
456 IEEE TRANSACTIONS ON EDUCATION, VOL. 46, NO. 4, NOVEMBER 2003

Computer Engineering Curriculum in the
New Millennium

Andrew McGettrick, Mitchell D. Theys, Member, IEEE, David L. Soldan, Fellow, IEEE, and
Pradip K. Srimani, Fellow, IEEE

Abstract—Currently there is a joint activity (referred to as Com-
puting Curricula 2001, shortened to CC2001) involving the Associ-
ation for Computing Machinery and the IEEE Computer Society,
which is producing curriculum guidance for the broad area of com-
puting. Within this activity, a volume on Computer Engineering
is being developed. This volume addresses the important area of
the design and development of computers and computer-based sys-
tems. Current curricula must be capable of evolving to meet the
more immediate needs of students and industry. The purpose of
this paper is to look at areas of future development in computer
engineering in the next ten years (2013) and beyond and to con-
sider the work of the Computer Engineering volume of CC2001 in
this context.

Index Terms—Computing Curricula 2001 (CC2001), computer
engineering curriculum, IEEE Computer Society (IEEE-CS) and
Association for Computing Machinery (ACM), vision for next
decade.

I. HISTORY

I N 1998, the Association for Computing Machinery (ACM)
and the Computer Society of the Institute for Electrical and

Electronics Engineers (IEEE-CS) convened a joint curriculum
task force calledComputing Curricula 2001, or CC2001for
short. The CC2001 Task Force was asked to develop a set of cur-
ricular guidelines that would match the latest developments of
computing technologies in the past decade and endure through
the next decade.

Over the past 50 years,computinghas become an extremely
broad designation that extends well beyond the boundaries of
computer science to encompass many independent disciplines,
including computer engineering, software engineering, infor-
mation systems, and many others. The final report is planned to
be organized into five volumes: Overview, Computer Science,
Computer Engineering, Software Engineering, and Information
Systems. Of these, the volumes on Computer Science and In-
formation Systems have already been published. The others are
in the process of being developed.

A committee was established in the beginning of 2001 to
define the body of knowledge that constitutes computer engi-
neering as well as to flesh out course outlines to suit different

Manuscript received October 29, 2002; revised July 21, 2003.
A. McGettrick is with the Department of Computer and Information Science,

University of Strathclyde, England, U.K.
M. D. Theys is with the Department of Computer Science, University of Illi-

nois at Chicago, Chicago, IL 60680 USA.
D. L. Soldan is with the Department of Electrical and Computer Engineering,

Kansas State University, Manhattan, KS 66506 USA.
P. K. Srimani is with the Department of Computer Science, Clemson Univer-

sity, Clemson, SC 29631 USA (e-mail: srimani@cs.clemson.edu).
Digital Object Identifier 10.1109/TE.2003.818755

curricula in computer engineering. The purpose of this paper is
to delineate the mission and the vision of the task and to invite
members in particular and public in general to participate in this
important activity.

II. I NTRODUCTORYCOMMENTS

Computer engineering embodies the science and the tech-
nology of the design, construction, implementation, and mainte-
nance of the hardware and the software components of modern
computing systems and computer-controlled equipment. Com-
puter engineers are solidly grounded in the theories and prin-
ciples of computing, mathematics, and engineering; they apply
these theoretical principles to design hardware, software, net-
works, and computerized equipment and instruments to solve
technical problems in diverse application domains. Continuing
dramatic advances in computing and digital systems design have
created opportunities for computer engineering professionals to
apply those developments to the entire range of applications in
engineering.

Over the past three decades, the discipline of computer engi-
neering has emerged from the erstwhile fields of electrical engi-
neering and computer science as a separate, although intimately
related, discipline. The relevant professional societies, such as
the IEEE-CS and the ACM, must upgrade the curricular guide-
lines appropriately at the proper time.

Efforts to design model curricula for the computing discipline
began in the 1960s. The first report came out from the ACM
in 1968 [3], making detailed curricular recommendations for
academic programs in computer science. IEEE-CS published a
Model Curriculum for Computer Science and Engineering[5]
in 1977. In fact, the curriculum efforts on the engineering side
of computing started with the Computer Science in Electrical
Engineering (COSINE) Committee [1]. The ACM revised its
curriculum in 1978 [6], while the IEEE-CS did an update of
its computer science and engineering curricula in 1983 [7]. It
was the IEEE-CS Model Curriculum that “bridged the gap be-
tween software oriented and hardware oriented programs for the
first time.” The 1983 IEEE-CS Curriculum Report emphasized
the laboratory requirements and Accreditation Board for En-
gineering & Technology (ABET) guidelines in both the com-
puter science and the computer engineering profession. There
have been other attempts to look at computer engineering cur-
ricula over time [9], [14], [16], [20]. During the late 1980s,
the IEEE-CS and the ACM joined forces to undertake a more
ambitious curriculum review that was eventually published as
Curriculum’91 or CC-91 [10]. The CC-91 report used the word
“Computing” in its title to reflect that the discipline has both

0018-9359/03$17.00 © 2003 IEEE

McGETTRICK et al.: COMPUTER ENGINEERING CURRICULUM IN THE NEW MILLENNIUM 457

an “engineering” and a “science” component. In Fall 1998, the
IEEE-CS and the ACM appointed a joint task force on “Year
2001 Model Curricula for Computing: CC-2001” to

“develop a revised and enhanced curriculum (CC-2001)
that will match the latest developments of Computing
Technologies in the past decade and sustain through the
next decade.”
Subsequently, the final report would be organized into five

volumes: Overview, Computer Science, Computer Engineering,
Software Engineering, and Information Systems. A committee
was established at the beginning of 2001to define the body of
knowledge that constitutes computer engineering as well as to
flesh out course outlines to suit different curricula in computer
engineering.

The purpose of this paper is to look at areas of future develop-
ment in computer engineering in the next ten years (to 2013) and
beyond and to consider the work of the Computer Engineering
volume of CC2001 in this context.

III. V ISION AND MISSION

The Computer Engineering Task Force did not start from
scratch. Instead, it planned to build on the work of its predeces-
sors. There are many aspects of the older reports that the authors
intend to retain as they develop the new curriculum.

• The articulation of individual knowledge units serves a
valuable purpose in providing a framework for the design
of individual courses and the curriculum as a whole.

• The integration of professional practice and design into
the undergraduate curriculum along the lines outlined in
the appendexes to Curriculum’91 is supported.

However, as the computing technologies have been changing
faster than the ability to keep pace, and computer applications
have changed the structure of society significantly, much
thought must be invested in deciding and defining what will go
into the recommended curriculum to produce computer engi-
neers competent to further the technology and its applications
to benefit mankind in the future. As curriculum developers,
decisions must be made concerning which basic knowledge
is essential to the performance of computer engineers at a
required level of competence and, thus, must be retained. On
the other hand, as a discipline grows more and more mature
and the body of knowledge compounds daily, the curriculum
cannot contain everything; future computer engineers must be
equipped with essential knowledge and well-tested methods
and techniques, not just transient technologies.

The Computer Engineering Task Force has adopted many of
the principles from CC2001: Computer Science [11]. The fol-
lowing is a complete list.

1) Computing is a broad field that extends well beyond the
boundaries of computer engineering.A single report that
covers only computer engineering cannot address the
full range of issues that colleges and universities must
consider as they seek to address their computing cur-
ricula. Additional reports in this series will be required
to cover other computing disciplines.

2) Computer engineering draws its foundations from a
wide variety of disciplines.The undergraduate study
of computer engineering requires students to utilize
concepts from many different fields. All computer
engineering students must learn to integrate theory and
practice, to recognize the importance of abstraction, and
to appreciate the value of good engineering design.

3) The rapid evolution of computer engineering requires an
ongoing review of the corresponding curriculum.Given
the pace of change in our discipline, the process of up-
dating the curriculum once a decade has become un-
workable. The professional associations in this disci-
pline must establish an ongoing review process that al-
lows individual components of the curriculum recom-
mendations to be updated on a recurring basis.

4) Development of a computer engineering curriculum
must be sensitive to changes in technology, new devel-
opments in pedagogy, and the importance of lifelong
learning. In a field that evolves as rapidly as computer
engineering, educational institutions must adopt explicit
strategies for responding to change.

5) The computer engineering curriculum must go beyond
knowledge units to offer significant guidance in terms
of individual course design.It will be effective only
to the extent that it defines a small set of alternative
models—preferably between two and four—that as-
semble the knowledge units into reasonable, easily
implemented courses. Articulating a set of well-defined
models will make it easier for institutions to share
pedagogical strategies and tools. It will also provide a
framework for publishers who provide the textbooks
and other materials for those courses.

6) The computer engineering curriculum should seek to
identify the fundamental skills and knowledge that all
computer engineering students must possess.Despite the
enormous breadth of computer engineering, there are
concepts and skills that are common to computer en-
gineering as a whole. The computer engineering cur-
riculum must attempt to define the common themes of
the discipline and ascertain that all undergraduate pro-
grams include this material.

7) The required body of knowledge must be made as
small as possible.As computer engineering has grown,
the number of topics required in the undergraduate
curriculum has grown as well. Over the last decade,
computer engineering has expanded to such an extent
that it is no longer possible simply to add new topics
without taking others away. The best strategic approach
is to reducethe number of topics in the required core
so that it consists only of those topics for which there
is a broad consensus that the topic is essential to under-
graduate degrees. Coverage of the core is not limited
to introductory courses but will extend throughout
the curriculum. At the same time, it is important to
recognize that this core does not constitute a complete
undergraduate curriculum but must be supplemented by
additional courses that may vary by institution, degree
program, or individual student.

458 IEEE TRANSACTIONS ON EDUCATION, VOL. 46, NO. 4, NOVEMBER 2003

8) The computer engineering curriculum must strive to
be international in scope.Although curricular require-
ments differ from country to country, the curriculum is
intended to be useful to computing educators throughout
the world. Although it will be strongly influenced by
educational practice in the U.S., every effort will be
made to ensure that the curriculum recommendations
are sensitive to national and cultural differences so that
they will be widely applicable throughout the world.

9) The development of computer engineering curriculum
must be broadly based.To be successful, the process
of creating the curriculum recommendations must in-
clude participation from many different constituencies,
including industry, government, and the full range of
higher educational institutions involved in computer en-
gineering education.

10) The computer engineering curriculum must include pro-
fessional practice as an integral component of the un-
dergraduate curriculum.These practices encompass a
wide range of activites, including management, ethics
and values, written and oral communication, working
as part of a team, and remaining current in a rapidly
changing discipline.

11) The computer engineering curriculum must include
discussions of strategies and tactics for implementation
along with high-level recommendations.Although it
is important for thecomputer engineering curriculum
to articulate a broad vision of computing education,
the success of any curriculum depends heavily on
implementation details.

12) The computer engineering curriculum core must
acknowledge that engineering curricula should be ac-
credited. As such, the document must detail the core that
all programs should have. The computer engineering
curriculum should not just fit within ABET criteria,
but instead should provide information to ABET about
what the next iteration criteria should be.

13) The computer engineering curriculum must include an
appropriate and necessary design and laboratory expe-
rience component.A computer engineer requires a lab-
oratory experience that should provide problem-solving
and debugging experience. In addition, it should provide
information about alternative laboratory experiences for
alternative students who are not on campus, such as dis-
tance learning and Internet courses.

IV. K NOWLEDGE AREAS

The following content areas or knowledge areas have been
identified along with a tentative (incomplete and preliminary)
list of knowledge units. They are meant to be preliminary for
the purpose of bootstrapping the discussions of focus groups
formed to take on each knowledge area. The core knowledge
units currently include the following:

• SPR(Social and Professional Issues): intellectual prop-
erty, privacy and civil liberties, and economic issues in
computing;

• CAO (Computer Architecture and Organization): com-
puter arithmetic, memory system, organization and
architecture, interfacing and communication, processor
systems design, organization of the CPU, performance,
and multiprocessing;

• CSE(Computer Systems Engineering): overview, theoret-
ical considerations, life cycle, requirements analysis, ar-
chitectural design, implementation, testing, maintenance,
and hardware and software co-design;

• SWE (Software Engineering): software processes, soft-
ware requirements and specifications, software design,
testing and validation, tools and environments, and project
management;

• OPS(Operating Systems): operating system function and
design, concurrency, device management, security and
protection, and file systems;

• CSY(Circuits & Systems): electrical quantities, resistive
and reactive elements, frequency analysis, sinusoidal
analysis, convolution, discrete time signals, filters, and
Laplace and transforms;

• NWK (Networks): communication networks architecture
and protocols, local and wide area networks, web as an ex-
ample of client–server computing, data security, and wire-
less and mobile computing;

• ELE (Electronics): transistors, logic families, storage el-
ements, interfaces and buses, op amps, amplifiers, filters,
and integrated circuit (IC) building blocks;

• DIG (Digital Logic): switching theory, combinational
logic circuits, memory elements, sequential circuit design,
register transfer logic, and digital systems design;

• PRF (Programming Fundamentals): fundamental pro-
gramming constructs, problem solving and data struc-
tures, programming paradigms, recursion, event-driven
and concurrent programming, and using application
program interfaces (APIs);

• ALG (Algorithms): basic algorithmic analysis, strategies,
computability theory, complexity classes, and distributed
algorithm;

• ESY(Embedded Systems): fundamentals, language issues,
mapping between languages and hardware, real-time op-
erating system (OS), tool support, and examples;

• HCI (Human Computer Interaction): devices and dis-
plays, static and exhibiting motion, and interaction with
users—increasing sophistication;

• INS (Intelligent Systems): location awareness, deter-
mining awareness and utilizing it in devices, and aspects
of intelligence, including learning;

• INM (Information Management): configuration manage-
ment and version control and managing information in dif-
ferent contexts.

The following constitutes the knowledge areas that are cur-
rently under discussion and/or which appear to contribute op-
tional content rather than core content:

• DSP(Digital Signal Processing);
• VLS(VLSI/ASIC Design);
• DGA (Design Automation);
• ACP(Alternative Computing Paradigms);
• TFT (Testing and Fault Tolerance);
• LAC (Language Considerations).

McGETTRICK et al.: COMPUTER ENGINEERING CURRICULUM IN THE NEW MILLENNIUM 459

V. TECHNOLOGY TRENDS

It is relevant to look at current levels of performance in high-
performance systems. As a reminder

MB 1 000 000 B

GB 1000 MB

TB 1000 GB

Gigaflop instructions floating point

operations per second

Teraflop 1000 Gigaflops

Petaflop instructions

1) Communications:Networks that operate at the rate of
10 Gb/s currently exist. Gilder’s law states that “the total band-
width of communication systems will triple every 12 months”;
thus, by 2013, the capacity of communications systems will
have moved to about 100 TB/s.

2) Computer Performance:There currently exist computers
that carry out tens of teraflops per second. In August 2002,
Fujitsu announced their HPC2500 high-performance computer,
which contained sixteen 384 processors and achieved a perfor-
mance of 85 teraflops/s. A commonly used predictor of develop-
ments is Moore’s law, which implies that “the processing power
of a chip doubles every 18 months.” It is widely believed that this
law will remain valid until at least about 2020. When one looks
at the implications of such performance, Moore’s law suggests
that performances are expected to rise to 1 petaflop/s by 2010
and 10**16 instructions/s by 2013. Computers currently exist
that have a storage capacity of 10 TB of memory and 700 TB of
disk space. Such capacity is again within the realms of Moore’s
law.

3) Value of a Network:Metcalfe’s law is felt to govern the
value of a network. It states that the value of a network is pro-
portional to the square of the number of nodes in that network.

VI. I MPORTANT EMERGING TECHNICAL AREAS

There are a number of technical areas that seem to be
emerging and point to future developments in computing and
computer engineering in particular.

A. Developments of the Internet

1) The Semantic Web:At the present time, material derived
from the web is essentially in text format. The computer systems
have no understanding of meaning. Consequently, they cannot
seek to use the information to deduce information or to com-
bine pieces of information from different sources to derive new
information.

The concept of the semantic web in rough terms addresses
this inability. Associated with information is its semantics or
meaning. If computer systems are able to address questions of
semantics, the route becomes open for systems to engage in in-
teresting exchanges and to carry out deduction. Currently, these
developments are some way off.

2) The Grid: The Internet can be viewed as a resource that
makes readily available to everyone through online access enor-
mous amounts of information of different kinds. The concept

of the Grid is regarded as the next stage in this kind of de-
velopment. Essentially, this infrastructure will provide various
kinds of computing power as well as an information infrastruc-
ture and associated networking capability that will support many
aspects of future activities of research, science, government,
industry, etc.

This Grid is under development, currently and is being her-
alded as the successor to the Internet and, in many ways, a sig-
nificant development beyond the Internet. Khosla described it
basically as follows [20]

“The Grid infrastructure will provide us with the ability
to dynamically link together resources as an ensemble to
support the execution of large-scale, resource-intensive,
and distributed applications.”

Many of the ideas contained in this document are taken from
[19].

B. Pervasive Computing

The term “pervasive computing”—sometimes also called
ubiquitous computing—has emerged as a result of the minia-
turization whereby computers and computing devices are
becoming extremely small. It was introduced in 1991 by
Weiser (see [14]). Terms such as “the disappearing computer,”
“wearable computing,” and “smart dust” have been coined to
reflect similar phenomena. In its current incarnation, pervasive
computing tends to have implications related to embedded
systems (with all sorts of imaginative possibilities existing),
smart badges as well as smart cars, smart buildings, and so on.
More generally, however, the concept of pervasive computing
gives rise to a number of concepts—thus, for example, the
disappearing computer and wearable computing. Pervasive
systems, to be effective and acceptable, need to be developed
in such a way that they are minimally intrusive, i.e., they take
account of aspects of the environment and use this information
to ensure that they do not distract at awkward times. Hence,
the concept of context aware systems becomes important. Of
course, many issues of a professional and ethical nature emerge
in the process.

C. Context-Aware Computing

1) Context Awareness:Deploying computer systems in the
form of wearable computing presents many new challenges.
These tend to stem from the observation that, unless designed
carefully, a user can experience an avalanche of information that
turns out to be a distraction at crucial times.

• There are new challenges for user interface design with
context awareness being employed in many cases, espe-
cially in mobile environments.

• There should be a priority on not distracting and not
infuriating the user; in this pursuit, some understanding
of context is often again desirable; in general terms to
become acceptable, pervasive systems need to be “mini-
mally intrusive”; and to achieve this, context awareness
is a priority.

The notion of “context” merits some attention [13], [16]. Typ-
ically in a computing context, this attention is to be interpreted
to include location, personal history, and medical condition (in-

460 IEEE TRANSACTIONS ON EDUCATION, VOL. 46, NO. 4, NOVEMBER 2003

cluding heart rate, body temperature, psychological state, daily
behavioral patterns, and current situation (e.g., current task).
There are implications in these observations for the methods,
devices, etc., used to obtain this information in a manner that is
unobtrusive. There are challenges relating to privacy and secu-
rity, to where context information is stored, to how it can be ar-
ranged so that “information can be in the right place at the right
time,” to how this problem can be solved at minimum cost, to
what are the fall-back positions in the event of the information
not being available, to what are the appropriate technologies,
and so on.

2) Content Adaptation:The concept of context awareness
tends to be used in situations where humans are present. How-
ever, other possibilities exist. At a trivial level, of course, context
awareness can be relevant not just to humans but, for instance, to
robots, and medical devices of particular kinds. Consider a mo-
bile situation in which a passenger in a car asks for the nearest
garage. Depending on traffic density, it might be more sensible
to go to a different garage since this action would be quicker and
less expensive. Of course, such a situation suggests the presence
of a decision engine that takes into account a whole spectrum of
factors, many of which are related to context awareness. Such
systems are referred to ascontent adaptation systems.

D. Adaptive Workplaces

Tied in with these earlier ideas are notions of adaptation [17],
described as follows:

“The word adaptive suggests that the workplace will
change as external forces act on it. That is precisely the
idea behind adaptive workplaces. As individuals are pre-
sented with tasks or transactions, generate their own ideas
or perform creative work, the adaptive workspace will pick
up on cues within the digital environment to automatically
provide an end user with appropriate data and tools to per-
form their task.”
One of the implications of this is that the system should not

rely solely on predefined rules but should somehow leap beyond
such restrictions to achieve the desired goals. The intention is
not to be able to react to events that are implausible, but rather,
to react to events that are plausible. There are two factors.

• On the one hand is the availability of distributed systems
of increasing complexity and the advent of pervasive
systems.

• On the other is the inability of transaction-oriented sys-
tems to respond properly to exceptions and the increased
complexity of the work place.

The pressures for development toward adaptive work spaces
become apparent. The technologies that would appear to sup-
port these developments [17] include: pattern recognition, au-
tomated classification methods, identity management, context
awareness, collaborative methods, workflow and business rules,
portals, and application integration. Many of these ideas are
finding expression in the concept ofrecommender systems[16].
Such systems “learn about user preferences over time, automat-
ically finding things of similar interest.” An important effect of
the existence of such systems is that the user is not frequently
quizzed about issues. Rather, almost as a side effect of other

activity, the system learns and continues to learn and adapt ac-
cordingly, making use of the ontology of information derived
from other activity. This situation results in the giving of advice
or recommendations.

Within [18], the comment is made that these systems will
place new demands on operating systems that will increasingly
be required to have the following characteristics:

• be self-organizing so that the needs of an individual in a
particular situation can be addressed;

• be self-referential so that the system is aware of its envi-
ronment and its own behavior and can react as appropriate;

• be adaptive so that it can change in the light of
circumstances;

• be collaborative so that it can work with people or indeed
with other systems;

• be anticipatory so that it seeks to look ahead and prepare
for forthcoming eventualities.

The implication is for systems that are in some sense au-
tonomous; they can plan to reorient themselves to meet per-
ceived needs and perceived situations.

E. Autonomic Computing

One of the concerns about the possibility of pervasive com-
puting is the set of issues that emerge from the occurrence of
faults. To combat the possibility of mayhem, the idea of auto-
nomic computing (a term coined by IBM) is to develop sys-
tems that are self healing, self-modifying, self-organizing, etc.
In effect, they are self-managing and, thus, autonomous in some
sense. It is natural to see autonomous computing as a develop-
ment of the concept of fault tolerance. This concept applies to
hardware systems, software systems, and information and infor-
mation systems.

VII. CC2001—COMPUTERENGINEERING

Within this volume, there is recognition that there are many
possible interpretations of the termcomputer engineering. The
implication is that there is scope for a range of different courses
spanning these possibilities. A significant challenge is to ask
about the underpinning ideas and whether these are likely to
alter in the context of these developments. The fundamental con-
cepts underpinning the computer engineering volume should re-
main unaltered.

Given the supposed developments outlined in Section VI,
there is merit in asking whether the proposed curriculum could
evolve to address the matters raised previously. In detail, the fol-
lowing lists the areas of development, and these are followed by
the knowledge areas that should further evolve to encompass the
proposed developments:

• semantic web:intelligent systems and networks;
• grid development:computer architecture and organiza-

tion, high-performance computing, very large scale inte-
gration (VLSI) design, information management, and net-
works;

• pervasive/ubiquitous computing:computer systems
engineering, computer architecture and organization,

McGETTRICK et al.: COMPUTER ENGINEERING CURRICULUM IN THE NEW MILLENNIUM 461

operating systems, networks, and human–computer
interaction;

• context-aware computing:intelligent systems, infor-
mation management, human–computer interaction,
networks, and computer architecture and organization;

• adaptive systems:intelligent systems, information man-
agement, networks, and human–computer interface;

• autonomic computing:fault tolerance, computer architec-
ture and organization, and networks.

Within the description of the Computer Engineering volume,
it would appear that all the elements necessary are in place. Of
course, to remain current, in each case, the separate knowledge
areas will need to evolve with technical advances over the years
ahead. There is likely to be a shift in emphasis across the knowl-
edge units. These same developments, of course, suggest a new
focus and possible new titles for new degrees in the future. Of
course, one important final observation is that the history of
computing in general is littered with surprises.

VIII. G ETTING INVOLVED

As the task force works toward completing the Computer
Engineering Curriculum Report, it is extremely important for
each person interested in computer engineering education in any
way to get involved in the process. Needed are many public
comments, criticisms, suggestions, and recommendations on the
various drafts. The authors encourage the readers to contact
the task force to get involved as a reviewer for the drafts (the
website is at http://www.eng.auburn.edu/ece/CCCE). The cur-
riculum report would be more productive and useful when it is
backed up by the widest possible public consensus.

REFERENCES

[1] “Computer Science in Electrical Engineering,” COSINE Committee,
Commission on Engineering Education, Washington, DC, Sept. 1967.

[2] L. A. Zadeh, “Computer science as a discipline,”J. Eng. Educ., vol. 58,
no. 8, pp. 913–916, Apr. 1968.

[3] ACM Curriculum Committee on Computer Science, “Curriculum’68:
Recommendations for academic programs in computer science,”
Commun. ACM, pp. 151–197, Mar. 1968.

[4] M. C. Mulder, “Model curricula for four-year computer science and en-
gineering programs: Bridging the tar pit,”Computer, vol. 8, no. 12, pp.
28–33, Dec. 1975.

[5] “A Curriculum in Computer Science and Engineering,” Educ. Com-
mittee IEEE Comput. Soc., IEEE Publication EHO119-8, Jan. 1977.

[6] R. Austing, B. Barnes, D. Bonnette, G. Engel, and G. Stokes, “Cur-
riculum’78: Recommendations for the undergraduate program in com-
puter science,”Commun. ACM, pp. 147–166, Mar. 1979.

[7] “The 1983 IEEE Computer Society Model Program in Computer
Science and Engineering,” IEEE Comput. Soc. Educ. Activities Board,
Comput. Soc. Order No. 932, Dec. 1983.

[8] “Design Education in Computer Science and Engineering,” IEEE
Comput. Soc. Educ. Activities Board, Comput. So. Order No. 971, Oct.
1986.

[9] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. B. Tucker, A. J.
Turner, and P. R. Young,Computing as a Discipline. New York: ACM,
1988.

[10] Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Cur-
riculum Task Force. [Online]. Available: http://computer.org/educate/
cc1991/

[11] Computing Curricula 2001: Report of the ACM/IEEE-Computer Sci-
ence Joint Curriculum Task Force. [Online]. Available: http://computer.
org/educate/cc2001/

[12] IEEE Pervasive Computing, vol. 1, Oct.–Dec. 2002.
[13] M. Satyanarayanan, “Challenges in implementing a context-aware

system,” IEEE Pervasive Computing, vol. 1, no. 3, p. 2, July–Sept.
2002.

[14] M. Weiser, “The computer for the twenty-first century,”Sci. Amer., vol.
265, no. 3, pp. 66–75, Sept. 1991.

[15] S. E. Middleton, H. Alani, and D. C. De Roure, “Exploiting synergy be-
tween ontologies and recommender systems,” presented at the Semantic
Web Workshop, Hawaii, 2002.

[16] T. Selker and W. Burleson, “Context-aware design and interaction in
computer systems,”IBM Syst. J., vol. 39, no. 3/4, 2000.

[17] D. W. Rasmus,Adaptive Workplaces: Preparing for the Future of Work:
Giga Information Group, 2001.

[18] , “From Data Processing to Information Management: The Need
for Intelligent Infrastructure,” unpublished, 2002.

[19] F. Bermann, G. Fox, and T. Hey, Eds.,Grid Computing—Making the
Global Infrastructure a Reality. New York: Wiley , 2002.

[20] S. W. Khosla, P. K. Rohrer, and R. A. Rutenbar, “Reengineering and cur-
riculum: Design and analysis of a new undergraduate electrical and com-
puter engineering degree at Carnegie Mellon University,”Proc. IEEE,
vol. 83, pp. 1246–1269, Sept. 1995.

Andrew McGettrick was responsible for organizing and carrying out the as-
sessment of the teaching quality of computing in all of the Scottish universities
during the mid-1990s. In 2000, he chaired the group that created the U.K. bench-
marking standards for computing and is now wrestling with benchmarking for
the Master’s provision. From 2002 to 2003, he has been providing advice to gov-
ernment agencies on the development of a software strategy for Scotland. He is
currently Head of the recently formed Department of Computer and Information
Sciences at the University of Strathclyde, Glasgow, U.K. Over the years he has
had several research grants from research councils and the European Commis-
sion, and he is currently involved in a European Commission-funded project
investigating the difficult issue of trust, with a particular focus on computing
systems that involve mobile software. He has wide experience in editing (more
than 120 books) and has published more than 130 papers and reports. His re-
search interests are in the more formal aspects of software engineering

Dr. McGettrick is a Member of the Association for Computing Machinery
(ACM) and the IEEE Computer Society and a Fellow of the Royal Society of
Edinburgh (RSE), the British Computer Society (BCS), and the Institution of
Electrical Engineers (IEE). Since 2001, he has been a Member of the Education
Board of the ACM, and he is currently a Member of the joint ACM/IEEE-CS
CC2001 Task Force and was involved in its Computer Science volume that is
now published but has an ongoing role with the Computer Engineering, the Soft-
ware Engineering, and the Overview volumes. In his activities with U.K. profes-
sional bodies, he has been Chairman of the Safety Critical Systems Committee
(SCS) of the IEE (1996–present).

Mitchell D. Theys (S’90–M’99) received the B.S. degree in computer and elec-
trical engineering, the M.S. degree in electrical engineering, and the Ph.D. de-
gree in electrical engineering from Purdue University, West Lafayette, IN, in
1993, 1996, and 1999, respectively.

He is currently an Assistant Professor in the Computer Science Department,
University of Illinois at Chicago. His current research interests include dis-
tributed computing, heterogeneous computing, parallel processing, very large
system integration (VLSI) design, and computer architecture. He has published
several journal papers and numerous conference papers. He has received sup-
port from the Defense Advanced Research Projects Agency (DARPA), Intel,
Microsoft, and the Armed Forces Communications and Electronics Association
(AFCEA).

Dr. Theys is a Member of the IEEE Computer Society, Eta Kappa Nu, and
Tau Beta Pi.

462 IEEE TRANSACTIONS ON EDUCATION, VOL. 46, NO. 4, NOVEMBER 2003

David L. Soldan (S’68–M’69–SM’84–F’01) received the B.S., M.S., and Ph.D.
degrees in electrical engineering from Kansas State University, Manhattan, in
1969, 1976, and 1980, respectively.

Dr. Soldan has worked in the areas of digital signal processing and adap-
tive filtering, computer networking, digital systems testing, computer systems
reliability, manufacturing automation, and wireless communications. Over the
years, he was formerly on the faculty at Oklahoma State University, Stillwater,
and worked in industry for the NCR Corporation, Motorola, and Collins Radio
Company. He served in the United States Air Force for four years and has served
as a consultant to IBM, Frontier Engineering, ETO, and several universities.
He is currently Professor and has been Head of Electrical and Computer Engi-
neering at Kansas State University since 1989.

Dr. Soldan has served on the IEEE Education Society AdCom and has been
the IEEE Computer Society Representative to the Frontiers in Education (FIE)
Conference Steering Committee. He served as FIE Co-Program Chair in both
1995 and 1998 and served as President of the Electrical and Computer Engi-
neering Department Heads Association from 2002 to 2003. He currently chairs
the Computer Engineering Curriculum Committee of the IEEE Computer So-
ciety Computing Curriculum Taskforce. As a Member of the IEEE Committee
on Engineering Accreditation Activities from 1999 to 2003, he was active in
new program evaluator training and new evaluator mentoring.

Pradip K. Srimani (M’87–SM’90–F’99) received the Ph.D. degree in com-
puter science from the University of Calcutta, Calcutta, India, in 1978.

He has served on the faculty of the Indian Statistical Institute, Calcutta, India;
Gesselschaft fuer Mathematik und Datenverarbeitung, Bonn, Germany; the In-
dian Institute of Management, Calcutta, India; Southern Illinois University, Car-
bondale; and Colorado State University, Ft. Collins. Since 2000, he has been a
Professor and Chair of Computer Science at Clemson University, Clemson, SC.
He as been Guest Editor of special issues for many publications, includingPar-
allel Computing; Software; theJournal of Computer & Software Engineering,
theJournal of Systems Software; VLSI Design; and theInternational Journal of
Systems Science. His research interests include reliable systems, parallel algo-
rithms, fault-tolerant computing, networks, and graph theory applications.

He is a Member of the Association for Computing Machinery (ACM). He
has served as past Editor-in-Chief of the IEEE Computer Society Press and
is a Member of the Editorial Boards of the IEEE SOFTWARE MAGAZINE and
the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. He has
served as a Distinguished Visiting Speaker and Chapter Tutorial Speaker for
the IEEE Computer Society for the past several years. He has been Guest Ed-
itor of special issues for IEEE publications, including the IEEE TRANSACTIONS

ON COMPUTERS, the IEEE TRANSACTIONS ONSOFTWAREENGINEERING, and the
IEEE COMPUTER. He has also served many conferences in various capacities.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

