Analysis of Networks Using S-Parameters

Let's now look at a simple example which will
demonstrate how S-parameters can be determined
analytically.
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Using a shunt admittance, we see the incident and
reflected waves at the two ports (Fig. 27). We first
normalize the admittance and terminate the network in
the normalized characteristic admittance of the system
(Fig. 28a). This sets as = 0. Sy;, the input reflection
coefficient of the terminated network, is then: (Fig. 28b).

To calculate S.,, let’s recall that the total voltage at
the input of a shunt element, a; + by, is equal to the
total voltage at the output, a» + b. (Fig. 28c). Since the
network is symmetrical and reciprocal, S.2 = S;; and
Si2 = S21. We have then determined the four S-param-
eters for a shunt element.
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The Smith Chart

Another basic tool used extensively in amplifier de-
sign will now be reviewed. Back in the thirties, Phillip
Smith, a Bell Lab engineer, devised a graphical method
for solving the oft-repeated equations appearing in
microwave theory. Equations like the one for reflection
coefficient, T = (Z — 1) / (Z + 1). Since all the values in
this equation are complex numbers, the tedious task of
solving this expression could be reduced by using
Smith’s graphical technique. The Smith Chart was a
natural name for this technique.

This chart is essentially a mapping between two
planes—the Z or impedance plane and the T or reflec-
tion coefficient plane. We're all familiar with the im-
pedance plane—a rectangular coordinate plane having
a real and an imaginary axis. Any impedance can be
plotted in this plane. For this discussion, we’ll normal-
ize the impedance plane to the characteristic impedance
(Fig. 29a).
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Let's pick out a few values in this normalized plane
and see how they map into the T plane. Let z = 1. In
a 50-ohm system, this means Z = 50 chms. For this
value, IP[ = 0, the center of the T plane.

We now let z be purely imaginary; i.e., z = jx where
x is allowed to vary from minus infinity to plus infinity.
Since ' = (jx — 1)/(jx + 1), |[T| = 1 and its phase
anzle varies from 0 to 360°. This traces out a circle in
the T plane (Fig. 29b). For positive reactance, jx posi-
tive, the impedance maps into the upper half circle. For
nezative reactance, the impedance maps into the lower
half circle. The upper region is inductive and the lower
rezion is capacitive.

Now let's look at some other impedance values. A
constant resistance line, going through the point z = 1
on the real axis, maps into a circle in the T plane. The
upper semicircle represents an impedance of 1 + jx,
which is inductive; the lower semicircle, an impedance
of 1 — jx or capacitive (Fig. 30).
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The constant reactance line, r + j1, also maps into the
T" plane as a circle. As we approach the imaginary axis
in the impedance plane, T approaches the unit radius
circle. As we cross the imaginary axis, the constant
reactance circle in the T plane goes outside the unit
radius circle.

If we now go back and look at z real, we see at
z = —1,T = oo. When z is real and less than one, we
move out toward the unit radius circle in the T plane.
When the real part of z goes negative, T continues
along this circle of infinite radius. The entire region
outside the unit radius circle represents impedances
with negative real parts. We will use this fact later
when working with transistors and other active devices
which often have negative real impedances.

In the impedance plane, constant resistance and con-
stant reactance lines intersect. They also cross in the T
plane. There is a one-to-one correspondence between
points in the impedance plane and points in the T plane.

The Smith Chart can be completed by continuing to
draw other constant resistance and reactance circles
(Fig. 31).

Figure 31

Applications of the Smith Chart

Let’s now try a few examples with the Smith Chart
to illustrate its usefulness.

1. Conversion of impedance to admittance: Convert-
ing a normalized impedance of 1 + j1 to an admittance
can be accomplished quite easily. Let's first plot the
point representing the value of z on the Smith Chart
(Fig. 32). From these relationships, we see that while
the magnitude of admittance is the reciprocal of the
magnitude of impedance, the magnitude of T' is the
same—but its phase angle is changed by 180°. On the
Smith Chart, the T vector would rotate through 180°.
This point could then be read off as an admittance.
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We can approach this impedance to admittance con-
version in another way. Rather than rotate the T vector
by 180°, we could rotate the Smith Chart by 180° (Fig.
33). We can call the rotated chart an admittance chart
and the original an impedance chart. Now we can
convert any impedance to admittance, or vice versa,
directly.
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2. Impedances with negative real parts: Let's now
take a look at impedances with negative real parts.
Here again is a conventional Smith Chart defined by
the boundary of the unit radius circle. If we have an
impedance that is inductive with a negative real part,
it would map into the T plane outside the chart (Fig. 34).
One way to bring this point back onto the chart would
be to plot the reciprocal of T, rather than T itself. This
would be inconvenient since the phase angle would not
be preserved. What was a map of an inductive imped-
ance appears to be capacitive.

Figure 34

If we plot the reciprocal of the complex conjugate of
I',-however, the phase angle is preserved. This value
lies along the same line as the original I'. Typically in
the Hewlett-Packard transistor data sheets, impedances
of this type are plotted this way.

There are also compressed Smith Charts available
that include the unit radius chart plus a great deal of
the negative impedance region. This chart has a radius
which corresponds to a reflection coefficient whose
magnitude is 3.16 (Fig. 35).

Figure 35

In the rest of this seminar, we will see how easily we
can convert measured reflection coefficient data to im-
pedance information by slipping a Smith Chart overlay
over the Hewlett-Packard network analyzer polar
display.

3. Frequency response of networks: One final point
needs ‘to be covered in this brief review of the Smith
Chart and that is the frequency response for a given
network. Let’s look at a network having an impedance,
z = 0.4 + jx (Fig. 36). As we increase the frequency of
the input signal, the impedance plot for the network
moves clockwise along a constant resistance circle
whose value is 0.4. This generally clockwise movement
with increasing frequency is typical of impedance plots
on the Smith Chart for passive networks. This is essen-
tially Foster’s Reactance Theorem.

If we now look at another circuit having a real part
of 0.2 and an imaginary part that is capacitive, the im-
pedance plot again moves in a clockwise direction with
an increase in frequency.

Another circuit that is often encountered is the tank
circuit. Here again, the Smith Chart is useful for plot-
ting the frequency response (Fig. 37). For this circuit
at zero frequency, the inductor is a short circuit. We
start our plot at the point, z = 0. As the frequency
increases, the inductive reactance predominates. We
move in a clockwise direction. At resonance, the im-
pedance is purely real, having the value of the resistor.
If the resistor had a higher value, the cross-over point
at resonance would be farther to the right on the Smith
Chart. As the frequency continues to increase, the re-
sponse moves clockwise into the capacitive region of
the Smith Chart until we reach infinite frequency,
where the impedance is again zero.
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In theory, this complete response for a tank circuit
would be a circle. In practice, since we do not generally
have elements that are pure capacitors or pure inductors
over the entire frequency range, we would see other
little loops in here that indicate other resonances. These
could be due to parasitic inductance in the capacitor
or parasitic capacitance in the inductor. The diameter
of these circles is somewhat indicative of the Q of the
circuit. If we had an ideal tank circuit, the response
would be the outer circle on the Smith Chart. This
would indicate an infinite Q.

Hewlett-Packard Application Note 117-1 describes
other possible techniques for measuring the Q of cavi-
ties and YIG spheres using the Smith Chart. One of
these techniques uses the fact that with a tank circuit.
the real part of the circuit equals the reactive part at
the half-power points. Let’s draw two arcs connecting
these points on the Smith Chart (Fig. 38). The centers
for these arcs are at =j1. The radius of the arcs is /2.

Figure 38

We then increase the frequency and record its value
where the response lies on the upper arc. Contiruing to
increase the frequency, we record the resonant fre-
quency and the frequency where the response lies on
the lower arc. The formula for the Q of the circuit is
simply fo, the resonant frequency, divided by the differ-
ence in frequency between the upper and lower hali-
power points. Q = fo/Af.

Summary

Let's quickly review what we've seen with the Smith
Chart. It is a mapping of the impedance plane and the
reflection coefficient or I' plane. We discovered that
impedances with positive real parts map inside the unit
radius circle on the Smith Chart. Impedances with nega-
tive real parts map outside this unit radius circle. Im-
pedances having positive real parts and inductive
reactance map into the upper half of the Smith Chart.
Those with capacitive reactance map into the lower
half.

In the next part of this S-Parameter Design Seminar,
we will continue our discussion of network analysis
using S-parameters and flow graph techniques.
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Fig. 4-25. Two series-connected L networks for
lower Q applications.
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Fig. 4-26. Expanded version of Fig. 4-25 for
even wider bandwidths.

resistance needed. Or, to design for an optimally wide
bandwidth, solve Equation 4-6 for R. Once R is known,
the design is straightforward.

THE SMITH CHART

Probably one of the most useful graphical tools
available to the rf circuit designer today is the Smith
Chart shown in Fig. 4-27. The chart was originally
conceived back in the Thirties by a Bell Laboratories
engineer named Phillip Smith, who wanted an easier
method of solving the tedious repetitive equations that
often appear in rf theory. His solution, appropriately
named the Smith Chart, is still widely in use.

At first glance, a Smith Chart appears to be quite
complex. Indeed, why would anyone of sound mind
even care to look at such a chart? The answer is really
quite simple; once the Smith Chart and its uses are
understood, the rf circuit designer’s job becomes much
less tedious and time consuming. Very lengthy complex
equations can be solved graphically on the chart in
seconds, thus lessening the possibility of errors creep-
ing into the calculations.

Smith Chart Construction

The mathematics behind the construction of a
Smith Chart are given here for those that are inter-
ested. It is important to note, however, that you do not
need to know or understand the mathematics surround-
ing the actual construction of a chart as long as you
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understand what the chart represents and how it can
be used to your advantage. Indeed, there are so many
uses for the chart that an entire volume has been writ-
ten on the subject. In this chapter, we will concentrate
mainly on the Smith Chart as an impedance matching
tool and other uses will be covered in later chapters.
The mathematics follow.

The reflection coefficient of a load impedance when
given a source impedance can be found by the formula:

In normalized form, this equation becomes:
-1
P=2T1 (Step2)

where Z, is a complex impedance of the form R +jX.
The polar form of the reflection coeflicient can also
be represented in rectangular coordinates:

pP=p+iq
Substituting into Step 2, we have:
R+jX—1

If we solve for the real and imaginary parts of
P +ig, we get:

R?—-1+ X2

PERTII A (Step 4)
and,
2x
I=R®RF I+ R (Step 5)
Solve Step 5 for X:
2 . R2 %
x=(P(R+§)_pR +1) (Step )

Then, substitute Step 6 into Step 5 to obtain:

R 2 1 2
(p‘ R+ 1) +q2:(R+ ) (Sep?)
Step 7 is the equation for a family of circles whose
centers are at:

=_R_
PTR+1
q=0
and whose radii are equal to:

1
R+1

These are the constant resistance circles, some of which
are shown in Fig. 4-28A.
Similarly, we can eliminate R from Steps 4 and 5

to obtain:
(e-17+(a-5) =(5)  (Ste®)
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(A) Constant resistance circles.
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(B) Constant reactance circles.
Fig. 4-28. Smith Chart construction.

which represents a family of circles with centers at
p=1LV =51(-, and radii of % These circles are shown
plotted on the p, jq axis in Fig. 4-28B.

As the preceding mathematics indicate, the Smith
Chart is basically a combination of a family of circles
and a family of arc of circles—the centers and radii of
which can be calculated using the equations given
(Steps 1 through 8). Fig. 4-28 shows the chart broken
down into these two families. The circles of Fig. 4-28A
are known as constant resistance circles. Each point on
a constant resistance circle has the same resistance as
any other point on the circle. The arcs of circles shown
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in Fig. 4-28B are known as constant reactance circles,
as each point on a circle has the same reactance as
any other point on that circle. These circles are cen-
tered off of the chart and, therefore, only a small
portion of each is contained within the boundary of
the chart. All arcs above the centerline of the chart
represent +jX, or inductive reactances, and all arcs
below the centerline represent —jX, or capacitive re-
actances. The centerline must, therefore, represent an
axis where X = 0 and is, therefore, called the real axis.

Notice in Fig. 4-28A that the “constant resistance =
0” circle defines the outer boundary of the chart. As
the resistive component increases, the radius of each
circle decreases and the center of each circle moves
toward the right on the chart. Then, at infinite re-
sistance, you end up with an infinitely small circle that
is located at the extreme right-hand side of the chart.
A similar thing happens for the constant reactance
circles shown in Fig. 4-28B. As the magnitude of the
reactive component increases (—jX or +jX), the radius
of each circle decreases, and the center of each circle
moves closer and closer to the extreme right side of the
chart. Infinite resistance and infinite reactance are thus
represented by the same point on the chart.

Since the outer boundary of the chart is defined as
the “R = 0" circle, with higher values of R being con-
tained within the chart, it follows then that any point
outside of the chart must contain a negative resistance.
The concept of negative resistance is useful in the
study of oscillators and it is mentioned here only to
state that the concept does exist, and if needed, the
Smith Chart can be expanded to deal with it.

When the two charts of Fig. 4-28 are incorporated
into a single version, the Smith Chart of Fig. 4-29 is
born. If we add a few peripheral scales to aid us in
other rf design tasks, such as determining standing
wave ratio (SWR), reflection coefficient, and trans-
mission loss along a transmission line, the basic chart
of Fig. 4-27 is completed.

Plotting Impedance Values

Any point on the Smith Chart represents a series
combination of resistance and reactance of the form
Z =R +jX. Thus, to locate the impedance Z=1+l,
you would find the R = 1 constant resistance circle and
follow it until it crossed the X =1 constant reactance
circle. The junction of these two circles would then
represent the needed impedance value. This particular
point, shown in Fig. 4-30, is located in the upper half
of the chart because X is a positive reactance or an
inductor. On the other hand, the point 1 — j1 is located
in the lower half of the chart because, in this instance,
X is a negative quantity and represents a capacitor.
Thus, the junction of the R =1 constant resistance cir-
cle and the X = —1 constant reactance circle defines
that point.

In general, then, to find any series impedance of the
form R =jX on a Smith Chart, you simply find the
junction of the R = constant and X = constant circles.
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In many cases, the actual circles will not be present
on the chart and you will have to interpolate between
two that are shown. Thus, plotting impedances and,
therefore, any manipulation of those impedances must
be considered an inexact procedure which is subject
to “pilot error.” Most of the time, however, the error
introduced by subjective judgements on the part of
the user, in plotting impedances on the chart, is so
small as to be negligible for practical work. Fig. 4-31
shows a few more impedances plotted on the chart.

Notice that all of the impedance values plotted in
Fig. 4-31 are very small numbers. Indeed, if you try
to plot an impedance of Z = 100 + j150 ohms, you will
not be able to do it accurately because the R =100
and X =150 ohm circles would be (if they were
drawn) on the extreme right edge of the chart—very
close to infinity. In order to facilitate the plotting of
larger impedances, normalization must be used. That
is, each impedance to be plotted is divided by a con-
venient number that will place the new normalized
impedance near the center of the chart where in-
creased accuracy in plotting is obtained. Thus, for
the preceding example, where Z = 100 + j150 ohms, it
would be convenient to divide Z by 100, which yields
the value Z = 1 + j1.5. This is very easily found on the
chart. Once a chart is normalized in this manner, all
impedances plotted on that chart must be divided by
the same number in the normalization process. Other-
wise, you will be left with a bunch of impedances with
which nothing can be done.

Impedance Manipulation on the Chart

Fig. 4-32 graphically indicates what happens when
a series capacitive reactance of —j1.0 ohm is added to
an impedance of Z = 0.5 + j0.7 ohm. Mathematically,
the result is

Z=05+j0.7 — 1.0
=0.5—j0.3 ohm

which represents a series RC quantity. Graphically,
what we have done is move downward along the R =
0.5-ohm constant resistance circle for a distance of
X = —j1.0 ohm. This is the plotted impedance point
of Z=10.5—-j0.3 ohm, as shown. In a similar manner,
as shown in Fig. 4-33, adding a series inductance to a
plotted impedance value simply causes a move upward
along a constant resistance circle to the new impedance
value. This type of construction is very important in
the design of impedance-matching networks using the
Smith Chart and must be understood. In general then,
the addition of a series capacitor to an impedance
moves that impedance downward (counterclockwise )
along a constant resistance circle for a distance that is
equal to the reactance of the capacitor. The addition
of any series inductor to a plotted impedance moves
that impedance upward (clockwise) along a constant
resistance circle for a distance that is equal to the
reactance of the inductor.
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Conversion of Impedance to Admittance

The Smith Chart, although described thus far as
a family of impedance coordinates, can easily be used
to convert any impedance (Z) to an admittance (Y),
and vice-versa. In mathematical terms, an admittance
is simply the inverse of an impedance, or

_1
where, the admittance (Y) contains both a real and
an imaginary part, similar to the impedance (Z). Thus,

Y=G=jB (Eq. 4-10)
where,
G = the conductance in mhos,
B = the susceptance in mhos.

The circuit representation is shown in Fig. 4-34. Nq-
tice that the susceptance is positive for a capacitor
and negative for an inductor, whereas, for reactance,
the opposite is true.

To find the inverse of a series impedance of the
form Z =R + jX mathematically, you would simply
use Equation 4-9 and perform the resulting calcula-
tion. But, how can you use the Smith Chart to perform
the calculation for you without the need for a calcu-
lator? The easiest way of describing the use of the
chart in performing this function is to first work a prob-
lem out mathematically and, then, plot the results on
the chart to see how the two functions are related.
Take, for example, the series impedance Z =1+ jl.
The inverse of Z is:

_ 1
Y_1+j1

_ 1

T 1414 £45°

=0.7071 (=45°
= 0.5 — j0.5 mho

If we plot the points 1 + j1 and 0.5 — jO.5 on the Smith
Chart, we can easily see the graphical relationship
between the two. This construction is shown in Fig.
4-33. Notice that the two points are located at exactly
the same distance (d) from the center of the chart
but in opposite directions (180°) from each other.
Indeed, the same relationship holds true for any im-
pedance and its inverse. Therefore, without the aid of
a calculator, you can find the reciprocal of an im-
pedance or an admittance by simply plotting the
point on the chart, measuring the distance (d) from
the center of the chart to that point, and, then, plot-
ting the measured result the same distance from the
center but in the opposite direction (180°) from the
original point. This is a very simple construction tech-
nique that can be done in seconds.

Another approach that we could take to achieve
the same result involves the manipulation of the
actual chart rather than the performing of a construc-



82

RF Cmcuwny DEesicN

tOWG. NO.

A’
CLECTRIC COMPANY, P'NE BROOK N J. © 1966 PRINTEDINUSA DATE

IMPEDANCE OR ADMITTANCE COORDINATES

\: RADIALLY SCALED PARAMETERS .
- - TOWARD SEWTRA N
75 i - .. P 2 e i6 2 TIWARD 08D ——e= o ; .
- - T . 3 '
= " " . T s e 3z« 12 13 14 6 .8 M
. 3 < . MR I ‘o noe o2 46 ¢ 8.2 TS
R y 2 s o B o 2 3y T4 s ie 7 8192 A
3 3 - 6 : “ 3 2 o 99 9t 9 e 7 s 3 N
. =+ s
CENTER .
< 2 2 & M € 7 8 9. 4 H '3 14 'L i6 7 [ N
&
LN
A e

Fig. 4-32. Addition of a series capacitor.



WErLECTION COEFFICIENT iy
m.,o\r«\w_\»ﬂzuz_am.oz moﬁw..nr.m.ﬂﬂ./wg
R s 1

N umnamqu

IMPEDANCE MATCHING

DWG. NO

DATE

TITLE

KAY ELECTRIC COMPANY PINE BROOK N J, © 1966 FRINTEDINUSA

NAME

BSPR (5-661

z-

SMITH CHART FORM 8

IMPEDANCE OR ADMITTANCE COORDINATES

R T
g .ﬁwﬂ
T

Y

§Y
e/

)

VA

~oog0 PARAMETERS

- TOWARD GENERATOR

A MEGA-CHART

Fig. 4-33. Addition of a series inductor.



G +iB==

A

Y=G~-iB

Y=G+iB

Fig. 4-34. Circuit representation for admittance.

tion on the chart. For instance, rather than locating a
point 180° away from our original starting point, why
not just rotate the chart itself 180° while fixing the
starting point in space? The result is the same, and it
can be read directly off of the rotated chart without
performing a single construction. This is shown in Fig.
4-36 (Smith Chart Form ZY-01-N)® where the rotated
chart is shown in black. Notice that the impedance
plotted (solid lines on the red coordinates) is located
at Z=1+jl ohms, and the reciprocal of that (the
admittance) is shown by dotted lines on the black
coordinates as Y = 0.5 — j0.5. Keep in mind that be-
cause we have rotated the chart 180° to obtain the ad-
mittance coordinates, the upper half of the admittance
chart represents negative susceptance (—jB) which is
inductive, while the lower half of the admittance chart
represents a positive susceptance (+jB) which is
capacitive. Therefore, nothing has been lost in the ro-
tation process. ’

The chart shown in Fig. 4-36, containing the super-
imposed impedance and admittance coordinates, is
an extremely useful version of the Smith Chart and is
the one that we will use throughout the remainder of
the book. But first, let’s take a closer look at the admit-
tance coordinates alone.

Admittance Manipulation on the Chart

Just as the impedance coordinates of Figs. 4-32 and
4-33 were used to obtain a visual indication of what
occurs when a series reactance is added to an im-
pedance, the admittance coordinates provide a visual
indication of what occurs when a shunt element is
added to an admittance. The addition of a shunt ca-
pacitor is shown in Fig. 4-37. Here we begin with an
admittance of Y=0.2 —j0.5 mho and add a shunt
capacitor with a susceptance (reciprocal of reactance)
of +j0.8 mho. Mathematically, we know that parallel
susceptances are simply added together to find the
equivalent susceptance. When this is done, the result
becomes:

Y=02-i05+i08
=02 + j0.3 mho

If this point is plotted on the admittance chart, we
quickly recognize that all we have done is to move
along a constant conductance circle (G) downward
(clockwise) a distance of jB = 0.8 mho. In other words,

® Smith Chart Form ZY-01-N is a copvright of Analog Instruments Com-
pany, P.O. Box 808, New Providence, NJ 07974. It and other Smith Chart
accessories are available from the company.
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the real part of the admittance has not changed, only
the imaginary part has. Similarly, as Fig. 4-38 indicates,
adding a shunt inductor to an admittance moves the
point along a constant conductance circle upward
(counterclockwise) a distance (—jB) equal to the
value of its susceptance.

If we again superimpose the impedance and admit-
tance coordinates and combine Figs. 4-32, 4-33, 4-37,
and 4-38 for the general case, we obtain the useful
chart shown in Fig. 4-39. This chart graphically illus-
trates the direction of travel, along the impedance
and admittance coordinates, which results when the
particular type of component that is indicated is added
to an existing impedance or admittance. A simple ex-
ample should illustrate the point (Example 4-6).

IMPEDANCE MATCHING
ON THE SMITH CHART

Because of the ease with which series and shunt
components can be added in ladder-type arrangements
on the Smith Chart, while easily keeping track of the
impedance as seen at the input terminals of the struc-
ture, the chart seems to be an excellent candidate for
an impedance-matching tool. The idea here is simple.
Given a load impedance and given the impedance that
the source would like to see, simply plot the load im-
pedance and, then, begin adding series and shunt
elements on the chart until the desired impedance is
achieved—just as was done in Example 4-6.

Two-Element Matching

Two-element matching networks are mathematically
very easy to design using the formulas provided in
earlier sections of this chapter. For the purpose of il-
lustration, however, let’s begin our study of a Smith
Chart impedance-matching procedure with the simple
network given in Example 4-7.

To make life much easier for you as a Smith Chart
user, the following equations may be used. For a
series-C component:

1

For a series-L. component:
_XN
For a shunt-C component:
_ B
For a shunt-L. component:
_ N
where,
w = 27f,

X = the reactance as read from the chart,
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B = the susceptance as read from the chart,
N =the number used to normalize the original im-
pedances that are to be matched.

If you use the preceding equations, you will never
have to worry about changing susceptances into re-
actances before unnormalizing the impedances. The
equations take care of both operations. The only thing
you have to do is read the value of susceptance (for
shunt components) or reactance (for series compo-
nents) directly off of the chart, plug this value into
the equation used, and wait for your actual component
values to pop out.

Three-Element Matching

In earlier sections of this chapter, you learned that
the only real difference between two-element and
three-element matching is that with three-element
matching, you are able to choose the loaded Q for the
network. That was easy enough to do in a mathe-
matical-design approach due to the virtual resistance
concept. But how can circuit Q be represented on a
Smith Chart?

As you have seen before, in earlier chapters, the Q
of a series-impedance circuit is simply equal to the
ratio of its reactance to its resistance. Thus, any point
on a Smith Chart has a Q associated with it. Alter-
nately, if you were to specify a certain Q, you could
find an infinite number of points on the chart that
could satisfy that Q requirement. For example, the
following impedances located on a Smith Chart have
aQof5:

R+iX=1=%j5
=0.5=j25
=02=x=jl
=0.1=%j05
= 0.05 = j0.25

These values are plotted in Fig. 4-45 and form the
arcs shown. Thus, any impedance located on these
arcs must have a Q of 5. Similar arcs for other values
of Q can be drawn with the arc of infinite Q being
located along the perimeter of the chart and the Q =0
arc (actually a straight line) lying along the pure
resistance line located at the center of the chart.

The design of high-Q three-element matching net-
works on a Smith Chart is approached in much the
same manner as in the mathematical methods pre-
sented earlier in this chapter. Namely, one branch of
the network will determine the loaded Q of the cir-
cuit, and it is this branch that will set the character-
istics of the rest of the circuit.

The procedure for designing a three-element im-
pedance-matching network for a specified Q is sum-
marized as follows:

1. Plot the constant-Q arcs for the specified Q.

RF Cmcurr DEsieN

2. Plot the load impedance and the complex conjugate
of the source impedance.

3. Determine the end of the network that will be
used to establish the loaded Q of the design. For
T networks, the end with the smaller terminating
resistance determines the Q. For Pi networks, the
end with the larger terminating resistor sets the Q.

4. For T networks:

R, >Ry

EXAMPLE 4-6

What is the impedance looking into the network shown
in Fig. 4-40? Note that the task has been simplified due to
the fact that shunt susceptances are shown rather than shunt
reactances.

Fig. 4-40. Circuit for Example 4-6.

Solution

This problem is very easily handled on a Smith Chart and
not a single calculation needs to be performed. The solution
is shown in Fig. 4-42. It is accomplished as follows.

First, break the circuit down into individual branches as
shown in Fig. 4-41. Plot the impedance of the series RL
branch where Z = 1 4- j1 ohm. This is point A in Fig. 4-42.
Next, following the rules diagrammed in Fig. 4-39, begin
adding each component back into the circuit—one at a time.
Thus, the following constructions (Fig. 4-42) should be
noted:

iX = 0.9 l“ ‘ ] iX=1
L J_ —_—
’-‘ r +jB =11 l-‘_oig r R=1
E D ]_: B 1 A 1

Fig. 4-41. Circuit is broken down into individual
branch elements.

Arc AB = shunt L = —jB = 0.3 mho
Arc BC = series C = —jX = 1.4 ohms
Arc CD = shunt C = +jB = 1.1 mhos
Arc DE = series L = +jX = 0.9 ohm

The impedance at point E (Fig. 4-42) can then be read
directly off of the chart as Z = 0.2 4 j0.5 ohm.

Continued on next page
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ot

Move from the load along a constant-R circle (series
element) and intersect the Q curve. The length of
this move determines your first element. Then, pro-
ceed from this point to Z,* (Z,* = Z, conjugate) in
two moves—first with a shunt and, then, with a se-
ries element.

R, <Ry

Find the intersection (I) of the Q curve and the
source impedance’s R = constant circle, and plot
that point. Move from the load impedance to point
I with two elements—first, a series element and.
then, a shunt element. Move from point I to Z,°
along the R = constant circle with another series
element.

For Pi networks:

Rs>Ro

Find the intersection (I) of the Q curve and the
source impedance’s G = constant circle, and plot
that point. Move from the load impedance to point

RF Cmcurr DEsieN

I with two elements—first, a shunt element and, then,
a series element. Move from point I to Z,* along the
G = constant circle with another shunt element.

Rs <Ry

Move from the load along a constant G circle (shunt
element) and intersect the Q curve. The length of
this move determines your first element. Then, pro-
ceed from this point to Z;® in two moves—first, with
a series element and, then, with a shunt element.

The above procedures might seem complicated to the
neophyte but remember that we are only forcing the
constant-resistance or constant-conductance arc, lo-
cated between the Q-determining termination and the
specified-Q curve, to be one of our matching elements.
An example may help to clarify matters (Example 4-8).

Multielement Matching

In multielement matching networks where there is
no Q constraint, the Smith Chart becomes a veritable

EXAMPLE 4-7

Design a two-element impedance-matching network on a

Smith Chart so as to match a 25 — j15-ohm source to a
100 — j25-ohm load at 60 MHz. The matching network
must also act as a low-pass filter between the source and

the load.

Solution

Since the source is a complex impedance, it wants to

“see” a load impedance that is equal to its complex conju-
gate (as discussed in earlier sections of this chapter). Thus,
the task before us is to force the 100 — j25-ohm load to
look like an impedance of 25 + j15 ohms.

Obviously, the source and load impedances are both too

large to plot on the chart, so normalization is necessary.
Let's choose a convenient number (N = 50) and divide all
impedances by this number. The results are 0.5 - j0.3 ohm
for the impedance the source would like to see and 2 — j0.5
ohms for the actual load impedance. These two values are
easily plotted on the Smith Chart, as shown in Fig. 4-44,
where, at point A, Z. is the normalized load impedance
and, at point C, Z.*® is the normalized complex conjugate of
the source impedance.

The requirement that the matching network also be a

low-pass filter forces us to use some form of series-L,
shunt-C arrangement. The only way we can get from the
impedance at point A to the impedance at point € and still
fulfill this requirement is along the path shown in Fig. 4-44.
Thus, following the rules of Fig. 4-39, the arc AB of Fig.
4-44 is a shunt capacitor with a value of +jB = 0.73 mho.
The arc BC is a series inductor with a value of +jX = 1.2
ohms.

The shunt capacitor as read from the Smith Chart is a

susceptance and can be changed into an equivalent reac-
tance by simply taking the reciprocal.

= 7073 mho
= —j1.37 ohms

To complete the network, we must now unnormalize all
impedance values by multiplying them by the number
N = 50~the value originally used in the normalization pro-
cess. Therefore:

X = 60 ohms
Xc = 68.5 chms

The component values are:

LoXe
(0]
_ 60
~ 27(60 X 108)
= 159 nH

1

szXc

1
= 27(60 x 108)(68.5)
= 38.7pF

The final circuit is shown in Fig. 4-43.

25§15 Q

159 nH

38. 7PF% 100—i25 Q

Fig. 4-43. Final circuit for Example 4-7.

Continued on next pagé
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EXAMPLE 4-8

Design a T network to match a Z = 15 4 j15-ohm source
to a 225-ohm load at 30 MHz with a loaded Q of 5.

Solution

Following the procedures previously outlined, draw the
arcs for Q = 35 first and, then, plot the load impedance
and the complex conjugate of the source impedance. Obvi-
ously, normalization is necessary as the impedances are too
large to be located on the chart. Divide by a convenient
value (choose N = 75) for normalization. Therefore:

Z,®* = 0.2 — j0.2 ohm
Z. = 3 ohms

The construction details for the design are shown in Fig.
4-46.

The design statement specifies a T network. Thus, the
source termination will determine the network Q because
Rs < Ru.

Following the procedure for Rs < R. (Step 4, above),
first plot point I, which is the intersection of the Q = 5
curve and the R = constant circuit that passes through Z,°.
Then, move from the load impedance to point I with two
elements.

Element 1 = arc AB = series L. = j2.5 ohms

Element 2 = arc BI = shunt C = j1.15 mhos
Then, move from point I to Z,® along the R = constant
circle.

Element 3 = arc IC = series L = j0.8 ohm

Use Equations 4-11 through 4-14 to find the actual element
values.
Element 1 = series L:

L— (2.5)75
— 27(30 x 108)
= 995 nH
. Element 2 = shunt C:
C= 1.13
~ 27 (30 % 108)75
=81 pF
Element 3 = series L:
L= (0.8)75
— 27(30 x 108)
= 318nH

The final network is shown in Fig. 4-47.

15 +i15

318 nH 995 nH

%81 pF 225Q

Fig. 4-47. Final circuit for Example 4-8.

treasure trove containing an infinite number of possible
solutions. To get from point A to point B on a Smith
Chart, there is, of course, an optimum solution. How-
ever, the optimum solution is not the only solution. The
two-element network gets you from point A to point
B with the least number of components and the three-
element network can provide a specified Q by follow-
ing a different route. If you do not care about Q,
however, there are 3-, 4-, 5-, 10-, and 20-element (and
more) impedance-matching networks that are easily
designed on a Smith Chart by simply following the
constant-conductance and constant-resistance circles
until you eventually arrive at point B, which, in our
case, is usually the complex conjugate of the source
impedance. Fig. 4-48 illustrates this point. In the
lower right-hand corner of the chart is point A. In
the upper left-hand corner is point B. Three of the
infinite number of possible solutions that can be used
to get from point A to point B, by adding series and
shunt inductances and capacitances, are shown. Solu-

tion 1 starts with a series-L configuration and takes 9
elements to get to point B. Solution 2 starts with a
shunt-L procedure and takes 8 elements, while Solu-
tion 3 starts with a shunt-C arrangement and takes 5
elements. The element reactances and susceptances
can be read directly from the chart, and Equations
4-11 through 4-14 can be used to calculate the actual
component values within minutes.

SUMMARY

Impedance matching is not a form of “black magic”
but is a step-by-step well-understood process that is
used to help transfer maximum power from a source
to its load. The impedance-matching networks can be
designed either mathematically or graphically with
the aid of a Smith Chart. Simpler networks of two and
three elements are usually handled best mathemati-
cally, while networks of four or more elements are very
easily handled using the Smith Chart.



IMPEDANCE MATCHING

DWG. NO.
DATE

TITLE

NAME

SMITH CHART FORM ZY-01-N{ ANALOG INSTRUMENTS COMPANY NEW PROVIDENCE, N.J. 07974

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

REFLECTION
COEFE  LOSS 1 OB

LLTE
. XTI\ 7
X¢ -

—— "

VOL{PWR. RETNREFL. -
10t10—01 @ =
] o
T o z
1 8
H
20180 0 °
H
r s0 i
w1 z0 N
+ o0 .0 x
1 <
. H
4 s
7013 30¢30 s
T £
T4 o0 20 m
o0 I 2
] 50 v
}» 3%t x
-4 I~ 9
so+4 60 m
] o =
1o 70 N
“04{.4 g0 -
L sof o m
- [l 2
wi o ° H
2 S
»
T rofos e
w o1
3 oz
S o)o 20
-
a 23 «
M &1eseio =
o o ston z
a L w
S o
@ i zi
o : o2
e S
bt a [ 3]
] H
P
x 18 ovie
1= |
) 18
zt |
os{ oz
(X3
oo
9
ot
o
LY L
02z o
or
os
o¢ CR1
=
or w
1w 5
os{x ozfo
I+ <
1z 4 -
H L >
CEE oz 4
3 os e
oz{ 8 o 7
" ow x
o}—otao H
44302 {54315 90 |Olva
$500 Q1 M| Y0A

SEOTVMLNVEL 3V NIONVLS

Fig. 4-48. Multielement matching.



