Register bits before a branch instruction

CMP.<size> <ea>,Dn
CMPI.<size> #N,<ea>

size can be B, W or L

Action Computes the difference (destination-source). It DOES NOT
change the value of anything contained in <ea> or Dn but does
change the Status Register’s N,C,Z,V codes.

Computes
Dn - <ea>
<ea> - #N

CMPA.<size> <ea>,An

size can be W or L

Action Subtracts contents of <ea> from 32-bit contents of An, i.e. it
computes An-(<ea>). If <ea> is a word it will be sign extended for
the subtraction. It DOES NOT change the value of anything
contained in <ea> or Dn but does change the Status Register’s
N,C,Z,V codes.

Computes
An - <ea>

-169-
Copyright 1997 F.Merat

structured programming:

pseudocode assembly language

IF <boolean expression> THEN
 code(True)
Next statement.

false
true

<set CCR bits>
Bcc NEXT
Code (True)

NEXT:
false

IF <boolean expression> THEN
 code(True)
ELSE
 code(False)
Next statement.

false true
<set CCR bits>
Bcc ELSE
Code (True)
BRA NEXT

ELSE:Code (False)
NEXT:

WHILE <boolean expression> DO
 code.
 Modify expression.
 Return to WHILE ... DO
Next statement.

false
true

false

<set CCR bits>
WHILE Bcc NEXT

Code.
Modify condition.
BRA WHILE

NEXT:

true

-170-
Copyright 1997 F.Merat

 DBcc instruction

DBcc Dn,<label> Program control passes directly to the instruction
located at label if cc is false. This is to be compared
with the Bcc instruction which passed control to
<label> if cc was true. The logic of this instruction is
shown below.

Example: DBcc D0,LOOP

cc TRUE?

Dn ← Dn - 1

Dn = -1?

branch to Label

Yes

Yes

No

No

go to next instruction
(fall through)

drops through
on true

only counts
down to -1

may only
branch backwards

Example:

using the DBcc instruction using a conventional branch instruction
LOOP ... ⇔
 DBNE D0,LOOP

LOOP
BNE.S NEXT
SUBQ #1,D0
BPL LOOP ;see Note

NEXT ...

Note: BPL is used in the equivalent code because the form of D0 is to count
down to -1. However, the actual DBcc actually checks only for -1.

The DBT instruction does nothing; it simply falls through to the next instruction.

-171-
Copyright 1997 F.Merat

The DBF instruction is used in loops to decrement a loop counter to -1.

-172-
Copyright 1997 F.Merat

Example DBcc instructions:

What is the value of D0 after executing the following instructions?
MOVE.L #15,D0

LABEL ADD D1,D2
DBF D0,LABEL

Answer: The DBF never satisfies the condition code so it only decrements
Do and goes to label. Since it never “falls through” to the next
instruction until D0=-1, we know that the result of this loop must be
D0=-1. This is the most common form of the DBcc instruction.

What is the value of D0 after executing the following instructions?
MOVE.L #15,D0

LABEL SUBQ #1,D0
DBT D0,LABEL

Answer: In this case, the condition code is always true and the program
flow automatically “falls through” to the next instruction. As a
result, the only action of this code is to put 15 into D0, subract 1
from it to get 14, and then “fall through” to the next instruction with
D0=14.

Given that (D0)=$ 0012 3456, what is the contents of D0 after the following
program segment is executed?

MOVEQ #1, D0 ;put 1 into counter
LOOP ADD.W #1, D0 ;add 1 to counter

DBF D0, LOOP ;if D0≤0 goto loop
ADD.W #2, D0 ;add 2 to counter

MOVEQ: D0: 1
ADD.W D0: 2
DBF D0: 1
ADD.W D0: 2
<loop never finishes - infinite loop>
The thing to look for in a problem of this type is that the loop variable is being
manipulated inside the loop.

The instruction DBRA is equivalent to DBF.

-173-
Copyright 1997 F.Merat

Rewrite the sequence to use a DBcc instruction:
LOOP1 TST.W (A1)+

BNE DONE1
SUBQ.W #1,D2
BPL LOOP1

DONE1 SUBQ.L #2,A1

To answer this problem you need to consider the logic of the loop.

The logic of the program segment The logic of the DBcc instruction

(A1)≠0

D2 ← D2 - 1

D2 ≥ 0 ?

Yes

Yes No

No

SUBQ.L#2,A1

TST (A1)
A1 ← A1 +2

cc TRUE?

Dn ← Dn - 1

Dn = -1?

branch to Label

Yes

Yes

No

No

go to
next instruction

(fall through)

As you can see the logic of the two loops is almost identical. Dn≥0 is the same
as testing Dn=-1. Then, all you need to do is identify the label as being the
beinning of the loop, and Dn as being D2 and you have the following code
using a DBNE instruction.

LOOP1 TST.W (A1)+
DBNE D2,LOOP1

DONE1 SUBQ.L #2,A1

-174-
Copyright 1997 F.Merat

EXAMPLE: COUNT NEGATIVE NUMBERS

The correct way to design a program is by starting with your inputs,
outputs and functional requirements.

Functional specification (pseudocode)

;define inputs
START=location of words in memory
LENGTH=# of words to examine
TOTAL ;where to put answer

count=0 ;# of negative words
pointer=START ;pointer variable

if (LENGTH=0) then quit ;if length=0 do nothing

loop: ;basic loop for advancing to
;next word

if (memory[pointer] ≥ 0) then ;if word is not negative
 goto looptest ;then don’t count it
count=count+1 ;advance negative word

counter
looptest:

pointer=pointer+1 ;increment the word pointer
LENGTH=LENGTH-1 ;decrement the word counter
if LENGTH>=0 then goto loop ;if more words then repeat

quit:
word

START→
memory[pointer]

length

-175-
Copyright 1997 F.Merat

Structure of DBF Negative counting program
IF (A0) > 0 then

code (TRUE)
else

code (FALSE)
Next statement.

Loop: IF (A0) > 0 then
count=count-1
if count = -1 then goto Done
goto loop

else
count=count+1

Done: output

NOTE: This illustrates one of the most useful modes of the
DBcc Dn,<label>
instruction where cc=F. The F means that the conditional
code is ALWAYS false and the conditional test to “drop
through” to the next instruction will never occur. In this
mode the DBF instruction is very similar to a simple DO
loop where Dn is the loop variable.

-176-
Copyright 1997 F.Merat

PROGRAM

DATA EQU $6000 ;data placed at $6000

PROGRAM EQU $4000 ;program begins at $4000

ORG DATA

LENGTH DC.W $1000 ;$1000 numbers to check

START DC.L $10000 ;data begins at $10000

TOTAL DS.W 1 ;put answer here

ORG PROGRAM

main: MOVEA.L START,A0 ;load starting address, could also

use LEA instruction

MOVEQ #0,D0 ;set count to zero

MOVE.W LENGTH,D1 ;load length of memory area

;into D1

BEQ.S DONE ;if size of memory is zero

;then quit

LOOP: TST.W (A0)+ ;compares (A0) with 0

;sets Z bit if (A0)<0
BPL.S LPTEST ;if (A0) ≥ 0 goto looptest,

branches if N=0

ADDQ.W #1,D0 ;if (A0)<0 increment neg counter

LPTEST: DBF D1,LOOP ;decrement and branch, could

also use DBRA instruction

;decrement memory counter D1
;if counter ≥ then repeat

;end of program

MOVE.W D0,TOTAL ;put answer somewhere

DONE: TRAP #0

-177-
Copyright 1997 F.Merat

MORE BRANCH INSTRUCTIONS

The previous branch instructions only tested a single bit of the CCR. Many
times you want to test things, like whether a number is greater than or equal to
another number, which require testing more than one bit. These operations are
designed for signed number comparisons and usually follow a CMP instruction.

 Bcc instructions appropriate for signed numbers
The logic assumes a CMP <source>,<destination> command immediately
precedes the instruction. Remember that the CMP instruction computes
(destination-source) without changing either source or destination. These
branches are appropriate for signed numbers since they use the N bit.

instruction action logic
BGT <label> branch if destination > source branch if NV~Z+~N~V~Z
BGE <label> branch if destination≥source branch if NV+~N~V
BLE <label> branch if destination≤source branch if Z+(N~V+~NV)
BLT <label> branch if destination<source branch if N~V+~NV
where “~” indicates a logical NOT (i.e., an inversion)

 Bcc instructions appropriate for unsigned numbers
The logic assumes a CMP <source>,<destination> command immediately
precedes the instruction. Remember that the CMP instruction computes
(destination-source) without changing either source or destination. These
branches are appropriate for unsigned numbers since they do NOT use the N
bit.

instruction action logic
BHI <label> branch if destination > source branch if ~C~Z
BCC <label> branch if destination≥source branch if ~C
BLS <label> branch if destination≤source branch if C+Z
BCS <label> branch if destination<source branch if C

CMP instruction:
Computes (Destination) - (Source)

X N Z V C
- * * * *

set if result is
negative

set if result is
zero

set if an
overflow is
generated

set if borrow is
generated

-178-
Copyright 1997 F.Merat

Example:
For the following program segment:

CLR.L D1 ;clear the register D1 for sum
MOVE.L #10,D0 ;counter (D0) = 10 decimal

LOOP: ADD.L D0,D1 ;add counter 10 to 0 (first time)
SUBQ #1,D0 ;subtract 1
BGE LOOP ;if counter≥0 goto loop
TRAP #0 ;end of program
END

How many times does the SUBQ gets executed and what is (D1) after the
program stops?
 at after ADD.L instruction after SUBQ instruction
D0: 10 (D1)=10 (D0)=9
D0: 9 (D1)=10+9 (D0)=8
D0: 8 (D1)=10+9+8 (D0)=7
D0: 7 (D1)=10+9+8+7 (D0)=6
D0: 6 (D1)=10+9+8+7+6 (D0)=5
D0: 5 (D1)=10+9+8+7+6+5 (D0)=4
D0: 4 (D1)=10+9+8+7+6+5+4 (D0)=3
D0: 3 (D1)=10+9+8+7+6+5+4+3 (D0)=2
D0: 2 (D1)=10+9+8+7+6+5+4+3+2 (D0)=1
D0: 1 (D1)=10+9+8+7+6+5+4+3+2+1 (D0)=0
D0: 0 (D1)=10+9+8+7+6+5+4+3+2+1+0 (D0)=-1

BGE will branch if NV+~N~V (destination ≥ source)

There is no overflow until D0=-1
D0-1 → D0 N V NV+~N~V
1 - 1 → 0 0 0 0•0+1•1=1 so branch
0 - 1 → -1 1 0 1•0+0•1=0 so drop through

Note that on the last calculation we have
0000
 FFFF
FFFF
which sets N=1 (the result is negative) but there is no signed overflow
so V=0.

The SUBQ gets executed 11 times.

-179-
Copyright 1997 F.Merat

Review of ASCII character representation:

7 6 5 4 3 2 1 0

ASCII code (7 bits)

parity bit

ASCII uses 8 bits to represent characters. Actually, only 7 bits are used to
uniquely define the character and the 8-th bit (called the parity bit) is used for
error detection. When used, the value of the parity bit depends upon the
numbers of 1’s in bits 0-7. For odd parity, bit 8 is set to make the total number of
1’s in the byte an odd number such as 1 or 7. For even parity, bit 8 is set to
make the total number of 1’s in the byte an even number such as 0, 2 or 8.

Some useful ASCII character codes:

character ASCII code (in hex)
/ 2F
0 30
1 31
2 32

8 38
9 39
: 3A
; 3B

@ 40
A 41
B 42

Z 5A
[5B

\ 60
a 61

z 7A
{ 7B

etc.

-180-
Copyright 1997 F.Merat

EXAMPLE: PARITY PROGRAM

The correct way to design a program is by starting with your inputs, outputs and
functional requirements.

Functional specification (pseudocode)
get ASCII byte
sum bits 0 thru 6
put bit(0) of sum in bit(7) of ASCII byte
put ASCII byte somewhere

Now define how to sum bits 0 thru 6

set counter to 0 ;bit pointer
set sum to 0 ;sum of bits

loop:
sum=sum+byte[counter] ;sum up bits 0...6

;byte is ASCII character being
;processed

counter=counter+1
if counter<7 goto loop
byte[7]=sum[bit0] ;if sum[bit0] is 1 the sum is odd

;if sum[bit1] is 0 the sum is even
;this program generates even
; parity

For even parity, if bits 0 thru 6 sum to an odd number then set bit #7 to 1 to make
the parity even. If you wanted to change the program to odd parity, you simply
need to change the last line of the pseudocode.

Examples:

If the sum of the character’s bits is an odd number then the parity bit must be set
to 1.

1 0 0 0 0 1 1 1

If the sum of the character’s bits is an even number then the parity bit must be
set to 0.

0 0 0 0 0 1 1 0

-181-
Copyright 1997 F.Merat

MC68000 assembly code for parity program:

main_loop EQU *

* could have also used i/o to get data from keyboard

MOVE.B $1000,D1 ;get ASCII byte from $1000

* used quick instructions but not necessary

MOVEQ #0,D0 ;clear counter

MOVEQ #0,D2 ;clear sum

SUM BTST.B D0,D1 ;test D0-th bit of D1, sets Z-bit

BEQ SKIP_INCRE ;if Z-bit=0 don’t increment sum

ADDQ #1,D2 ;sum=sum+1

SKIP_INCRE

ADDQ #1,D0 ;increment counter

MOVE D0,D3 ;temp storage in D3

* subtract seven and compare to zero

SUBQ #7,D3 ;counter=7?

* could have used a compare instruction here

BNE SUM ;No, sum more bits

BCLR #7,D1 ;Yes, clear parity bit

BTST #0,D2 ;get parity bit from sum[0]

BEQ PAR_SET ;if parity bit=0 goto PAR_SET

BSET #7,D1 ;set parity bit to 1

PAR_SET MOVE.B D1,???? ;put ASCII byte somewhere

-182-
Copyright 1997 F.Merat

EXAMPLE: REPLACING 0’s BY BLANKS PROGRAM

The correct way to design a program is by starting with your inputs, outputs and
functional requirements.

pointer to
beginning of
string

WORD
indicating length
of string

0

0

8

0

0

3

A

0

1

5

0

A

8

3

A

1

5

0

A

byte

Functional specification (pseudocode)

;define inputs
pointer=location of character string in memory
length=length of string (bytes) ;this will be contained in first

;word of string input
blank=‘ ‘ ;define a blank character
if (length=0) then quit ;if string length=0 do nothing

nextchar: ;basic loop for advancing to
;next character

if (char[pointer]≠’0’) then ;if character is NOT a zero
 goto notzero ;then goto nonzero
char[pointer]=blank ;replace ASCII zero by blank
notzero:
length=length-1 ;decrement the char counter
if (length≥0) goto nextchar ;if more characters then repeat

-183-
Copyright 1997 F.Merat

What the program does is search for all the ASCII zeros in the string and
replace them with blanks. This might be useful for eliminating leading zeros in
a print routine.

-184-
Copyright 1997 F.Merat

SAMPLE PROGRAM

ORG $6000

START DS.L 1 ;START is the address of the string

CHAR_0 EQU.B ‘0’ ;define CHAR_0 as ASCII 0

BLANK EQU.B ‘ ‘ ;define BLANK as ASCII space

ORG $4000

begin MOVEA.L START,A0 ; set pointer to start of string,

cannot use LEA START

MOVEQ #BLANK,D1 ; put a blank in D1

MOVE.W (A0)+,D2 ; get length of string

BEQ DONE ; if the string is of length zero

;then goto DONE

NEXT_CHAR:

MOVEQ #CHAR_0,D0 ;put ASCII 0 into D0

SUB.B (A0)+,D0 ;compute ‘0’-current character

BNE NOT_ZERO ;goto next char if non-zero

MOVE.B D1,-1(A0) ;go back, get last byte and

;replace it by ASCII zero

N OT_ZERO:

SUBQ #1,D2 ;decrement the character counter

BPL NEXT_CHAR ;if count >=0 go to next character

;otherwise quit

DONE END begin

A0 → length

A0=A0+2 → ‘0’

-185-
Copyright 1997 F.Merat

EXAMPLE: LONG DIVISION USING REPEATED
SUBTRACTION
Input, using HexIn, nonnegative numbers M and N where N>0. Using
repreated subtraction, find the quotient M/N and remainder.

Algorithm
Repeatly subtract the divisor N from M (M:=M-N). Count the number
of iterations Q until M<0. This is one too many iterations and the
quotient is then Q-1. The remainder is M+N, the previous value of M.

 Pseudocode:
QUOTIENT:=0;
READLN(M); {No error checking. Assume M≥0}
READLN(N); {No error checking. Assume N≥0}
REPEAT

QUOTIENT:=QUOTIENT+1;
M:=M-N;

UNTIL M<0;
QUOTIENT:=QUOTIENT-1;
REMAINDER:=M+N;

 Sample calculations:
Suppose Q=$0000, R=$0000
Start with M=$0015, N=$0004 {corresponds to 15/4 = 4 w
/remainder=3}

Q=1: M=M-N=$0015-$0004=$0011
Q=2: M=M-N=$0011-$0004=$000D
Q=3: M=M-N=$000D-$0004=$0009
Q=4: M=M-N=$0009-$0004=$0005
Q=5: M=M-N=$0005-$0004=$0001
Q=6: M=M-N=$0001-$0004=$FFFD
Since quotient is negative stop algorithm and back up one.
Q=Q-1=6-1=5 ;correct quotient
R=M+N=$FFFD+$0004=$0001 ;correct remainder

-186-
Copyright 1997 F.Merat

SAMPLE PROGRAM

INCLUDE io.s ;contains the i/o routines

ORG $6000

START MOVE.W #0,D2 ;quotient in D2, set to zero

GETM JSR HexIn ;get M, put in D0

TST.W D0 ;test for M≥0

BMI GETM ;if M<0 get another M

MOVE.W D0,D1 ;put M in D1

GETN JSR HexIn ;get N, put in D0

TST.W D0 ;test for N>0

BPL LOOP ;if N>0, start calculations

BRA GETN ;if N≤0 get another N

LOOP ADDI.W #1,D2 ;increment the quotient

SUB.W D0,D1 ;compute M-N

BPL LOOP ;branch back if M not negative,

corresponds to doing another

division

RESULT SUBI.W #1,D2 ;decrement the quotient

ADD.W D0,D1 ;set remainder

MOVE.W D2,D0 ;move quotient to D0

JSR HexOut ;display quotient

MOVE.W D1,D0 ;move remainder to D0

JSR HexOut ;display remainder

JSR NewLine ;advance to next line

TRAP #0 ;trick to end program

END START

-187-
Copyright 1997 F.Merat

EXAMPLE: Tests for Signed and UnSigned Overflow

 Description:
Enter two 16-bit numbers and compute their sum. The addition
operation sets the CCR bits. These bits are then read from the SR
into the least significant word of D0 using the MOVE SR,Dn
instruction. After isolating the C and V bits in D0, a message
indicating if overflow has occurred is printed.

 Pseudocode:
READLN(M); /*No error checking. Assume M≥0*/
READLN(N); /*No error checking. Assume N≥0*/
M:=M+N;
D0:=SR; /*put the value of the SR into D0*/
D0:=D0&&0x0003; /*Clear bits 2-15 by ANDing with $0003*/
WRITELN(D0); /*Write out D0*/
SWITCH (D0) {

CASE 1: WRITELN(‘NO OVERFLOW’); BREAK;
CASE 2: WRITELN(‘ONLY UNSIGNED OVERFLOW’);

BREAK;
CASE 3: WRITELN(‘ONLY SIGNED OVERFLOW’); BREAK;
CASE 4: WRITELN(‘SIGNED AND UNSIGNED

OVERFLOW’); BREAK;
DEFAULT;
}

 MASKing:
ANDI.W #$3,D0 masks bits 0-1
000316 = 0000 0000 0000 00112
 (D0) = xxxx xxxx xxxx xxxx 2

(D0) = 0000 0000 0000 00xx2
SInce the AND operates according to 0•x=0 and 1•x=x the result
contains only whatever was is bits 0 and 1 — all other bits were set to
zero. Basically we masked out bits 0 and 1; hence the name,
masking.

-188-
Copyright 1997 F.Merat

SAMPLE PROGRAM

INCLUDE io.s ;contains the i/o routines

ORG $6000

START JSR HexIn ;get M, put in D0

MOVE.W D0,D1 ;put M in D1

JSR HexIn ;get N, put in D0

ADD.W D0,D1 ;D0:=M+N

MOVE SR,D0 ;get contents of SR

ANDI.W #$0003,D0 ;clears bits 2-15

JSR HexOut ;display C and V bits

LEA OVRFLSTR,A1 ;base address of output messages

ADD.W D0,D0 ;compute 4*D0 by adding D0 to

itself twice

ADD.W D0,D0 ;faster than a multiply

ADDA.L D0,A1 ;add message offset to base

address

MOVEA.L (A1),A0 ;set (A1) to start address of

message

MOVE.W #28,D0 ;each string has 28 characters

(bytes)

JSR StrOut ;string output routine

JSR NewLine ;advance line

TRAP #0 ;exit to debugger

OVRFLSTR DC.L NO_OVR,USGNOVR,SGNOVR,DUALOVR

NO_OVR DC.B ‘NO OVERFLOW ’

USGNOVR DC.B ‘ONLY UNSIGNED OVERFLOW ’

SGNOVR DC.B ‘ONLY SIGNED OVERFLOW ’

DUALOVR DC.B ‘UNSIGNED AND SIGNED OVERFLOW’

END START

-189-
Copyright 1997 F.Merat

HOW DOES PROGRAM IMPLEMEMENT SWITCH:

LEA OVRFLSTR,A1
loads the base address of the table of messages

D0 can only have the values
 D0 V C
0 0 0
1 0 1
2 1 0
3 1 1

Multiply D0 by 4 to make these values in D0 correspond to the
message since

OVRFLSTR DC.L
NO_OVR,USGNOVR,SGNO

VR,DUALOVR
places the beginning addresses of the messages in consecutive long
words beginning at OVRFLSTR.

Use
MOVEA.L (A1),A0
to get the starting address of the correct message into A0

NOTE:
MOVEA.L A1,A0
will simply place the address of the address of the message into A0
which is NOT what was wanted.

The instruction
LEA 0(A1,D0.W),A0
would have also worked by directly adding the offset

-190-
Copyright 1997 F.Merat

 ROTATE AND SHIFT INSTRUCTIONS

 logical shift for unsigned numbers
Provide a means for shifting blocks of bits within a register or memory.

 Logical shift right
LSR.<size> #N,Dn
LSR.<size> Dm,Dn
LSR.W <ea>

Action The contents of the data register Dn are shifted right by the
number of bits specified in the source operand. The vacated bits
are filled with zeros. The shifted bits are stored in the X and C bits
of the Status Register.

register C

X

0

Notes: 1. A shift in the range 1-8 may be written as immediate data;
anything larger than 8 will be replaced by Nmod8. A shift in the
range 0-63 may be contained in a data register Dm.

2. Use of the <ea> operand will result in a shift of exactly one bit.
The size for this operand can only be word.

3. The result of the operation is specified by the N and the Z bits.
The overflow (V) bit is always cleared.

Example:
LSR #4,D3

-191-
Copyright 1997 F.Merat

BEFORE

32 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 1 0 0 1 1 1 1 0 1 0

STATUS REGISTER X C
0 0

AFTER

32 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1

STATUS REGISTER X C
1 1

-192-
Copyright 1997 F.Merat

 Logical shift left
LSL.<size> #N,Dn
LSL.<size> Dm,Dn
LSL.W <ea>

Action The contents of the data register Dn are shifted left by the number
of bits specified in the source operand. The vacated bits are filled
with zeros. The shifted bits are stored in the X and C bits of the
Status Register.

registerC

X

0

Notes: 1. A shift in the range 1-8 may be written as immediate data;
anything larger than 8 will be replaced by Nmod8. A shift in the
range 0-63 may be contained in a data register Dm.

2. Use of the <ea> operand will result in a shift of exactly one bit.
The size for this operand can only be word.

3. The result of the operation is specified by the N and the Z bits.
The overflow (V) bit is always cleared.

-193-
Copyright 1997 F.Merat

 arithmetic shift for signed numbers

 Arithmetic shift left
ASL.<size> #N,Dn ;shifts Dn by #N, #N must satisfy 1≤#N≤8
ASL.<size> Dm,Dn ;shifts Dn by Dm
ASL.W <ea> ;shifts word in memory by ONLY 1 bit

Action The contents of the data register are shifted preserving the sign of
the original number. A shift count in the range 1-8 can be written
as immediate data (#N). A shift count in the range 0-63 may be
contained in data register Dm.

registerC

X

0

NOTES: 1. The size parameter can be byte, word or long word. If the shift
is greater than 8 bits it MUST be stored in a data register Dm.

2. ASL <ea> can only operate on words and can only shift 1 bit.
3. The shift count can be loaded into Dm during program

execution allowing variable shift counts in loops.
4. It is faster to move data to a register and shift it than using

multiple ASL <ea> commands if the shift is greater than or
equal to three bits.

5. An overflow is set if the sign bit changes. Consider the binary
number 01102=610. An ASL of 1 bit produces the number
11002=-410. More formally, the V bit indicates if a sign change
occurred. The Z and N bits are set according to the result of the
operation. With ASL bits shifted out of the high-order bit go to
both the X and C bits.

-194-
Copyright 1997 F.Merat

 Arithmetic shift right
ASR.<size> #N,Dn ;shifts Dn by #N, #N must satisfy 1≤#N≤8
ASR.<size> Dm,Dn ;shifts Dn by the value in Dm
ASR.W <ea> ;shifts word in memory by ONLY 1 bit

Action The contents of the data register are shifted preserving the sign of
the original number. A shift count in the range 1-8 can be written
as immediate data (#N). A shift count in the range 0-63 may be
contained in data register Dm.

register C

X

NOTES: 1. Consider the binary number 10102=-610. An ASR of 2 bits
produces the number 11102=-210. The circular nature of the
MSB in this instruction is, in effect, a sign extension to preserve
the sign of the signed number.

2. The size parameter can be byte, word or long word. If the shift
is greater than 8 bits it MUST be stored in a data register Dm.

3. ASL <ea> can only operate on words and can only shift 1 bit.
4. The shift count can be loaded into Dm during program

execution allowing variable shift counts in loops.
5. It is faster to move data to a register and shift it than using

multiple ASR <ea> commands if the shift is greater than or
equal to three bits.

6. The overflow bit (V) is set if the sign bit changes. As the sign is
preserved in the shift this should never occur. The Z and N bits
are set according to the result of the operation. Bits shifted out
of the least significant bit go to both the X and C bits.

-195-
Copyright 1997 F.Merat

 Rotate instructions are similar to shift instructions; however, rotate instructions
 do an end around, shifts do NOT

 rotate right
ROR.<size> #N,Dn ;rotates Dn by #N, #N must satisfy 1≤#N≤8
ROR.<size> Dm,Dn ;rotates Dn by Dm
ROR.W <ea> ;shifts word in memory by ONLY 1 bit

Action The bits of the destination are rotated right The extend bit is NOT
included in the rotation. The number of bits rotated is determined
by the source operand.

register C

NOTES: 1. The bits rotated out of the least significant bit of the operand go
to both the carry bit and the most significant bit of the operand.

2. The size parameter can be byte, word or long word. If the
rotation is greater than 8 bits it MUST be stored in a data
register Dm.

3. ROR <ea> can only operate on words and the rotation is
always 1 bit.

 rotate left
ROL.<size> #N,Dn ;rotates Dn by #N, #N must satisfy 1≤#N≤8
ROL.<size> Dm,Dn ;rotates Dn by Dm
ROL.W <ea> ;shifts word in memory by ONLY 1 bit

Action The bits of the destination are rotated left. The extend bit is NOT
included in the rotation. The number of bits rotated is determined
by the source operand.

registerC

NOTES: 1. The bits rotated out of the most significant bit of the operand go
to both the carry bit and the least significant bit of the operand.

2. The size parameter can be byte, word or long word. If the
rotation is greater than 8 bits it MUST be stored in a data
register Dm.

-196-
Copyright 1997 F.Merat

3. ROL <ea> can only operate on words and the rotation is
always 1 bit.

-197-
Copyright 1997 F.Merat

rotate with extend instructions

 rotate right with extend
ROXR.<size> #N,Dn ;rotates Dn by #N, #N must satisfy 1≤#N≤8
ROXR.<size> Dm,Dn ;rotates Dn by Dm
ROXR.W <ea> ;rotates word in memory by ONLY 1 bit

Action The bits of the destination are rotated right with the X bit included
in the rotation. The number of bits rotated is determined by the
source operand. The least significant bit of the operand is shifted
into the C and X bit. The X bit is shifted into the most significant bit
of the operand. This process continues for each succeeding shift.

register C

X

 rotate left with extend
ROXL.<size> #N,Dn ;rotates Dn by #N, #N must satisfy 1≤#N≤8
ROXL.<size> Dm,Dn ;rotates Dn by Dm
ROXL.W <ea> ;rotates word in memory by ONLY 1 bit

Action The bits of the destination are rotated left with the X bit included in
the rotation. The number of bits rotated is determined by the
source operand. The most significant bit of the operand is shifted
into the C and X bit. The X bit is shifted into the most significant bit
of the operand. This process continues for each succeeding shift.

registerC

X

-198-
Copyright 1997 F.Merat

EXAMPLE: SIMPLE MATH PROGRAM

The correct way to design a program is by starting with your inputs, outputs and
functional requirements.

This program accepts as input a 16-bit signed number N and outputs the
following values:
N 2*N 16*N N DIV 2 N DIV 16

Functional specification (pseudocode)
get signed number N
multiply by 2 using left shift by 1
multiply by 16 using left shift by 4
divide by 2 using right shift by 1
divide by 16 using right shift by 1

-199-
Copyright 1997 F.Merat

MC68000 assembly code for simple math program:

ORG $5000 ;put data here

NEWLINE DC.B $0A,$0 ;ascii code for carriage return

followed by end of string

character “0”

include io.s ;insert appropriate code for io

routines

start JSR HexIn ;get N and put in D0

MOVE.W D0,D1 ;copy N to D1 for safekeeping

JSR HexOut ;output N

ASL.W #1,D0 ;multiply N by 2 by shifting left by

1

JSR HexOut ;output 2*N

MOVE.W D1,D0 ;get new copy of N

ASL.W #4,D0 ;multiply N by 24 by shifting left

by 4

JSR HexOut ;output 24*N

MOVE.W D1,D0 ;get new copy of N

ASR.W #1,D0 ;divide N by 2 by shifting right by

1

JSR HexOut ;output N DIV 2

MOVE.W D1,D0 ;get new copy of N

ASR.W #4,D0 ;divide N by 24 by shifting right

by 4

JSR HexOut ;output N DIV 24

LEA NEWLINE,A0 ;load starting address of new line

control characters into A0

JSR PrintString

END start

-200-
Copyright 1997 F.Merat

EXAMPLE: BLANK SEARCH PROGRAM

This program will search a string of ASCII characters for the first non-blank
character and return the address of this character.

STRING sequence of ASCII characters
START starting address of STRING in memory
POINTER address of first non-blank character in STRING

Functional specification (pseudocode)
point = START;

LOOP:
IF character(point) = blank THEN

point = point + 1;
goto LOOP;
END

POINTER = point;

-201-
Copyright 1997 F.Merat

MC68000 assembly code for blank search program:

ORG $2000

START DS.L 1 ;contains starting address of

string

POINTER DS.L 1 ;answer, will contain address of

first non-blank character

BLANK equ $32 ;ASCII code for blank space

include io.s ;insert appropriate code for io

routines

start MOVEA.L START,A0 ;set A0 to start of string

MOVEA.L POINTER,A1 ;set A1 to answer

MOVE #BLANK,D1 ;put ASCII blank into D1

LOOP CMP.B (A0)+,D1 ;is current character a blank?

BEQ LOOP ;if YES, then continue looping

SUBA #1,A0 ;if NO, then point = point -1 to

correct for previous (A0)+

MOVE.L A0,(A1) ;save address of first non-blank

character in POINTER

END start

-202-
Copyright 1997 F.Merat

EXAMPLE: ASCII SEARCH PROGRAM (2)

This program will search a block of memory containing ASCII characters for a
specified character and return the address of the first occurrance of the
specified character.

CHARcharacter to search for
BLOCK memory block containing ASCII characters
START starting address of BLOCK in memory
STOPA ending address of BLOCK in memory
POINTER address of specified character in BLOCK

Functional specification (pseudocode)

point = START;

LOOP:
IF character(point) ≠ CHAR THEN

BEGIN
point = point + 1;
IF point ≤ STOP THEN goto LOOP;
END

POINTER = point - 1;

-203-
Copyright 1997 F.Merat

MC68000 assembly code for ascii search program:

ORG $70000

BSTART DC.L $2000 ;start of BLOCK to search

BSTOP DC.L $4000 ;end of BLOCK to search

CHAR equ $40 ;ASCII character to search for

prog MOVEA.L BSTART,A0 ;set A0 to start of BLOCK

MOVEA.L BSTOP,A1 ;set A1 to end of BLOCK

MOVE #CHAR,D1 ;put ASCII character into D0

LOOP CMP.B (A0)+,D0 ;is current character what we are

searching for?

BEQ DONE ;if YES, then get out of here

CMPA.L A0,A1 ;if NO, then have we searched

entire block?

BCC LOOP ; this is a CARRY CLEAR

instruction and is equivalent to ≤
comparison since there will be

no carry (actually borrow in this

case) if A0 ≤ A1

DONE SUBA #1,A0 ;adjust A0 to correct for the post

increment in the CMP instruction

END prog

-204-
Copyright 1997 F.Merat

EXAMPLE: WORD SEARCH PROGRAM

This program will search for a given word in memory.

WORD word to search for
BLOCK block of memory containing ASCII characters
START starting address of BLOCK in memory
STOP ending address of BLOCK in memory
POINTER address of specified character in BLOCK

Functional specification (pseudocode)

point = START;

LOOP:
IF word(point) = WORD THEN

BEGIN
point = point + 2;
IF point ≤ STOP THEN goto LOOP;
END

POINTER = point - 2;

-205-
Copyright 1997 F.Merat

MC68000 assembly code for word search program:

ORG $3000

START DC.L $2000 ;start of memory to search

STOPA DC.L $4000 ;end of memory to search

WORD DC.W $4E40 ;word to search for

prog MOVEA.L START,A0 ;set A0 to starting address of

search

MOVEA.L STOPA,A1 ;set A1 to ending address of

search

MOVE WORD,D0 ;put search word into D0

LOOP CMP.W (A0)+,D0 ;is current word what we are

searching for?

BEQ DONE ;if YES, then get out of here

CMPA.L A0,A1 ;if NO, then have we searched all

required memory?

BCC LOOP ; this is a CARRY CLEAR

instruction and is equivalent to ≤
comparison since there will be

no carry (actually borrow in this

case) if A0 ≤ A1

DONE SUBA.L #2,A0 ;adjust A0 to correct for the post

increment in the CMP instruction.

Note that since it was

incremented by a word we must

subtract 1 word (2 bytes).

END prog

-206-
Copyright 1997 F.Merat

EXAMPLE: SEQUENTIAL SEARCH PROGRAM
This program implements a sequential search program defined as:

Given an N-element list of 16-bit numbers and a KEY, store the
KEY in the N+1-st element of the list. Execute a sequential search
of the list for KEY. KEY will always be found. If the address of the
matching location is NOT the N+1-st element’s address, the KEY
was in the list. Otherwise, it is not present.

The program uses:
N the number of elements in the list to search
KEY the 16-bit number to search for
LIST set of 16-bit numbers to search

The program outputs one of the following:
<value of KEY> is in the list.
<value of KEY> is NOT in the list.

The program uses the DBEQ instruction to implement the search loop.

Functional specification (pseudocode)

input (N);
input (KEY);
LIST(N+1)=KEY;

FOR j=0 to N+1
IF LIST(j) = KEY THEN KEYADDR=j;

IF KEYADDR≠N+1 THEN
output(KEY in list.”)
ELSE
output(KEY NOT in list.”);

-207-
Copyright 1997 F.Merat

1

N

N+1
KEY

word

LIST

-208-
Copyright 1997 F.Merat

MC68000 assembly code for key search program:

ORG $5000

LIST: DS.W 20 ;reserve space for 20 words

FNDMSG DC.B ‘IS IN THE LIST’,0

NOTMSG DC.B ‘IS NOT IN THE LIST’,0

NEWLINE DC.B $0A,0 ;new line command message

include io.s ;enter i/o declarations

START JSR HexIn ;enter N into D0

MOVE.W D0,D1 ;store N in D1 for DB instructions

SUBQ.W #1,D1 ;correct N for DB instruction

MOVE.W D0,D2 ;save original N in D2

LEA LIST,A0 ;put starting LIST address into A0

LOAD JSR HexIn ;enter entire LIST from keyboard

MOVE.W D0,(A0) ;put in LIST

ADDA #2,A0 ;increment LIST address

DBRA D1,LOAD ;decrement and repeat until done

JSR HexIn ;get KEY

LEA LIST,A0 ;reset starting address

LEA LIST,A1 ;set working address

ASL.W #1,D2 ;double D2 for byte count since

words

ADDA D2,A1 ;set A1 to end of LIST

MOVE.W D0,(A1) ;put KEY at end of LIST

COMPARE CMP.W (A0),D0 ;LIST(j) = KEY?

BEQ.S OUTPUT ;if yes then stop

ADDA #2,A0 ;if no then increment by one word

BRA COMPARE ;and repeat

OUTPUT MOVE.L A0,D0

JSR HexOut ;print address of where key was

found

CMPA.L A0,A1 ;was KEY found in LIST? Is A0

equal to end of LIST?

BEQ.S NOTFND ;if not equal then KEY was not in

LIST

-209-
Copyright 1997 F.Merat

LEA FNDMSG,A0 ;load starting address of

message for KEY found

BRA PRINTIT

NOTFND LEA NOTMSG,A0 ;load starting address of

message for KEY not found

PRINTIT JSR PrintString

LEA NEWLINE,A0 ;load starting address of new line

command

JSR PrintString

END START

Comments on use of DBcc instruction in this program:

MOVE.W D2,D1 put N-1 into D1 for loop count

SUBQ.W #1,D1

COMPARE CMP.W (A0)+,D0 compare (A0) with KEY

DBEQ D1,COMPARE if they are equal then fall through

else goto compare.

-210-
Copyright 1997 F.Merat

 MATHEMATICAL INSTRUCTIONS

 Multiply unsigned
MULU<ea>,Dn

Action Multiplies the word length <ea> times the least significant word in
Dn. The result is a long word.

Notes: 1. The lowest word of Dn contains the multiplier.
2. The result is a 32-bit long word.
3. The negative (N) and zero (Z) flags are set according to the

result. The overflow (V) and carry (C) bits are always cleared
since there can never be an overflow or carry with this
instruction.

Example:
MULU#$10,D4

BEFORE

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0don't care

0151632

AFTER

1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

result extends into upper word

0151632

-211-
Copyright 1997 F.Merat

 Multiply signed
MULS<ea>,Dn

Action Multiplies the word length <ea> times the least significant word in
Dn. The result is a sign extended long word.

Notes: 1. The lowest word of Dn contains the multiplier.
2. The result is a 32-bit long word which takes account of the

multiplier and multiplicand’s signs.
3. The negative (N) and zero (Z) flags are set according to the

result. The overflow (V) and carry (C) bits are always cleared
since there can never be an overflow or carry with this
instruction.

Example:
MULS#$10,D4

BEFORE

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0don't care

0151632

AFTER

1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0

0151632

sign extension multiplication result

1920

-212-
Copyright 1997 F.Merat

 Divide unsigned
DIVU <ea>,Dn

Action Divides the 32-bit integer in Dn by the 16-bit integer in <ea>. The
most significant word of the 32-bit result is the remainder; the least
significant word is the quotient.

remainder

0151632

quotient

Notes: 1. There is also a DIVS but you will need to sign extend what’s in
 Dn before you can divide with sign. This can be done using
the instruction EXT.L, which extends the lowest word to a long
word, for signed numbers.

2. You may use the instruction ANDI.L #$0000FFFF,Dn to clear
bits 16-32 for unsigned number division.

Example:
DIVU #10,D4

BEFORE (D4 contains 3210) Note that 3210 = $20 = %100000

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0151632

AFTER (the result is a quotient of 310 with a remainder of 210)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0151632

remainder = 2 quotient = 3

-213-
Copyright 1997 F.Merat

Example:
SUppose you want to do a signed divide of -32 in D4 by 10, i.e.

DIVS #10,D4

Consider what happens if you put -32 in D4 using a MOVE immediate
MOVE.W #-32,D4

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0151632

The -32 is sign-extended to a word.

You must extend this to a long word before you can do a DIVS

EXT.L D4

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0151632

Now you can correctly use the DIVS
DIVS #10,D4

to get the resulting quotient of -310 with a remainder of -210,
 i.e. (D4) = $FFFE FFFD

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0151632

remainder = -2 quotient = -3

-214-
Copyright 1997 F.Merat

MATH INSTRUCTIONS

Instruction Comments
ADDI Add a constant, cannot be used

with An as a destination.
ADDQ Adds an immediate constant

between 1 and 8.
SUB
SUBI
SUBQ

flags in normal way

SUBX Clears Z only if the result is non-
zero, i.e. it sets Z to 1 if the result
is zero else Z remains
unchanged. This instruction
subtracts the source and the X bit
from the destination.

ADDX basically the same as SUBX but
adds.

SUBA Doesn’t effect status register.
NEG Negates (subtracts from zero).

WARNING: NEG is NOT a
COMPLEMENT. It computes
0 - (Destination) - (X-bit)

NEGX Adds X bit to destination, then
subtracts from zero.

MULS
MULU

Multiply two words.

DIVS
DIVU

Divides a long word by a word.
WARNING: Division by zero
generates a TRAP.

EXT Sign extend

-215-
Copyright 1997 F.Merat

EXAMPLE: DOUBLE PRECISION ADDITION
This program adds two 64-bit (8-byte) numbers together.

The program uses:
NUM1 64-bit number, 8 consecutive bytes
NUM2 64-bit number, 8 consecutive bytes stored immediately

higher in memory than NUM1

Functional specification (pseudocode)

A3 = starting address of NUM1
A0 = A3 + 8 ;starting address of NUM2
A1 = A0 + 8 ;ending address of NUM2 plus 1

byte
X = 0 ;clear X-bit

;loop starting with least significant bytes

FOR j = 1,4 DO
NUM1(j) = NUM1(j) + NUM2(j) + X;

NUM1

NUM2

A1

word

$6A4D

$ED05

$A937

$6414

$56C8

$46E6

$76C8

$4AEA

A0

A3

start putting
results here

-216-
Copyright 1997 F.Merat

MC68000 assembly code for double precision add
program:

ORG $5000

NUM1 DC.W $6A4D, $ED05,$A937,$6414

NUM2 DC.W $56C8, $46E6,$76C8,$4AEA

BYTECNT EQU 8 ;number of bytes to add together

MAIN LEA NUM1,A3 ;use A3 for address first number

LEA BYTECNT(A3),A0 ;the second number begins 8

bytes beyond the beginning of

the first number - use address

register indirect with

displacement

LEA BYTECNT(A0),A1 ;address beyond end of second

number

MOVEQ #0,CCR ;clear the X bit of the SR

MOVEQ #BYTECNT-1,D2 ;set up loop counter, adjusted for

DBRA. MOVEQ is ok since

counter is 7

LOOP MOVE.B -(A0),D0

MOVE.B -(A1),D1

ADDX.B D1,D0 ;D0=D0+D1+X-bit

MOVE.B D0,(A0) ;save result in NUM1

DBF D2,LOOP ;repeat 7 times

END MAIN

-217-
Copyright 1997 F.Merat

EXAMPLE: BINARY MULTIPLICATION
This program multiplies two 8-bit unsigned numbers using a shift and add
algorithm to generate a 16-bit product.

The multiplier is in D2 and the multiplicand in D1.
The product is returned in D1.

algorithm:
1. Starting with most significant bit of multiplier, i.e. bit=8
2. Shift product to line up properly (product = 2*product)
3. If multiplier[bit] = 1 then product=product+multiplier
4. Decrement bit. If bit≥0 then goto 2.

The program uses:
MULTIPLICAND 8-bit number to be multiplied
MULTIPLIER 8-bit number that MULTIPLICAND is multiplied by
PRODUCT 32-bit result

Functional specification (pseudocode)

PRODUCT = 0; /*clear PRODUCT*/
BIT=8 /* starting at MSB */

FOR j = 1,8 DO /*do for each bit of MULTIPLIER*/
BEGIN
PRODUCT = PRODUCT*2; /*shift PRODUCT left by one bit*/
IF MULTIPLIER[9-bit] = 1 THEN

PRODUCT = PRODUCT + MULTIPLICAND;
/* do calculations from most significant bit to least significant bit */

BIT=BIT-1; /* decrement bit */
END

-218-
Copyright 1997 F.Merat

DETAILED EXAMPLE:

multiplier = 6116 (9710)
multiplicant = 6F16 (11110)

multiplier: (D2) = 00000000 01100001 ($00 61)
multiplicand (D1) = 00000000 01101111 ($00 6F)

initial product: (D0) = 00000000 00000000 ($00 00)

shift product: (D0) = 00000000 00000000 ($00 00)
MUL[8] = 0 don’t add
new product (D0) = 00000000 00000000 ($00 00)

shift product: (D0) = 00000000 00000000 ($00 00)
MUL[7] = 1 so add (D1) = 00000000 01101111 ($00 6F)
new product (D0) = 00000000 01101111 ($00 6F)

shift product: (D0) = 00000000 11011110 ($00 DE)
MUL[6] = 1 so add (D1) = 00000000 01101111 ($00 6F)
new product (D0) = 00000001 01001101 ($01 4D)

shift product: (D0) = 00000010 10011010 ($02 9A)
MUL[5] = 0 don’t add
new product (D0) = 00000010 10011010 ($02 9A)

shift product: (D0) = 00000101 00110100 ($05 34)
MUL[4] = 0 don’t add
new product (D0) = 00000101 00110100 ($05 34)

shift product: (D0) = 00001010 01101000 ($0A 68)
MUL[3] = 0 don’t add
new product (D0) = 00001010 01101000 ($0A 68)

shift product: (D0) = 00010100 11010000 ($14 D0)
MUL[2] = 0 don’t add
new product (D0) = 00010100 11010000 ($14 D0)

shift product: (D0) = 00101001 10100000 ($29 A0)
MUL[1] = 1 so add (D1) = 00000000 01101111 ($00 6F)
new product (D0) = 00101010 00001111 ($2A 0F)

-219-
Copyright 1997 F.Merat

final answer: (D0) = 00101010 00001111 ($2A 0F)

where $2A0F = 1076710 = 9710 x 11110

-220-
Copyright 1997 F.Merat

MC68000 assembly code for binary multiply program:

ORG $5000

A DC.W $61

B DC.W $62

RESULT DS.L 1

MAIN CLR.L D0 ;clear 32-bit product register

MOVE.L D0,D1 ;clear upper word for ADD.L

MOVE.W A,D1 ;copy multiplicand into D1

MOVE.W B,D2 ;copy multiplier into D2

MOVE.W #16-1,D3 ;loop count = 16-1 for DBRA

instruction

LOOP ADD.L D0,D0 ;shift product left one bit

ADD.W D2,D2 ;shift multiplier left one bit

BCC.S STEP ; Use carry to check whether to

add. If carry=0 goto next step.

ADD.L D1,D0 ;if multiplier [15] was one then

add multiplicand.

STEP DBRA D3,LOOP ;else continue with loop

LEA RESULT,A1 ;get where to put answer

MOVE.L D0,(A1) ;store result

END MAIN

NOTES:

1. Program uses shift and add algorithm.

2. DBRA is equivalent to DBF and works in most assemblers.

-221-
Copyright 1997 F.Merat

REVIEW for Integer arithmetic functions

ADD.<size> <source>,<destination>

One operand MUST be a data register; affects all five status codes in CCR

Overflow (V)

Set if two like-signed numbers (both positive or both negative) are added and

the has a different sign. This is causes by the result exceeding the 2’s

complement range of numbers, causing the sign bit to change.
Mathematically, V = Cs⊕Cp

The V and N flags are pertinent only for signed numbers but are set for all

additions.

ADDA <ea>,An

If the destination is an address, the condition codes are not changed.

For adding multiple words, the extend can be used.

ADDX

Adds two (data) registers or memory locations. However, zero is only cleared if

the result is non-zero; otherwise, zero is unchanged.

ADD.L D0,D2

ADDX.L D1,D3

The above code adds the double precision numbers together:

X

D1 D0

D3 D2

Memory to memory adds do not change X, Z. You must set them. For example:

MOVE #4,CCR ;sets Z bit, clears all others

