CHAPTER 10

RADIATION AND ANTENNAS

10.1 Introduction. Any system of conductors and material media which
is connected to a power source so as to produce a time-varying electro-
magnetic field in an external region will radiate energy. When the system is
arranged so as to optimize or accentuate the radiation of energy from some
portion of the system while at the same time minimizing or suppressing
radiation from the rest of the system, that portion of the system which
radiates energy is called an antenna.

Thus antenna theory tacitly assumes that the antenna is connected to a
nonradiating power source by means of a nonradiating transmission line.
This idealization can usually be achieved in practice, and although, in some
practical antenna problems, achieving this idealization may be the most
difficult part of the problem, in this chapter we presume that it has been
solved, and we concern ourselves only with the antenna.

10.2 The Radiation Problem. In Chap. 2 we showed that we could cast
Maxwell’s equations into a form involving a scalar wave equation and a
vector wave equation plus some subsidiary equations. In particular, we
were able to show that the set of equations

0% p
2 — e — — — = 10-1
Vig — e or? € (10-1
%A
where E=-V¢— g—? B=VxA (10-3)
with A and ¢ connected by the Lorentz condition
VA= —pe %‘? (10-4)

was an alternative statement of Maxwell’s equations. This formulation is
particularly useful for radiation problems in that it directly relates the scalar
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and vector potentials to the sources of the fields. The scalar potential ¢ is
not really necessary in antenna problems since B can be obtained from A,
and then Maxwell’s equation

VxH=e%'tl: (10-5)

can be integrated with respect to time to give
1
E:—foHdt (10-6)
€

Thus it is evident that what we need is the solution to Eq. (10-2).

Although a rigorous solutiont of this equation is possible, the details
are involved, and hence we present only arguments which make the result
seem logical. ~ With this in mind, we note that, in rectangular coordinates,
Eq. (10-2) can be expressed as three scalar equations in the three components
of A, and that each of these scalar equations is of the same mathematical form
as Eq. (10-1). In source-free regions, p = 0, and Eq. (10-1) is the scalar
wave equation in ¢ whose general solution is a completely arbitrary, analytic
function of the arguments ¢ — rfv and ¢ + rfv, where r denotes distance
measured along the direction of propagation and v = 1/V ue. Also, for
time-independent source distributions, Eq. (10-1) is just Poisson’s equation,
whose solution is

~L f P (10-7)
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We should expect the nonhomogeneous time-dependent case to incorporate

the features of both types of solutions, since these are just special cases of the

general solution. More precisely, it seems intuitively reasonable that the

correct solution would be obtained by simply substituting t — r/v for ¢ in

the integral of Eq. (10-7).

d,___Lf plt —rpo) o (10-8)
v
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That this expression is indeed a valid solution of the time-dependent non-
homogeneous wave equation can be shown by direct substitution. However,
the computations are rather involved, and are not presented at this time.
Notice that the time ¢ in Eq. (10-8) is the time at the point of observation.
On the other hand, t' =t — r/v is the time at the source point. Thus the
equation says that sources which had the configuration p at t' =t — rfv

TJ. A. Stratton, “Electromagnetic Theory,” chap. 8, McGraw-Hill Book Company,
New York, 1941, .
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prcduce a potential ¢ at a time ¢ which is latert than the time ¢’ by an amount
that takes into account the finite velocity of propagation of waves in the
medium. Because of this time-delay aspect of the solution, the potential ¢
is known as the retarded potential, and the phenomenon itself, retardation.

In antenna problems it is convenient to eliminate the scalar potential ¢
and to cast the entire problem in terms of the vector potential A. In
rectangular coordinates the time-dependent nonhomogeneous vector wave
equation in A can be written as three simultaneous scalar wave equations,
namely,

024,
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V24, — ue 5 —ud, (10-10)
024,

V24, — ue 5 = —ud, (10-11)

Since these are mathematically the same equations as the equation in ¢, we
can write down their solutions, by inspection, as

J(t —
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J(t —
4, =2 f Lt —ro) (10-14)
4 Jy r ,
or more compactly, in vector notation,
J —
A= if e —rp) ,, (10-15)
47 Jy r

The problem of calculation of the field of an antenna of known current
distribution thus reduces essentially to the evaluation of Eq. (10-15).

10.3 The Field of a Current Element (Hertzian Dipole). A large class
of antennas consists of conducting wires arranged so as to produce desired
radiation properties. In most cases the cross-sectional size of the wires can
be neglected, and the wires can be treated as perfectly conducting filamentary
conductors. With this idealization, Eq. (10-15) can be written

- Z":—Tfolg——_—;ﬂdl (10-16)

1 The alternative argument, ¢ + r/v, represents advanced time, implying that the phenom-
enon represented by the quantity ¢ can be observed before it has been generated by the
sources. This is physically inconceivable, and that part of the solution which depends on
t + rlv is henceforth discarded.
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where I(t — r[v) is the current carried by the wire along the contour C, and
dl is a vector element of length in the direction of the wire. An isolated
infinitesimal section of the wire is known as a current element, or Hertzian
dipole. Although, obviously, a current element cannot be isolated from
the rest of the antenna, it is still very useful to calculate the fields which an
isolated current element would produce. The fields of an actual antenna
can be calculated from the fields of a current element by integration.

In this section we propose to calculate the field of the current element

1dl
From Eq. (10-16) we have that the vector potential A is
Iz r)

A=—Ilt—-}dl 10-17
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or if I is a sinusoidal current,
A= Icos w(t _ 5) dl (10-18)

4zr v

From this expression it is apparent that the phase delay, corresponding to a
time delay of r/v, is wrfv rad. It will be convenient to use the spherical

- geometry of Fig. 10-1, where dl is in the z direction, and for notational

Idlcoswt'

X

FiGURE 10-1. The geometry of a current element (Hertzian dipole).
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convenience we shall write t — rfv as ¢’ in the final results. In this notation,
A has only a z component, which is given by

ul dl cos wt’

A —
z 4nr

(10-19)

However, the E and H fields are more useful when expressed in spherical
coordinates. Using Eqgs. (1-13), we can write

A, = A,cos 0 Ay = —A,sinb 4,=0 (10-20)

and using B = V x A, we find
=(VxA),=0 (10-21)
By=(VxA)=0 (10-22)
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4 ro r2
To find the E field, we use Eq. (10-6), and obtain

Idlsin 0/ —w sin wi’ cos wt’  sin wt’

® T 4 ( rv? r¥v wr? ) (10-24)
2Idlcos Bfcos wt’ sin wt’
E. = 4rre ( réy wrd ) (10-25)
Lastly, dividing Eq. (10-23) by u, we have
Idlsin 0 —wsin wt’ cos wt’

H, = — ( —— ) (10-26)

We see from these equationst that, even for a simple current-element,
the exact total field is complicated. Fortunately, we seldom need to consider
the exact total field. There are two reasons for this. First, we notice
that the terms involve inverse r, r?, and r® terms. For large distances from
the current element we can neglect the higher-order terms. For instance, in
Ey and H the inverse r and inverse r? terms are equal in magnitude when

w 1

v r

t The corresponding forms in the frequency domain are given in Prob. 10-3.
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v A A

The second reason is more fundamental. Since the antenna’s primary
function is to radiate energy, it will be possible most of the time to ignore
those terms which do not contribute to energy radiation. The next section
will show that only the inverse r terms contribute to the time-average
radiated power.

Accordingly, it is customary in practice to ca]l the field represented by
the 1/r terms the radiation field and, in so doing, to distinguish it from the
induction field, which is represented by the 1/r? terms and which predominates
at small distances r. Note that, aside from a time dependence, the induction
field in Eq. (10-26) is predictable from the Biot-Savart law. Note also that
the 1/r® term in Eq. (10-24) is just the electric field intensity of an electric
dipole if the time dependence were to be suppressed. Accordingly, the
1/r® term is sometimes called the electrostatic field term.

that is, for r =

10.4 Power Radiated by a Current Element. In order to calculate the
power radiated by a current element, we need to calculate Poynting’s vector.
The instantaneous Poynting’s vector is given by # = & x 3. For the
fields given by Egs. (10-24) to (10-26), # has a 6 component and an r
component, namely,

Py=—EH, P,=EH, (10-28)

It is obvious that the radial component is the only component which contrib-
utes to the net outward power flow. Thus

p I2 dI? sin? O(w’ sinf wt’ o sin wt’ cos wt’
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or after application of some trigonometric identities,
I® dJ? sin? O[Sin 20t"  cos2wt’
1672

P =
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— 0-30
riy? 2ri’ (10-30)

Noting that the time average of both sin 2wt’ and cos 2wt’ is zero, we can
write the time average of P, as

w22 dl?sin? 6

Pray) = 3211_2;”_21)3_— (10-31)
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The important feature of this result, for our present use, is that the time-
average value of the radial component of Poynting’s vector is one-half times
the product of the inverse r terms in E and H. Hence the far field of our
isolated current element, which is specified by

E— wl dl sin 6 sin wf’
N 4merv? @t 2

ol dl sin os'n .
= — —————sinwt'a
4nrv ¢

is all that is needed for calculation of radiated power and is also a valid
approximation to the total field for large distances. This is true for the far
field of any antenna. For this reason the far field is frequently called the
radiation field. '

Before we calculate the total radiated power from our current element,
let us examine the radiation field further. First, we note that the E and the
H fields are in time phase and normal to each other. Second, we note that

|E| = 7 H| (10-33)

where n = Vv, ule. Thus, except for a (sin 8)/r term in both E and in H, the
radiation field has the properties of a uniform plane wave. For spherical
surfaces of large r and for regions on the surface which are small enough so
that sin 6 can be considered constant, the far field appears to be a uniform
plane wave.

Returning to the problem of calculation of the total radiated power, we
see that

(10-32)

2
Power radiated = § Py da = § n |H,| da
z r 2
el de fzﬂ j"sinzf} .
= o ), ), T r2sin 6 db do
w?I? dJ?
= ‘—ﬂl Y- (10-34)

Generally, it is useful to assume that the antenna is in free space, for which 5
has the value of 120w, and to note that w/v = § = 2=/A and that I2[2 = IZ .
With these substitutions we obtain

2
Power radiated = 80#2(%:1) I (10-35)
By analogy with circuit theory we like to write power = I2,, R, and we

define
dl\2
R4 = 80#2(7) (10-36)

as the radiation resistance of a current element.

Sec. 10.5 THE GENERAL NATURE OF THE FAR FIELD OF AN ANTENNA 465

10.5 The General Nature of the Far Field of an Antenna. In general
terms, we can write for the field of a current element

E, = -E;:‘—) sin wt’

E (10-37)
H, = —sin wt’

m

where E, contains all the amplitude factors in Eqgs. (10-32), or if we absorb
a 90° phase factor into E,, we can write

E, j(wt—pr)
E, = Re (__05_;___)

Eoej(wt—h))
nr

which suggests that we can make use of the simplification of manipulation
afforded by working with the complex fieldst

(10-38)
H, = Re (

Ea _ Eoe;fﬂr
(10-39
H‘P _ Eoe"jﬂr )
nr

For most antennas, the far field is of a similar form, such that we can, in
general, write the far field :

e—ﬂﬁr
E=E,— (10-40)
H= %a, x E (10-41)

with E perpendicular to H, and both E and H perpendicular to a,, where a,
is the radius vector from the phase center (at a given observation point this is
defined? as the center of that sphere on which the plane of the field vectors
exhibits the least local variation) of the antenna, which usually coincides with
its physical center. We should note that some complicated antennas do not
have a true phase center, and this simplification is not valid.

In simple cases, the field is linearly polarized. Since the general case of
elliptical polarization can usually be treated as superposition of two linear
polarizations, in the rest of this chapter we assume linear polarization.

t See Prob. 10-3, previously cited.
1 For standard definitions see Test Procedures for Antennas, IEEE Trans. on Antennas
and Propagation, vol. AP-13, pp. 464-466, May, 1965.
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Three-dimensional displays of an aircraft antenna pattern.
(Courtesy of Lockheed-Georgia Company.)
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Usually, of course, E, will be a function of angular position, just as it
was for a current element. Additionally, the general nature of the far field
of an antenna is such that at any point in space it behaves locally as a uniform
plane wave.

10.6 Antenna Patterns. An antenna pattern is a three-dimensional plot
which shows the antenna’s characteristics as a radiator of energy. Three
types of antenna patterns are in general use which show the relative angular
distribution of (1) field intensity, (2) power density, or (3) radiation intensity.

The E-field pattern A plot of |E| as a function of 6 and ¢ is called the
E-field pattern (three-dimensional). As a practical matter, it is of course
impossible to present a complete three-dimensional plot. In most cases, a
plot of |E| as a function of 6 for some particular value of ¢ plus a plot of |E|
as a function of ¢ for some particular value of 6 give most of the useful
information.

Example 10-1 Field Patterns. Given that the E field has only a 6 component

E,sin 0
Ey =

eibr (10-42)

Plot the E-field pattern for 6 = constant and for ¢ = constant.
These plots are shown in Fig. 10-2a and b.

Usually, the patterns are normalized so that the maximum magnitude is
1, and are then called normalized E-field patterns.

The power pattern A plot of the time-average Poynting’s vector is
called the power pattern. The power pattern may be thought of as a plot of

Re (S,) = 14 Re (E x H¥)

Since the complex Poynting’s vector for the far field is real, this gives for
our example
1 E2sin? 6 .
Re (Sc) = Sc = '2-72—' W/m
This pattern is shown plotted in Fig. 10-2c. The half-power points in this
figure specify the beamwidth. This is the angular distance (90° in Fig. 10-2¢)
between the directions at which the power is one-half the maximum power.

The radiation intensity pattern If we multiply Re (S,) by r2, we
obtain the radiation intensity U. Thus

U=r?Re(S,) W/unit solid angle
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4 z

(a) (0)

Half power point

{c)

FIGURE 10-2. The field patterns of Eg = (1/r)E,sin 0 e~ifr. (qg) E, for 6 = con-
stant; (b) Eg for ¢ = constant; (c) power pattern for ¢ = constant.

A plot of the radiation intensity is called the radiation intensity pattern. In
our example
1 E?sin%6
U=-2">""
2 9
Both the power patterns and the radiation intensity patterns are usually

normalized to unity by dividing by the maximum value at a particular r.
Thus

W/unit solid angle

Re (S,,) = sin% 6 (10-43)

U, =sin%0 (10-44)

The normalized patterns are obviously identical, and it is customary in
practice to refer to either of them as the pattern. Use of this imprecise
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terminology is also extended by the methods generally employed to measure
patterns experimentally. Most recording techniques actually present the
logarithm of the power per unit area relative to an arbitrary reference, and
the usual reference is the maximum power per unit area. The quantity

Re (S,)
Re (S,

max)

10 log (10-45)

expresses the result in decibels (dB).

10.7 Directivity and Gain. Before proceeding further with our discussion,
we need precise definitions of two terms which, because of their similarity,
are frequently misused.

The directivity D of an antenna is defined as the ratio of the maximum
radiation intensity to the average radiation intensity. Put mathematically,

D= %"35 (10-46)

av

where U,, is the average radiation intensity. Notice that, by use of the
general method of obtaining an average, we have

1
Uy = o f#;z U(6,p) dQ (10-47)

or 4nU,, = £ U(6,¢)dQ = P, (10-48)

Equation (10-48) states that 4 times the average radiation intensity equals
the total power radiated by the antenna. Hence we can write Eq. (10-46) as

4nU, 47U,
D= max 77 max (10-49)
4"Uav P, rad

which says that we can calculate the directivity by taking the ratio of 4
times the maximum radiation intensity to the total power radiated.

Equation (10-49) is the IEEE standard definition of directivity, and it is
frequently the more convenient equation to use for calculation.

A secondary concept which we need is that of a /ossless isotropic
radiator (antenna). For a lossless antenna, the power input equals the
power radiated. For an isotropic antenna, the radiation intensity is the same
in all directions, and hence U(6,¢) = constant — U,,. Thus, for a lossless
isotropic antenna, we have

P, input = P radiated — 47"Uav (10'50)
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Such an antenna, although conceptually very useful, cannot be achieved in
practice.t

Now, the gain G of an antenna is defined as the ratio of the maximum
radiation intensity from the antenna, U,,, to the maximum radiation
intensity from a reference antenna, (U,,,),, With the same power input. Thus

Umax
(Unax)r

The gain of an antenna is a relative quantity. It involves the use of a
reference antenna and takes into consideration the efficiency of both
antennas. Efficiency is defined as the ratio of total power radiated by an
antenna to the net power accepted by the antenna.

To standardize the gain specification, two reference antennas are
commonly used. They are the lossless half-wave dipole (see next section)
and the lossless isotropic antenna. For these two cases, we use the terms
gain over a dipole and gain over isotropic. Gain over isotropic is used often
enough so that a special symbol G, is defined for that case.

(10-51)

Umax

U, (10-52)
where U, is the (constant) radiation intensity of a lossless isotropic radiator
with the same power input. From these definitions, we have U,,, = kU;,,,,
where k denotes the efficiency of the antenna, and U, is the maximum
value which the radiation intensity would have if the antenna were lossless.
Notice that, for a lossless antenna, k£ = 1 and G, = D; that is, for a lossless
antenna, the gain over isotropic is exactly equal to the directivity. Since
many antennas have relatively small losses, there is a tendency to be rather
lax in distinguishing between gain and directivity.

Frequently, it is convenient to specify gain and directivity in decibels

by giving 10 times the logarithm to the base 10 of the actual ratio.

Gain in decibels = 10 log G,

Go=

For example, a gain G, = 20 would be given as 13 dB.

In concluding our present set of definitions, we should point out that
the concepts of gain and directivity are frequently generalized to include the
concept of gain and directivity as a function of direction. Specifically,

Go(0,9) = ﬂg—;@ (10-53)

t It has been shown, however, that one can approach arbitrarily close to this idealization.
See W. K. Saunders, On the Unity Gain Antenna, “Symposium on Electromagnetic
Theory and Antennas,” Copenhagen, June 25-30, 1962 (Pergamon Press).
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is the gain over isotropic as a function of direction 0,9), and

U,e)
U

av

D@,p) =

(10-54)

is the directivity as a function of direction (6,¢). These expressions are
really just normalized radiation intensity patterns. The gain Gy(6,9) has
been normalized by dividing the radiation intensity U(6,¢) by the radiation
intensity U, of a lossless isotropic antenna of the same input power, and
D(6,9) has been normalized by dividing by the average radiation intensity
U,,.- Note that, for a lossless antenna, U,, = U, and D(0,p) = G,4(0,9),
so that for low-loss antennas the difference between gain and directivity
is small, and one tends to be lax about making a distinction.

Example 10-2 Calculation of Directivity. Suppose an antenna has a power input of
40~ W and an efficiency of 98 percent. Also, suppose that the radiation intensity has
been found to have a maximum value of 200 W/unit solid angle. Find the directivity

and gain of the antenna. ~
We have
P, 0.98)(40
Usy = -2 — ©98)@0m) _ 9.8 W/sr
4 4n
200
Hence = — =204, or 13.1dB
. 9.8
P;
Also, Uo =22~ 307 _ 1o wyse
4r 4
and G, = 200/10 = 20, or 13.0dB

10.8 Linear Dipole Antennas. A linear dipole antenna is a straight-wire
antenna, usually center-fed (Fig. 10-3a). A linear monopole antenna is a
straight-wire antenna fed against a ground plane (Fig. 10-3b). It is fairly
obvious that a monopole antenna differs structurally from a dipole antenna.
However, the electrical problem of a monopole antenna is basically the same
as that of a dipole antenna, and is best handled by the method of images.
This method implies that the vector potential and the field intensity of a
monopole in the region above the ground plane are exactly the same as those
of a center-fed dipole with the same current and an overall length which is
twice the monopole length. It is clear, then, that analysis of the center-fed
dipole includes analysis of the monopole.

Let us fix our attention on the short dipole, defined as a center-fed antenna
having a length that is very short compared with a wavelength. If the overall
length L of a center-fed dipole is short enough so that the contributions to the
far field from each infinitesimal element of its length are in time phase with
cach other, the total fields can be calculated by simple scalar addition of the
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FiGURE 10-3. The current distribution on linear antennas. (a) Short dipole; (b)
short monopole.

infinitesimal fields produced by a chain of Hertzian dipoles. This approxi-
mation is valid for L < A/10, roughly speaking. For such an antenna we
have

Lz jol sin 6

E=| B lema

112 4mrev®r
Our approximations here mean that we can consider the distance r from the
point of observation to the source point (position along the antenna) to be
constant, allowing us to write

© sin Be—#" [Li2 i sin fe~7r

E, — Jesin 07" f [ =% L (10-55)
dmer®r - 4mrev®r

H, = _ie (10-56)

This result simply means that the fields of a short dipole are obtained from
the expressions for an infinitesimal dipole by simple substitution of L for d/
and I, for I, where
1 e
I, = -—f Idz (10-57)
LJ-1p2
The current along a short dipole and along a short monopole varies
nearly linearly (Sec. 10.9) from 1, at the center to zero at the end, as shown in
Fig. 10-3. From this it is obvious that
I, = (10-58)

av

N} S~
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We can readily calculate the total radiated power from a short antenna by
substituting I,, = I/2 and L = dl into Eq. (10-35) and noting that, for a
monopole, the radiated power is just 14 that of a dipole (it radiates only into
the upper half space). We obtain, for the dipole,

L 2
P, , = 20x® (7) .Ifm (10-59)
and for the monopole,
L 2
P4 = 1072 (E) y £ (10-60)

where, as in Eq. (10-35), I . denotes the root-mean-square value of 7.
We can also define a radiation resistance for each case by

2
R,,, (dipole) = 20#2(§) Q (10-61)

2
R.,q (monopole) = 10172(}—1.‘) Q (10-62)

Some numerical values are of interest. For L = 1/10 the two resistances are
approximately 2 and 1 Q, respectively. These values are very small for
transmission line loads and cause rather severe problems of transmission line
matching. The matching networks required frequently have large losses,
with the result that the overall system efficiency is small.

A quantity which is often specified for short dipoles is the effective
length, defined by the relation

1 L/2
Ly, =~ j I(z) dz (10-63)
Iy J-1p2
where I, is the current fed to the antenna which extends from z = —L/2 to

z = L[2. From this definition it is apparent that the effective length of an
antenna is that length which, by supporting the feed current I, of the actual
antenna throughout the entire length, has the same overall effectiveness as
the original antenna.

10.9 Current Distribution on a Linear Antenna. We saw that for
short antennas we had to know the current distribution on the antenna before
we could finish the problem. For longer antennas it is necessary to know it
before we start. In principle, we can find the current distribution by solving
Maxwell’s equations subject to the boundary conditions along the antenna.
In practice, it turns out that this is such a formidable problem that it has been
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FIGURE 10-4. The geometry and the assumed sinusoidal current distribution
for a center-fed dipole and a monopole. (a) Dipole; (b) monopole (H = L/2).

solved rigorously for only one case.f We are therefore faced with the
necessity of assuming a distribution, hoping it is correct. Intuitively, we
might expect the current to have the standing wave distribution characteristic
of an open-circuited transmission line (see previous chapter.) This assump-
tion proves to be correct, at least as a valid engineering approximation, in
that antenna calculations based upon this assumption yield quite accurate
results. :

The standing wave current distribution in the z direction has a magnitude

Imsinﬁ(g—z) z>0
I= L (10-64)
Imsinﬂ(5+z) z<0

and hence is called a sinusoidal current distribution (Fig. 10-4).

10.10 The Longer Linear Dipole and Monopole. When a center-fed
dipole or a monopole, base-fed against a ground plane, has a half length
which exceeds approximately 4/10, the simple analysis of Sec. 10.8 for short
linear antennas is no longer a valid approximation, and we must use a more

t R. W. P. King, The Linear Antenna: Eighty Years of Progress, Proc. IEEE, vol. 55,
pp- 2-16, January, 1967.
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exact analysis. The usual procedure is to calculate the vector potential, and
the far-field electric and magnetic fields from the vector potential.

If we use the geometry and assume a sinusoidal current distribution, as
shown in Fig. 10-4, we shall find that the vector potential has only a z
component, given in complex notation by

A - J*o ul, sin B(H + z)e br de+ jH ul,, sin B(H — z)e=9r -
-H 4nr 0 dur

where H = L/2. In these integrands we set r = r, — z cos 0 in the expo-
nential factors and r = ry in the denominator; we then factor the constant
terms, and obtain

ple P [0 .
A, =— f sin B(H + z)eifz 030 gz
4arr, H

I e—ibro [H .
4 Bme 72 f sin B(H — 2)e <%0 d;  (10-65)

4nr, 0

Noting that in the first integrand z is negative allows us to change signs on
z and change limits so as to obtain

ple™n0 (B ‘ _
A. = —Tf sin ﬂ(H — z)(e—]ﬂz cos § + e]ﬁz cogo) dz
Tro 0
/‘I e‘jﬂfo H
= _—%‘;—f sin B(H — z) cos (fz cos 0)dz  (10-66)
s Jo

and after integration,

__ ple730 cos B(H cos 6) — cos H

A, =
z 27 fr, sin? 0

(10-67)

From A, we obtain the far field in a manner similar to that employed
for the infinitesimal dipole. The details are not displayed here. The results
are

__ jIne ™70 cos (BH cos 0) — cos BH
T 2ar, sin 6

E, = 1H, (10-69)

H

[

(10-68)

When the half length H is equal to a quarter wavelength, the antenna is
known as a half-wave dipole (or a quarter-wave monopole, if fed against a
ground plane). These antennas are of particular practical importance
because they have desirable input characteristics and also have desirable
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z

FiGure 10-5. The normalized E-field pattern for a
half-wave dipole. (A quarter-wave monopole has the
same pattern for 6 < #/2, but the fields are zero for
6 > n/2)

radiation patterns. Substituting H = i/4 into the general expressions,
Eqs. (10-68) and (10-69), gives the results

w
60T, e 8 (E cos 6) (10-70)
Ea - -
r sin 0
(5 eos0)
by e cos (3 o8 (10-71)
¢ 2ar sin 6

where the subscript on r has been dropped in accordance with usual notation.

The E-field patterns and the power, or radiation intensity, patterns for
this special case are relatively easy to plot. A three-dimensional cutaway
view of the normalized E-field pattern is shown in Fig. 10-5 for the 2/2
dipole. The 4/4 monopole pattern is the same as the /2 dipole in the upper
half space, and is zero in the lower half space (6 > /2).

The total time-average power radiated by a half-wave dipole can be
calculated by integrating the complex Poynting’s vector over a sphere of
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radius r. We have
Py = § Y3E,H} da
z

30 or , cos? (; cos 0)
—C 72 — L
27 I J; d‘pj; sin 0 a9
, cos? (f cos 6)
=3017,2 J; T do (10-72)

The remaining integral in Eq. (10-72) is not easy to evaluate. It may
be attacked by a change-of-variable technique and eventually cast into a
slowly convergent infinite series, or it may be programmed on a digital
computer. The result, in any event, is that its value to four significant
figures is 1.2186, and we obtain the numerical result that the radiated power
is given by

I 2
P.,=13 —;"— half-wave dipole

Using our previous definition of radiation resistance, we see that
R, =173Q half-wave dipole (10-73)

Since the fields of a quarter-wave monopole for § < #/2 are exactly the
same as those of a half-wave dipole and zero for 6 > /2, and since the
half-wave dipole fields are symmetrical about § = =/2, we should have just
one-half the radiated power of a dipole for the monopole case. That is,

L2
2

and the radiation resistance would be

P, =365 quarter-wave monopole

R..q =36.5Q  quarter-wave monopole (10-74)

A look at Fig. 10-4, specialized to H = /4, shows that the driving-point
current is given by

I=1,sin B(H — 0)e’t = [, e/t

In this special case, the resistive part of the driving-point impedance of the
antenna is just the radiation resistance. It is beyond the scope of our
presentation to derive the driving-point reactance, but it turns out to be
approximately zero. It is exactly zero for H slightly less than /4. Most
42 dipoles and /4 monopoles are adjusted to make the driving-point
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reactance zero. When the length is adjusted, the driving-point resistance is
slightly less than 73, or 36.5 Q. The resulting driving-point impedances of

73 + 0 half-wave dipole (10-75)

™ 136.5 +,j0  quarter-wave monopole (10-76)

are comparatively easy to match to transmission lines, and in a large measure
account for the popularity of these antennas.

We complete our discussion of the two special cases by calculating their

directivity. From the definition of directivity we obtain, for a 4/2 dipole,

47U, 4r(L2E,H}r?) 2m(601,2/2m)
D= max y_¢__max i = 1.64, or 2.15dB
Prag Ripallw?(2) 73(1,%(2)
(10-77)
and similarly, for a /4 monopole,
D =328, or 5.15dB (10-78)

10.11 Antenna Arrays. When two or more antennas are located in a
common region of space and driven either directly or indirectly from a
common generator, we have an antenna array. In principle, the general
antenna-array problem is handled by superposition. That is, the resulting
E and H fields can, in principle at least, be found by writing the vector-
phasor sum of the fields produced by the individual antennas.

To obtain specific results, one must consider specific arrays. The
simplest array consists of two identical antennas and, more specifically, of
two identical short dipoles oriented in space, as shown in Fig. 10-6, and
driven with in-phase currents of equal magnitude.

FIGURE 10-6. The geometry of two identical short dipoles.
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The far fields of the individual antennas at an ordinary far-field point
will be in the 6 direction, and will be given by the sum of

. e‘]‘p"l

E,=E,sinf " (10-79)

13

ejﬂf'

and Ey= Epsin 0 — (10-80)

3

e—‘fﬂfl e—fﬂ"a
Thus E=E, + E, = E,, sin 0( - - ) (10-81)
1 2

In the far-field region, the lines ry, ry, r; are essentially parallel, and we have

d
r,rry+ 3 cos ¢
(10-82)
ry R Trg — 3 cos ¢

In the far field r, > d/2, and we can use r; ~ r, &~ r, in the denominator.
However, because of the periodic nature of the exponential, r; and r, must
be expressed as in Eqs. (10-82). This states that the variation of r affects the
phase in the integrand but has little effect on the magnitude. Accordingly,

E,sinf

ro

E = (e—jﬂro —jBdj2) cos | e~ iProt+ib(d[2) €08 #)

. —JBr,
_ Ensin 07 o sers 4 givny (10-83)

0

where 9 = fd cos ¢, and finally,
E= E.,(Z cos %) (10-84)

E,, sin e~
where E,—-mSR7¢ 77 (10-85)
To
is the field of the individual short dipole.
To interpret the 2 cos (/2) factor, we note that the pattern of two
in-phase isotropic radiators of unity magnitude separated by a distance d

would be
—3pr +ifra ~JiBro
Eiz(e l+e )=e (2cos§)

r ry ro

In view of this expression, we see that the pattern of the two identical in-
phase dipole antennas can be expressed in normalized form as

E, = (sin 0)(005 %)
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(0) (6)

(c)

FIGURE 10-7. The array factor for two isotropic in-phase point sources for three

different spacings. (a) d = 4/4; () d=2A2;(d=2A ‘
where the first term is the normalized pattern of the individual dipole, and
the second term is the normalized pattern of the array of isotropic point
sources. This result is general for arrays of identical antennas. It is
common practice to analyze arrays of identical antennas by first finding the
array pattern (frequently called the array factor) and multiplying it by the
pattern of the individual antenna.

Analysis of arrays of nonidentical antennas is usually a formidable

problem, which we do not present in this brief treatment of antennas.
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Example 10-3 Arrays of Isotropic In-phase Point Sources. In this example we
give the array factor (that is, the normalized E-field pattern) of two isotropic in-phase
point sources.

As derived in this section, the array factor is AF = cos (y/2), wherey = Bd cos ¢.

Case 1. d=174/4

m
cos @

27 A
y = fdcos ¢ = cos g =3

™
A4
')

7 cos
4
AF = cos (g cos zp)

and

AF = cos

Case II. d= 42

Case IIl. d=24
AF = cos (r cos @)

These array factors are plotted in Fig. 10-7.

If the two individual antennas of an array are not in phase, the previous
results will be modified to include their relative phase. In particular, if we
let « be the relative phase by which antenna 2 leads antenna 1, we can let the
phase reference of the array be the centerpoint of the array, and let antenna
1 lag this point by «/2, and antenna 2 lead this point by «/2. Then the result
will be

E = Eo(e—jﬂ(dlz) cos 9—ju/2 | eiﬂ(d/z)cow+ja/2) - E.,(Z cos ?’_) (10-86)
2
where p=fdcos ¢ + a (10-87)

which shows that the array factor is still cos (y/2). Butin this case includes
the relative phase o.

We now present three examples to show typical results.t

Example 10-4 Specific Array Factors. We consider three cases.
Cast I. d=214,a=n2

27 A L -
-cosq:+z=-z(l+cos¢)

ﬂdcos +<x_
3723

3<%

AF = cos [43 (1 4+ cos q:)]

T A rather extensive set of array factors for two isotropic point sources is given in J. D.
Kraus, “‘Antennas,” chap. 11, McGraw-Hill Book Company, New York, 1950.
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Case II. d=A/4,o =7

+ ( -+ cos ¢)

Nie

11'
i

AF = cos [ (2 + cos (p)]
Case III. d=4, 0 =n/2

Yy _ T w
5-—-1rcosgv+z—z(1+4cos¢)

AF = cos [g (1 + 4 cos :p)]

(a) (6)

(c)

FIGURE 10-8. The array factor for two isotropic point sources for three different con-
ditions of spacing and phase. (¢) d = A/4, o = w2, B)d=2A4, a =m; (¢c)d = 2,

x = 7f2,
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@ @ Maijor lobe Mmor lobes

FiGURE 10-9. The individual antenna pattern, the array factor, and the resultant
E-field array pattern in the plane of the array for two identical half-wave dipoles
spaced 4/4 apart and fed in phase quadrature. Individual dipole x array factor =
resultant pattern. .

These array factors are shown plotted in Fig. 10-8. Examination of this figure
and Fig. 10-7, which is for « = 0, shows that a wide range of array factors can be
obtained by adjusting the spacing and phasing of the array. Arrays are commonly
used to produce some desired modification of the pattern of the individual antenna.
Figure 10-9 shows an example of this for two half-wave dipoles spaced 1/4 apart and
fed with the right-hand antenna leading the left-hand antenna by 90°. Notice that a
fairly accurate sketch of the resultant pattern can be made by geometrically multiplying
the individual pattern and the array factor.

The example given in Fig. 10-9 shows only the pattern in the plane of
the dipoles. The total pattern of the array of course is three-dimensional.
A fairly accurate visualization of its three-dimensional behavior can be
obtained by applying the same technique in the plane perpendicular to the
plane of the dipoles (6 = 90° plane), and then in the plane perpendicular to
the line joining the two dipoles. This is left as an exercise for the student.

10.12 Uniform Linear Arrays. A uniform linear array is an array of
identical antennas uniformly spaced along a straight line, fed with currents of
equal magnitude and having a uniform progressive phase shift. Figure
10-10 shows an n-element uniform linear array. Using the methods already
developed, we can write the total radiation E field as

E = Ey(l + e/ 4 €2 4 3% | - .« | ¢iln-1lv) (10-88)
where w=pfdcos ¢ + a (10-89)
and E, is the individual antenna’s E-field pattern. Since we are primarily

interested in the array factor, we suppress E, and, after an algebraic manipu-

lation, write
1 —emv

sin (ny/2)
sin (y/2)

This result has several interesting properties, which we now examine.

(10-90)

|El = ’

— ejW

1. The angle 9/2 has a maximum value of (fd + «)/2 at ¢ =0 and a
minimum value of (—fd + «)/2 at ¢ = 7. At ¢ = 2m, /2 returns to
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Parallel rays

Current J, ;[o A 1y Iy
Phase O a 2a 3a (n-1)a

FIGURE 10-10. The spacing, magnitude, and relative phase of an
n-element uniform linear array.

its maximum value. Examination of this behavior and a little thought
show that the array factor, Eq. (10-90), is symmetrical about the line of
the array (¢ = 0, ¢ = =« line).

2. By differentiation and inspection we find that the principal maximum of
the array factor occurs at ¢ = 0 and that the magnitude of this principal
maximum is equal to n.

3. The secondary maxima occur at, approximately,

ny

sm—z— =1

which means f;—” — 12k + 1)%’ k=1,2,3,...

In particular, the first secondary maximum is at

p 3w

2 2n

and has a magnitude of [sin (37/2n)|~2. Notice that this has a limiting
value, for n large,
1 2n

im—— = _ 0212
N o G2~ 3 "

Since the magnitude of the principal maximum is n, we have that the

ratio of the first secondary maximum to the principal maximum is 0.212,
or 13.5dB.
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4. The array factor has zero nulls when the numerator is zero; that is, when

sin%‘f =0 excepty=20

which means %” — tkr  k=1,2,3,...

Two special cases of uniform linear arrays are of particular interest and
practicality.

Case I. Broadside array If all the elements of the array are in phase
(x = 0), the array is called a broadside array, for reasons which are obvious
from an examination of the location of the principal maxima. These
maxima are at y/2 = 0 because, for « =0,

yp=pfdcosp=0 at<p=:];12-r

Thus we have the principal maxima perpendicular to the line of the array
(or broadside). The angle ¢, in Fig. 10-10, is actually an angle of revo-
lution with only positive values from 0 to #. In many practical antenna
situations it is convenient to view ¢ as a planar angle whose range is from 0
to 2.

Case II. End-fire array If the progressive phase shift « is related to
the spacing by « = —fd, the principal maximum is at ¢ = 0, and the array
is called an end-fire array.

There are several other classes of wire antennas and arrays of linear
elements.t However, at frequencies approaching, roughly, 1 GHz, the wave-
length is only a fraction of 1 m, and the size and power-handling capability
of wire antennas are correspondingly small. For applications in which
microwave frequencies are employed, it is necessary to use reflector-type
antennas, like those shown in Fig. 10-11, with large physical dimensions.
The next section analyzes the radiation from such antennas.

10.13 Huygens’ Principle and Aperture Antennas. In our discussion
of linear dipole antennas we assumed a well-defined, known current distri-
bution, and we were able to calculate the far field of the antenna by rather
straightforward methods. In the case of microwave antennas we do not
have a well-defined, known current distribution. However, in most cases
of interest, we are able to determine the E- and H-field distributions over a

T H. Jasik (ed.), ‘“‘Antenna Engineering Handbook,” McGraw-Hill Book Company,
New York, 1961,
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FIGURE 10-11.  Reflector-type antennas. (Courtesy of Scientific-Atlanta, Inc.)

finite open surface located in front of the antenna. In such cases we call
this surface the aperture, we call the antenna an aperture antenna, and we
call the method of calculation of the far-field pattern of the antenna the
aperture field method.

A basic postulate in the analysis of aperture antennas is the validity of
Huygens’ principle.

Let X be a closed surface consisting of a perfect screen S,, on which the
tangential component of the electric field intensity and the normal component
of the magnetic field intensity are both zero, and an aperture S, which is
bounded by a closed contour C (Fig. 10-12). For harmonic (e!) fields,
Maxwell’s equations predictt that the field at every interior point (x,y,z) of a
linear, homogeneous, isotropic, and source-free medium bounded by I is
given in terms of the aperture field E,, H, by the relations

E(x,y.2) = #m fs {l(m x Hy) - V'IV'$ + f2$(n x H,)

1 + jwe(n x E,) x V'éd}da (10-91)
H(xay’z) = %‘ J; {[(n X Eq) . V']V'¢ + ﬁzqs(n x El)

l — joum x H,) x V'¢} da (10-92)

t S. Silver (ed.), “Microwave Antenna Theory and Design,” chap. 5, McGraw-Hill Book
Company, New York, 1949. (Note opposite direction of the vector n.)
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FIGURE 10-12. An aperature S, in a perfect screen. The
primary sources are outside the closed surface defined by S,
and S;.

where

0
(X ) VIV 2 8 [@x B)-, %) + af@x 1) 2 @)

ralaxH) L @] 09
and where ¢ = e=#7/r, 8 = wV pe, and r is the distance from the fixed point
of observation (x,y,2) to the variable source point (x,y’,z') on the aperture
S,. Furthermore, V' denotes differentiation with respect to the primed
variables, and n is the unit outward vector normal to the surface X.

Equations (10-91) and (10-92) represent a general mathematical state-
ment of Huygens’ principle for harmonic fields and state that, if the field can
be described on the boundary, it can be found at any point inside. By means
of lengthy calculations requiring the introduction of several simplifying
assumptions, this pair of expressions can be reduced to the forms most
suitable for analysis and physical interpretation.

Thus, for r 3> A/2w, the transformed expressions for the field intensities
are

. » ~IBr

E(x,y,7) = ﬁé | v x [(n x E;) — \/ ’-: u, x (n x Hl)]"’ —da (10-94)
]ﬂ : e—ibr

H(x,y,z) = ol B u, X [(n x H)) — l—l“' x (n x El):l . da (10-95)
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From these expressions it is clear that the field in the interior can be evaluated
from a knowledge of the tangential components of the field on the aperture S;.
It is also clear that both integrands are transverse to u,. Therefore, for all
points of observation such that r 3> 1/2x, the contribution to the field from
each infinitesimal Huygens’ source on S, is perpendicular to w,, the direction
of wave travel.

An application of the results obtained so far is illustrated in the following
example.

Example 10-5 The Pyramidal Horn. Electromagnetic horns, in general, comprise an
important class of aperture antennas. Figure 10-13 shows a commonly used type of
horn, the pyramidal horn, which is fed by a rectangular waveguide in the dominant
mode. Itisknownt that, for all practical purposes, the mouth of the horn is uniformly
polarized in one direction (the y direction in this case) and that the aperture illumination
function is given by

x x2 2
E, =E, cos%— exp [—jﬂ(ﬂ + 5};;)]:1, (10-96)

where E, is a constant. As indicated in Fig. 10-13, the distances /y and /; in Eq.
(10-96) define the flare of the horn. The aperture S, is the mouth of the horn, and the
surface S, is the rest of the xy plane. Also, n = —a,, and

’

U, = U A, + ua, + ua, = a; +

x —x' y—y z
a, +-a,
r r r

where u,, u,, u, are the direction cosines of the unit vector u,.

(% 02)

FIGURE 10-13. A pyramidal horn,

t S. A. Schelkunoff and H. T. Friis, “‘Antennas,” chap. 16, John Wiley & Sons, Inc.,
New York, 1952.
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Since the aperture field is nearly a uniform plane wave, the magnetic field intensity
is

E, X x2
H, = —= — 97
1 12oﬂ’cos P d [ jﬂ( + = o ):l (10-97)
where 1207 represents the intrinsic impedance V ol o Mol €o.

Setting
1 xl yi
AV

then reduces Egs. (10-94) and (10-95) to

E Eycos =
Cors) = 3 J;;/Z f—o/e OCOS

X [—upa, + (U, + u? + u.Ha, — u,(1 + u,)az]

; fal2 pbl2
H(x,y,z) = J E, cos il
24072 ) o5 | o2 a

X [—(u, + u® + w2, + w8y + u(1 + u.)a,]

dy dx  (10-98)

dy dx (10-99)

These integrals are best evaluated on the digital computer For numerical
results, we consider the case of a standard horn, for whicha = 5984 in., b = 4.908 in.,
Ig = 14.333 in., [y = 13.633 in. For this horn, the power patterns calculated at
16 GHz are shown plotted in Fig. 10-14, and are seen to agree well with the measured
patterns throughout the dynamic range of the recording apparatus.

The complexity of the use of the vector equations (10-94) and (10-95)
was largely hidden in the statement of the preceding example that calculations
are best made on the digital computer. The computational difficulties can
be greatly reduced, and the working equations considerably simplified, by
introducing several additional approximations. These approximations
reduce the analysis of aperture antennas to a scalar problem. The final
result is given by Eq. (10-113), below. The algebraic details follow.t

Let us consider a TEM wave impinging upon a plane aperture S, along
a direction p, as indicated in Fig. 10-15. The source field is zero everywhere
except over S;. Then

H, = \/2 (®xE) nxH =—a, x [\/;5; ® x E,)] (10-100)
and with g = 21r//1 Eq. (10-94) becomes

E(x,y,2) = u x {(—a, x E;) +u, x [a, x (p x E)]}

—ﬂ? r

(10-101)

T Use of the final result, Eq. (10-113), does not require a full understanding of these
algebraic details. They are essential only for a full realization of the implications of the
approximations.



490

Decibels

Chap. 10  RADIATION AND ANTENNAS
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FIGURE 10-14, Power patterns of the pyramidal horn shown in Fig.

10-13.

8, degrees
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X

(x, y,’Ol’, -
<

FIGURE 10-15. Geometry of a plane aperture. The wave is
incident from z < 0, giving rise to a diffraction field in the
region z > 0. .

Over the plane aperture S; the direction of the source field vector E,; is
arbitrary. However, no generality will be lost if, for the purposes of this
analysis, we consider it to be uniformly polarized in the x direction, namely,

E, = F(x',y’,0)a, = A(x',y')e L Vg, (10-102)
Here 4 and L denote amplitude and phase functions, respectively. Then
a, x (px E)=a, x(pxa)f=[pa,-a,)— a(p-a)lF
and since a, - a, = 0, the vector integrand I in Eq. (10-101) transforms to
I=u x{—(a,xa)—ux[(p-a)al}F = —u, x {[a, + (p-8,)u] x a,}F
= —[a, + (@ 2], R)F + 2,[(a, - w) + (- 2)(®, - w)IF

For points near the z axis, that is, for 6 small, u, - a, &~ 0, and the first term
on the right vanishes. Then

I~aya,-u,+a, pF
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The amended expression for the E field is

e—:‘ﬂr

E(x,y,2) = aac:,-j—/1 f F(a,-u, + a,-p) da (10-103)
Sy

r

This equation expresses the so-called diffraction field (Sec. 8.9). It is
customary in practice to divide this diffraction field into three general zones:

1. The near-field zone
2. The Fresnel zone
3. The Fraunhofer, or far-field, zone

The near-field zone is the immediate neighborhood of the aperture. No
further simplifying approximation can be made, and Eq. (10-103) applies.

The Fresnel region is far enough from the aperture so that in Eq.
(10-103) a,+u, ~ a, - a, = cos 0, and r ~ R in every term except in the phase
factor e=?#7. With these approximations, Eq. (10-103) becomes

j y
. . 8)e=#" d 10-10
E, 23Rfs1F(a' p + cos )¢ da (10-104)

The variation of the phase factor e=7 can be determined from a
consideration of the distance

r=[x— XD+ (p = y) + 2%
in terms of spherical variables
x = Rsinfcos ¢
y = Rsin 0sin ¢
z= Rcos 8
We have
r = [R® — 2R(x' sin 6 cos ¢ + y’ sin 0 sin ¢) + x2 4 y'2]*  (10-105)
Adding and subtracting the term
T? = (x" sin 0 cos ¢ + y’ sin 0 sin ¢)?

under the radical and, subsequently, factoring out the completed square, we
obtain

/2 2 _ ey
i‘__i’_u] (10-106)

r=® =D+ St

Now the earlier hypothesis r ~ R carries with it the tacit implication that
R? > T2 Therefore the radical can be approximated by the first two terms
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of a binomial expansion, giving

1 2 2 __
rw(R—~T)[l+—x ty 1‘2]

2 (R—T)
_ xl2+yl2-']"2
=R-TH+—®R=D
X% Ayt — T?
~ R T+T
=R+nr (10-107)

where
ry = —(x"sin 0 cos ¢ + y’ sin 0 sin ¢)

x'? 4+ y'* — (x' sin 6 cos ¢ + y’ sin 0 sin ¢)?
2R

The diffraction field, Eq. (10-104), for the Fresnel region then becomes

+

(10-108)

. je“jﬂR
E. = 2AR

f Fe=#n(a,«p + cos 8) da (10-109)
S1
In the Fraunhofer region, the second term on the right of Eq. (10-108) is
neglected, and
ry ~ —(x"sin 0 cos ¢ + y’ sin 6 sin ¢) (10-110)
For apertures perpendicular to the direction of propagation, p = a,, and

_ je—:iﬂR
E = 2AR

(1 + cos 6) fs Feifsm0@cose+v'sme) dg  (10-111)
1

This equation is valid for smalil 6 only. Therefore

1 4+cosbr2 (10-112)

so that, finally,
je—a'ﬂR
E. =

= AR

f Felftein0(z cos o+y’sing) g, (10-113)
Sy

When the illumination function F can be represented as a product of
two functions,

F = Ae L = F,(x)F,()") (10-114)
the scalar wave function E, is the product of two Fourier integrals,

jio—JBR
Ec = Z%R_ 'FI(x')ejpz'ainOcosrp dx'LFz(y')ejﬁy'slnﬂnlnqi dy' (10_1 15)
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which usually provide the point of departure in the analysis of aperture
antennas.

From the preceding derivation it is clear that Eq. (10-115) is subject to
several restrictions, namely:

Harmonic time variations

Linear, homogeneous, isotropic, and source-free medium
Zero tangential field intensities over the complement of
r> 2w

Plane aperture S,

u.-a,~0

a,-u.~a,-a =cosb

e—ifr  —iBR

~ e]ﬁ sin 6(z’ cos ¢ +¥’ sin )

r
Incidence along the normal to the aperture (a,+p = 1)
1 +cosbr2
Separable illumination function

mOY ® NoUwe W -

In closing, it is important to remark that the radial distance which marks
the boundary between the Fresnel and Fraunhofer regions is taken in
practice to be 2D% A, where D is the maximum linear dimension of the
aperture. In terms of Eq. (10-108), this corresponds to a maximum phase
deviation of #/8 deg. To prove this statement, we note that the second
term in the numerator of the fraction may be neglected in comparison with
the first, so that

x4yt 2w (D) _w
A 2R A 2R 8
2D?

Let us now apply Eq. (10-113) to a specific problem.

Example 10-6 Uniformly Illuminated Rectangular Aperture. Let a rectangular
aperture in the xy plane (Fig. 10-16) be centered about the origin, and suppose that the
E field is uniform and is polarized in the x direction; that is, in Eq. (10-113), let

<y Sl—’
2 (10-117)

——<x < b
- T 2

[ ST

a
Eo i’

Fx',y") =
0 elsewhere

We wish to derive expressions for the scalar far field and to determine the 3-dB, or
half-power, beamwidths,
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sin ("Tﬂ sin §)

xa
X sin 8

FIGURE 10-16. Radiation from a uniformly illuminated rectangular aperture,

We have
£ =1
AR

b/2  [—a/2
f Eqei#8in0(z’ cos o+y'81n 9) gjys dy
—b/2 J—a/2

je-iBE (ol
=1 f" Egei’ Bsindcose dx’fb/z eV Beindsing gy
—af2 —b/2
. a, .
sin (E B sin 6 cos qz)

aE, b

a, . b

iﬁsm(icosq; EﬂsinOSintp

. (b
sin (5 B sin 6 sin tp)

je—:iﬁlt

(10-118)
In the ¢ = 0° plane, which in this case is the E plane, this expression reduces to

o jeBE sin [(wafA) sin 6]
Ep =0°) = f (@b)E, ——— 2 7
P =) = R @R —
while in the ¢ = 90° plane, which in this case is the H plane, it becomes
sin [(7b/2) sin 6]
(mb{2) sin 0

;: n °“l':: 6P|ane. the radiation pattern exhibits a dependence of the type displayed in
ig. .

o _ JebE
Ey(p =90°) = T (ab)E,
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The 3-dB beamwidth in the ¢ = 0° plane is obtained by setting

sin [(ma/A) sin 6]

707 = ————————
0 (maf2) sin 6,

and solving for the angle 6,. (For the ¢ = 90° plane, a is simply replaced by 4 in
this expression.) For small values of the argument x = (wa/4) sin 6,,

sinx ~ x — x + x
Y78 120
Therefore 0.707 = :v_:_x"’_{ilxlng

from which it follows that x ~ 1.4, or 6y ~ sin~! (1.4 4/ma). Thus, in the ¢ = 0°
plane,

A A
3-dB beamwidth = 2 sin~! (0.445 ‘—1) ~ 51 2 deg (10-119)
while in the ¢ = 90° plane,
A
3-dB beamwidth =~ 51 3 deg (10-120)

Clearly, the larger the aperture, the smaller the beamwidth.

The usual type of aperture-antenna problem consists in finding the
aperture field which will optimize the far-field pattern to specific requirements.
A few general characteristics are:

1. Symmetrical apertures with 4 and L [Eq. (10-102)] symmetrical about
the center of the aperture produce symmetrical far-field patterns.

2. A =constant, L =0, and a symmetrical aperture produces zero nulls
in the far-field pattern, and the main beam is the narrowest that can be
obtained for the given aperture size. However, the secondary maxima
(side lobes) are high (see previous example).

3. Larger apertures give narrower beams.

4. L = 0and A4 symmetrical but monotonically decreasing from the center
of the aperture will, in general, decrease the secondary maxima.

5. In general, L # 0 will produce a moderate increase in main beamwidth
compared with the uniform-phase case, and the pattern will have
nonzero nulls.

Since narrow beamwidth and low side-lobe level are very common
aperture-antenna requirements, a great deal of work has been done on
defining the “best” amplitude distribution to optimize the conflicting
requirements.

To sum up, this section has given a brief introduction to aperture
antennas. Such antennas may be analyzed with the aid of Eqs. (10-94) and
(10-95) or, when more assumptions are allowed, with the aid of Eq. (10-113).
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10.14 Aperture Synthesis.f A field synthesis problem of great impor-
tance is that of designing radiating systems to produce desired radiation
characteristics. In most practical situations, the designer of a linear or
planar array is required to solve the following problem. Given the specified
radiation pattern, how must the array be arranged, and how must the
individual elements be excited in order to produce the best (in some pre-
specified sense) approximation to the given pattern? One method of
attacking this problem is known as the Fourier synthesis method, based on
Schelkunoff’st early mathematical treatment of arrays of isotropic sources.

Recall that the array factor for uniform linear arrays is given by Eq.
(10-88). If the amplitude and phase progression are not constant, the corre-
sponding expression for the radiation pattern factor will be

F(y) = By + By’ + By + - -+ + B, ™%  (10-121)

where B, = |B,| ¢*** is the complex amplitude and phase of the kth element,
and
y = PBdcos ¢ (10-122)
as in Sec. 10.12.
In Eq. (10-121) the left-end element is the reference element. If the
center element is taken as the reference element, as in Fig. 10-17, the radiation
pattern for an array with 2N 4 1 elements will be

F(yp) = A_ye ™™ - oo + A_je + Ay + A, + - - - + Ape™?
(10-123)

A, Ay
s e b

r-—d———J

Ay A, 4, AO_J

——————— —— g ———— —.—————

FIGURE 10-17. Array of 2N + 1 equally spaced isotropic point
sources.

TT_his section was written in collaboration with G. W. Breland. This section may be
omitted with no loss in continuity.

1 S. A. Schelkunoff, A Mathematical Theory of Linear Arrays, Bell System Tech. J., vol.
22, pp. 80-107, 1943.



