
TRIG FUNCTIONS

OVERVIEW: This laboratory will implement an interpolation routine to compute the
sine and cosine of an input binary number. Input will be from a data register. You will
use an interpolation table to compute the sine of the angle; the cosine can be computed
from the cosine since cos(x)=-sin(x-90 degrees). You will then display both results to the
debugger screen.

CHECKOUT: There will be a scheduled checkout for this lab beginning November 13th
in the Kern Lab. Schedules will be e-mailed to you.

EXTRA CREDIT: Extra credit equivalent to 20% of the lab can be obtained by
implementing a scheme to input your angle from the keyboard and control your program
in calculating the sine and cosine, i.e. make your program similar to a trig function
calculator. The amount of extra credit will depend upon your implementation. This extra
credit project must be turned in by November 10th.

BACKGROUND: Trigonometric functions are NOT part of microprocessor instruction
sets; however, they are among the most useful functions for real world engineering
applications such as robotic control. For the purposes of this lab we may imagine a
robotic elbow which is free to rotate 360 degrees. A sensor, mounted on the robot elbow,
measures the angle as a 16-bit binary number. This means that each 360 degree rotation
of the elbow is divided into 65536 (2 to the 16th power) discrete angular increments. The
details of this angular numbering scheme are shown in Figure 1 where x is the digitally
encoded angle:

 $4000=16384=90 degrees
 |
 |
 QUADRANT II | QUADRANT I
 |
 | /
 | /
 | /angle x
 32768 = | /
180 degrees _________________|/_____________ 0 = 0 degrees
 =$8000 | $10000=65536=360
degrees
 |
 |
 QUADRANT III | QUADRANT IV
 |
 |
 |
 $C000=49152=270 degrees

Figure 1 - Definition of angular measurements (Angular representation of axes are
shown)

Note that according to Figure 1 each angular increment is equal to 360 degrees/65,536 =
5.5x10-3 degrees = 9.587x10-5 radians. The sensor's actual input to the computer is a
16- bit word; however, you do not have 65,536 words of memory to store these sine
values nor do you know a fast algorithm to compute the sine function. So you are clever.
The sine function values repeat themselves every 90 degrees so you need only store
values for angles between 0 and 90 degrees. The sine for angles between 90 degrees and
360 degrees can be simply computed using such trig relationships as sin(phi)=sin(90
degrees-phi), etc. Storing the values for the sine of angles between 0 and 90 degrees still
requires 16,384 values and is more memory than you have available. So you decide to
store only 64 values of the sine function, i.e. you will store a value corresponding to
every 90 degrees/64=1.41 degrees, and interpolate to find any intermediate values. Using
this scheme and our previous definition of 65,636 angles we can now code a 16-bit angle
according to the format shown in Figure 2.

__
 | | | | | | | | | | | | | | |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
1
__|___|___|___|___|___|___|___|___|___|___|___|___|___|___|
__

quadrant
<---->|<--------index-------->|<------lowest 8 bits--------
->
 one of 64 known values must interpolate this part
 in table if not equal to 00000000

 x[13:8] x-x[16:8]

 Figure 2 - Encoding of a 16 bit binary angle

Interpretation of Figure 2:
1. The two most significant bits indicate the quadrant of the angle. Since there are four

quadrants (1, 2, 3, and 4 in decimal); their binary equivalent is 00, 01, 10 and 11. The
quadrant will determine the specific trig relationship we need to compute the sine and
the sign of the resulting function.

2. The next six bits represent the 64 evenly spaced binary angles in that quadrant, i.e.
every 1.41 degrees. 3. The last eight bits indicate exactly where the angle lies
between two known 1.41 degrees increments and will be used for interpolation. For
example, if the last eight binary bits are 00000000 the angle is exactly one of the 64
known angles whereas if the eight binary bits are 10000000 the angle lies exactly
half-way between two known angles.

PROBLEM STATEMENT:

PART 1 - The Sine Function: The sine of a 16-bit angle (as described in Figure 2) will be
computed from a table of 64 known evenly spaced angular values and interpolated (as
necessary) to get an accurate value of sine(x). Assuming your input angle is x in the
format of Figure 2, you will estimate sine(x) according to the following formula:

sine(x) = f(x[13:8]) + (x-x[16:8])*D(x[13:8]) {1}

where x[13:8] is the six bits of x corresponding to the 64 known values of sine x in a
table in your program, f() represents the actual value of one of the 64 known sine values,
D() is the derivative of the sine function at the index value x[13:8]. (x-x[16:8]) is a
formal way of saying using just the lower eight bits of x; it says take the original 16 bit
angle and subtract from it the upper eight bits leaving all zeros in the upper byte of x and
the original bits in the lower byte. Equation {1} is a digital equivalent of the well known
Taylor Series approximation, Equation {2}.

 f(x) = f(xi) + (x-xi)*df(xi)/dx {2}

Note that (x-xi) is the fractional part of the angle between two of the 64 known angles,xi
and xi+1, and thus must be the least significant byte of the input word x. If you know
f(xi) and df(xi)/dx you can estimate sine(x) in the first quadrant. By examining the
quadrant of x you can approximate sine(x) for x>90 degrees. However, remember that the
sine is negative in quadrants III and IV.

The values of f(xi) and D(xi) [actually f(x[13:8]) and D(x[13;8])] were supplied to you as
tables of numbers which you typed into the computer for Lab #1. Instructions for
including them in your program appear in Appendix IV. These tables are arranged in
order of increasing angle as shown in Appendix III.

Note that angles which are multiples of 90 degrees such as 180 degrees or 270 degrees
are not included in TBL or DTBL. The easiest way to handle these angles is to test for
them and treat each case separately. Other methods such as extending the TBL and
DTBL tables are also possible and left to your discretion; however, you must document
your method of dealing with these angles in your lab report.

NOTE: Differences and derivatives are the same in the content of this problem. What
you are really doing is optimized linear interpolation when you implement Equation (2).

Programming Considerations:

ASSEMBLING AND LINKING YOUR PROGRAM: The data tables of known sine
values should be typed in by you as a separate program module. You will combine them
with your program in memory using the LINKER. Details of doing this are given in
Appendix IV.

Your data table program module must begin with the following instruction XDEF
TBL,DTBL and end with the normal END. The XDEF command must be before the
ORG statements and will tell the assembler and linker that these names are global (i.e.,
they can be used by other program modules). Your lab 4 program must then begin with
the instruction XREF TBL,DTBL. This tells the assembler that these names are defined
elsewhere. Note that these instructions should appear before any include io.s statement
you may use. If you look at your symbol table after you assemble the lab you will see the
word EXTERNAL indicating that the linker must find the reference for these names.
Finally, to put the programs together you must use a slightly different linker command,
i.e. something of the form ld68k -o lab4 lab4 data or ld68k -L -o lab4 lab4 data > lab4.llis
if you want to get a listing of the linker output. The linker output really doesn't tell you
much unless you have a very complicated program. Note that the data is in a file called
data.s in this example.

Your program is now fairly complex. You may have i/o routines defined at $9000, your
data table might be at $2000, and you are putting your program somewhere else. Just be
careful that you don't put the program on top of the data table or something similar. The
data tables shown in Appendix II begin at $2000 but you don't have to put them there.
The value of memory used here ($2000) was arbitrarily chosen and you are free to
change the assignment if you want. For example, you can put your program at $2000 and
TBL beginning at $3000.

ACCESSING THE DATA: You can access individual elements (which are one word in
length) of the tables in the following manner:

LEA TBL,A0 ;put pointer to TBL in A0
MOVE #2,D0 ;put the number of the element you
 ;want to retrieve in D0. Note that 2

is only used as an example. You should
generate this number from the binary
angle in your program.

LSL #2,D0 ;multiply D0 x 4 to account for zeros
between elements

MOVE.W (A0,D0),D1 ;get the (D0/2+1)-th element from
TBL and put it in D1

What you are putting into D0 is your offset (i.e. element) in TBL. D0 is defined by you
and must be in the range of 0-63 since the table only has 64 elements in it. The offset
corresponding to the element you want is doubled to allow the above program fragment
to automatically skip over the zero words stored between each actual element in TBL.
This extra space was reserved for additional data which might appear in a later lab. For
this lab you will only want to access the evenly spaced words in TBL skipping the zeros.
The difference table DTBL is in the same format and you can repeat the above using
LEA DTBL,A0 to access the data table DTBL.

TBL is the sine function table for 64 quadrant I angles only. Each entry consists of 2
bytes (formatted as one word) followed by a filler word of decimal value zero - there are

128 values in the table of which you will only use 64. The numbers stored in TBL are
stored in a signed magnitude format with the binary point between bits 14 and 13, i.e. the
format used by TBL is:

bit 15 sign bit: 0 indicates positive number, 1 indicates negative number. Note that all

the elements in this table are positive so this bit is always zero.
bit 14 most significant bit. A TBL entry of 0100 0000 0000 0000 would correspond to a

value of +1, i.e. the sine of 90 degrees. Note that the value of the sine for an angle
of 90 degrees is NOT included in the table. YOU have to decide how to handle
the sine of 90 degrees. Possible options include extending TBL and DTBL
to include 90 degrees or to specifically test for angles that are multiples of 90
degrees.

As an aside the elements in TBL were calculated by the formula
TBL(n)=sin(n*90 degrees/64)*16384
which gives the decimal entries shown in Appendix II for TBL. For example, if n=63
TBL(63)=sin(63*90 degrees/64)*16384 = 16379.07 which is (after roundoff) exactly the
entry shown in Appendix II.

According to our previous discussion DTBL is a table of derivatives corresponding to the
elements of TBL and also has 128 values. In actual fact, DTBL is a special table
constructed to approximate the sine function by linear interpolation with minimum error.
The details of this scheme can be found in "Fast Trig Functions for Robot Control" by
Carl Ruoff in the November/December 1981 issue of Robotics Age magazine. Basically,
DTBL was constructed by the formula

DTBL(n)=[sin((n+1)*90 degrees/64)-sin((n)*90 degrees/64)+delta(n)]*16384

where delta(n) is a small constant that was added to the difference to improve the average
accuracy of the final interpolation. The details of this are discussed in the article by
Ruoff. A basic problem of the above formula is that the differences are very small
numbers and, if we used the same numerical format to represent these differences as that
used in TBL, all the entries in DTBL would be zeros except possibly for the least
significant 2 or 3 bits. To keep more significant digits in the interpolation calculation I
shifted the binary points of the numbers generated by the above formula 13 bits to the
left, i.e. I multiplied the DTBL* calculations by 8192 to get the final DTBL entries:

Because of this additional multiplication by 8192 you will have to divide your
interpolation by 8192 BEFORE adding it to the entry in TBL. Specifically, you will
multiply (x-x[16:8]) by D(x[13:8]) using a MUL command to generate a long word
interpolation according to Equation (1) but you cannot simply add this result to f(x[13:8])
as stored in TBL. The result of (x-x[16:8])*D(x[13:8]) MUST be shifted 13 bits to the
right (divided by 8192!) before adding to align the binary points for addition. NOTE: If
you used a MULU instruction your multiplication result will be a long word and a 13-bit
shift will put what you want to add to f(x[13:8]) in the lower word of your answer.

Since you may not be sure of your answers the following correct answers are provided
for you to test your program:

ANGLE INDEX FRACTION INTERPOLATED SINE QUADRANT 03E8
03 E8 016A 0620 I
3300 33 00 0000 3CC5 I
5BA0 24 60 005E 31D7 II
C350 3C B0 0017 BFC8 IV
A000 20 00 0000 AD41 III
4000* 00 00 0000 4000

*90 degrees

NOTE: All answers are in hex.

Detailed calculation of these results is done in Appendix I.

You can use these formulas to calculate the sine in all four quadrants:
quadrant 1 sine(x)
quadrant 2 sine(180 degrees - x)
quadrant 3 -sine(x- 180 degrees)
quadrant 4 -sine(360 degrees - x)
Other formulas may be faster.

 APPENDIX I SAMPLE SINE CALCULATIONS

EXAMPLE 1: x=$03E8=00 000011 11101000 The breaks in the binary number show the
three parts of the digital angle which we can refer to as quadrant, index and fraction.

The first two bits tell us this is a first quadrant angle which can be directly interpolated
using Equation (1).

The next six bits have value $03 which is the index of this angle relative to the 64 angles
(i.e. 0 to 63).

The next eight bits have the value $E8 and represent the fractional angle between $03 and
$04 and will be used for interpolation.

Looking up the relevant parameters from TBL and DTBL:
 TBL($03) = $04B5
 DTBL($03)= $3214
Performing the multiplication:
 (x-x[16:8]) * D(x[13:8]) = $E8 * $3214 = $002D6220
Shift this result 13 bits to the right by dividing by 8192 give
 $016B
Performing the final addition:
 Sine($03E8) = $04B5 + $016B = $0620

EXAMPLE 2: x=$3300=00 110011 00000000 The first two bits tell us this is a first
quadrant angle which can be directly interpolated using Equation (1).

The next six bits have value $33 which is the index of this angle relative to the 64 angles
(i.e. 0 to 63).

The next eight bits have the value $00 and tell us no interpolation is necessary.

Looking up the relevant parameters from TBL and DTBL:
 TBL($33) = $3CC5
 DTBL($33)= $0F2E
Performing the multiplication:
 (x-x[16:8]) * D(x[13:8]) = $00 * $0F2E = $00000000
Shift this result 13 bits to the right by dividing by 8192 gives
 $0000
Performing the final addition:
 Sine($3300) = $3CC5 + $0000 = $3CC5

EXAMPLE 3: x=$A000=10 100000 00000000 The first two bits tell us this is a third
quadrant angle which will require computing the complement of the angle, i.e.
x=$A000-$8000=$2000=00 100000 00000000 The value $8000 is the hex equivalent of
32,768 or 180 degrees in Figure 1. This angle is now a first quadrant angle and can be
computed as we have done the previous examples.

The next six bits now have value $20 which is the index of this angle relative to the 64
angles (i.e. 0 to 63).

The next eight bits have the value $00 and tell us no interpolation is required.

Looking up the relevant parameters from TBL and DTBL:
 TBL($20) = $2D41
 DTBL($20)= $231A
Performing the multiplication:
 (x-x[16:8]) * D(x[13:8]) = $00 * $231A = $00000000
Shift this result 13 bits to the right by dividing by 8192 gives
 $0000
Performing the final addition:
 Sine($2000) = $2D41 + $0000 = $2D41
Since this is a third quadrant angle bit 15 will be set to 1 to represent a negative number,
or
 Sine($A000) = -Sine($2000) = $AD41

EXAMPLE 4: x=$5BA0=01 011011 10100000 The first two bits tell us this is a second
quadrant angle which will require computing the complement of the angle, i.e.
x=$8000-$5BA0=$2460=00 100100 01100000 The value $8000 is the hex equivalent of
32,768 or 180 degrees in our original notation. This angle is now a first quadrant angle
and can be computed as we have done the previous examples.

The new next six bits have value $24 which is the index of this angle relative to the 64
angles (i.e. 0 to 63).

The next eight bits have the value $60 and tell us that interpolation is required.

Looking up the relevant parameters from TBL and DTBL:
 TBL($24) = $3179 or TBL(36)=12665
 DTBL($24)= $1F68 or DTBL(36)=8040
Performing the multiplication:
 (x-x[16:8]) * D(x[13:8]) = $60 * $1F68 = $0006C700
Shift this result 13 bits to the right by dividing by 8192 gives
 $005E
Performing the final addition:
 Sine($2460) = $3179 + $005E = $31D7
Since this is a SECOND quadrant angle bit 15 remains zero, or
 Sine($5BA0) = Sine($2460) = $31D7

EXAMPLE 5: x=$C350=11 000011 10100000 The first two bits tell us this is a
FOURTH quadrant angle which will require computing the complement of the angle, i.e.
x=$10000-$C350=$3CB0=00 111100 10110000 The value $10000 is the hex equivalent
of 65,536 or 360 degrees in our original notation. This angle is now a first quadrant angle
and can be computed as we have done in the previous examples.

The new next six bits have value $3C which is the index of this angle relative to the 64
angles (i.e. 0 to 63).

The next eight bits have the value $B0 and tell us interpolation is required.

Looking up the relevant parameters from TBL and DTBL:
 TBL($3C) = $3FB1
 DTBL($3C)= $0450
Performing the multiplication:
 (x-x[16:8]) * D(x[13:8]) = $B0 * $0450 = $0002F700
Shift this result 13 bits to the right by dividing by 8192 gives
 $0017
Performing the final addition:
 Sine($3CB0) = $3FB1 + $0017 = $3CB0
Since this is a FOURTH quadrant angle, the sine is negative and bit 15 is set to 1, giving
 Sine($C350) = -Sine($3CB0) = $BFC8

APPENDIX II

Sample data.s program

XDEF TBL,DTBL

 ORG $2000
TBL DC.W 0,0,402,0,804,0,1205,0,1606,0,2006,0,2404,0
 DC.W 2801,0,3196,0,3590,0,3981,0,4370,0,4756,0
 DC.W 5139,0,5520,0,5897,0,6270,0,6639,0,7005,0,7366,0
 DC.W 7723,0,8076,0,8423,0,8765,0,9102,0,9434,0,9760,0
 DC.W 10080,0,10394,0,10702,0,11003,0,11297,0,11585,0
 DC.W 11866,0,12140,0,12406,0,12665,0,12916,0,13160,0
 DC.W 13395,0,13623,0,13842,0,14053,0,14256,0,14449,0
 DC.W 14635,0,14811,0,14978,0,15137,0,15286,0,15426,0
 DC.W 15557,0,15679,0,15791,0,15893,0,15986,0,16069,0
 DC.W 16143,0,16207,0,16261,0,16305,0,16340,0,16364,0
 DC.W 16379,0
DTBL DC.W 12867,0,12859,0,12843,0,12820,0,12789,0,12751,0
 DC.W 12704,0,12650,0,12589,0,12519,0,12443,0,12358,0
 DC.W 12267,0,12168,0,12061,0,11948,0,11827,0,11699,0
 DC.W 11564,0,11422,0,11273,0,11117,0,10955,0,10786,0
 DC.W 10611,0,10429,0,10241,0,10046,0,9846,0,9640,0
 DC.W 9427,0,9210,0,8986,0,8758,0,8524,0,8285,0
 DC.W 8040,0,7792,0,7538,0,7280,0,7017,0,6750,0
 DC.W 6479,0,6205,0,5926,0,5644,0,5359,0,5070,0
 DC.W 4778,0,4483,0,4186,0,3886,0,3584,0,3280,0
 DC.W 2973,0,2665,0,2356,0,2044,0,1732,0,1419,0
 DC.W 1104,0,789,0,474,0,158,0

APPENDIX III MATHEMATICAL ORGANIZATION OF TBL AND DTBL

 Memory Location Contents Digital angle (x)
TBL $2000 sine(0 degrees) 0000000000000000
 $2002 0
 $2004 sine(1.41 degrees) 0000000100000000
 $2006 0
 $2008 sine(2.82 degrees) 0000001000000000
 $200A 0
 $200C sine(4.23 degrees) 0000001100000000
 $200E 0
 . . .
 . . .
 . . .
 $20FC sine(88.59 degrees) 0011111100000000
 $20FE 0

DTBL $2100 d{sine(x)}/dx@x=0 degrees
 $2102 0
 $2104 d{sine(x)}/dx@x=1.41 degrees
 $2106 0
 $2108 d{sine(x)}/dx@x=2.82 degrees
 $210A 0
 . .
 . .
 . .
 $21FC d{sine(x)}/dx@x=88.59 degrees
 $21FE 0

Note that the angles x corresponding to the values of sine and d{sine(x)}dx are not shown
for DTBL since they are the same, i.e. the entry in TBL at $2000 and the entry in DTBL
at $2100 correspond to x=0000000000000000. The entries in TBL at $2004 and $2104
correspond to x=0000000100000000, etc.

APPENDIX IV HOW TO LINK YOUR DATA PROGRAM MODULE WITH YOUR
LAB#4 PROGRAM USING THE LINKER

<data.s file>
 XDEF TBL,DTBL
ORG $2000
TBL DC.W 0,0,402,0,804,0,1205,0,1606,0,2006,0,2404,0
 DC.W 2801,0,3196,0,3590,0,3981,0,4370,0,4756,0
 DC.W
5139,0,5520,0,5897,0,6270,0,6639,0,7005,0,7366,0
 DC.W
7723,0,8076,0,8423,0,8765,0,9102,0,9434,0,9760,0
 etc

<lab4.s file>
 XREF TBL,DTBL
 include io.s
 ...REST OF YOUR PROGRAM...

The above XDEF and XREF statements MUST be put into your files using the vi editor.
Then, the files must be linked together using a link command of the form:

lnk68k -L -o lab4 data,lab4 >lab4.llis

Note that data and lab4 are indicated as input files; lab4 is also designated as the name of
the output file. For those of you that are interested:

XDEF is an assembler directive which tells the assembler that the symbol names
following it are being defined for use by other program modules (i.e. files).

XREF is an assembler directive the defines symbols in a program module (file) as being
defined in another program module (file).

The purpose of the XREF and XDEF directives is to allow you to construct an assembly
language program that is spread across several files. This typically makes debugging the
program easier and allows the programmer to develop an efficient program design.

Subject: Lab #4 Write-up

First. You should not compute the cosine of the angle. That will be the subject of the
next lab. Second, many people have asked about the proper form of program i/o. Your
program can accept an input from a register loaded with the debugger or, alternatively
from a DC.W statement in your program. The choice is up to you. I would not
recommend using either HexIn or data input through $10040/$10042 because that will
use up the monitor window. You should similarily keep your output simple - a value in a
register or memory location would be the accepted form of output.

Your Lab #4 report should follow the following format:
Standard Title Page with the legal statement that you did the enclosed work.

Description of your program. This description should consist of
1. pseudo code or a flow chart description of your program
2. complete description of how to input and output data from your program. Be specific

as to where the inputs and outputs are and the format they are in. 3. a complete
description of memory requirements (i.e. how many bytes long is your program and
where is it in memory), and a listing of all registers and memory locations used by
your program and a short description of what each register is used for

4. a copy of your program listing (your .lis file, not your .s file)
5. An explanation of how this lab works. This is an essay type question and should be

no longer than a page. It can be much shorter but it should address the idea of table
look up and interpolation. A discussion of how accurate the sine routine is should be
included. Hint: compute the sine for a given angle using your program and compare
your results with the results from a calculator. This write-up should describe the
Taylor series computation approach, the fact that DTBL is not strictly speaking the
exact derivative at that point, and any other factors that influence the calculation.
This explanation should specifically address the following:

 how you looked up date from your program
 how the interpolation was accomplished in this program
 why you have to use a LSR #13 after the multiplication in your program

6. table of results

YOU MUST INCLUDE A TABLE OF TWELVE RANDOMLY CHOSEN ANGLES
FOR WHICH YOU COMPUTE THE SINE USING YOUR PROGRAM. THIS TABLE
MUST INCLUDE ONE ANGLE FROM EACH QUADRANT AND AT LEAST ONE
ANGLE WHICH IS A MULTIPLE OF 90 DEGREES AND SHOULD BE OF THE
FORM

ANGLE SINE

NOTE errors in this table of sine values will cost you points.

>> The program crashes when I use an indirect referance to A1
>>(the command where it crashes is something like move.w (A1,D1),angle; where
>>angle is a label I defined to store the value of the indexed angle) my
>>program halts due to exception vector 3, which signifies address error.
>>needless to say I am quite stuck.

I have gotten many messages like the above. An exception vector 3 error is
an address error - an attempt to access a word or long word at an odd
address. This is typically caused by improper usage of the index. TBL and
DTBL are word length.

P.S. For your information a complete list of exception vector error
messages is found on the inside back cover of your textbook.

This is a list of angles you can use for checking out Lab #4. You are not
responsible for the cosine yet.

angle sine cosine
0010 0019 3FFF
0100 0192 3FFB
0330 0500 3FCD
03E8 0620 3FB4
0500 07D6 3F85
077F 0BB5 3EEA
1000 187E 3B21
2000 2D41 2D41
3000 3B21 187E
3300 3CC5 1413
3FFF 3FFF 0001
4000 0000 8000
5000 3B21 987E
5B00 3274 A760
5BA0 31D7 A824
6000 2D41 AD41
7000 187E BB21
8000 8000 8000
9000 987E BB21
9AE0 A738 B292
A000 AD41 AD41
AD00 B92B 9CC6
B000 BB21 987E
C000 8000 0000
C350 BFC8 0532
C4DE BF8A 07A0
D000 BB21 187E
E000 AD41 2D41
E456 A830 31CD

F000 987E 3B21

Students should not have computed the cosine. If they did ignore it for the purposes of
grading this lab.

>Your Lab #4 report should follow the following format:
>Standard Title Page with the legal statement that you did the enclosed work.
(5 points)

>Description of your program. This description should consist of
>1. pseudo code or a flow chart description of your program
(10 points, -3 no quadrants, -3 no 90 degree angles)

>2. complete description of how to input and output data from your program.
>Be specific as to where the inputs and outputs are and the format they are
>in.
(5 points)

>3. a complete description of memory requirements (i.e. how many bytes long
>is your program and where is it in memory), and a listing of all registers
>and memory locations used by your program and a short description of what
>each register is used for
(5 points)

>4. a copy of your program listing (your .lis file, not your .s file)
(10 points)

>5. An explanation of how this lab works. This is an essay type question
>and should be no longer than a page. It can be much shorter but it should
>address the idea of table look up and interpolation. A discussion of how
>accurate the sine routine is should be included. Hint: compute the sine
>for a given angle using your program and compare your results with the
>results from a calculator. This write-up should describe the Taylor series
>computation approach, the fact that DTBL is not strictly speaking the exact
>derivative at that point, and any other factors that influence the
>calculation. This explanation should specifically address the following:
> how you looked up date from your program (10 points)
> how the interpolation was accomplished in this program (10 points)
> why you have to use a LSR #13 after the multiplication in your program
 (10 points)
> accuracy of the routine (11 points)
For this last point, they should make some attempt to compare the results for a known
angle with the result of their routine. Many of them do not seem to understand the format
of the output so we should look for an understanding of the error.

(41 points)

>6. table of results
(24 points, -2 for each wrong answer)
I have a basic program which can compute the correct answers.

>YOU MUST INCLUDE A TABLE OF TWELVE RANDOMLY CHOSEN ANGLES
FOR WHICH YOU
>COMPUTE THE SINE USING YOUR PROGRAM. THIS TABLE MUST INCLUDE
ONE ANGLE
>FROM EACH QUADRANT AND AT LEAST ONE ANGLE WHICH IS A
MULTIPLE OF 90 DEGREES
>AND SHOULD BE OF THE FORM
>
>ANGLE SINE
>
>NOTE errors in this table of sine values will cost you points.

The total is then 100 points.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

