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We have shown that in'a medium in which conduction current dominates
(conductors), the EM fields obey a diffusion equation, whereas in a medium in
which displacement current dominates (dielectrics), the EM fields obey a wave
equation. The implications of the two types of equations, (13.19) and (13.20), will
be explored in the next sections.

13.4 SINUSOIDAL PLANE WAVES

Plane waves are waves that vary only in the direction of propagation and are
uniform in planes normal to the direction of propagation. In (13.11) we considered
such a wave. It propagated in the z direction. The E field had only an E, compo-
nent which has the same value at every point in a plane parallel to the xy plane.

It appears that as solutions to the general vector wave equation (13.8) are
hopelessly complicated, plane waves are introduced primarily to make the math-
ematics simpler. Fortunately, this is not the case. It is well known in more ad-
vanced studies of 'EM fields that an arbitrary field or wave can always be
represented as a spectrum of plane waves.t Therefore, plane waves can be con-
sidered as the building blocks in more complicated waves. Even of more im-
portance is that the fields radiated by any transmitting antenna look like plane
waves at distances far from the source. This is depicted in Fig. 13.3, where over a
finite area A 4, which is normal to the propagating direction z, the E and H fields are
approximately planar. The farther one gets from the antenna, the better the approx-
imation is. The fact that plane waves are simple and obey a scalar wave equation
is a welcome mathematical convenience.

o Radiating antenna

Radiated fields

Figure 13.3 A vertical tower antenna radiates a field which spreads out in a radial direction from
the antenna. Far from the antenna the field in area AA is a plane wave.

+ P. C. Clemmow, “ The Plane Wave Spectrum Representation of Electromagnetic Fields,” Perga-
mon Press, Oxford, 1966.
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Let us now choose the time behavior of the fields as sinusoidal: i.e., the fields
oscillate at a single frequency f = w/2n Hz. Again, the motivation for this is not
just to consider simpler fields but is based upon two reasons. One is that many
transmitting sources (radio, microwave, and optical) operate at such a narrow
band of frequencies that the single-frequency approximation applies. The other
1s that any periodic wave can be represented as a Fourier series of sinusoids and
any nonperiodic wave such as a pulse can be represented as a continuous spec-
trum of harmonics by the Fourier integral. For example, the pulse shown in Fig.
13.2 can be constructed from an infinite set of sinusoidally varving plane waves.
These plane waves interfere constructively at the location of the pulse in such a
way as to yield the pulse shape and interfere destructively every place else to give
zero. Thus the general time case can be reduced to a problem involving sinusoids,
which we will now proceed to develop.

Using the phasor notation,i the sinusoidal time variation of an E field po-
larized in the x direction can be represented by

E(z, t) = E,(z, t)X = E,(z)e/'x (13.21)
Substituting into the source-free wave equation (13.16), which is apphcable to the
lossy case (o # 0) as well as the lossless case (¢ = 0), we obtain
E?Ey(2)
éz?
where the common factor Xe“* has been deleted. This is a relatively simple wave
equation since it depends only on a single space variable. Equation (13.22) deter-

mines the space behavior of a uniform plane wave which varies sinusoidally with
time. Using the complex permittivity ¢*, defined in (11.23) as

+ wlpe ( - i—;) E.(z)=0 (13.22) .

e'=c¢ ( - %) (13.23)

we can write (13.22) in the form of a lossless wave equation

P (13.24)

which is better known as the equation of simple harmonic motion and has the
solution

E,(z) = Ebe ™ #** 4 Epeif™ (13.25)

+ Sinusoidal time variation can be represented by the real part (Re) of an exponential; that is.
cos ot = Re &/ = Re (cos wt + j sin wt) = cos wt. As superposition applies in a linear system
(Maxwell’s equations and the wave equation are linear in media for which . z. ¢ are constants), we can
drop the operator Re and simply work with ¢/**. After a solution to a problem (using ¢/**) has been
worked out, to give it physical meaning, we take the real part which is then referred to as the
instantaneous solution.
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where f* is a complex phase-propagation constantt given by f*? = w?ue”. In
general * will have real and imaginary parts which are given by * = w /ue* =
B — jx. Ey and Ej are the amplitudes of the forward (incident) and backward
(reflected) traveling waves, respectively. If we assume there are no reflections
(E% = 0). we have propagation in one direction only. Putting back the time depen-
dence, the single-frequency uniform-plane wave solution to (13.24) isf

E (2. 1) = Ege! %) = E, ¢~ = ltwi= 0 (13.26)

where wt — B: is the phase of the wave.

It is interesting to observe that by introducing the complex permittivity ¢*,
the wave equation (13.24) and its solution (13.26) give the correct behavior of
plane waves in dielectric as well as conducting media simply by letting ¢* — ¢ and
¢* — —jo/w, respectively. Thus for a dielectric medium, in which displacement
current dominates and conductive current is negligible [J/(0D/¢t) = o/we < 1], we
have

O’E ,
5+ BE,=0  E,=Eje ™% (13.27)

6z

where B2 = w?ue and the approximation that g/we = 0 is used. In highly con-
ducting media (o/we > 1), we let ¢* = —jo/w and obtain for (13.24) and (13.26)

A2

E .
% _wouE, =0  E,= Ege"tef@ 79 13.28
o172

where * = (1 — j)/6,and where § = (wuo/2)”*/? = (nfus)™ */? and is known as the
skin depth or depth of penetration of a wave in a conducting medium. Thus if the
wave has an amplitude E, at some point in the conducting medium, in a distance
equal to z = 4, the amplitude of that wave will have decreased by a factor of 1/e.
Since & can be very small for good conductors even at low frequencies, the wave
decreases exponentially very rapidly as it propagates into the medium (see values
for 6 on page 400 and Table 13.1). Such rapid decrease is more characteristic of
diffusion than of propagation. This is as expected, for (13.28) is really a diffusion
equation; it is the time-independent form of (13.20) which is a diffusion equation.
What is surprising is that for harmonic time variation we can obtain the solution
to a diffusion equation from a solution to a wave equation. But note that even

+ Other books define a complex propagation constant 7 = « + jB by letting w?ue” = —-%. The
proper relationship between * and ; is v = j” or f* = B — ja. The term « is known as the artenu-
ation constant and f as the phase constant or phase-propagation constant. Note that phase and phase
constant have meaning only in reference to sinusoidally varying waves (single-frequency waves).

+ Note that this is a phasor expression. To convert this to a physically meaningful expression, one
takes the real part of Eq. (13.26), called the instantaneous value E(,1),,, = Re (13.26)=
Eye™* cos (wt — Bz).
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though the diffusion part in (13.28). which is e~ *'%, heavily dominates the solution,
a traveling-wave part is present in the solution. We will elaborate on (13.27) and
(13.28) in the following two sections.

The Transverse Nature of Plane Waves

Maxwell's equation (13.2) for free space (or any other homogeneous and isotropic
medium for which p = 0) is
' CE, ¢E, CE.

: - tao t=T

ex cy oz

)
)
V-E=

=0 (13.29)

If we apply this statement to plane waves for which there is no variation of the
field with x or y, (13.29) reduces to

JE.
cz

=0 (13.30)

A solution to this equation is that E_ = constant. Therefore, E_ cannot have any
variations with x, y, or =. Such a solution cannot be a wave. Since an exactly
similar argument holds for H, we conclude that H. = E_ = 0 for a wave that
travels in the z direction. An EM wave which has only components transverse to
the direction of propagation is called a TEM wave, an abbreviation for transverse
electric and magnetic.

Relation between Electric and Magnetic Fields in a Plane Wave

Starting with (13.17) and using a similar procedure that was followed for E, we

can obtain H as .
H(z.t) = Hoel = %) (13.31)

For a wave traveling in the z direction, H can be H, or H, but not H_, just as in
the case of E. For a relationship between E and H, we must go back to
Maxwell’s equations. Thus, for sinusoidal time variation and for a plane wave
which has only an E, component, (13.1) gives

VxE.x=—jouH (13.32)
which in rectangular coordinates simplifies to '
, CE
965_" = —jouH  or Caf = —jouH, (13.33)

since ¢/éy = 6/éx = 0 for a z-directed plane wave. This determines that a plane
wave which has an E, component can have only an H, component of magnetic
field. Substituting for E, from (13.26) and differentiating, we obtain for the above
equation
—jB*Eoe ™ F*) = —joouH, (13.34)
* *
or H, = 5 E,= F~ Eqe/t = 8* (13.35)
Yoop wp
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Using (13.31). we find that the amplitude H, of the magnetic field is related to
that of the electric field by Hy = Eo(f*/wu). We can now make the important
observation that E and H are at right angles to each other in a plane wave. and
furthermore. that the direction of propagation, the direction of the H field. and
the direction of the E field are mutually orthogonal to each other. It is common
to write the above result in a form often called Ohm’s law for a plane wave:

E.=n"H, (13.36)
where nt= (;'t: (13.36a)

and is called the complex characteristic, intrinsic, or wave impedance of the
medium. The units of  are volt per ampere or ohm. For vacuum #” is real and is
No = Wiy O\ Ho&y = \/Mo/eo = 3TT Q.

If the electric field in the plane wave had only an E, component. the analogous
relationship to (13.36) would be E, = —n*H,. We can now generalize as follows:
If the direction of propagation is given by the Z vector. Ohm'’s law for plane waves
is given by

ixE=n"H o iIxH=-— (13.37)

13.5 PLANE WAVES IN INSULATING OR
DIELECTRIC MEDIA

This is the case of propagation of plane waves in vacuum. air, or any other
dielectric medium which has practically no loss. The displacement current dom-
inates. and the plane wave solution that applies is (13.27), with the other
constants being

¥ =¢ =g
* [ e /e ~
B =ﬂ=0)\,%=w\, Hoto~/& = Box &

-
IS /E=_L [Ho _ Mo _ 1207 (13.38)
H, Ve JgV € & N\ &

Y

3

where it was assumed that the approximation ¢ = 0 is valid and the permeability
i of the medium (except for ferromagnetic medium) is that of vacuum. For
vacuum £y = 8.85 x 1072 Fm™'. yg = 4n x 107" Hm ™' o =377 Q = 1207 Q.
The electric and magnetic fields are then given by

— Jlot = Bz)
x = EOe

H). — \/E EO pltwt=52) (1339)
u
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- Direction of
propagation

_ Direction of
propagation

Figure 13.4 (4) The E and H fields in a sinusoidally varying plane wave. A “snapshot™ of a three-
dimensional section of a plane wave showing the relationship between the E and H fields. (b) An
alternative representation of a plane wave showing the sinusoidal nature of the fields and the
orthogonality between E, H, and the direction of propagation.

and their variation along the direction of propagation is shown in Fig. 13.4. The
sinusoidal variation which is shown in the figure is obtained by taking the real
part of (13.39) in the usual manner when phasor notation is employed; i.e., the
instantaneous values are given by Re E, e/ ™52 = E cos (wt — Bz). This figure
suggests that once the wave is set in motion, it continues in space unattenuated.
The E and H fields are interdependent and should not be thought of as indepen-
dent sets of waves, but as different aspects of the same phenomenon.

A single-frequency plane wave is thus characterized by its polarization (direc-
tion in which the E vector points). its amplitude E,, and its phase ¢y = wt — fz, as,
for example,

E = %E e (13.40)
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All three can be measured. and all three can be used to impose information on the
plane wave by modulating polarization. amplitude, or phase. But the wave nature
resides strictly in the phase term. Thus at a fixed point along the = axis, an
observer could measure a phase change that increases linearly with time,
w(r) » wt. as the wave moves past. Similarly, if we could freeze time, we would see
a phase change y(z) = Bz along the axis of propagation. Hence © is a temporal
phase-shift constant {phase shift in radians per unit time), and f is a spatial
phase-shift constant (phase shift in radians per unit distance). A period is defined
as the time T during which a wave undergoes a phase shift of 27x:

oT=2nr or T=— (13.41)

A warelength is defined as the distance 4 during which a wave undergoes a phase
shift of 2n:

=22

7 (13.42)

pr=2n or

The wavelength 2 plays the same role in the space domain as period T plays in the
time domain. The relationship between the phase-propagation constant f and
velocity v of the wave is given by the solution to the wave equation (13.25) as

B=o =" (13.43)

J

For sinusoidal waves, the velocity v is called the phase velocity. It is the velocity
with which a given value of E or H advances along the z axis. Since in a sinusoidal
wave a given value of E or H is specified by the value of the phase angle y, the
velocity of the wave is appropriately referred to as the phase velocity. In other
words. an observer moving with velocity v alongside the wave observes a constant
phase ¢.

A medium in which the phase velocity remains constant as the frequency of
the wave is varied is referred to as a nondispersive medium. As v = 1_,/\/%, a
nondispersive medium must have u and ¢ which are not functions of frequency;
vacuum is an example.

Wave Propagation in a Dielectric with Small Losses

Wave propagation when displacement current dominates but a small amount of
energy is extracted from the wave because the medium is absorbent represents a
practical situation. Then

a":a(l-—ja}%) (13.44)
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where g/we < 1, that is, small but not zero. The complex phase-propagation con-
stant is :

G

*=!F77=r,’__, 1—.
B w\/ e W\ HE \ i o

. 0
zﬁ(l—_zﬂ)
_ .0 [a
=B 12\/:
=B —ja (13.45)

. . . . A
where the binomial approximation (1+A)'?=x1= 5 for A <1 was used.
Hence the electric field is -

E, = Egel@™F*) = E, e~ %eitrmbn (13.46)

where a is the attenuation coefficient « = (¢/2), 1 ¢ measured in nepers per meter
(Np/m). The exponent of e is then in the dimensionless units of neper. The electric
field (as well as the magnetic field) now experiences a small exponential attenu-
ation. Small because the decrease in a distance of one wavelength is small; that is,

= (3\/2)(-—21—- =T« (13.47)
2= 24\ ¢ a)\/ ue wE

Figure 13.5 shows the instantaneous values of the E field with a small attenuation
modulating an otherwise sinusoidal spatial variation which has a wavelength
/= 2n/p.

The intrinsic or characteristic impedance of the medium which has a finite
conductivity ¢ is

* ﬂ.— E __1__._— ( ___G_)
’7—\/8' \/; .G—nl ) 3wz
1—-j—
vV we

oz

(13.48)

Hence, the loss adds a small reactive component to the intrinsic impedance, which
for most practical purposes can be ignored; thatis. n* = n = /u/e.

Nomenclature Used in Reference Books

There are two types of loss mechanisms which attenuate a wave. The first
(already considered) arises when the dielectric is slightly conducting. The second
arises when energy is dissipated in the course of the polarization process even
though the conductivity of the dielectric is zero (dipoles experience friction as they
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H, out
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Figure 13.5 A slightly absorbing dielectric medium will impose a small exponential attenuation on
the propagating fields. In practical situations the distance z = 1/2 at which the field has decayed to
Eqe™ ! is usually very large.

flip back and forth in a sinusoidal field thus extracting energy from the field.t As
both loss mechanisms generate heat, each can be represented by a conductivity .
‘The complex permittivity Eq. (13.23) can now be generalized to reflect conduction
and polarization losses as

* . .0
=g — g —j— 13.49
el i b (13.49)

where ¢'/eq is the dielectric constant of the material and the total effective
conductivity is
O = 0 + we" (13.50)

The ratio of conduction current to displacement current in the lossy dielectric is
called the loss tangent or dissipation factor:

_ O _ 0+ we
tan ¢ =~ e (13.51)

Values of dielectric losses are tabulated in reference books under a variety of
names, such as loss tangent, dissipation factor, power factor. The loss tangent

+ Because of such friction (polarization damping forces), the polarization vector P will lag behind
the applied E field. The difference in time phase between P and E is accounted for by a per-
mittivity with an imaginary part; that is e = ¢ — j¢".
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J=J+ Uy
= (Ot jweE

Jy = iwe'E

Figure 13.6 The loss angle o. Power factor is sin ¢ =
—_— cos(n/2 — ¢). where n 2 — o is the angle by which J
Ji=ouwkE leads E. The loss tangentis tan ¢ = J,/J gisp1. = 0 g/we’.

relates to the power factor which is defined as sin ¢. These relationships are
illustrated in Fig. 13.6. Since the losses in most dielectrics are small, we see that
loss tangent = dissipation factor & power factor = ¢. The loss tangent (13.51) in-
cludes conduction and polarization losses. At microwave frequencies, because of
large values of w, losses due to polarization damping forces dominate (we” > o)
and tan ¢ = &"/¢’.

Example What is the loss per kilometer for a plane wave propagating in dry earth? The
frequency is 1 MHz

At this frequency, dry soil has a conductivity of ¢ = 10™° S/m and a relative permittivity of
¢, = 3. Hence. 6/we = 0.06 < 1. which means that displacement current dominates and the effect
of the conductivity is to attenuate the propagating wave. The value of the attenuation coefficient,
using (13.45). is given as

u o _
= — -_—= —_— = 6 1-2 A = 1. 3N
« z\ﬁ ﬁ(zm) 36 x 1072(0.03) = 1.1 x 10~ Np/m

where B = w/v = 2nf /{vo/</e,) = 21 x 10%/(3 x 10%//3) = 3.6 x 10”2 rad/m. In 1 km of prop-
agation the amplitude will have decreased from one to

e—(Ll x10-3)(103) e 1.1 0.33

or by 20 log (0.33) = 9.5 dB, which for many applications is a tolerable loss.

Example Calculate the loss per kilometer for a plane wave propagating in distilled water at a
frequency of 25 GHz

The dissipation factor and dielectric constant ¢, at this frequency are given as 0.3 and 34,
respectively. Since the dissipation factor is equal to ¢ q/we = £"/¢’, we have for the attenuation
coefficient, using (13.45)

(]

dissipation facto 0. —
a=m pIRETON BT ey = (/39)(524)(0.15) = 460 Np/m
where B, = wjvy = 2nf/r, = 2n(2.5 x 101°)3 x 108 = 524 rad;m. In 1 km of propagation the
amplitude will have decreased from one to

—(460)(103) —-4.6x10% =0

e =€

or by 4 x 10% dB. Clearly, communication is not possible. Even for a distance of 1 c¢m, the loss is
20 log ™% = 40 dB, a very large value. Hence, communication (or radar) which uses such
high-frequency microwaves is not possible. Other means of communication, which employ
acoustic waves (sonar) or very low-frequency radio waves (see example in next section) must be
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used. The case for seawater which has higher conductivities than distilled water is even worse.
The extreme rapid attenuation of high-frequency waves in water explains why the presence of
water in the atmosphere (rain. fog) causes severe attenuation of such waves.

We might point out. that for dissipation factors (¢/we) larger than 0.1. the
two-term binomial approximation for the attenuation coefficient x given by
(13.45)is not sufficiently accurate. Additional terms in the binomial approximation
must be carried. that is, (1 + A)" = 1 + nA + [n(n — 1)/2] A* = ---. However, even
when o/we = 0.3 was used in (13.45). as was the case in this example. the error
is small.

13.6 PLANE WAVES IN CONDUCTING MEDIA

In conducting media the conduction current dominates the displacement current

J G
—_— =31 13.52
cDict  we > ( )

to such an extent that we ignore the displacement current completely and substi-
tute for ¢ = ¢(1 — jo/we) simply &¢* = —jo/w. The wave equation and its
solution* for this case is (13.28). with the other constants being

- [ — i
N N e R R N ey B PR (X

where the phase-propagation constant is §= 1/J, the attenuation constant is

o= 1/0,
2 1
5= /w_lw = }% (13.54)

V—j=e"*=(1-j)\/2, and the intrinsic impedance of the conducting

medium is
«_E _ [ [jon _ N o
" —H,,*\/a* = Moy |2 (13.55)

We still have wave propagation in the conducting medium, since solution (13.28)
contains the term &/“*~*% which is a traveling wave whose phase constant is

+ The instantaneous values of the fields are obtained by taking the real part of the phasor expres-
sion (13.28):

E, = E,e "¢ cos (wt — z/8)
H, = Ey(o/wp)! 2e™7 ° cos (wt — z/6 ~ n/4)

and are plotted in Fig. 13.7.



