CHAPTER Iv

OTHER COMBINATIONAL LOGIC DESIGN TECHNIQUES

COMPOSITE MAPPING

When one explains the use of Karnaugh maps or the Quine-
McCluskey technique for the reduction of Boolean functions
there is the tacit assumption that the minterms of the
function to be reduced are identified and directly
available. When this is not true, one must first decompose*
the function before beginning the reduction process. This
decomposition may be avoided, in the case of Karnaugh map

reduction, by using a composite mapping technique suggested

by Smothers.l

Suppose we were given the Boolean function

f(a,b,c,d) = [(M,cM)a(b+c)] + m;g + my + m, + m, (4-1)

*The term "decomposition" is used here as meaning the
process of expanding reduced minterms or Maxterms into their
constituent unreduced minterms or Maxterms. For example
f(a,b,c) = a + b decomposes (expands) to

f(a,b,c) = 3b¢ + abc + abd + abc + abé + abc.

- The reader is also referenced to the expansion theorem T-10.

Copyright © H.W, Mergler, Ph.D. - 1987

The usual procedure to reduce this function via a Karnaugh
map would be to expand the term T = [(M, M:)a(b+c)] into a
disjunctive normal form as follows:
T = (a+b+c+d) (a+b+c+d)a(b+c) (4-2)
= (951a6+gd#§5¥b+ba4gd45c+pék9d4§d49d+5d#d)a(b+c)
= (ac+ac+b+d) (ab+ac)
= giGrabrapl+aptracd

T = ab + acd (4-3)

Equation (4-1) may now be written in disjunctive normal form

as

.~ f(a,b,c,d) = ab+acd+abcd+abcd+abcd+abed (4-4)
This equation is now ready for plotting on a four-variable
Karnaugh map as shown in Fig. 4-1. The reduced form may be

readily determined to be

f(a,b,c,d) = ab + c¢d + acd (4-5)

Copyright © H.W. Mergler, Ph.D. - 1987

Figure 4-1 f(a,b,c,d) - ab+cd+acd

ol1]|1]0]|d
ablojo|1]|1]c
00 1
01 1
11 1 1111
10| 1 1

The composite mapping technique permits one to avoid the

algebra of decomposition by breaking the function to be

reduced into terms which are Boolean products and terms

which are Boolean sums and plotting these directly on their

respective Karnaugh maps.

For our example we will let

£, =

H
N
]

£,

f(a,b,c,d)

Since

(a+b+c+d)(a+b+c+4d)

ab + ac

abed + abdd + abed + abcd

£,

MIS

=1

(£, * £;) + £,

. MS

10 since MB =m

31

zlo1 -

Copyright ® H.W. Mergler, Ph.D. - 1987

(4-6)

(4-7)

(4-8)

(4-9)

(4-10)

(4-11)

The Karnaugh map for the term f, is given in Fig. 4-2 as

ol111|0]d
abjlolo|1]|1]c
oojoj1]1]A1
o111]|1]1
1111111111

101|111]0

Figure 4-2 Karnaugh map for the term

since m, = abcd and m,, = abcd (4-12)

The Karnaugh maps for the terms f, and f, are given in Figs.

4-3(&)’(}3).
ol1|1]0]d ol1|1]0]d
ablolo|1|1]cC ablolo]|1]|1]C
oojojojo|o 00 1
o1|l0]0]0]O0 01 11
11 1 11111 11 1
iolof{oO]|1]{]1 10]1
(a) (b)

Figure 4-3 Karnaugh maps for f,(a) and f;(b)

‘The composite map for (£, ° £,) is derived in Fig. 4-4.

Copyright © H.W. Mergler, Ph.D. - 1987

ol1]1]0]d oltl1{o]d ol1]1]0]d

abloflo|i1|t]c abloflo]|1]1]¢c abfolo]1]1]ec
oofof1]|1]1 oo|ofofofo oo]ojo]o]o
o1 |1 [1]1]1 . O0t1]ojofojo _ ot1]ofofofo
1100 f1f1]1 IRBEREREIE! 'EREREERRE
101 |1{1]o 1ofolofl1]1 10fooft]o
b . fo L= ab+acd

Figure 4-4 Composite map derivation for f, o f,

The composite map for f(a,b,c,d) = £, * £, + £, is derived

in Fig. 4-5.

ol1]1]0}d of1]1]o}]d of1l1]0]d
abfofo|1]1]c ablotol1|1]ec ablolo|1|1]¢c
oofofofofo oofofof1]o oofofof1]o
o1]ofofo]o o1|olo|1]0 o1lofo|1]o
Tilt]1]1]+| = Tilololtlo]| 1111]1]1
10]ofof1]o0 101|000 1o[1]o[1]0
ot 6 f(abcd) = ab+cd+acd

Figure 4-5 Composite map derivation for f(a,b,c,d) = ab+cd + acd

This method would appear to require a great deal of map
construction, however in practice a single map will suffice.
Figure 4-6 shows this single map implementation. Note that
the shaded cells of this Fig. 4-6 are identical to the map

of Fig. 4-5.

The only subtilty in constructing the composite map is the
treatment of Maxterms. Algorithmically one simply
complements all literals and plots the result as a minterm

and as zero.

Copyright © H.W. Mergler, Ph.D. - 1987

0 1 ' 1 0 d
b 0 0 1 1 c

00)+0 [(1.0+0 P/1.0)+1

;;;;;;;;;

1 | (1.0+0 | (1.0+0 P1.0)+1

SNNNNS
=
\=
+

o

aands
—_—~
—
I
-
+
o

b

N

Olo| o
o

N

e]

1/,;/////,,-7 ;;;;;;;;;; PPIPIIIZPIT7Y

(1.1)+0 %%1 1)+0

NN

1 1

9,/,””,“,“.;/
1.1)+1 ZZ(1.1)+0 7
//(/////Zj-/// é,(,m,ziué

(1.1)+0 4 (0.1)+0

2

7
7

AN

Figure 4-6 A single composite map construction for equation (4-9)
f(abecd) = (fi. f2)+fs

For example, the Maxterm Mg = a + b + ¢ + d is plotted as
abcd as a ZERO. Equations (10, 11, and 12) legitimize this

procedure.

This composite mapping technique, as with Karnaugh maps in

general, has a practical limit of six variables.

Input Minimization Using Multi-Level Factoring2

This technique is based on the concept of minterm isolation
(Theorem T-8), equations (1-10a) and (b). Here one
artificially "adds" minterms to a Karnaugh map to achieve
greater reduction and concurrently cancels these minterms
with equation (1-10b). Where the designer confronts the
problem of "adding" minterms he usually has several choices,
~some of which produce superior reductions. He must

therefore explore all possibilities and select the one which

Copyright © H.W. Mergler, Ph.D. - 1987

results in the fewest number of gated inputs. This method

results in one or more additional levels of gating but this
added complexity is hopefully balanced by a decrease in
gated inputs. This method was first proposed by Levine. 2
Two examples will be worked to illustrate the method.

First consider the implementation of the function

f(a,b,c,d) =} 0, 2, 3, 15 (4-12)

The Karnaugh map for this function is shown in Fig. 4-7(a).

ol1]1]0]d o[1]1]0]d
ablolo]|1]1]c ablolo]1]1]c
oD ED o[T[]
= Y
0 1 o1y
1 1 (:) 1 1 1)
10 10

(@) (b)

Figure 4-7 (a) Karnaugh map for f(a,b,c,d) =0,2,3,15
(b) Modified Karnaugh map

The map (4-7a) reduction yields

f(a,b,c,d) = 3abd + abc + abcd (4-13)

‘This function requires four gates and thirteen gated inputs

as shown in Fig. 4-8.

Copyright © H.W. Mergler, Ph.D. - 1987

1
Q.F ol

———3 (3bc l%: f(ab,cd),
—)’ (abed),

Figure 4-8 NAND implementation of equation (4-13)

oTinl

Qoo

If we now assume 1's in minterms m,, mg, m,, and m, the
Karnaugh map is altered as shown in Fig. 4-7(b). The

reduction of this map yields

f(a,b,c,d) = (ad + dc + becd) (3b) (4-14)

The parenthetical term (3ad + 3c + becd) is derived as

indicated by the map groupings and the term

(ab) is the term which cancels minterms m,, mg, m,, m,. We

—

have invoked T-8 that says (3b) ANDED with minterms m,, m,,

M, and m, ¢ leaves them unchanged and (ib) ANDED with

minterms m,, mg, m,, and m, reduces each to zero. A little

algebra will show this to be true.

(? 4,5,6,7)ab = (3bdd + 3bdd + 3bcd + abcd) (a+b) = 0

Copyright ® H.W. Mergler, Ph.D. - 1987

since mm; =0 if i = j (T-8a)

and () 0,2,3,15)ab = (3bcd + abcd + dbcd + abcd) (a+b)

abcd + 3bcd + dbed + 3bcd
since m:M: = m

i if i # j (T-8a)

Figure 4-9 is the logic diagram for equation (4-14).

ol ol ml

(o]

aoo

D
[o—

i

>: (@), , (@),

Figure 4-9 Logic diagram for f (a,b,c,d) = (ad+ac+bcd)(ab)

This solution has six gates and fourteen gated inputs.

Figure 4-10 illustrates four other possible solutions using
this same approach. The last solution is obviously the best
because it requires only eleven gated inputs. This

solution's logic diagram is shown in Fig. 4-10(d).

Copyright © H.W. Mergier, Ph.D. - 1987

ol I

1l |

ofl1]1]o]|d
abjlojJo|1]1]c
00 |1 ')
01
11 1
10 YA A0
(a)
of1{1]o0|d
abjojof1|1]c
o001 ol
01 %
11_,’//A 1
10
(b)
of1]|1]o]d
abjoflof1]1]c
oofJ Iawy
01
11% 1l
10
(c)
o|l1]1|o]d
abjJolo]|1]1]c
Il 7K D)
01 7/;
11 7] 1)
10 %

(d)

=a-5

f(ab,cd)= (bc+bd +acd) (ab)

Six gates and fourteen gated input

]l = bd

f(a,b,c,d) = (3d +8bc + abc) (bd)

Six gates and fifteen gated inputs

= ad

Z

f(ab,c.d) = (bd +abc +3bc) (ad)
Six gates and fifteen gated inputs

A =-d

f(a,b,c,d) = (3B + abd) (&)

five gates and eleven gated inputs

}@c,d) = (‘@b+abd)(

10

(4-15)

(4-16)

(4-17)

(4-18)

cd)

Figure 4-10 Input minimization of equation (4-14)

as given by equation (4-18)

Copyright © H.W. Mergler, Ph.D. - 1987

11
Before concluding this example it should be noted that

equation (4-13) could be factored to yield

f(a,b,c,d) = ab(d + ¢) + abcd
This solution has five gates and twelve gated inputs. On
the basis of the complexity function (equation 2-5),
equation (4-18) of Fig. 4-10(d) is the preferred form.
A second example, of slightly greater complexity, will be

solved with minimal comment. Here, we will find the form of

the function
f(a,b,c,d) = E 2,3,7,8,10,11,12,13,14,15 (4-19)
which will yvield the simplest logical structure. The

Karnaugh map of equation (4-19) is given in Fig. 4-11.

ablJofo|1]1]c

00 111
01 1
111111111
10| 1 111

Figure 4-11 Karnaugh map of equation (4-19)

Copyright © H.W. Mergler, Ph.D. - 1987

12

The direct reduction of this unmodified map yields
f(a,b,c,d) = ab + ad + cd + bc (4-20)

which implies five gates and twelve gated inputs.

Equation (4-20) may be factored to yield

f(a,b,c,d) = a(b + d) + c(b + 4) (4-21)

b, 0.3 'D a(b+d)

d,

by b+d =

dt e
c(b+d)

Figure 4-12 NAND implementation of equation (4-21)

o)

We will now investigate map modifications and the resulting
implied logical structures. Figures 4-13 thru 4-18
illustrate various modifications of the basic map for
equation (4-19) given in Fig. 4-11. These modifications and
their resulting logic diagrams are self-evident and shown

without further comment.

Copyright ® H.W. Mergler, Ph.D. - 1987

o ol

ol

Qolgl

ol p (=

ol

alo wl

ol 1| 1] 0fd
ab ol o| 1] 1]c
01
f(ab,c,d) = (a+cd+be)(bed) (4-22)

11ﬁ1

fied

1
1

1

10 |4 B
A

Do

5 Gates , 11 Gated Inputs

—_
ol
al
Q.

o

(bed),

Figure 4-13 NAND implementation of equation (4-22)

011 1] 0]d
abj] o]of 1 j c
00 ﬁ"? R
~ | f(a,b,c,d)= (c+ab+ad)(@bd) (4-23)
Il QIERERID) = c(abd)+a(b+d) (4-23a)
ro [(]G
— }ﬂa.b.c.d)
. q
5 Gates , 12 Gated Inputs
—) (3bd), , (3bd),

Figure 4-14 NAND implementation of equation (4-23)

Copyright © H.W. Mergler, Ph.D. - 1987

13

£ gl

[\

a o)

9 O
— —-}:D—

5 Gates, 11 Gated Inputs

(¢}

Figure 4-15 NAND implementation of equation (4-23a)

0} 1 1] 0] d]

abl Ol op 1| 1fc BN _ bed 4 = avd
A 1] * “

00 ool 1] 1

11 Pl P f(ab,cd)=a(bcd)+c(abd) (4-24)
'\/\/\A

to i podt] Y

a

~

a.okr|
—~
(o

| 0|'|
o)

f (a,b,c,d)

a.lowl

(9]

5 GATES, 12 Gated Inputs

Figure 4-16 NAND implementation of equation (4-24)

Copyright ® H.W. Mergler, Ph.D, - 1987

14

ol1] 1] o}]d
abjojof| 1] 1]c
0 0 Va7 1| 1
Liiisis % = ac
111111 _
f(abcd)= ab+cd+bd (E) (4-25)
10] 1 1] 1

a —| (ab)
b RS—
c) (cd) f (a,b,c,d)
d —]
g — (bd), (bd),,
! (Bd (),
a —]
E — —— ==
C
(ac)'» (a)" 7 Gates, 14 Gated Inputs
Figure 4-17 NAND implementation of equation (4-25)
o[1] 11 0}]d
abjojo] 1] 1]c
00 [1] 1 - acd = @bd
114 1] 111 1 U —
f(a,b,c,d) = (ab+c+d)(acd)(abd) (4-26)
10} 1 1 1
d !
a —] (ab+c+d)
b L
5 q
3 — _(&d) (@ed) L f(ab.cd)
d —) —
F — (3bd) (@bd)
% — } 1 5 Gates, 14 Gated Inputs

Figure 4-18 NAND implementation of equation (4-26)

Copyright ® H.W. Mergler, Ph.D. - 1987

15

16
One may conclude that implementing equation (4-21) minimizes
the number of gated inputs. The reader is cautioned that
this technique usually results in multi-level (beyond two)
gating. The added gate delays might require running the
system clock at a lower frequency. Note that in this second
example, the "best" solution was three-level by virtue of

factoring of the direct Karnaugh map solution.

DECOMPOSITION

Decomposition is a reduction technique wherein a Boolean
function is broken down (decomposed) into smaller (simpler)
functions and then finally combining these smaller functions
to form the original logical equivalent. The idea of

decomposition can be best presented with an example.

Consider the four-variable Boolean function

f(a,b,c,d) =} 1, 6, 7, 10, 11, 13 (4-27)

abdd + 3bcd + abed + abcd + abcd + abdd

The Karnaugh map of this function is given in Fig. 4-19.

Copyright © H.W. Mergler, Ph.D. - 1987

17

ablo|lo]|]1|1]c

00 1
0 1 114
11 1

10 1| 1

Figure 4-19 Karnaugh map for equation (4-27)

A two level reduction from this map yields
f(a,b,c,d) = 3bc + abc + 3b&d + abdd (4-28)

and its implementation is shown in Fig. 4-20.

. o,

° >
c |
f(a,b,c,d)
b =D
14 Literals
d 8 Gates
21 Gated Inputs

Figure 4-20 NAND implementation of equation (4-28)

Copyright © H.W. Mergler, Ph.D. - 1987

18

Now let us look at the same problem with the idea of
decomposing it to a form which looks like those shown in

Fig. 4-21 (a) or (b).

g (o, B)

Bound o — g
Variables B — f(a,b,c,d) _
F >
Free Y F{g (aaﬁ),’Y56}
Variables §
(a)
o — g (a,B,Y)
Bound
Variables B— 9 f(a,b,c,d) =
. v F —»
ree
Varoole 9 Fi{g(.B.7)8)

(b)

Figure 4-21 Possible decomposition of f (a,b,c,d)
For the case of four-variables (a,b,c,d), a, B, ¥ and & may
each represent any one of these four-variables. Thus the
two generalized decompositions of Fig. 4-21 actually
represent ten possible logical structures of the same
equation. The outputs of either form (a) or (b) must equal

0, 1, g or g for a valid partitioning or decomposition of

the original function.

For four-variables, the ten specific possible logical

structures are shown in Fig. 4-22.

Copyright ©® H.W. Mergler, Ph.D. - 1987

19

We will presently show that all of the possible logic

structures shown in Fig.
that the output f be equal to 0,

free variables (v and 68).

logical structures of Fig.

For (a) refer to Fig.

F{g (b,c),a,d}

F{g(abc).d}

4-22.

4-19 K-map

ab + ab
ab + ab
ab + ab

[j g{cd
F{g(cd).ab}

Cc
d
[—
b

L

(b)

a []gmd)
d

F F{g(ad) bc}
|

c

T

(e)

b g(becd)

c

d F{g(b.cd) a}
a

=

(h)

d g(dab)
a
b r [Flg(dab)c)

c

=

(i

a
c
b

d

b
d
a

c

c
d
a

b

4-22 do not satisfy the requirement
1, g or g for values of the

Let us now test each of the ten

} (4-29a)
} (4-30)

F{g(a.c),b,d}

[]gaq

(c)

EIQWA)
F{g(bd).ac}

F

(f)

g(cda)
ﬂ—_‘ £ F{g(cd,a),b}

(1)

Figure 4-22 Possible decompositions of a four-variable function, f (a,b,c,d)

Copyright © H.W. Mergler, Ph.D. - 1987

20

The output requirement, f = 0 or 1 or g or g is satisfied
and the equation f(a,b,c,d) may be partitioned as indicated

in Fig. 4-22(a).

f(a,b,c,d)

(0)&d + 3(a,b)3d + g(a,b)cd + g(a,b)ed (4-31)
= g(a,b)cd + g(a,b)c{d + 4}
= J(a,b)cd + g(a,b)c

but g(a,b) = ab + ab and g(a,b) = 3b + ab

- f(a,b,c,d) = (ab + ab)@d + (b + ab)c (4-32)

Equation (4-32) may be implemented in NAND logic as shown in

Fig. 4-23.

(ab+3)(ab+b) = (ab+ab) =(@b+ab)= g

H H

o
m
; o
+
i
—

. ((§b+éE)C)LE
-;: .4//?ébph)
D [‘3}(?5&%)ed),

s—

L)

ol
ol
+
)
o
—
i
(o]
X

e e - —— -

Figure 4-23 NAND implementation of
f(a,b,c,d) = F{g (a,b) , c,d} = (@b+ab)c+(ab+ab)cd

Copyright © H.W. Mergler, Ph.D. - 1987

21
The complexity of this circuit should be compared with that
of Fig. 4-20. Note that there are significantly fewer
literals in the decomposed solution however because of the
multilevel nature of the decomposed solution (Fig. 4-23) the
circuit could be restrictive in operating speed due to the

serial gate delays.

Continuing with the evaluation of structures (b) through (3j)

of Fig. 4-22 we find

For (b)
£(0,0,c,d) = cd
£f(0,1,c,d) = c (4-29Db)
£f(1,0,c,d) = ¢
f(1,1,c,d) = cd

Since cd and ¢ are not complements the test fails and

f(a,b,c,d) can not be realized with structure (b) of Fig.

4-22.
For (c)
f(a,0,c,0) = ac
f(a,0,c,1) = ac + ac (4-29c)
f(a,1,c,0) = ac
f(a,1,c,1) = ac + ac
For (4)
£f(0,b,c,0) = bc _
£(0,b,c,1) = bc + be (4-294)
£(1,b,c,0) = bc
f(1,b,c,1) = bc + bc

Copyright © H.W. Mergler, Ph.D. - 1987

For (e)

£(a,0,0,d)
£(a,0,1,d)
f(a,1,0,d)
f(a,1,1,d4)

For (f)

£(0,b,0,d)
£(0,b,1,d)
£(1,b,0,d)
£(1,b,1,d)

Structures (c),

22

ad]
a (4-29e)
ad I

ba
b (4-29f)

(d), (e) and (f) of Fig. 4-22 can not

realize f(a,b,c,d) = z 1,6,7,10,11,13 because their f

outputs do not meet the test requiring them to be 0, 1, g

or g.

For the possible decompositions given by structures (g) of

Fig. 4-22 we find

For (g)

f(a,b,c,0)
f(a,b,c,1)

For (h)

£(0,b,c,d)
f(1,b,c,d)

For (i)

f(a,0,c,d)
f(a,1,c,d)

ibc + abc _

abc + abc + abc + abc (4-29q)
bc + bcd

bc + bcd (4-29N)

ac + acd
ac + acd (4-291)

Copyright © H.W. Mergler, Ph.D. - 1987

23
For (J)

f(a,b,0,d)
f(a,b,1,d)

abd + abd
a (4-297)

None of the configurations meets the test for f. Therefore
the function can not be realized with structure (g), (h),
(i) or (j) of Fig. 4-22 which are all of the form

F{g(a,B,r),8}.

A much more convenient and rapid way of determining possible
decompositions is to use decomposition maps. Here, Karnaugh
maps are constructed for the function to be decomposed for
each of the configurations as shown in Fig. 4-22. Two
important points should be made here regarding the

construction of these maps.

1. The designated free variables are assigned to

the map rows and the designated bound variables

are assigned to the map columns.

2. The minterm numerical entries are based on the
bit weights a = 8, b =4, ¢ = 2 and d = 1 regardless
of their position on the map structure. For
example, map (b) of Fig. 4-24 is in conventional
K-map structure where m,, is at the intersection
of the free variables a = 1 and b = 1 with bound
variables ¢ = 0 and d = 1. 1In contrast, for
map (a) where the free variables are ¢ and 4,
m,; is at the interesection of free variables
¢ =0 and d = 1 with bound variables a = 1 and

b =1.

Copyright © HW. Mergler, Ph.D. - 1987

Bound
Frea Variables

o0

T Q.

Variables | 0 [1 [1] 0 b} o(111]0|d o[
cd]o[Oo}1]|1]a a bj|o 111]c b djo| o0 1
0O 0J]0O0] 4]|12] 8 0 0JO|1]3}2 0 002
0 1111511319 0 114 5 716 0 1]1(3
1 1137 {15]11 1 1}12]113|15]| 14 1 1}5|7
1 0|26 (1410 1 089 [11{10 1 0|14]|6
(a) (b)
0 1 1 0 |c 0 1 1 01]d 0 1 d
a d|lo]| 0|1 11b b ¢c|J]O0O|O0]1 1 |a ac|lo] o0 1 1b
0 0lo|2}|6]4 0O 0ojO([1]9]8 0 0j0 |1
0 11131715 0O 1123 }11|10 0 11213
1 119 ([11]15{13 1 116 |7 (15|14 1 1]110] 11
1 0] 8(10]14]12 1 0] 4 5 13|12 1 01819
(d) (e) '
Bound
Variables
Free 0] 1 1 001 1 0|c o1l 1 1 o0 1
varades1 o lo |1 1|1 |1]ofo]|b olo|1[1]1
dlojof|o{oO 1 1 1 a ajojojofo 1
ojol2]6 4 12114110 8 oo 1131214
1 1 31715 |13}|15{11{9 1 819 |11]10]12
(9) (h)
0 1 1 010 1 1 o|d 0 1 1 oo 1
0} 0 1 1 1 1 0]c o] o0 1 1 1 0
bjojJojJo]lo|1]1]1]1]a clo|jo|lO0O]O]1 1
o]0 113 2110111918 o}o 115 1] 4112
1 4 |57 |6 |]14]|15(13]12 } 1 213 716 |14

(i))
Figure 4-24 Decomposition maps for four-variable functions

Copyrnght © H.W Mergler, Ph.D. - 1987

25
These maps are used to readily determine which
configurations (if any) of Fig. 4-22 yield decomposable
forms of the subject function. To use the maps one merely
circles the function's minterms on every map (10 maps for a
four variable function) and then examines each map, column
by column for "column multiplicity". Column multiplicity is
a measure of the number of different column patterns on a
given map. From a moment's contemplation it is obvious that
if this multiplicity is greater than two, then the value of
f does not satisfy the requirement that it equal 0, 1, g

(bound variables) or g (bound variables).
Returning to the example function f(a,b,c,d) =

Z 1, 6, 7, 10, 11, 13 of equation (4-27) the maps are as

shown in Fig. 4-25.

Copyright © HW. Mergler, Ph.D. - 1987

26

O« T Q
—EelEr. —[-0z@
©
St
Sl -0 —=[ol-[a-
vlol+«~]+~] 0O olo| ~| ~| O
Ol O]~} « o | O~} v

VT o T ®©
or|a|@)| X|I® or|o|®] 2| &
- QEE —[-leF@
o)
o=[@-2 ~-lol-|oL-
N
COoOjo| | «~] @ 0002@4
Qlo| ~}] O ojo| i~ | ©
9
Aﬂu.maoo14l el el NN IS B
58
83
>
o T oo
(V] wn| <
BN CEE -~ @] 2|
—
a
-~
[~ [-[0@F “=|[-C®
.m.uvdo1.4|o vjo|~|]| O
23
rslo|lo|lo| -]~ cjlo|O| v~ |+«
>

(d)

Bound
Variables

T o0 T o«
001@ Al oo 80
- 5@ 111@5
-
O+ | < | N O+ || <
- - | -
—
o~o 2@@ o~o 4@
—o[~0] o[-0
100@ o 100@3
coolo|w coo|lofw
(W] o ~ (&) o -
—
oo ® T oOo®
cov|lo|on OO0+ | oo | N
—
e 3w 111@%
sdehel Ll O/ I O E
—
ool || oro 2@
——<l@le] -°[-|®
[V o] [T}
© ~
-

Free
Variables
d

(i)

(i)

Figure 4-25 Decomposition maps for four-variable functions

Copyright © H.W. Mergler, Ph.D. - 1987

27

It is immediately obvious that only map (a) of Fig. 4-25 has

a column multiplicity of two or less. This map is redrawn

in Fig. 4-26 and examined row by row for the 0, 1, g or g

test.
Bound
v Fi '9; Variables
ariables 1]0 b}
cd 111 1]a

12

€]

]
0
4 8
5 9
(@) 15| |+~—— t(ab,1,1) = @b+ab) cd = gla.b) cd
(6)| 14|A0)|+~——1(a,b,1,0) = (@b+ab) cd = g(a,b) cd

0 O

0
0
0

o 1|
3
2

<+— f(a,b,0,0) = 0 (cd)

<+—— f(a,b,0,1) = (@b+ab) €d = g(a,b) &d

1 1

10

(a)
Figure 4-26 Examination of map (a) of Fig 4-25 to show

that F{g(a,b),c,d} meets the 0,1,g or'g requirement
for partitioning

This procedure of plotting the function on preconstructed K-
maps for all possible partitions and searching for maps with
column multiplicities of two or less is the most preferred
and rapid procedure for searching for possible functional
partitions - once the basic decomposition process is
understood. Remember, all Boolean functions cannot be
decomposed while some may be decomposed into several

alternative logical structures.

As a final example on this subject of decomposition,

consider the function

f(a,b,c,d) =% 2, 3, 6, 7, 9, 10, 14, 15 (4-33)

Copyright © H.W. Mergler, Ph.D. - 1987

28

The K-map set (10 maps) of possible decompositions is shown

in Fig. 4-27.

(e),

Here we immediately observe that maps (a),

Possible partitions are therefore:

Free

Bound
Variables

(f£), and (j) have column multiplicities of two.

Varisbles | 0 | 1 | 1] 0 b} oj1}1]o0]|d of1f{1]o0]c
cdjo|lo}|1]|1]a a blJOo]JOo]|1|[1]c b djo]JOo]|1]1]a
o olofa4|12|8 oolo|1|®E o ofo|®@|Go) s
o 1]1]5|13[(® o 1|45 |@|E) o 1|1 |®1|®
1 1|@I@D|G)] 11 1 1] 12] 13|33 1 1] 5 |@|A3) 13
1 0 |@|E)|@|0 1 0]8|(®]11]q0 1 04 |@)|@9) 12
(a) (b) (c)
ol1]1]o]e ol1]1]o]d ol1]1]o]d
a djojo]|1]1]|b b clJ]OoOjOof1[|1]a ac|O0OjoOo}1{1]b
o ofo|®@|6)4 oojol|1]®)s o ofo|1]5]a4
o 1|D]3|@D)|s o 1]|@|@|11|G o 1|@QBD|E
1 1|9 |@D|d5) 13 1 1|0@)|w)6@ 1 1]@9)11]69|6d
1 o] 8 [(09|G9) 12 1 0|a|s5]13[12 1 0|8 |@)13]12
(d) (e) (f)
Bound
Variables
Fre o |1]1]oflo]|1]1]o]ec) o]t1|[1]o]ol1][1]o0
Variables 0 0 1 1 1 1 0 0 b} 0 0 1 1 11 1 0 0
dlolo|loflol1|1|1]|1]|al a]Jolofo|o|1|[1]1]H1
oo |@|®] 4 |12|@3|C0] s ofo|1|®|®]4]5|@DE
1|1 |®|@]s |13|@9)11|@® 118 |®]11|@9]12[13|@|(
(9 (h)

o|l1|1]o]olt1]1]o]d olt]1]lo]ol1]1]o
olof[1|1]1f1]o]o]c ojloft1|1]|1]{1]o]o
blofloflolo|1l1|1]|1]a clofolo|o|t]1]1]1
olo|1|®EI|C9 1|8 olo|1|5]4|12{13|()|8
T Eooem:r: lohboee:m

(i)

—
ey
=

Figure 4-27 Decomposition maps for four-variable functions

Copynight © H.W. Mergler, Ph.D. - 1987

Q

oo

T Q

29
For map(a)
f(a,b,c d)—(O)cd+(l)cd+(ab)cd+(ab)cd—F{g(a b),c,d} (4-34a)

For map(e)
f(a,b,c,d)=(0)bc+(1)bc+(ad)bc+(ad)bc=F{g(a,d),b,c} (4-34b)

For map(f)
f(a,b,c,d)= (0)ac+(1)ac+(bd)ac+(bd)ac F{g(b,d),a,c} (4-34c)

For map(j) S—
f(a,b,c,d)=(abd)c+(abd)c=F{g(a,b,d),c} (4-344)

Figure 4-28 shows a NAND implementation of equation (4-34a)

Figure 4-29 shows a NAND implementation of equation (4-344)

It should be remembered that the primary goal of
decomposition is not necessarily the reduction of circuit
complexity but rather to identify logical subsystems which
may be more conveniently treated separately in both design
and implementation or to reduce the number of gated inputs

required on a single gate in the implementing logic.

a — 1
o DeRE_ P [

Figure 4-28 NAND implementation of F{g(a,b),c,d} = ab (&)+§§(cd)+ cd

Copyright © H.W. Mergler, Ph.D. - 1987

30

There are two final comments which should be made regarding
simple disjoint decomposition. (1) The previous
demonstrations show that the process is quite simple if one
has a prepared set of decomposition maps. Figure 4-24 gives
a complete set for four variables. Figure 4-30 gives a
complete set of decomposition maps for five variables. Note
that some texts present chart sets in a more concise form by

using a single chart for example when the bound variables

are a, b and the free variables are c¢, d OR when the bound
variables are ¢, d and the free variables are a, b. The
argument for this is that one merely needs to rotate the

chart for the alternate interpretation.

Functions containing logical redundancies can be handled on
decomposition maps without difficulty. Remember that one
interprets (assigns) each redundant minterm to make the
column multiplicity two or less. The designer must
differentiate between the circled functional minterms and
the redundant minterms. As an example, consider the five-

variable function

Copyright © HW. Mergler, Ph.D. - 1987

31
f(a,b,c,d,e)=§2,6,7,9,12,25,27,29+X(0,8,11,13,20,22,24,28,30)
(4-35)
A possible decomposition map for this function where a, b
are the free variables and c, d, e are the bound variables

is shown in Fig. 4-30.

ol1[1lolo|1|1]|0]e ol1|{1]lo]o]1 0fe
olo|1]l1]o|lo]|1]|1]d olo|1]|1]0]oO 114
ablo|lolo|lofjt1]1]|1]|1]c abjloflololo}j1]1|{1]1]c
0o o| A 1]3@O@ 0 0|© @O
o 1|10 K| o1 OO B
11| 4|@9)|CD 26 |56| |92 1| |69)e
1 0]16[17 [19|18|2¢ 20 10

Figure 4-30 Decomposition map for equation (4-35) with appropriate
redundant minterm assignments

If redundant minterms 0, 11, 13, and 28 are interpreted as
one, the column multiplicity becomes two and f(a,b,c,d,e)

decomposes to

f(a,b,c,d) = b(éd + cd) + 3b(cd + cd) (4-36)

A set of decomposition maps for five variables is shown in
Fig. 4-31. Note that this figure continues over several
pages. The reader is referred to the program titled

DECOMPOSITION in the appendix.

Copyright © HW Mergler, Ph.D. - 1987

32

® T O 0 c OO
@ [aY} o] <t [{= N o] N o o (o] <
oo~ Nl co-|8|l@INI g co-fo|olol >
ol ol w ~Nlol o ~ow
-~ n 324
Sl <] o} +lwo| o] o Nl <] of ©
Or~l~|~| ol a Orrlala|lo| Ol -|o|
Or~O| N [Ze) | - OO © o | = - O~ Ol < [Ze] N N
(32 (o] wn [s2} (12}
roOol~|w|i> ~oolr-{®IN]|w —oo| | ™o}~
N -~ —
(o] [{o] «© (o]
[eNoRo) Nel <t ~ — [eNoRo) Nel N [{e} < [eloNel Neol N — —
(4] o L ol - o ko] o ~— ~ o ho} (@] -~ ~— (@)
= =
DV O T o OT©
vTlan]lo| o Olojo| < Olo| o] <
OO r - ol & oo} = & o « o] 2 - al o«
mjl o ~ ol w0 Nlo|i Nl
[e)] ~
< o A (o B o] o < o 3] o <o}
or-r—l9l |l Or~|l-slalol o Ol of
Ojw]| ® < (=] < |-
Ov~O] N - o~ - Or~O] N [Ze) - - O +~O}f <] - -
Lol B)] wn Ao wlm
0] M -~ o — - O] M N~ — - Ol W N~ — —
ool ~|lo|w]lr~ ~oo|~|wW|O| o —OoOo| - iM [T]o
N o ~— -
< © N o
O OO} O © o — [eNeoNo) Ne] < — (=] [eNoNeo) Nel N st ©
nf o | ~] O [$% =2 o I o o V]| O]|]| o
© Slo|lo|+~]|+~ o Llolol|~| @ Alo|lol+«~]| +
g S S

T oOo© oo w®
co~||IN|w| co~|Y|{~N|lo] ®
Ll ~— IaY] o -~ -~ -~ -~
0| o
N 2] -1 O Al ()]
TTTIN|l] o] ® mTrrla|la| o] 8
o v~ o
o © olw|~| ©
AR VN BNV BRI Ol | |
Oro|lt|w|P|N orolw|la|]| 2
w| < X
el RN S R I EIEIE
moojaN| o] w oo | W[N] o
coojlo|~|ol o coo|lo|~|m|
[} o - -~ o [} o L o -~ o
—_
= 2l o O v~ v m T o O} v~ -
Town T oo
co~|¥8 I~ -] oO oo © ol <
el R Y - 2 VR P
[ee} (o] ™ N o
A B R B R ~ro-|2| 7R &
ol~]~| o <l w
Sl wlo| o Njon]l o] ©
Or-~la N N [qV] O ~— -~ N N
Ovo|lw| o || N oro|l<|w|g Q
r~roo|lN| o] ~N] © ~oo|lN]| ™ w w
coolo|~]|w|« oocolo| -] ©
of © *- ~— o ol © | -~ o
—
o ©9|lo|lo|r|~ = O|lo|lo|~]|~

Figure 4-31 Decomposition maps (a thru y) for five variables (continued)

Copyright © HW. Mergler, Ph.D. - 1987

(k) O)j111]0]|e g of1y11]0
abcjolo]1}|1]d b c djojoy|1]1
0 0 0o 113]2 0O 0 oJoj|1f17]|16
0 0 1141 5]71|6 0 0 1] 2]3(19(18
0 1 1112{13|15]14 01 1]6}|7 |[23(|22
01 08|99 {t1]|10 0 1 0]415(21]20
1 1 0]24}|25] 27} 26 1 1 0]12(13|29]28
1 1 1128(29 |31(30 1 1 1114153130
1 0 1]20(21]|23|22 1 0 1]10|11(27]|26
1 0 0]16(17 |19|18 1 0 01 8] 9]25(24
m) ol1]1]o0]e (n) o[1]1]o0
acdjJojo]1]1]b ab djojo|1}1
0 0 0JO0)]1}19]|8 0 0 0OJoO|1|5}] 4
0 0 11 2| 3}11]10 0 0 1jJ]2|13|7]6
01 11617]|15}114 01 1110|111]|15[14
01 0] 4|5 [13}12 01 0]8)]9 |13]|12
1 1 0fj20(21|29]|28 1 1 0124252928
1 1 1]22]23|31]30 1 1 112627 |31]30
1.0 1]18]19]|27|26 1.0 1]18|19(23(22
1 0 0]16(17 125124 1 0 0|16[17[21]20
(©) o] 1 i]0}d (P) 0] 1 110
b c e]J]O0|O0)]1]1]a acejlO|jO}|1]1
O 0 0Op0)| 2|18]16 0 0 0jJO0| 2 (10| 8
0 0 1y 1] 3}19|17 00 1] 1]13]11]9
0 1 1]15}7 |23]21 01 1] 57 |15{13
01 0]4|6]22]|20 0 1 0]J4)16 |14]12
1 1 0}12]14[30]|28 1 1 0|20|22(30]|28
1 1 1]13[15|31[29 1 1 112123 |31]29
1.0 1 1127125 1.0 1)17]19[27]25
1 00 10 126 |24 1 0 0]16(18]26]24

Figure 4-31 Decomposition maps (a thru y) for five variables (continued)

Copyright © H W. Mergler, Ph.D. - 1987

o Q

33

r
@ ol1|1]o]d (") ol1]1]o0]c
ab elOo]O{1]1]cC ade|loOo|lOf1]1]b
0 oolo|2|6]4 0 0 olo|4]12]8
oo 1l1]3|7]5 o 0 1| 1[5][13]9
o 1 1| 9|11]15[13 o1 1| 3|7 |15]11
o0 1 ofl8|10]14{12 0 1 o|l2|s6|[14]10
1 1 0l24|26]|30(28 1 1 0|18|22]|30{26
1 1 1]25(2731]29 1 1 1]19(23 |31]|27
1.0 1f17[19]23|21 1 0 1]47]21|29]|25
1 0 ol16[18 22|20 1 0 0|16|20|28}24
s t
(%) o]l]1]1]o0]c ® o|l1[1]o]b
b dejJ]O0]J]O0]1]|1]a c dejoO]oOo]1]1]a
0 0 00| 4]|20]16 0 0 olo]| 8]|24]16
00 1] 1] s5]21]17 o0 0 1]1|9|25|17
0 1t 1] 3]7123]19 o0 1 1] 3]11]27]19
01 0|l2]|s6|22|18 01 0]2]10]26]18
1 1 0]10|14]30]26 1 1 0)6 |14]|30}22
1 1 1]11|15]|31]27 1 1 1] 7]115]|31 |23
1.0 1 13]|29]25 1 0 1]5|13]|29]|21
1 0 ol8 1228|224 1 0 o] 4]12]28]20
(u)o11oo11oo11oo11o
ololt1f{1t1t1]loloflolol1l1]1]1]0]O
olololol)tl1]t]1}J1l1]|1]1]0]0]0O]O
alolofolololo|lojo1]111}1]1]1]1
olo|l1]3|2]|e6|7|5]|4]|12]13]|15|14|10][11[9]8
1 116[17|19|18|22[23 |21 |20 || 28|29 |31]30 |26 |27 |25 |24
(V)o11oo11oo11oo11o
olol1l1t1l1]oloffolol1|1]t]1]0O]O
ololoflol1t1]l1l1H1l111l1]olo]o}oO
bloflolololojlojoJo1]1]1]1}1]1]1]1
olol113|2]6]|7]5 20|21 |23|22|18|19[17 |16
11891111014 |15]13|12]/28|29[31]30 2627 |25]|24

Figure 4-31 Decomposition maps (a thru y) for five variables (continued)

Copyright © HL.W. Mergler, Ph.D. - 1987

o0OoQo

OO Qo

34

35

OTOoc

OO O

- OO

- 0O

OO v

O+

— -

- O v~ v

OO~

|

OO ~O

2412527126 18119 |17 |16

2812931130 22123 |21 |20

- O v~0O

918

- -0

O+~ ~O

10] 11

14115 |13 |12

Orv~OO

00

3|2

716

OO0

5

[eNeoNoNo]

4

OO0

OCOO

- O O v

17 (16

1918

-rO

Or O

O v -

— - -

~— O~

OO«

H

OO v~O

24(25129(28 |20 21

2612713130 22|23

- O 0O

11 {10

0O

O+~ v~O

1211319 (8

14 (15

O—0OO0O

OO

514

716

~—O0OO0OO

3

[eNeoNoNe]

2

T oawc

O OO~

— OO v

- O

oo

O -

—_—r

-—Oo~

OO+~ v

OO~ O

—Or~-O

—_—_—_—0

O~~0O

O ~OO

- 00

- OO0OoO

[eNoNeoNe

0l0j2([6f4(12|14]10]| 8 "24 26 |30({28|20|22|18 |16

1111383175 13]15]11{ 9 u25 27 131|129 |21123(19 (17

Figure 4-31 Decomposition maps (a thru y) for five variables

Copyright © H.W. Mergler, Ph.D. - 1987

36

ANALYSIS OF MULTILEVEL COMBINATIONAL LOGIC

During the decade of the 1950's great strides were made in
the development of algorithms and other design aids to
assist in the simplification, analysis, and synthesis of
combinational logical circuitry. Although the main thrust
of this text is synthesis, we must also deal with the
problems of analysis of both combinational and sequential
networks. Here we will deal with the analysis of the

combinational circuit.

We have already learned how to interpret a properly
constructed 806 B logic diagram and this interpretation is a
first step in the analysis procedure. The interpretation,
however, falls short of dealing with the problems of static
and dynamic hazards in a network. This real problem exists
but is not accounted for in our usual algebraic or logic

diagram descriptions. Three works by Maley and Earle3,

Huffman4

, and Erb® permit the complete analysis of the
problem from the standpoint of both logic and hazard
analysis. The material to follow is based on components of
these three references with the author's departure to make

the collective presentation in conformity with the notation

and style of the overall text.

Copyright © H.W. Mergler, Ph.D. - 1987

[oR e

37

Combinational Analysis Using K-Maps at the Gate Level

We will make the practical assumption that the gating
structures of our combinational circuits will be in either
NOR or NAND form. Our task will be to develop algorithms to
permit the construction and interpretation of logic diagrams
in which each NAND or NOR gate is replaced by a K-map to
permit the rapid analysis of the network's output as a
function of the input variables. Then, from this K-map
logic diagram we will learn how to identify possible network
hazards and how to correct them to make the network hazard-

free. The method presented here follows Erb (reference 5).

Plotting K-maps for NOR networks - A NOR gate operating as a

logic OR has the symbol and Karnaugh map shown in

Fig. 4-32(a), (b) and (c) respectively.

Of1{1]0
ablO0f|1]c ablOojo|1]1

F=(atb+c)
= (a+b+c), 00 @ 0 00 (1-3 010
=(@c), o01]o0fo0 o1]lo|o|0foO
() 11]0]0 11]0]|o0|0]oO
10[0]0 10]10|]0[0]|O

(b) (c)

Figure 4-32 Symbol and Karnaugh maps of a NOR gate

Copynght © H.W. Mergle:r, Ph.D. - 1987

(@]

38
The output of a NOR gate is depicted on the Karnaugh map as
the "loop" containing the Boolean product (b) of its input
variables or the "loop" containing the reduced Boolean

product (c) of its input variables.

For a two-level NOR circuit as shown in Fig. 4-33 the

F = (a+b+c)L
a =(abc) o —
b] H (@bc+d) = (@bc+d),
¢ | = (a+b+c)d,
d = (Fd),
= (ad+bd+cd),

Figure 4-33 Two-level NOR network
Karnaugh map development of the output function is shown in

Fig. 4-34. Here the loop for ab¢ in the F map cancelled

ol1|1]o]d of1|1|o]d of1|1]o]d
abjloj{of1]1]ec abjlojol1}]1]ec abjojo]1]|]1]¢c
oolofof1]1 oo 1) 1 oo |C[) 1
o1 1[1]1]1 o1 |1 1 01 |1 1

[] =
'EEERERERE 11 }1 1 11)1 1
101 1]1}1 10 |1 i 10 |1 1
F d Fd

Figure 4-34 Karnaugh map development of the output of figure 4-33

the abc minterm in the d map, leaving ad + bd + cd.

From this little demonstration we may write our first NOR

gate algorithm as

Copynght © HH.W. Mergler, Ph.D. - 1987

39

NOR 1. For a NOR gate, the loop (here abZ) of a preceding

gate inhibits those parts of the loop (here d) generated by

the input variable(s) of the following gate.5

The Karnaugh map at the gate level may be drawn as shown in

Fig. 4-35. NOTE - d is plotted on the map as d just as abc

oj1J]110{d o|1]1]0¢}d
abloJo|1]1]|c ablojo|1]1]|¢c
Y& — 7
> Z :) J : v Z :) C—_) :’/’% ad+bd+cd
S 11 fé fé >
Cc —P. d » /4 /
10 10 [%%

Figure 4-35 Algorithmic plot of figure 4-32

is plotted as ab&, as shown in Fig. 4-32.

There is a second condition which must be addressed which
will lead to our second algorithm, NOR 2. This is the
condition where no input variables go directly to a NOR gate
input, i.e. the NOR gate's inputs are derived from other NOR

gate outputs. Here our algorithm NOR 2 is

NOR 2. For a NOR gate which has no system input variable
going directly as an input to the gate, its entire map will

be filled with 1's except those minterms which are inhibited

by the outputs of preceding gates.5

Copyright © H.W. Mergler, Ph.D. - 1987

40

For example, consider the two-level network of Fig. 4-36.

a (atb) = (3b),

(@b+cd) = (Bb+cd),
(@b)(d)
c (a+b)(c+d)

d——i::>o@wl=(ﬁg ac +bc +ad + bd

Figure 4-36 Two-level NOR/NOR network

The gate level Karnaugh mapping of Fig. 4-36 is shown in

Fig. 4-37.
oj1|1]0/|d
ablofof1]1]ec
Ak
R\
01
11 o111 d
> ab
o o(o]1|1]c
00|U)
0 1 1111
ol1|110] 4 1 1 111 1__’ac+bc+ad+bd
abloflo|1[|[1] ¢ »—
10_J1 1] 1
00
>
01
11 N
-
10

Figure 4-37 Gate-level Karnaugh mapping of the two-level
NOR/NOR network of figure 4-36

Copynght © H.W. Mergler, Ph.D. - 1987

41

Plotting K-maps for NAND networks - A symmetrical treatment

may be made for the NAND gate. A NAND gate operating as a
logic AND has the symbol and Karnaugh maps shown in

Fig. 4-38 (a), (b), and (c) respectively.

1]o0]l0]|1]d
abj1jo0o]c ab|Jt]1|0|0]}c
a — (abc) = (abc)
D e X
10 10
(a) oo| [} oo D
01 01
(b) (c)

Figure 4-38 Symbol and Karnaugh maps of a NAND gate

The output of a NAND gate is depicted on the Maxterm
Karnaugh map as the loop containing the Boolean sum (b) of
its input variables or the loop containing the reduced

Boolean sum (c) of its input variables.

The algorithms for NAND logic interpretation when Karnaugh

mapped at the gate level are

NAND 1. For a NAND gate, the loop generated by a preceding

NAND gate inhibits those parts of the loops generated by the

input variable(s) of the following gate.

Copyright © HW. Mergler, Ph.D. - 1987

42

NAND 2. For a NAND gate which has no system input variable

going directly as an input to the gate, its entire map

(Maxterm) will be filled with 1's except those Maxterms

which are inhibited by outputs of preceding gates.

For the two-level NAND network shown in Fig. 4-39 the

Karnaugh map at the gate level is shown in Fig. 4-40. Note,

again, that these maps are Maxterm maps.

(abc), = (abc), = (a+b+c),

a ‘ — —
b D)—F— (a+b+c)d, = (a+b+c)d,
c AN
l— = (ad+bd+cd),
° = (&)(Bd (%),
= (a+d)(b+d)(c+d),
Figure 4-39 Two-level NAND gate network
1|d ojo(1}d
ab 0lc ab 1]10{0]c
. A , 1 Zéé%
b e . 10 7/% > (a+d) (b+d) (c+d)
00 % 00 {2()
c > Z d—> G
01 01 ”/94 A

Figure 4-40

Copyright © HW Mergier, Ph.D. - 1987

Algorithmic plot of figure 4-39

43

Now consider the two-level NAND network shown in Fig. 4-41.

—)
’ | (a+b)(C+d) = (Ec+bc+ad+bd),
;] = (ac+bc+ad+bd),
d %f (cd)=(T+d), =Tac)(bc)(ad)(bd),

= (a+c)(b+c)(a+d)(b+d)

H

Figure 4-41 Two-level NAND/NAND gate network

The gate level Karnaugh mapping of Fig. 4-41 is shown in

Fig. 4-42.
1|lofo]1]d
abl1|1]0o|0]c
11
a >
10
00 LA 1100]1]|d
b——»—ET— ‘éﬁ%éﬁ abl1|1]0]|0]cC
A N\
>1174;/%P?/%
10
% /ﬁL 2] » (asc) (b+c) (a+d) (b+d)
ilofol1|a __,00f 7)
abl1|1]o]o0 A
c 01 éVv;éLJ %
L %
10 /A
%7
el 1
01)

Figure 4-42 Gate-level Karnaugh mapping of the two-level
NAND/NAND network of figure 4-41

Now that the basic ideas of utilizing the Karnaugh maps at

the gate level to analyze logic diagrams is understood, let

Copyright © H.W. Mergler, Ph.D. - 1987

44
us analyze the logic network of Fig. 4-43. This network
implements the pair of logical equations for a serial binary

adder as derived in Chapter I.

Xn Yn Cn-1

S$h= XnYnCn-1 + YnYr\-iErH"" XnYn Cn-t+ Xn¥nCn-1
= (Xn+ Yn * Cn-1) Cn + XnYnCn-s

o
@——s 5=

NOTE- All gate symbols
representing NAND gates

| (4),(7), and (9) are NAND
1 gates operating as logic OR.
Inverter (5) is a NAND gate

with all inputs tied together or

>) :p simply a single input NAND .
>

A

a
I
b

Figure 4-43 NAND logic implementation of the sum
equation for a serial binary adder

Copyright © H.W. Mergler, Ph.D. - 1987

(X oty it €0t (X *Fa¥ T,) (X 470 ¢,) (R, y oty

xn y" 1 Y cn-l 45
X 0 1 1 X q 7),;
10 Yo, % .
Yn 0 0 %’%‘ € > V/
1 %
@ @ @ note - these are maxterm maps
. QD O
;Jxé ZA
o | .
O ?D]
® ®
Yo /;A Tn]
Yo
Chn-1 —C_J'—"
A
® ® ©

Figure 4-44 Gate-level Karnaugh map analysis of figure 4-43

Comparing the output of Figs. 4-43 for s, with the Karnaugh
map analysis at the gate level of Fig. 4-44 confirms the

correctness of the logical network.

As a final example we will analyze the NOR circuit of
Fig. 4-45 using gate-level Karnaugh map analysis. This map
analysis is shown in Fig. 4-46. Note that the maps of

Fig. 4-46 are minterm maps.

Gate-level Karnaugh mapping may also be used as a synthesis
tool whereby one produces a map of the desired output and
works backward toward the system inputs to develop the

necessary network logic.

Copyright © H.W. Mergler, Ph.D. - 1987

46

D
D

Figure 4-45 A pictorial diagram for the interconnection of eleven NOR

gates to generate the sum and carry equations of a serial
binary adder. Note that this diagram does not necessarily
conform to the rules given for a logic diagram to 806 B

standards
Xn y" [Chn.
Xn 0 0 V/// _ﬁ ;I P > /O/A
o 1 B . A k..
11 % . R ,Q %
10) 2 // O
® @ @
Sn=Xp Yn Cot+ Xy ¥n €yt
) x_n;_ﬂcn-l'{'x"y"c”“
Yo 2
V L Cn =X, Yn+xncn-|+Yncn-l
o
> ooy
e
@ Note- Circled numbers below each
@ ® lz;g :i?;egrr ;cr)n gate numbers on the
<. [% O
—» v > _ 7
Chn ’/ Cn > >_J// Cny
Yo 7 N /A%
%) %
® ® ® ®)

Figure 4-46 Gate-level Karnaugh map analysis of figure 4-45

Copyright © H.W. Mergler, Ph.D. - 1987

47

The Analysis of Static Hazards

The équations we derived for combinational networks make the
major assumption that the operating time of a gate is zero,
i.e. that at any instant of time n, the gate's output is
precisely the indicated logical function of its inputs.

This assumption regarding the output is true in the steady-
state but it is not necessarily true during the gate delay
time-interval following an input change. Let us look at
common TTL two-input NAND and NOR gates and relate their

outputs to their inputs as shown in Fig. 4-47.

a b out a b out
a ——i
b — out L L H 4) out L L H
L H H b L H L
(a) H H L (d) H H L
a | L [a LI
b — T 1T L b I L
out out L
(logical) L’—— (logical) .__._._:
out ; - out P —
(actual) : ; (actual) =
A tA ;
- e -+
A = gate delay time A = gate delay time
(c) (f)
Figure 4-47 (a) NAND gate (d) NOR gate

(b) Voltage table (steady state) (e) Voltage table (steady state)
(c) Actual response (f) Actual response

Copyright © H.W. Mergler, Ph.D. - 1987

48
This indicated propagation delay time A is of the order of
10ns in a typical TTL gate. (Either regular or low-power or
Schottky) and as long as 33ns for low-power TTL gates. Let
us now see how these propagation delays can create a static
hazard in NAND and NOR networks. Here we will define a

static hazard as a condition where a change in a single

system's variable produces a momentary output change not in

conformity with the network's logical equation. Consider

the logic of Fig. 4-48.

o)
a

Figure 4-48 NOR gate network with a static hazard

Let us examine the time response of this network to an input
combination change of the variables from a = 0, b = 0, and c
=0toa=1, b=0, ¢c =0. We note such a change as 000 -~
100. The timing diagram for this change is shown in

Fig. 4-49.

Copyright ©® H.W. Mergler, Ph.D. - 1987

out
Gate 1

out
Gate 2

out
Gate 3

100

v

I N I T

l‘r

A +43

A

P S

t t3

L4

t4 t5

R

Static
Hazard

Figure 4-49 A possible timing diagram for the logic of

figure 4-45 assuming A1 < A

This particular timing diagram is constructed on the

assumption that the gate delays 4,, A,, and A, are unequal

and further that A, < 4,.

Here a 0 » 1 transition in a at

49

t, causes a 1 » 0 transition in the output of gate #1 at t,

and a 0 » 1 transition in the output of gate #2 at t,.

Because the gate delays are different (4, < 4,), gate #1

goes to 0 before gate #2 goes to 1.

The 1 > 0 transition of

gate #1 causes a 0 » 1 transition of gate #3 at t, and the 0

> 1 transition of gate #2 causes a subsequent 1 -» 0

Copyright © H.W. Mergler, Ph.D.

- 1987

50
transition of gate #3 at t.. This 0 » 1 > 0 transition of
gate #3's output is a static hazard. Note that if A, > 4.,
no hazard would be generated for a 000 » 100 change of

system variables. Further analysis would show that

1. no static hazard would occur for the transition
100 » 000 (when A, > 4,).

2. no static hazard would occur for the transition
000 > 100 (when A, > A,).

3. a static hazard would occur for the transition

100 > 000 (when 4, > A,).

Therefore, to exhaustively examine all input variable
changes between adjacent mapped minterms with all relative
values of system gate delays makes a timing diagram
determination of possible hazards quite impossible. We do
however have an excellent alternative means to accomplish

this task.

Let us return to the gate-level Karnaugh map representation

of NOR the network in Fig. 4-48 as shown in Fig. 4-50.

Copyright © HW. Mergler, Ph.D. - 1987

51

a bl 0 1 c
a0 O Z
0 1) Possible Hazard
000 <--> 100
1 LD
b >
1 0 L___-J > 7

ab+ac

N

@
I(::?q k\%
NN

i
Y
1)

A ®

C 77

AN/

®

Figure 4-50 Gate-level Karnaugh map of figure 4-48

Here we can immediately recognize the transition between
input variable combinations which might produce a hazard.
In this case it occurs between the combinations 000 and 100
since the output function is ab + ac only if the inhibiting

signals from gate #1 and gate #2 are precisely equal. If

there is a difference in the time delays, the output
function will momentarily be a + b if A, < A, and & + ¢ if
4, > A,. This momentary change in the output signal has a
duration equal to the difference in the gate delays

(4 - 8,) and occurs at a time (A, - A,) after the change in
variable a at the input to gates #1 and $2. For the input

transitions 000 » 100 the output function in transient will

Copyright © H.W. Mergler, Ph.D. - 1987

QO

52
be 0g > 1 » Oy for the case 4, < 4, and Ogg > 0 > Og4 for
the case A, > A,. We must therefore provide an additional

input to gate #3 to provide an inhibiting loop between the

inhibiting loops from gates #1 and #2. Specifically, we

need a term (b&). This is shown in Fig. 4-51.
a b|0 1 ¢
7
0 0 B2
o 1|
1 1L N ,EIX
LU0 ¢
v

ab+bc+ac

Y
A 4 \‘
NMTNR U

®

Y

N —

Fix

)

v
oy
l>\\x\'\\

v

Y
Dania,
N

A AR

N
C

®

Figure 4-51 Elimination of the static hazard in gate #3 by
the addition of gate #4
The addition of a logical term (bc) eliminates the hazard
created by the difference in the delays of gates #1 and #2
by holding the output of gate #3 low during the interval
A, - A,. The generation of the (bc) term consequently adds
another gate to the logic of Fig. 4-48 as shown in

Fig. 4-52.

Copynight © HW. Mergler, Ph.D. - 1987

(ab+bc+ac),

2 ‘ 3

Figure 4-52 Modified circuit of figure 4-48
to form a hazard-free network

Verification that the hazard is removed can be seen in the

timing diagram for Fig. 4-52 as shown in Fig. 4-53.

000 | 100

y
v

out
Gate 1 = Yeooo oo mme oo

OUt - e m e cme e
Gate 2

out
Gate 4 _
out

Gate 3 - No Hazard

Figure 4-53 Timing diagram of the hazardless
circuit of figure 4-52
for a 000 --> 100 transition

Copyright © H.W._Mergler, Ph.D. - 1987

54
There are two important messages in this discussion.
(1) That gate-level Karnaugh maps may be interpreted to
determine the existence of possible static hazards and
(2) By the addition of other logic terms in the switching
function we may eliminate the hazard and such additions are

immediately identifiable on the gate-level Karnaugh maps.

If one adheres to the convention of drawing NOR gates as
minterm maps and NAND gates as Maxterm maps a single set of
three interpretive rules for identifying possible static
hazards may be invoked. Potential static hazards are

identified when

(1) a change of a system variable causes a change
from one inhibiting loop to another (as in the
previous example).

(2) an existing potential static hazard between 0's
propagates to the next level and becomes a
potential hazard between 1's.

(3) a potential hazard between 1l's propagates to the

next gate as a hazard between 0's.

Four examples will now be shown to illustrate the use of

each rule.

Example 1 - Consider the two-level NOR network of Fig. 4-54.
This is the same example shown in Fig. 4-48. Here we

directly identify a possible state hazard by interpreting

Copynght © H W Mergter, Ph.D - 1987

55
the gate-level Karnaugh map circuit representation shown in
Fig. 4-55 according to the previously mentioned rules.

Here, a potential hazard is identified for the transition

000 < 100 wvia Rule 1.

(ab+ac)

a
c (ac),

Figure 4-54 A two-level NOR network with a rule (1) hazard

The timing diagram is shown only for confirmation. Here, if
4, 1s assumed to be greater than A, a static hazard is
confirmed for the transition 100 » 000. Recall that in the
previous example's timing diagram (Fig. 4-49) we assumed
that A, < &, and showed the static hazard occurred on the
000 » 100 transition. Thus the reader should conclude that
Rule 1 applied to gate #3 only identifies a possible hazard
in a transition 000 «» 100 (i.e. 000 » 100 or 100 > 000). A
more specific definition of the hazard is dependent on the
relative delays of the gates (i.e. A,, A, and A;). It is,
however, unnecessary to explore various relative gate delays
but rather to remove all potential hazards, regardless of
differences in the A's by logical modifications (as shown in

Fig. 4-51, 52, and 53).

Copyright © H.W. Mergler, Ph.D. - 1987

56

a bj0 1 ¢
aoo;“%//"'
o 1|)
11 |[C /1—
b » (::
10L_ >//

ab+ac

B

Possible Hazard at 000 <--> 100
L (Rule 1)

D
N

[M]
A 4

)

Figure 4-55 (a) Gate-level Karnaugh maps of figure 4-54

000 |, 100 1. 000
rI‘ ! 2B B f
a !
_ Note
b :
Dotted lines represent
zero delay gate response
c This diagram was drawn
for the case where A1 >4,
out J
Gate1- Y a
< A » 7 >
out -
Gate 2 Y
W A2 v A2 L A
out -
4
Gate 3 - ¥

Hazard

Figure 4-55 (b) Timing diagram showing hazard resulting
from 100 --> 000 transition

Copyright © HW. Mergler, Ph.D. - 1987

57
Example 2 - Consider the three-level NOR network of

Figo 4_560

(a+bc) =(@b+ac),

(9]

olo o

Figure 4-56 A three-level NOR network with a rule (2) hazard

The gate-level Karnaugh maps for Fig. 4-56 may be readily
drawn as shown in Fig. 4-57(a). Here we determine a

possible hazard in gate 3 (rule 1) and in gate 4 (rule 2).

Possible Hazard Possible Hazard
(rule 1))

® 7

LAY

a+bc Ab+ac,

WAL

C I

LICT D

®
®

Figure 4-57(a) Gate-level Karnaugh maps for figure 5-56

Copynght © tH{ W Mergler, Ph.D - 1987

000 001 N
a -
b -
Note
Dotted lines represent
c - | zero delay gate response
LA This diagram was drawn for the
out - -~ case where A2 > Ay
gate 1 -
t =
out -
gate 2 1
Hazard (rule 1)
out - Fjrw(}
gate 3 E:l
Hazard (rule 2)
out , 4 D
gate 4 - Y.-iw@

Figure 4-57(b) Timing diagram showing hazard resulting
from a 000 --> 001 transition

Example 3 - Consider the four-level NOR network of

Fig. 4-58.

(b+ab) =(a) absc), = (BCHBT),
(b+(ac+bc)) = (bc)

L

ol p

Figure 4-58 A four-level NOR network with a rule (3) hazard

The gate-level Karnaugh maps for Fig. 4-58 may be readily
drawn as shown in Fig. 4-59(a). Here we find a possible
Rule (1) hazard in gate 3, a possible Rule (2) hazard in

gate 4, and a possible Rule (3) hazard in gate 5.

Copyright © H.W. Mergler, Ph.D. - 1987

58

a b0 1 .
0 O %x 772
0 1L (——w b Possible Hazard Possible Hazard Possible Hazard
v (rule 1) (rule 2) (rule 3)
11 7L_J T ~ -
10 g’// 4 (B 7] P
i | o 7 _ _
@ b ab ¥ 7 ac+bc, j bc
77 > >
- S = [| (OZ
%% T '
] e @ b G
N (R
® °
Figure 4-59 (a) Gate-level Karnaugh map for figure 4-58
010 000 >
Q"
b
- Note
Dotted lines represent
c _ zero delay gate response
LN N This diagram was drawn for the
out - - - case wherg A2 < 41
gate 1
out
gate 2 -
out - T A 'ﬂ__? Hazard (rule 1)
gate 3 -
4 LP/
7
Hazard (rule 2)
out
gate 4 - 144
‘A;
out r}ﬁHazard (rule 3)
gate 5 N/
o
Figure 4-59 (b) Timing diagram showing hazards resulting

from a 010 --> 000 transition

Copyright © H.W. Mergler, Ph.D. - 1987

60
Example 4 - Consider the two-level NOR network of Fig. 4-60.

!

Figure 4-60 Two-level NOR network with a rule (4) hazard

The gate level Karnaugh maps for Fig. 4-60 may be readily

drawn as shown in Fig. 4-61l(a). Here we see a possible rule

(4) hazard in gate 2. The timing diagram illustrates the

hazard for a 10 » 11 transition for the case A, > 4,.

Copyright © H.W. Mergler, Ph.D. - 1987

61

D
N

)

0

@ (2) Possible Hazard
b

Figure 4-61 (a) Gate-level Karnaugh maps for figure 4-60

o]
od

s g9
U

11 10 R
a - 14
Note
a Dotted lines represent zero
delay gate response
b — 1 This diagram was drawn for
- the case where A{> A,
A
out - ===~)
gate 1
A, Hazard
out - - - _Ig
y Y
gate 2 S O —Y/

A2

Figure 4-61 (b) Timing diagram showing a hazard resulting
froma 11 --> 10 transition

Other Map Observations

1. A hazard produced between adjacent inhibiting loops in
a source gate is suppressed in the receiving gate if
the cells in adjacent inhibiting loops in the receiving

gate are surrounded by 0's.

Copynght © HW. Mergler, Ph.D. - 198/

62

2. When there are adjacent inhibiting loops in a source
gate, hazards between 0's become hazards in 1's in the
receiving gate.

3. A static hazard can not occur in a gate with only one
inhibiting loop. (A loop across the border of a map

should not be interpreted as multiple loops.)

Example - Consider the function f(a,b,c) = & + 3b + ab. The
NAND network implementing this function and its gate-level
(Maxterm) Karnaugh map are shown in Fig. 4-62(a) and (b).
Here we recognize a possible hazard in gate #4 for the

transition 001 <> 101.

)

:D@BL&BL = (b43)

Figure 4-62 (a) NAND network implementing f(a,b,c)=C+ab+ab

ol

b o
"’L{‘j B

r'ol

Oy ——— (ab)

L

Copyright © H.W. Mergler, Ph.D. - 1987

63

a b1 0 ¢
v
.1\
1.0 -b
_ 0 o)
b —-
01;_4
a

g, ::;é'5¥5
7
, /D
001<--> 101

a
a
)
_ |l _JTDb
b [

Figure 4-62 (b) Gate-level Karnaugh map

The timing diagram for the transition 001 » 101 is shown in

Fig. 4-63. Here A, is assumed to be greater than 4,

(s > 4,).

Copynight © H.W. Mergler, Ph.D. - 1987

64

001 101 .

5 -

[Note
Dotted lines represent
zero-delay gate responses

C A

h < 1> Diagram is drawn for the
out -—- transition 001 --> 101
gate 1 .

Output of gate #3 does not
A change for the transition pair

out ¢ : '4 001 --> 101, and is high
gate 2

out £ N
gate 4 - 'ﬂ\ 2 *)

[_
> e
A0y HAZARD

Figure 4-63 Timing diagram for the NAND network of
figure 4-62 (a)

The same functional output may be generated by the NAND
network of Fig. 4-64(a) and its gate-level Karnaugh map of

Fig. 4-64(b).

Copynght © 1 W Mergler, Ph.D - 1987

65

ab'1 O‘c .

N bn>myJ
5 10 %Zé b+C

H ’ C V

oo;___J) %

o EE TIO0

/I// 4 I |

C

Figure 4-64 Two-level NAND network (a) and its
gate-level Karnaugh map (b)

Here there is a single inhibiting loop produced by the
upstream gate and consequently a static hazard can not
exist. Note - Do not count the implied inhibiting loop

produced by the c¢ input.

Dynamic Hazards

If a network's logical equation indicates an output change
of 0 » 1 (hereafter called an "a" change) and the output
actually changes 0 > 1 > 0 » 1, this is called a dynamic
hazard. Similarly, if the network's logical equation
indicates an output change 1 » 0 (hereafter called a "BR"

change) and the output actually changes 1 » 0 > 1 » 0, this

Copyright © HW Mergler, Ph.D. - 1987

66

is also called a dynamic hazard. It obviously follows that
a static hazard is a prerequisite for a dynamic hazard. Let

us examine the conditions that produce these dynamic

hazards.

For a NOR gate with inputs a and b as shown, where input b
has a static hazard between 0's and a is a simple B change

of state, the output will be as shown in Fig. 4-65.

) out
b
3B
a o.
| - Static
b o [THazard
out o _]i |ij
Dynamic
Hazard

Figure 4-65 NOR gate responsetoa " "
transition and a static hazard

Thus, we see that a dynamic hazard is created when a static

hazard between 0's is NORed with a B transition.

Copynght © tt W. Mergler, Ph.D. - 1987

67
For a NAND gate with inputs a and b as shown in Fig. 4-66,
where input b is a static hazard between 1's and a is a

simple a change of state, the output will be as shown.

out
b
1-
a o440
1
b o_ u Static
Hazard
o JTTN
Dynamic
Hazard

Figure 4-66 NAND gate response to an " o"
transition and a static hazard

Thus, a dynamic hazard is created when a static hazard

between 1's is NANDed with an a transition.

To illustrate a dynamic hazard in a multiple gate network,
consider the circuit of Fig. 4-67. A timing diagram
analysis of Fig. 4-67(b) identifies a dynamic hazard in gate

4 and is shown in Fig. 4-68.

Copyrnight © H.W. Mergler, Ph.D. - 1987

68

a (b)),

b 1 4 (@b+a) =(@b)
) 3 ’ 4 L H

-)

b 2 (@b)

H

Figure 4-67 (a) Three-level NOR logic containing a dynamic hazard

alo 1 b PossHiglzea :Ztatic
a— 7 i q >

Y
b —» 1 l;» >§ié//

®

a —>

Possible Dynamic
‘ Hazard
b— D

® ®

Figure 4-67 (b) Gate-level Karnaugh maps for the logic network

MN

A timing diagram analysis of Fig. 4-67(b) identifies the

dynamic hazard in gate 4 and is shown in Fig. 4-68.

Copynght © HW.Mergler, Ph.D. - 1987

69

010 000 -
4 "
b ' Note
Dotted lines represent
- zero-delay gate response
b
[A This diagram was drawn for the
*——'—H case A\>A> & Az>Ay4
out -
Gate 1 — us 1
out |
Gate 2 - A ¢
——— Static Hazard
I‘A.a,. |J&>1
out _
Gate 3 4 Y. X
Aﬂl Ag
out -
Gate 4 LT || I
L& A4 J
Dynamic Hazard

Figure 4-68 Timing diagram for the circuit of figure 4-67 (a)

CLOSING REMARKS

This chapter has dealt with a somewhat eclectic collection
of subjects supporting the combinational design process
under the umbrella title of OTHER COMBINATIONAL LOGIC DESIGN
TECHNIQUES. In the previous chapters our attention was
centered on the methods for reducing the logical equation's
complexity and this certainly is the first and most

important step in the design of combinational circuitry. 1In

Copyright © H W. Mergler, Ph.D. - 1987

70

this chapter we learned techniques of composite mapping to

aid the reduction process by permitting the direct plotting
of Boolean functions of mixed form (not minterm exclusively
or Maxterm exclusively) without first decomposing reduced
terms in the function or transforming these decomposed terms
into conjunctive or disjunctive canonical forms. We then
expanded our discussion of the Isolation Theorem T-8 to

permit the multi-level factoring of Boolean functions with

the objective of minimizing the number of gated inputs when
implementing a logical function. We then presented a design

technique (also called decomposition) which in many cases

permits the partitioning of a complex logical function into
two component networks, each of significantly reduced
complexity, wherein the coupling between the networks is a
single logic line. The balance of the chapter was devoted
to the analysis of multi-level NOR and NAND logical
networks. A technique was presented for transforming a
logic diagram into a set of Karnaugh maps wherein each map
represented an individual NAND or NOR gate. Interpretative
rules were developed to permit the rapid logical
interpretation of this gate-level diagram. We concluded the

chapter with a discussion of static and dynamic hazards in

combinational circuitry caused by the cascaded delay times
of the gates themselves. By extending the gate-level
mapping used in combinational analysis, we developed
interpretive rules to identify potential static and dynamic
hazards and showed methods for eliminating some of these

problems.

Copynght © HW. Mergler, Ph.D. - 1987

71
The reader should conclude that combinational logic design
is more than simple functional manipulation to achieve a
form requiring the fewest number of gates or gated inputs.
Other essential considerations deal with the logical and/or
physical partitioning of logic networks to facilitate design
or physical configurations or the avoidance of static and
dynamic hazards in an otherwise logically correct design.
The methods presented in this chapter provide sufficient
background to permit the designer to complete these tasks.
A block diagram illustrating the gross design steps for

combinational circuit synthesis is shown in Fig. 4-69.

LOGICAL
EQUATION

] KARNAUGH (MINTERM & MAXTERM FORMS)
VIA QUINE-McCLUSKEY

REDUCTION [¢— HARVARD

HARRIS

MULTI-LEVEL FACTORING

A4

DECOMPOSITION

A

HAZARD
ANALYSIS

A

FINAL LOGIC
DESIGN N

A

HARDWARE
IMPLEMENTATION

FIGURE 4-69 Gross design steps in the design of combinational logic

Copyright © H.W. Mergler, Ph.D. - 1987

72

REFERENCES

Smothers, Carl L.: "A Composite Mapping Technique to

Streamline the Use of Karnaugh Maps'", Computer Design,

pp 128-132, November, 1972.

Levine, Robert Irving: "Logical Minimization Beyond the

Karnaugh Map", Computer Design, pp 40-43, March, 1967.

Maley & Earle: The Logic Design of Transistor Digital

Computers, Prentice-Hall Inc. Englewood Cliffs, NJ,

1963.

Huffman, D. A.: "The Design and Use of Hazard-Free
Switching Networks", Journal of the ACM, vol. 4, pp 47-

62, 1957.

Erb, T.: "Combinational Hazards in Factored NOR (NAND)

Logic", Electronic Progress, vol. X, no. 1 & 2, pp 58-

61, 1966.

Copyright © HW. Mergler, Ph.D. - 1987

