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CHAPTER VI f;m/,%(_,-,

SYNCHRONOUS SEQUENTIAL SYNTHESIS I - COUNTERS & REGISTERS

PERSPECTIVE

The preceding chapter has presented the concept of the
sequential network, as opposed to a combinational network,
and has developed rigorous logical descriptions of the basic
building-blocks of sequential networks called flip-flops or
memories. Each of these memory devices was shown to have
one or more inputs (clock, J, K, T, D, R, S) and an output Q
defining the state of the memory (0 or 1). For each memory

we derived a describing equation known as a characteristic’

equation which defined the logical behavior of the memory,
independent of its application. 'Our task now is to define
the desired logical behavior of the network in the form of

tables and logical equations, known as application

eguations, and in effect simultaneously solve these
characteristic and application equations to determine the
specific combinational interconnections between the
memories' outputs and their inputs. Humphrey1 classifies

all sequential switching circuits into three types.
Type one - Where the input is a fixed number of pulse

periods and the circuit always returns to

the initial state in the last period.
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Type two - Where the network has an initial state but

does not have a fixed cycle.

Type three - When the network does not have an

identifiable initial state.

In this chapter we will deal with the most frequent
synthesis task of type one networks - the design of counters
and registers. The writer hastens to point out that the
procedures presented here with regard to counter and
register synthesis do not embrace all of the difficulties
and considerations involved in the formal synthesis of a
generalized synchronous sequential circuit. This general
approach will be covered in the chapter to follow titled

"State Tables, Reduction, and State Assignment".

SYNCHRONOUS COUNTER SYNTHESIS

The formal procedures presented by Pfister2 for the design
of synchronous counters are both seminal and pedagogically
satisfying. Therefore, this tabular/algebraic method will
be first presented and will subsequently be followed by

transition map method referred to here as the Case Method. 3

A sequential circuit that follows a prescribed sequence of
states when driven by successive input pulses is called a
counter. Such networks are a subset of a type one network

according to Humphrey's classification. Let us consider the
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elementary case of a synchronous sequential network whose

operation is prescribed by the state diagram of Fig. 6-1.

Figure 6-1 State diagram of a 3-bit sequential network

The Application Equation - From Fig. 6-1 we may construct an
elementary state table, Table (6-1), which relates each
state combination at t = n to the next-state combination at
t =n+ 1wheren and n + 1 are the synchronous clock times.
Note that three bits of memory have the capacity of eight
different state combinations. In this problem we define
only five state combinations. Thus state combinations 001,

100, and 111 may be treated as logical redundancies.

(a b cl)y (a b ¢c)p4s
0 0 O 0 1 1

0 1 1 1 1 0

1 1 0 1 0 1

1 0 1 0 1 0

0 1 0 0 0 O

0 0 O

Table (6-1).
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From Table (6-1) we may write three next-state equations
defining when each memory will be in a logical one state at

time n + 1 as a function of the states of the other memories

at t = n.
an41 = (@bc + abc) (6—1)
bn+: = (8BE + dbc + abe), (6=2)
Cp4: = (8BE + abl), . (6—3)

Factoring the above equations yields

an4y: = ap(be), + a,(be)y, (6—4)
bpty = byl3c), + b (38 + ac), (6=5)
Cpt+: = Cu(0) + S(8b + ab), (6-6)

Thus we see that each next-state equation may be written in

the factored form

Qn+: = Qu(9,)p + Oplgz)y (6=7)

where g, and g, are functions of the states of the other

memories at t = n.

Pfister calls this equation (6-7) the application equation.

Note that g, and g, are defined only by the problem

definition.
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The Input Equation(s) - We now wish to solve equation (6-7 )

simultaneously with the characteristic equation of the
memory type we chose to implement the counting network. To
illustrate this process let us choose to implement the
counter using J-K memories. The characteristic equation for

the J-K flip-flop is

Qn+: = (JQ + RQ), (5-27)

To simultaneously solve equations (5-27) and (6-7) for J and
K we will use truth table technique. Here, we will tabulate
all combinations of g,, g,, and Qn and solve for Qn+: Via
equation (6-7). Then, having established the values for
Qn+1 for each combination these values and their respective
values of Qn are used to solve for In and K,- This process

is shown in Table (6-2).

9: |92 |Qn | 9:Qn + 920 = Qut: = [(IQ + RO, |3, (K,
o Jo |o 0°0 +0°1 =0 J*1 + K0 0 |a,
o |o |1 0°1 + 0°0 =0 J°0 + K-1 a, 1
0o |1 |o 0°0 +1°1 =1 J°1 + K-0 1 |a,
o |1 |1 0°1 +1°0 =0 J°0 + K-1 az |1
1 (o |o 1'0 +0°1 =0 J°1l1 + K0 0 |a,
1 |o |1 1°'1 +0°0 =1 J°0 + K°1 ag |0
1 |1 |o 1°0 +1°1 =1 J*1 + K*0 1 |a,
1 |1 |1 1°1 +1°0 =1 J°0 + K°1 a, |0

Table (6-2). Tabular Solution for Jn and Kn.
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From Table (6-2) we may write equations for Jn and K, as

Jn = al§1§2Qn+§1gzén+a3§1ngn+asg1§an+glgz§n+a7g1ngn (6-8)

Kn = aO§1§2§n+§1§2Qn+a2§1gz§n+§1ngn+a4gi§2§n+aég1gzén (6-9)

To make the best assignment of the arbitrary constants we

plot J, and K, on Karnaugh maps as shown in Fig. 6-2.

e

g, 9,0 1] Qn 9, g, |0 |1 ]Q,
0 0 a, 0 0 | a| 1
0 1 | 1] a 0 1| a| 1
1 1 1] a 1 1 ag
1 0 as 1 0} a,
Jn Kn

Figure 6-2 Karnaugh maps for equations (6-8) and (6-9)

Letting a, = a, =ag =a, =1 and a, =ag =a, =a, = 0

J, = g, (6-10)

Kp = 81 (6=11)

Equations (6-10) and (6-11) are the input equations of a J-K

memory.

Copyright © H.W. Mergier, Ph.D - 1987



7
Returning to equations (6-4), (6-5) and (6-6) we may extract

the values of g, and g, for this example. Here

for memory a, g, = bc and g, bc

for memory b, g,

1]
W)
(¢]

and g, = ac + ac

and for memory ¢, g, =0 and g, = ab + ab

Substituting these values in equations (6-10) and (6-11)

yields
Ja, .= (be) Ka, = (b + c)_ (6-12)
an = (ac + ac)n Kbn = (a + E)n (6-13)
e, = (ab + ab) Ko =1 (6-14)

These are design equations giving the specific inputs to

each J-K memory. The logic diagram is shown in Fig. 6-4.
Note that we made no use of the redundant function

X(a,b,c) =) 1, 4, 7 (6-15)
We will now draw Karnaugh maps for equations (6-1, 2 and 3)
and include the redundant terms of equation (6-15) in Fig.

6-3.
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a b 0] 1]c a b |0} 1]c a b J]o]|1]c
0 0 ] o o |l x) o o || x
0 1 1) R (1) K
11 [[1)] x 11 x) 11 (1) x
1 0 [l 10 |(x][1) 1 0 [(x)
Anet bn+1 Chs1

Figure 6-3 Karnaugh maps for equations (6-1,2,3,15)

These maps reduce to

anss = aplSp) + a,(cp) (6-16)
by = bple,) + bp(1) (6-17)
Cp+1 = Sp(0) + & (a + b)y (6-18)

The parenthetical coefficients of Qn are therefore

[
Q

for memory a, g, = ¢ and g,
for memory b, g, = c and g, =1

and for memory ¢, g, =0 and g, =a +b
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Substituting these g values in equations (6-10, 11) yields

J = C K = C 6-19
a, a, ( )
J =1 K = C 6-20)
bn bn (
J. =a+b K. =1 6-21)
Cn Cn (

V. o
[ ]

0

;

CLOCK

Figure 6-4 NAND (J-K) implementation of equations (6-12,13 and 14 )

o o

|
X

Clock

Figure 6-5 NAND (J-K) Implementation of equations (6-19,20 and 21)



10
Equation pairs (6-19, 20 and 21) are significantly simpler
than equation pairs (6-12, 13 and 14) and result in the

much-reduced logic diagram of Fig. 6-5.

Input Eguations for Other Memories - Following the method

used for the J-K memory we will now derive, with limited
prose, the input equations for the D, T, R-S and J-K-T
memories.

ke

D Memory - The application and D characteristic equations

are

On+1 = 919 + 9204 (6-7)
apd Qn+1 = Dpy (5-24)
Therefore D,.= 9,Q, + 9,9, (6-22)
T Memory - The application and T characteristic equations
are |

Qn+r = 91Qp + 920, (6=7)
and On+1 = Tpdpn + ThQp (5-32)

Using Table (6-3) we solve equations (6-7) and (5-32)

simultaneously for T = £(g,,9,,Q,)-
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9, | 92 | 9n | 9:9n + 929 = | Qpt: | = (TQ +TQ), | T,
0 0 0 = 0 = TO0 + Tl 0
0 0 1 = 0 = Tl + TO 1
0 1 0 = 1 = TO + Tl 1
0 1 1 = 0 = T1 + TO 1
1 0 0 = 0 = TO + T1 0
1 0 1 = 1 = Tl + TO 0
1 1 0 = 1 = TO + T1 1
1 1 1 = 1 = T1 + TO 0

Table (6-3). Tabular Solution for Th-

From Table (6-3) we may write the specific equation for T =

£(g9,,9,,Q,) as
Tp = §,3.Q, + 319.0, + 3,99, + 9,90,

which reduces to

T, = 3,9, + 920, (6-23)

R~<S Memory - The application and R-S characteristic

equations are
On+: = 9.Q, + 929, (6-7)
Qn+: = (S + RQ), (RS), = 0 (5-16)

Using Table (6-4) we solve equations (6-7) and (5-16)

simultaneously for R, = £,(g,,9;,,Q,) and S, = £,(9,,92.9,) -
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9 | 92 | O | 919 * 9.0, = | Qnes =S + RO, | s, | Ry
0 0 0 0°0 + 0°1 0 =sSs+RO| 0 |ag
0 0 1 0°1 + 0°0 0 =s+R1/|0 1
0 1 0 0°0 + 1°1 1 =s+RO0 |1

0 1 1 0°1 + 1°0 0 =s+R1/|0

1 o [o |10 +o0°1 0 =s+Ro0|o0 |a,
1 o [1 |11 +o0°0 1 =s+R1|ag]o
1 1 0 1°0 + 1°1 1 =s+RO0|1

1 1 1 11 + 1-0 1 =s+R1]| a,

Table (6-4). Tabular.Solutioﬁ for Rn and Sn'

From Table (6-4) we may write equations for Ry and S, as

functions of a,g,,g9, and Q-
Sn = 919,0n + 259,80y + 9.9,0, + 2,9,9,Q,

Rn = aoalgzén + §1§2Qn + §1g2Qn + a4g1§2§n

Letting a, = a, = ag = a, = 0 the equations reduce to

and Rn

]
Q
w
0

ta]

(6—24)

(6-25)

J-K-T Memory - The application and J-K-T characteristic

equations are

Qn+1 = g1Qn + gzén

Copyright © H.W. Mergler, Pn.D - 1987
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13
and Qp4, = (TQ + RKTQ + JQ), (JKT = JT = KT), = 0 (5-50)

Using Table (6-5) we solve equations (6-7) and (5-50)
simultaneously for Jn = fs(gl,gz,Qn), Kp = fa(gl,gz,Qn) and

Tn = fs(g1 92 :Qn) .

g, | 92 | On | Qnt: = (TQ + KTQ + 3Q)y| 3 | K | T
0 0 0 0 =1 + 0+ 1 0 ag | 0
0 0 1 0 0 + 1+ 0 a, a, a,
0 1 0 1 =1 + 0+ 1 a, | a; | a;
0 1 1 0 = 0 + 1+ O as as | ag
1 0 0 0 = 1 + 0+ 1 0 a,

1 0 1 1 = 0 + 1+ 0 ag | 0

1 1 0 1 =1 + 0+ 1 a, a, | a,
1 1 1 1 = 0 + 1+ 0 a, | 0 0

Table (6-5). Tabular Solution for Jnr Kp and T, -

From Table (6-5) we may write equations for Jnr Ky and T, as
functions of a,g,,g, and Qn-
Jn = a,3,9,Q, + 2,9,9,0, + a;53,9,Q, + a59,3,0Q, +
a,9,9,0, + a,9,9,Q, (6-26)
Kp = ao§1§2§n + a,9,9,Q9, + azazgzén + asa1ngn +
a491§z§n + aggigzén (6‘27)

Tn = a1§1§an + 525192511 + aséingn + aégngQn (6"28)
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Figure 6-6 shows the Karnaugh maps of these equations.

g 9, [0 ]|1]Qn g 9, |0 |1]Ca g 9, |0 ]1]Qn
0.0 a 0 0 a) a 0 0 3
0 1 |2a 0 1 |2y o, 1 |E|a
1 1 |afa) 1 1 |a, 1 1 |5
1 0 &) 1 0 I@ 1 0
Jn Kn T

Figure 6-6 Karnaugh maps for equations (6-26,27 and 28)

A particular solution set is obtained by letting a, = a, =

a;c = a, =1and a;, =a, =a; =3, = 0, yielding

Jn = g1Qn (6-29)
Kp = .9 (6-30)
T, = 3,9, + 929 (6-31)

D-T Memory - The application and D-T characteristic

egquations are

On+1 = 919 + 920 (6-7)

and Qpyq, = (D + TQ + TQ), where (DT), = 0 (5-52)

Using Table (6-6) we solve equation (6-7) and (5-52)

simultaneously for D = £,(9,,9:,9)-
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g9, 92 9 Qu4s = (D + TQ + TQ), |D T
0 0 0 0 = D + T'0 + T-°1 0 0
0 0 1 0 = D + T*1 + T°O 0 1
0 1 0 1 = D + T0 + T-1 a, asz
0 1 1 0 = D + T°1 + T°O 0 1
1 0 0 0 = D + T°0 + T-1 0 0
1 0 1 1 = D + T'1 + T0 ag 0
1 1 0 1 = D + T0 + T-1 a, ag
1 1 1 1 = D + T1 + T°0 a, 0
Table (6-6). Tabular Solution for D, and T,

From Table (6-6) we may write equations for D, and T, as

functions of a,g,,9,, and Qj.

Dy = @:3,9:0n + 8:9:3:Q + 2.9,9:0, + 2,9,9:Q,  (6-32)

T, = §,3:Q, + 3,9,9:0 + 3,9:9, + &,9,9.0, (6-33)
A particular solution set is obtained by letting a, =a, =1
and a; = a, = 0.

Dp = 92Qp | (6-34)

T = aiQn : (6-35)

A summary of the characteristic and input equations for

various memory configurations is shown in Table (6-7).
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Effective use of Pfister's algebraic method for determining
the memory input equations requires that one make use of the
redundancies when reducing the input equations and that one
guard against reducing the input equations to a form where
the terms g, and g, lose their identities as coefficients of

Q, and Q, respectively.

The Case Method - An alternate procedure to Pfister's

algebraic determination of the memory input equations in a
synchronous sequential circuit is an algorithmic technique

based on the interpretation of transition Karnaugh maps.4

This method was first suggested by Professor Roger Brockett,
while an undergraduate, in a class paper at Case Institute
of Technology in 1958. The author subsegquently expanded
Brockett's work into what is referred to here as the Case

Method. 3

This procedure requires only a sequential tabulation of
state assignments whose values and whose transitions are
then plotted on Karnaugh maps for each memory. This process
will be illustraﬁed using the example given in Fig. 6-1.

The sequence and next-state are listed in Table (6-8).
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PRESENT STATE NEXT STATE
(a b ¢l (a b c)py,
0 0 0 0 1 1
l 0 1 1 1 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0 1 0 0 0 O
0 0 O
Table (6-8).

The Transition Map - Let us focus our attention on memory a.

When it is (0) in state (000) it stays (0) in the next state

combination (011). We will call this a static zero and

designate it as (0). When it is (0) in state combination
(011) it goes to (1) in the next state combination (110).

We will call this an (a) transition. Whenever Q. Q.,, = 1 an
(o) transition is indicated. When a is a (1) in the (110)
state it stays a (1) in the next state combination. We will

call this a static one and designate it as (1). Finally

when a is a (1) in the (10l1) state combination it goes to

(0) in the next state combination. We.will call this a (B)
transition. Whenever Qn§n+1 = 1 a (B) transition is
indicated. These symbeols (0, 1, a, and B) are then plotted.
on Karnaugh maps for each memory. The formal definition of

the transitions is shown in Table (6-9).
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TRANSITION LOGIC TRANSITION SYMBOL
On ? lp4s OnQn+: = 1 a
On 2 On4s OnOn+: =1 0
1n > Onss Onln+: = 1 S
1n ? lnws Qn@n+1 =1 L

Table (6-9). Transition Symbols.

For our example, the transition maps are shown in Fig. 6-7.
The Case Method algorithm involves the interpretation of
these transition maps to permit the determinatio'n of the
simplest memory input equations in a single, simple, visual

step.

a bjoy|1]c a bjlojt]c a blojfi}]ec
0 O0jfolx 0 OjJalx 0 Ola|x
0 1]o|la 0 11|B|1 0O 1]0|B
1 1)1 x 1 1 |B]|x 1 1 ]ofx
1 o|Xx|B 1 0]x|o 1 olx|B
Anst Dasi Chnst

Figure 6-7 Transition maps for example given in figure 6-1

Interpretive Rules for a T Memory - The T memory has a

single input which can produce only a or B transitions.
Therefore, the T input must embrace all a and B map
transitions and may embrace any redundant terms (X) which
assist the reduction process. For our example problem the

map reductions for the T memory are as shown in Fig. 6-8.
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The T input rule - Cover all a and B terms and optimally use

X terms where they facilitate reduction.

a bloj1]c a bloj1]ec a blo]1]ec
0 0 oal 0 °|@_’9 0 0 fofXx
o 1]o 0 1]} 0 1]0}B
1 1] 1] A 11 |Bf x 1 1 Jfa]x
1_o| x5 1 o}‘[};(ﬂ 1o |(xI8B
T,=c¢ T, =b+T T.=a+b+cCc (636

Figure 6-8 Transition map interpretations for T memories

Note the ease at which we determined the input equations
compared to the algebraic tasks using Pfister's algebraic
method. Note too that we have made full utilization of the

algebraic redundancies.

Interpretive Rules for a R-S Memory - The R-S memory has two

inputs which can either reset the memory to (0) or set it to
a (1). Further, if the memory is in the (0) state, a reset
input continues this (0) state (static 0). If the memory is
in the (1) state, a set input continues this (1) state

(static 1).

The R-S input rules - The S input must cover all a terms; R

must cover all B terms. Optional coverings with S are (1)

and X terms; optional coverings with R are (0) and X terms.

For our example problem the map reductions for a R-S memory

are shown in Fig. 6-9.
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a b 0]1]c a bjloj1]c a bjo 1|c

o o flofx) 0 0falx 0 0 |alx

0 1folo O 1B} 0 1 oal

1 1 ]1]x 11 |B) x 1 1 |a]x

1 0 |x[B 1_0]x|e 1 0 Xg]

S,=ac R,=b S,=b R,=bEf S =@b+ab R =c (6-37)

Figure 6-9 Transition map interpretation for R-S memories

Interpretive Rules for a J-K memory - The rules for

interpreting the transition maps for a J-K memory are
slightly less obvious than those for a T or a R-S memory.
Here a transitions can be produced when J = 1 and K= 0 or
when J = 1 and K = 1 (since a J-K memory complements on a
simultaneous J-K input). P transitions can be produc'ed when
J=0and K=1or whenJ =1 and K =1. Static (1)
transitions can be produced when J = 0 and K = 0 or when J =
1 and K = 0. Lastly, static (0) transitions can be produced
when J = 0 and K = 0 or when J = 0 and K = 1. This prose is

tabulated in Table (6-10).

TRANSITION

O
o
e}
e

©O O P B +H B O O
O O H O O KL 1|y
H O O O R K B o=
O O+ r DD L A

Table (6-10). Tabulation of Transitions as

a Function of Qn' Jn, and Kn.
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It may be observed that In does not influence B or (1)
transitions and that Kn does not influence a or (0)

transitions.

The J-K input rules - The J input must cover all a terms;

the K input must cover all B terms. Optional coverings with

J are the (1), B, and X terms; optional coverings with K _are

the (0), a, and X terms.

e

For our example problem the map reductions for a J-K memory

are shown in Fig. 6-10.

a bjJol1}c a bjojt}c a bjo 1|c
o 0o J|olx 0 0 |@)x 0 o f@lx
0 1 0 o 1 |[p]1 o 1]0lp
1 1 1] x| 1 1 [IB] x 1 1 |fafx
1 0 X@J 1 0 X% 1 o fix|B

Ja=C Ka=c Jp=1 K, =t Je=a+b K_=1 (6-38)

Figure 6-10 Transition map interpretations for J-K memories

Interpretive Rules for a D Memory - The single D input of a

D memory must produce all a transitions and static (1)
transitions. Static (0) and B transitions occur only when D

= 0. Table (6-11) tabulates the memories' transitions as a

function of On and D.
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On D, TRANSITION
0 0 0
0 1 a
1 0 R
1 1 1

Table (6-11). Tabulation of Transitions

as a Function of Qn and D.

The D input rules - The D input must cover all a terms and

static (1) terms; optional coverings with D are the X terms.

For our example problem, the map reductions for a D memory

are shown in Fig. 6-11.

a bjloj1}c a bjloj1]ec a bjlojt1}jc

0 O0}]o}|x 0 Oﬂa X 0O 0 Ea xj‘

0 1]ojo) o 1]s]1] 0 1|olB

11 | 1 1| Bfx] 1 1 |(e]x
1 o|x|B 1 o |x|e 1 0]|x|B

D, = ab+bc D, =b+c D, =@b+ab (6-39)

Figure 6-11 Transition map interpretations for D memories
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Figure 6-12 (@) -NAND-(T) implementation of equation set (6-36)
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Figure 6-12 (b) -NAND-(R-S) implementation of equation set (6-37)

Clock

Figure 6-12 (c) -NAND-(D) implementation of equation set (6-39)

Note: Also see Fig. 6-5.
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Table (6-12) summarizes the interpretive rules for
transition maps for selected memories and Fig. 6-12(a),(b),
and (c) shows the actual logic diagrams of the T, R-S, and D
implementations of the example problem. Note that the J-K

implementation was previously shown in Fig. 6-5.

The practical advantage of the transition map method over
the algebraic method lies in speed of execution. Here, the
designer may move directly from a state table to the
transition maps to the reduced input equations of any memory
configuration while avoiding any intermediate algebraic
processes. Because of this ease of execution, the designer
can rapidly explore alternate memory configurations and/or
mixes to achieve the simplest possible logical solution for

the original state table.

INPUT ESSENTIAL COVERINGS OPTIONAL COVERINGS
T a B X
R B 0 X
S a 1 X
J a 1 B X
K B 0 a X
D a 1 X

Table (6-12). Transition Map Reduction Rules.
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SYNCHRONOUS COUNTER DESIGNS

With the benefit of the preceding discussions on Pfister's
algebraic method and the Case method for synchronous

sequential synthesis we will now proceed to synthesize some

common counter designs.

A Four-Bit Binary Counter - A four-bit (a,b,c,d) binary

counter has sixteen state combinations of abcd - 0000, 0001,
0010, ----, 1111. These states are tabulated in Table
(6-13). From this state table we may construct the
transition maps for each bit as shown in Fig. 6-13. From
these transition maps we may then write the appropriate
reduced input equations for implementing the logic wiﬁh the
memory type of our selection. Here we will solve for J-K,
T, and D inputs. The generic logic diagram for the J-K

solution is shown in Fig. 6-14.
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) n+s

b

(a

d),

(a

State Sequence for a Four-Bit Binary

Table (6-13).

Counter.
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ol1l1lol 4 110
a bJlo|o]|1]1 a b 0|1
o olo|lo|lo]o o oloflofa]oO
o 1]0]0]ajoO o 1 |1]|1|B]1
1 111 B]A 1 1|1 1|B|1
1 0 1 1 11 i 0 0| O0ta O
(a) n+1 (b) n+1
K, =bed k'; =cd } (6-40
D, =abcd +at+ ad+ab D, =bcd + bt +bd (6-41)
="abed + a (+d+b) =bcd + b (G+d)
T, =bcd T, =cd (6-42)
ol1}1]|o0o]f d 1|10} d
a blojfo]1]1 a b o1 |1
o oo |al|B|1 o o|*|B|B|a
o 1]0]alB]1 o 1|*|B|B]e
1 1 Ola|B.l1 1 1]« B|B |
1 olo|a|B]1 1 o|*|B|B |«
(c)n+1 (d) n+1
J, =d Jy =1 }(640)
Kc =d ;d —a (6-41)
D, =&d+cd ¢
T -d Tg =1 (6-42)
s =

Figui’e 6-13 Transition maps for a four bit binary counter
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(bcd)
(bed), 3 ‘:
\ d
‘J a J ¢ b —J df—
P D > |
Ka K¢ +K d

Clock

Figure 6-14 Four-bit binary counter implementing equation sets (6-40) or (6-42)

An 8-4-2-1 Binary Coded Decimal Decade - There are seventeen

different weight assignments among four bits to represent
the decimal digits 0 through 9. For example, 7-4-2-1,
3-3-2-1, etc. 1In the absence of further definition, a
binary coded decimal (BCD) decade is assumed to have the
weights 8-4-2-1. The forward-counting sequence for this

decade is shown in Table (6-14).

(a b ¢ d), (a b ¢  dlgy,
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0

Table (6-14). Counting Sequence for an 8-4-2-1
Forward Counting Decade.
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The transition maps for each position are shown in Fig. 6—15
together with their interpretation for a J-K implementation.
The resulting logic diagram using generic J-K memories is
shown in Fig. 6-16. It should be noted that there are six
state combinations (1010, 1011, 1100, 1101, 1110 and 1111)
that are redundant to this 8-4-2-1 sequence and are thus

noted by (X) on the transition maps.

1 1 0 d - 1 1 o| d
a b o1 1 a b ol1|1]c
0 O 0j]0}10]0O0 0 O 0|1 0]a]O
o 1]10]0]a}0 o 11111 1
1 1 X | x| x| x B X | x | x| x
1 o |1 |B]| x|x 1 oloO}|oO]|x|x
(@), ®),.,
K. o ,‘(’: e }(6-43 ab)
1 1 0 d 1 110 d
a bjojof|{1]1 c a b o111 c
0 0|0 |oa|p |1 0 o|*|B|B|c
0 1 0 |lal B |1 0 1 a | B|B|a
1 11 x|{x|x]x 1 1] x| x| x|x
1 o]oj]o|x|x 1 o || B| x| x
Clne O
. FI fes

Figure 6-15 Transition maps for an 8-4-2-1 coded
decimal counting decade
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VGC
J a J C p J di—<
b | b >
[ K a K ¢ K d
St
Clock

Figure 6-16 The logical J-K implementation of an 8-4-2-1 BCD counting decade

5

A Gray Code Counter - A Gray Code” is one of a class of

codes called unit-distance codes. Its singular property is

that only one bit of the code group changes when the code
representation changes by a single unit. For example, in a
three-bit Gray code, decimal 5 is represented by 111 and
decimal 6 is represented by 101. Here only the middle digit
changes. The bits on such a unit-distance code have no
weights, i.e. thé bit positions do not represent
coefficients, a weighted number defined by a radix and a

position number.
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The advantages of this unit distance property will be
discussed under the chapter on Codes. For our purposes here
we will use it only as a vehicle to demonstrate the
synchronous sequential design procedures. Table (6-15)

shows the Gray sequence for the decimal digits 0 through 7.

DECIMAL DIGIT GRAY CODE REPRESENTATION

a b c
0 0 0 0
1 0 0 1
2 0 1 1
3 0 1 0
4 1 1 0
5 1 1 1
6 1 0 1
7 1 0 0

Table (6-15). Three-Bit Gray Code Sequence.

For the forward sequence given in Table (6-15) we may
construct the transition maps and derive the input equations
as shown in Fig. 6-17. The logic diagram implementing the

input equations is shown in Fig. 6-18.

a bjlojt]c a bjo|1}]c a bjlofi}c
0 0fofo 0 o0]olfa 0 0@
0 1]o)o o 111{4 0 1]0[p
1 1 [ 1 1 |1]B 1 1 |(]1
1_o|B)1 1_o]oo) 1_o|lip)
8n4t b+t Ch+1
Ja=bC J, =C Jo =ab+ab }(5-44)
K,=bC K, =ac Ke =ab +ab

Figure 6-17 Transition maps and input equations for a J-K
implemented three-bit Gray code forward counter
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= V < |
"

o

ol

CLOCK

Figure 6-18 J-K implementation of a three-bit forward'Gray code counter

A Forward/Backward Three~-Bit Binary Counter - For this

design we will assume two input data lines F (forward) and B
(backward). Receipt of a F pulse increments the count;
receipt of a B pulse decrements the count. We will not
concern ourselves with the problem of coincidence. The
state sequence is shown in Table (6-16). Here, D is the
count direction control flip-flop. When D is set, the
counter is to count in the forward direction. When D is
reset, the counter is to count in the backward direction.
Figure 6-19 shows the transition maps derived from Table

(6-16).
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S)n+s

b

(a

c)n

(a

Forward-Backward Counting Sequence

Table (6-16).

. Under Control of D.
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0 1 1 0 c 1 1 0 c 01 1 o]
alojol1 D a|lo0o]0]1 1 D a ol 0 1
0 |0.| 0 0| o0 0 0 o 0 1 B -0 0 i al P B a
Y RERER o 1|lalof1]|Bp o 1 Jl¢|B]B|a
1 1] 1 ﬂ 1 1 1 Ojaf Bl 1 1 al B B| a
olo}|o \g 0 1 0|O0ja|B]1 1 o [le|B B| a)
@, ®),,, (© ey
T, =Dbe +Dbg T =Dc+Dc T =1 (6-45)
Figure 6-19 Transition maps and input equations for tabie 6-16
Count forward Enable
Direction
Control
‘Flip-ﬂop S
E 4 D0 —s  bf— —y ¢
P> D> D>
B K D Kk b—k T
I'd Y
: : Yee
L : _ -7
Count backward Enable

Figure 6-20 Forward-Backward three-bit synchronous binary counter
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Although this exercise is primarily for demonstrating the
derivation of the memory input equations for a
forward/backward binary counter, there are some practical
considerations not evident in the logic. The forward pulse
(F) or the backward pulse (B) must set the direction control
flip-flop D and then be 4counted (either up or down) by the
memories a, b, and ¢. There are two gate delays between an
input pulse (F or B) and the time the D memory is clocked.
The D memory then has a t:ansfer time to assume its proper
state to enable either the forward or backward count. There
are two additional gate delay times before the J-K inputs of
memories a and b are set-up. The arrival of the clock input
to memories a, b, and ¢ must therefore be delayed until the
J-K inputs are set-up. This delay must be greater than the
sum of the memory transfer time plus two gate delays. The
minimum period of the input pulses (F or B) must be greater
than four gate ‘delays plus the memory (D) transfer time.
The serial inverters (labeled "delay") must provide this

delay of the clock input to memories a, b, and c.

A Four-Bit SYNCHRONOUS Binary Counter with Ripple Carries -

The input equations for this counter are identical to those
given in equation set (6-40). The difference in the logic
diagram of Fig. 6-14 and the logic diagram of Fig. 6-21
rests in the manner in which the carry is transferred

between stages. Rewriting the egquation set (6-40)

Ja=Ka=de Jb=Kb=Cd JC=KC=d Jd=Kd=1 ( 6-40 )
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we may rewrite the equations for J, and K, as
Jg =K, =Jy ° Db (6-46)

Equation (6-46) implies that we first generate the Jp input
and then "ripple" it to the J_, input by "anding" it (Jy)
with b. On a long binary string, rippling the carry between
memories results in a considerable savings in gated inputs.
The disadvantage of rippling is the limitation placed on the
frequency of the input signal. Fligure 6-21 jllustrates the
logical structure of a four-bit synchronous counter with

ripple carry. This figure should be compared with Fig.

6—140
J. b (e
Upb), A0k Jb (cd),
| b u d
(bed), —|
Ja +J b Jc J d
D D _ D [
—HK @ ‘HK b ’_K < K g
v,
Clock o

Figure 6-21 Four-bit asynchronous binary counter with ripple carry
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