Iv., FINITE-DIFFERENCE SOLUTISNS OF LAPLACE EQUATION

The use of finite-cdifferernce methods enables one to
solve numerically many bounczry value problems involving
partial differential equatic~s of elliptic type for which
explicit analytic solutions are not available. In 1940's,
these methods were primarily used for manual computations

as described by Southwell(lg), Shortley and Weller(l9),

and ﬂllen(23).

The development of high-speed digital computers has
macde feasible the numerical solution by iterative methods

of some partial differential eguations since 1950. The
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methods involve successively applied local
corrections to improve an apcroximate solution. However,
these iterative methods are -outinized in conformity with

the reqguirements of automatic computers.

In using numerical methods, the region to be studied
is divided into a grid of muzually orthogonal lipes
having a finite number of intersections as'shownin fig. 7.
We shall use the finite-diffsrence equivalent of Laplace's
equation and numerical methccs for calculating the
potentials at the intersecticns from a knowledge of the

conditions on the boundary of the region.

In deriving the finite-cifference approximation of

Laplace's equation, to be used in calculating the



potentials for this project, w= shall assume that there

are no variations of the pecte-tial along the y-coordinate:

2 2
3§+3——§=o ------------------- (4.1)
ax LRA

A convenient way to eval.azte the second partial
derivatives of & with respect to the x- and z- coordinates

is to expand the potential absut the point (x,z) using a

Taylor series:(zl)
28 {x,z) 2 azi(x z)
§(X+h,Z) = §(X,Z) + N ——-a—;-’—-— + —2— e et -_(4.2)
o X
-z 2 24
$(x-h,z) = &(x,z) - h 21§§4El . %T 2 3(x,2) - (4.3)
2 X

where eq.(4.2) is the forwarc difference expansiopn, and

eqc.(4.3) is the backward diffzrence expansion.

By adcing eg9.(4.2) and (£.3), and rearranging, we

have:

z ~,2)-28(x,2)

d(x,2) F(x+h,z)+&(x~
Z hé

o x
The second partisl derivztive with respect to z-
coordinate can be obtazined i~ the same way. So eq.(4.1)

can be expressed in the apprcrimate form:

E(x,z) = [ &(x+h,z)+& x-h,z)+E(x,z+h)+%(x,z-h) ]

-

This equation is callec the 5-pcint difference

equation and is shown in ficg. 8.
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Fig. 7 Grid for difference equation solution.
(x-ny,z)_
i
h
b .
(x,z=h) — x.2) (x,z+h)
a
"""" (x+h,z) 7 77
Fig. &8 5-point difference, mesh size: h.
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studying empirically the ra%
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iterative methods for solving =
For problems inveclving =z =
the usual iterative method, cc~
'Liebmann methocd', or as the 'C
ccnverges extremely slowly. It
advantage tc use a modificatic-
(22)

independently by Frankel
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iterative process may be writite

18

£

e

]
i

n

m

n

-

lshe

solving a differential

~~e replacement of the

ry and in the interior

net points. The method

<A
)

r handling Laplace's
re due to Liebmann, and

addition to demonstrating

4]

, we are interested in

convergence of various

D

difference eguation.

ze number of net points

nly referred to as the

(]

ss-Seidel method',

of considerable

wn

+

£
} [

O

his method developed

(23)

by Young , and called

)

' cor the 'successive

(@3

~

d the 'extrapclated

[43)

Tampt

=
oot

s equation use the

implest form the lattice
successive rows. The

a5



n+l n n+1 r n+1 N n
JUIREE P Fiker” ]

for the interior points, and

n=1
i, = D, | mememmmmmmemmeeem - 4.7
Jik Jyk ( )

for the boundary pcints.

The ¥-value so corrected is used in all subsequent
operations in that iterative steps. It may thus be termed
a 'continuous substituticn method'. The ‘'Liebmann method'
and the 'extrapolated Liebmann method' are described in

the next two sections.

1. Liecmann metnod (Geauss-Szidel method)

-

In this method, oL is eguzl to in eqg.(4.6), then

eq.{(4.6) becomes

Nl " ] --- (4.8)

j—l,k"j+l,k Jyk-1 éj,k+l
A square net is laid dowrn over the region and one
starts by assigning approximate values to the interior
points and known values tc the bouncary points. Then by
chcosing an ordering of the net poirts and scanning over
n+1

the lattice through eq.(4.8), we can generate ij e
’

example, using the order in which the points are numbered

For

in fig. 7, and replacing each §? by the average of the
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- . . , . n
four neighboring values we get zr Improved value §i+l and

using this new value immeciately “or the improvement of

the succeeding point Egii, e.g. i~ fig. 7,
n+1l 1 n+l .n neloLn
. = = [ @ 4 “E ] eeeee- )
§13 7 L -12 +§14+16 xzo ] (4.9/
n+1

The function éi is then clzser to the soluticn of
the difference eguation then was é?. Iteration of this
process will then converge to & szlution of the Laplace's
equation which is as close to the true sclution as may be
desired. Uscally the smaller the ~esh size h, the better

the approximation one can reach.

2. Extrapolated Liebmann methoc {(successive over-

The only difference between Zne 'Liebmann methog!'
and the 'extrapoclated Liebmann me=nod' is L. In this

method, £ is greater than We czn rewrite eq.(4.6) in
b

’Z’-
the following form:
.
n+l _ ;0 B L+l n _gn+l n &N . !
IV P a I ST FERPAL LIPS R TSRl AR
-------- (4.10)

where B is known as 'relaxatiorn fzztor', satisfying the
condition 1 ¢B 2, and

n+1 n §n+l n n

5-1,k ekt Es ket

. . . . n
is defined as a 'residue' R .
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At each step in a calculsticon, the pctentizl and
residue are listed for each poirt cf the ret which 1s not
on the boundary. When all residu=ss zpprosch zercz,

ec.(4.10) is satisfied and “inal sclution is rezched.

The rapidity of convercence can be greatly increased
by the introduction of the 'relaxation factor'. For a
rectangular recion the optimum value of (£ can be computed

exactly and its use results in a saving of a factor of 10

in the number of iteration.

~~
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It was shown by Frankel

~z
Laplace's eqguation for the rectangle, and by YOung(")

for self-adjoirt elliptic cifference equation, the
: , £ : ; L2224
cptimum value of is given by
ﬁo = 1+ A 5= --------- (4.11)
[ 1+71- .1

For any rectangle it is easy to compuie A exactly
and for a unit sguare with mzsh size h, we have

A = COSP( ) mmmmmmmmmmemeo (4.12)

24 . s . .
It was alsc shown by Y:un;( that 1° (3 Iz slightly
larger than f&o, then the ircresgse in the Iteration number
N is relatively small, but if B is less t-an 6@’ then

there is a much larger increase in N.



V. RESULTS AND DISCUSSIONS

1, RESULTS

m
w

4

In this special topic, we used the 'successive gver-
relaxation method' to sclve trs Laplace's ecuation. Fig. 9
snows the region we studied. Since the voltage due to the
kicker voltage at infinity is zero, we assumed that the
"infinity" was at 18h from the anode and 12h from the

kicker electrodes. The mesh size h of this region is Ti

o

because the ratio of the lengt- of the x- angd z-

coordinste is 18
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(4.12), we can

estimate the optimum relaxatic~ Tactor to be t-0=1.70a.

For these celcul ons, = z21s5 assumed that the
cmarge density in the region wzs zero so thai there is no
effect on the electric field lines due tc the free charge

end the applicatiocn of Laplace's eguaticn 1s suitable.

Otherwise we must use Poisson's eguation instead.

/

(1) Celculations of voltages

The flowchart shown in fiz. 10 1s a description of
the program (appencdix I) writts~ toc solve eqg. (4.10).
Table 1 (appendix II) shows the voltage values of V(x,z).
The upper and the lower half are symmetric except for a
minus sign in the lower’half because of +5KV on the upper

electrcce and -5KV on tne lower electrode.
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(s T AR T)

GUESSED VOLTAGE VALUZS
0F V(x,z)

SET BOUNZARY CCONZITICONS
07 V(x,z’

CARLCULETE THE
DPTIMUM RELAXLTION FLZTIOR
OF V(x,z)

SZT THE MAXIMUM RESICUAL
MAXRES

yes

- TESAT T AN
-, 2=-DIRZTTICN

1
~ {
5

CA_CULETE THE
BOUNZEARY CONDITICNS
OF Uix,z)

V.
GUESSEC VOLTRG: VELJES |
OF U(x,z)

\

ALCULATZ THE
DPTIMUM RELAXATICN FACTOR
OF U{x,z)

L, ITERATIONS OF LI(x,2) |

Fig. 10 Flowchart
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1F RESIDUALS 2 MAXRE

(B
yes

no

CALCULATE THE
X-,Z-DIRECTION
ELECTRIC FIELD

WRITE V(x,z),U(x,2)
EX1(x,z),EZ1(x,2z)
EX2(x,2),EZ2(x,2)

(s7T0PD

END

Flowchart (continued)
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We selected the rectangilzar region shown dotted in
fig. 9 which was of great i-zcrtance cdue to the electric
field values there and desicratec this region as U(x,z).
For the boundary concitions 5 this region, the distance
between two values of V(x,z; iz very small. From the
mathematical point of view, we can calculate the boundary
values of U(x,z) linearly. The rastio of the width and the
length of U(x,z) region is 22:35, and hence the mesh size
of this region is L using this mesh size we can compute

the optimum relaxaticn factcr of this region E:O= 1.729.

The voltage valuess shown in tszle 2 are there for the
region U(x,z).
(2) Calculaticne of electriz fields

The definition cf eleciziz field is the negative of

the gradient of the potentiz_.:

- F — i — -1 =
E = -grad & = - ( ;E a_ -+ — a_ + 52 a_ ) ----- (5.1)
¢ X Y Y E: z

From the Taylor series exgansion in eg.(4.2) and

eq.(4.3), and by subsiractirz e£2.04.3) from eq.(4.2), we

obtained:
ci(x,z)  d(x+h,z)-%(x=-n,z) _
;-X - 2h -------------- (5'2)
in which h= % mm. Eq.(5.2) ic called tne central-

difference eguaticn.
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The electric field in »-direction is

= I(xeh,z)-I(x-".2)
EX - 2h ---------- (5-3)

ang in z-directicn is

o _E2({x,z+h)-F(x,z-%)
z 2h
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For V(x,z), we calculatsd the electric field in the
path where the width is the victh of the aperture between
two anode electrodes and the length is 12 h from the

anode.

We used eq.(5.3) and (Z.4) to calculate the electric

fields of both V(x,z) anc U{x,z). These Tesults are shown

3 -
in tazl

D

2, 4, ©.

m

-

(3, Constant potentizl arz electric fields

£

From the voltage values 2f V(x,z) shown in table 1!,

N

lines by hands which were

we plotted the equipotential
shown 1In fig. 11. The electriz field lines were also
drawn by the technique of grzohical field mapping and =z

few examples a

=

e shown in fiz. 12.

Fig. 13 and 14 show the corputer plots of x- and z-
components of the electric fI=ziZ as a functicn of r at
various distances from the sc:-slerating anode electrodes.

The electric field along the zxigl z-direction at

bt

constant value of r were aglsz clctted and shown in fic.

15 and 16.
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