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Transmission lines
and waveguides

Transmission lines and waveguides are used to transport electromagnetic
energy at microwave frequencies from one point in a system to another
without radiation of energy taking place. The two main characteristics
desired in a transmission line or waveguide are single-mode propagation
over a wide band of frequencies and small attenuation. A great variety
of transmission lines and waveguides having these two essential features
have been investigated. Most of the structures considered fall into one
of the following three categories: (1) transmission lines on which the
dominant mode of propagation is a transverse electromagnetic wave,
(2) closed cylindrical conducting tubes, and (3) open-boundary structures
that support a surface-wave mode of propagation. It will not be possible
to examine in detail all the different structures that have been introduced
for waveguiding. We shall restrict the discussion to examining the basic
theory of transmission lines and empty cylindrical waveguides, with
specific reference to the commonly used coaxial transmission line and the
rectangular and circular waveguides, and to presenting an introduction
to surface waveguides. . The extensions and modifications of the theory,
necessary for analyzing other specific structures, are not difficult. The
student should find little difficulty in reading the literature devoted to
various types of waveguides, once familiarity with the theory given here
is acquired. ,

Transmission lines consist of two or more parallel conductors and will
guide a transverse electromagnetic (TEM) wave. The common forms
of transmission lines are the two-conductor line, the shielded two-con-
ductor line, and the coaxial line. Another form of transmission line that
- has come into prominence in the last few vears is the microwave strip
line, which consists of a thin conducting ribbon separated from a wider
ground plane by a dielectric sheet or placed between two ground planes to
form a shielded structure. The two main advantages obtained with strip

lines are the reduction in size and weight and the ability to use printed-
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circuit téchniques for the construction of the strip lines 'and assqrfiated
components such as bends, junctions, filters, etc. A good. mt.ro.duc.:txon to
strip lines and associated components may be found in a special issue of
IRE Transactions devoted entirely to this subject.t )

The common forms of waveguides are the rectangular and cxrculary
guides, which will be analyzed in detail in this chapter. ‘A. number’of
other structures have also been proposed that offer some distinct af.ivan-
tages for certain applications, but the theory of many of them is not
sufficiently different from that of the common rectangular and circular
guides to warrant detailed treatment.}

3.1 Classification of wave solutions

The transmission lines and waveguides to be analyzed in this ?hapter are
all characterized by having axial uniformity. Their cross-:sectlonal shape
and electrical properties do not vary along the axis, which 1svchoser'x as the
z axis. Since sources are not considered, the electric and magnetic fields
are solutions of the homogencous vector Helmholtz equation, i.e.,

VE + ko’E = 0 VH 4+ kH = 0

The type of solution seught is that corresponding to a wave that propa-
gates along the z axis. Since the Helmholtz equation is separab}e, it is
possible to find solutions of the form f(z)g(z, y), where fis a functan of z
only and g is a function of z and y or other suitable tra.nsverse coordinates
only. The second derivative with respect to z enters into the wave equa-

“tion in a manner similar to the second derivative with respect to time.

By analogy with et as the time dependence, the z depende:}ce can be
assumed to be e+#:, This assumption will lead to wave solutions of the

t Special Issue on Microwave Strip Circuits, I RE Trans., vol. MTT-3, March, 1955.

t As an introduction to some of these other structures, the fol!owing references may
be consulted. For a complete survey with an extensive bibliography the book by
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form cos (w! + B2) and sin (w! + Bz), which are appropriate for describin or - A A A o
wave propagation along the z axis. A wave propagating in the iti Tev- =0 7 b e, T0 .

. L positiv s N = Ve, g~
z direction is represented by ¢=##, and ¢# corresponds to a wave propa Ve- b = jBh, - ‘A-E" - ¥ K 2-(3.3¢)
gating in the negative z direction. With an assumed z dependence e—# Similarly, V- D = 0 gives Ve s Vi€, - Y€;3 R
tf)e del operator becomes V = V, + V, = V, — jBa,, since V, = a, 9/d: ’ i
Note that V; is the transverse part and equals a, 8/dx + a, 9/dy 1 V.- e = jfe, “ L e 3.3) N
per A VELS

rectangular coordinates. The propagation phase constant g will tur:
out to depend on the waveguide configuration.

Considerable simplification of Maxwell’s equations is obtained b;
decomposing all fields into transverse and axial components and sepa.

This reduced form of Maxwell’s equations will prove to be very usefulin . 93

formulating the solutions for waveguiding systems. :?i? 4
For a large variety of waveguides of practical interest it turns out that w ; f‘

all the boundary conditions can be satisfied by fields that do not have all %B >

rating out the z dependence. Thus, let (the time dependence e i
suppressed)

E(xr ¥,2) = E‘(xy y,2) + E.(z, y, Z)‘

= e(x, y)e~# + e.(z, y)e 3.1
H(I, y_; z) = Hl(x, Y, z) + Hz(x) Y, 2) .
= h(z, y)e~#* + h.(z, y)e~7** (3.2

W}Tere E,, H, arc the transverse (x and y) components, and E,, H, are th
axial _components. Note also that e(z, y), h(z, y) are transverse vecto
functions of the transverse coordinates only, and e.(z, y), h.(z, y) ar
axial vector functions of the transverse coordinates. ,
Consider the V x E equation, which may be expanded to give

"VXE = (Y, — jpa,) X (e + e,)e i = —jup(h + h,)e:

or Bt A Al

e

Vixe—jfa, Xe+ V. Xe —jfa, Xe = —jouh — juwuch,

Theterma, X e, =0,andV, X e, = V, X a,e, = —a, X Vie,. Note alsc
that ¥, X e is directed along the z axis only, since it involves factors sucl
asa, X a,, a; X a,, a, X a,, and a, X a,, whereas a, X e and V, X e, haw
trz}nsverse components only. Consequently, when the transverse anc
axial components of the above cquation are equated, there results '

Ve X e = —jwuch, {:ﬁi‘\ z\L\‘ . \f\, :» x f ; ’ (33a
T x e — i3 - _ . TTNeT AVl .
e X e — o Xe 3, X Ve, — jfa, X e = —jwuoh (3.3b
® U LI o Qs L i ' ‘
In a similar manner the V x H equaélénqﬁél\as 'wf;‘
. : 4 Z ¥
Vexh =}u§°§; R net w vect eV (3.3c,
a, X Vih, 4+ jBa, X h = —juwee ‘ 3.3d
The di _ th elass
e divergence equation V- B = 0 becomes ¥=old 5(5

VeB = Ve uH = (- j6a) - (b + huoe s
= (V.-h — jBa, - h,)uce~#* = 0

components present. Specifically, for transmission lines, the solution of*
interest is a transverse electromagnetic wave with transverse com-
ponents only, that is, E, = H, = 0, whereas for waveguides, solutions
with E, = 0 or H, = 0 are possible. Because of the widespread occur-
rence of such field solutions, the following classification of solutions is of

“particular interest.

1. Transverse electromagnetic (TEM) waves. For TEM waves,
E, = H, = 0. The electric field may be found from the transverse
gradient of a scalar function &(z, y), which is a function of the transverse
coordinates only and is a solution of the two-dimensional Laplace’s
equation.

9. Transverse electric (TE), or H, modes. These solutions have
E, = 0, but H, > 0. ~ All the field components may be derived from the
axial component H, of magnetic field.

3. Transverse magnetic (TM), or E, modes. These solutions have
H, =0, but E, # 0. The field components may be derived from E..

In some cases it will be found that a TE or TM mode by itself will not
satisfy all the boundary conditions. However, in such cases linear
combinations of TE and TM modes may be used, since such linear com- .
binations always provide a complete and general solution. Although

. other possible types of wave solutions may be constructed, the above

three types are the most useful in practice and by far the most com-

monly used ones.
The appropriate equations to be solved to obtain TEM, TE, or TM

modes will be derived below by placing E, and H,, E,, and H,, respec-
tively, equal to zero in Maxwell’s equations.

TEM waves

For TEM waves e, = h, = 0; so (3.3) reduces to

Vixe=0 (3.4a)
Ba, X e = wuch ' (3.4b)

Vixh=0 ‘ (3.4¢)



Ba, X h = —wee (3.4d)
Veeh =0 (3.4¢)
Viece=20 (3.40)

The vanishing of the transversé curl of e means that the line integral of e
around any closed path in the zy plane is zero. This must clearly be so
since there is no axial magnetic flux passing through such a contour.

Although ¥V, x h = 0 when there are no volume currents present, the -

line integral of h will not vanish for a transmission line with conductors on
which axial currents may exist. This point will be considered again later
when transmission lines arc analyzed. Equation (3.4a) is just the condi-
tion that permits e to be expressed as the gradient of a sca.lar potential.
Hence, let
e(z,y) = —Vid(z,y) (3.5)

Using (3.4f) shows that & is a solution of the two-dimensional Laplace
equation

Ved(z,y) =0 ' : (3.6)
The electric field is thus given by

E(z,y,2) = —Vid(z, y)'e-”'

But this field must also satisfy the Helmholtz equation

VE; + ko’E, =0 |

Since V = V, — jpa,, V? = V2 — 82, that is, the second derivative with
respect to z gives a factor —g?, this reduces to

ViE; 4+ (k? — B)E, =0 '

or

VVe® 4 (ko2 — 82)®) =0

This shows that 8 = +k, for TEM waves, a result to be anticipated from

the wave solutions discussed in Chap. 2. The magnetic field may be
found from the V X E equation, i.e., from (3.4b); thus

Toh=a xe=Zh ) 3.7)

In summary, for TEM waves, first find a scalar potential & which is a

solution of
Vid(z,y) = 0 ' (3.80)

and satisfies the proper boundary conditions. The fields are then given

by
E=E = ee:F-""-' = —V.Qe?i"o’ (3.8b)
H = H, = +he¥*s = + Y, X ee™ ke (3.8¢)

where ko = w(ueo)!, Yo = (eo/no)}, and e~ represents a wave propagat-
ing in the 4z dircction and e corresponds to wave propagation in the
—z direction. For TEM waves, Z, is the wave impedance, and from
(3.8¢) it is seen that, for wave propagation in the +z direction,

—H-; = - ']T‘ = Zo (3.90)
whereas for propagation in the —z direction

E, E, _

r=-%- Zo (3.95)
TE waves

For transverse electric (TE) waves, h, plays the role of a pdt.ential func-
tion from which the rest of the field components may be obtained. The
magnetic field H is a solution of

VH + koH =0

Separating the above equation into transverse and axial parts and replac-
ing V2 by V.2 — 82 yield

Vithe(z, y) + kths(z,y) = 0 (3.10a)
Veh + k2h =0 (3.10b)

where k.2 = ko¢ — 8? and a z dependence e—#* is assumed. Unlike the
case of TEM waves, 82 will not equal k¢? for TE waves. Instead, 8 is
determined by the parameter k.2 in (3.10a). When this equation is
solved, subject to appropriate boundary conditions, the eigenvalue k.2
will be found to be a function of the waveguide configuration.

The Maxwell equations (3.3) with e, = 0 become

V. X e = —jwpuch, (3.11a)
Ba, X e = wpch (3.11d)
Vexh=0 (3.11¢)
a, X Vih, + jBa, X h = —jwee (3.11d)
Vi-h = jph, (3.11¢)
Vice =0 (3.11f)

The transverse curl of (3.11¢) gives
X (V¢ Xh) = Vng'h— V¢2h = 0
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Replacing V. - h by jgh, from (3.3¢) and V;*h by —k.*h from (3.10b) leads .

to the solution for h in terms of k.; namely,

__J8
h=— e V.h, (3.12)
To find e in terms of h, take the vector product of (3.11b) with a, to obtain
Ba. X (a, x e) = Bl(a.-e)a, — (a,-a,)e] = —Pe = wpea, X h
or

T =k
.e-— 5 a,xh——-EZoa,xh. (3.13)

The fa.ctor koZo/8 has the dimensions of an impedance, and is called the
wave impedance of TE, or H, modes. It will be designated by the
symbol Z,, so that

k .
Zy = E" Zs : C(3.14)
Thus, in component form, (3.13) gives
h, R, Zn (3.15)

for a wave with z dependence e—#=.
The remaining equations in the set (3.11) do not yield any new results;

so the solution for TE waves may be summarized as follows: First find a
solution for k., where
Veh, + k2h, =0 (3.16a)
Then
__ 8 |

h=— W A (3.16b)
and

e= —Zwa, Xh (3.16¢)
where
B=(kt—k2)} and Zy= %Zﬁ
Complete expressions for the fields are
H = +he¥8: 4 heFits (3.16d)
E = E, = ec¥it: (3.16e)

'.\’ot.e that in (3.16d) the sign in front of h is reversed for a wave propagat-
ing in the —z direction since h will be defined by (3.16b), with g positive

)
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regardless of whether propagation ig in the +2z or —z direction. The
sign in front of e does not change sinee it involves the factor B twice, once
in the expression for h and again in Zs. Only the sign of one of e or h can
change if a reversal in the dircction of energy flow is to occur. That is,
the solution for a wave propagating in the —z direction can be chosen as
E = —ee®s, H = (h — h,)e# or as E = ec?, H = (—=h + h,)e#s. One
solution is the negative of the other. The latter solution is arbitrarily
chosen as the standard in this text.

TM waves

The TM, or E, waves have h, = 0, but the axial electric field e, is not
zero. These modes may be considered the dual of the TE modes in that
the roles of electric and magnetic fields are interchanged. The derivation
of the equations to be solved parallels that for TE waves, and hence only
the final results will be given. :

Tirst obtain a solution for e,, where

Ve, + kete, =0

subject to the boundary conditions imposed. This will serve to determine
the eigenvalue k2. The transverse fields are then given by

(3.17a)

E, = ecFift = — i—ﬂe Vi0,698s (3.17b)
H‘ —_ ihéFiﬂz —_ i Yea‘ X ee?)'ﬂl (3176)

where 8 = (k¢ — k.2)! and the wave admittance Y, for T)M waves is
given by

(3.17d)

The dual nature of TE and TM waves is exhibited by the relation

ZZn = Z¢* (3.18)

which holds when both types of waves have the same value of 8 and is
derivable from (3.14) and (3.17d). The complete expression for the
electric field is

E = E‘ + Ez = eeTib: + eze:F)'ﬂl

= (_ "%‘:—ﬁz Vlet i 6,) e;jﬂ‘
It is convenient to keep the sign of e the same for propagation in either
the +z or —z direction. Since V- E = 0, that is, V- E, + dE,/dz = 0,
this requires that the z component of electric field be —e.e’: for a wave
propagating in the —z direction, because V.- E does not change sign,
whereas 8E,/dz does, in view of the change in sign in front of 8. The

(3.19)
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transverse magnetic field must also change sign upon reversal of the
direction of propagation in order to obtain a change in the direction of
energy flow. For reference, this sign convention is summarized below
The transverse variations of the ficlds are represented by the functions
e, h, e, and h,, independent of the direction of propagation. Waves
propagating in the +2z direction are then given by

E = E+ = (e + e,)e . (3.20a;
H = H+ = (h + h,)e~ ~ (3.200;

For propagation in the —z directions the fields are

E = E- = (e — e,)ei*: ' - . (321a
H = H- = (=h + h,)ei: - (3.21b;

Additional superscripts (+4) or (—) will be used when it is necessary tc
indicate the direction of propagation. The previously derived equations
for TEM, TE, and TM modes are valid in a medium with electrical con-
stants ¢, u, provided these are used to replace ¢, 1o. A finite conductivity
can also be taken into account by making e complex, i.e., replacing e by
€ — jo/e. ‘

The wave impedance introduced in the solutions is an extremely usefu

concept in practice. The wave impedance is always chosen to relate the

transverse components of the electric and magnetic fields. The sign is
always such that if 7, j, & is a cyclic labeling of the coordinates anc
propagation is along the positive direction of coordinate k, the ratic
E./H; = (Z.): is positive. Here (Z.)« is the wave impedance referrec
to the &k axis as the direction of propagation. If 7, 7, k form an odc
permutation of the coordinates, then E;/H; is negative. The usefulness
of the wave-impedance concept stems from the fact that the power is
given in terms of the transverse fields alone. For example, for TE waves

P %Re[sExH*-a,dxdy
=7}Re/sexh*-a,dxdy

~3Re [, Zia. x h) x h* - a,dz dy

Z Y
=-—2—"fsh-h*dxdy=-§-"[se-e*dxdy

upon expanding the integrand. Thus the wave impedance enables the
power transmitted to be expressed in terms of one of the transverse fields
alone.. A further property of the wave impedance, which will be dealt
with later, is that it provides a basis for an analogy between conventiona
multiconductor transmission lines and waveguides.
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3.2 Transmission lines (field analysis)

Lossless transmission line

A transmission line consists of two or more parallel conductors. Typical
examples are the two-conductor line, shiclded two-conductor line, and
coaxial line with cross sections, as illustrated in Fig. 3.1. Initially, it will
be assumed that the conductors are perfectly conducting and that the
medium surrounding the conductors is air, with € =~ ¢, u = po. The
effect of small losses will be considered later.

With reference to Fig. 3.2, let the one conductor be at a potential Vo/2
and the other conductor at —V,/2. To determine the field of a TEM
wave, a suitable potential ®(z, y) must be found first. It is necessary
that & be a solution of

Vep =0

..and satisfy the boundary conditions

Vs

3 on S

d =
‘—'};’ OD.Sl

Since @ is unique only to within an additive constant, we could equally

(a) ' (5) (e) '

Fig. 8.1 Cross sections of typical transmission lines. (a)
Two-conductor line; (b) shielded two-conductor line; (c)
coaxial line.

Fig. 3.2 Cross section of a general two-conductor line
showing transverse field patterns.
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well choose ® = Voon S;and® = Qon Si.  If a solution for & is possible,
a TEM mode or ficld solution is also possible. When (wo or more con-
ductors are present, this is always the case. The solution for ¢ is an
electrostatic problem that can be solved when the line configuration is
simple enough, as exemplified in Fig. 3.1. '

The fields are given by (3.8),and for propagation in the 4z direction are ’

E = E; = ee %o = —V,pe—7*e2 (3.22a)
H = H, = Y, X ee7% (3.22b)

The line integral of e between the two conductors is

[sea= [ —va-a

S:dd-
— Jo, @t = —[8(82) — &S] = — Vo

Associated with the electric field is a unique voltage wave
V = Voeites . (3.23)

since the line integral of e between S; and S. is independent of the path
chosen because e is the gradient of a scalar potential.
The line integral of h around one conductor, say Ss, gives

b b-dl =@ Jodl=1,

by application of Ampére’s law, V X H = jwD + J, and noting that there

-

is no axial displacement flux D, for a TEM mode. - On the conductors

the boundary conditions requiren X e = 0 andn x h = J,, wheren is a
unit outward normal and J, is the surface current density. Sincen and h
lie in a transverse plane, the current J, is in the axial direction. In the
region remote from the conductors, V, x h = 0, but the line integral
around a conductor is not zero becausd of the current that exists. The
current on the two conductors is oppositely directed, as may be verified
from the expression n x h = J,. Associated with the magnetic field
there is a unique current wave

I = Ieite ' (3.24)

Since the potential & is independent of frequency, it follows that the
transverse ficlds e and h are also independent of frequency and are, in
actual fact, the static field distributions which exist between the con-

ductors if the potential difference is V, and currents I, — I, exist on Sy,

S, respectively. The magnetic lines of flux coincide with the equi-
potential lines, since e and h are orthogonal, as seen from (3.22b).

Ezample 3.1 Coaxialline TFigure 3.3 illustrates a coaxial transmission
line for which the solution for a TEM mode will be constructed. In

- ror

Sec, 3.2 ’ Transmission lines ond waveguides 75

o
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Fig. 3.8 Coaxial transmission line.

. cylindrical coordinates r, ¢, z, the two-dimensional Laplace equation is

"or) T rag

16( aq>>+ 19 _ o
or for a potential function independent of the angular coordinate ¢,

18 (. 92\ _
raor\ or

Integrating this equation twice gives
®=Cilnr+C, -

Imposing the boundary conditions & = Vo at r =a, & =0 at r = b,
gives

Vo=Cllna+Cg 0=C|,1nb+Cz _
and hence C; = —CiInbd, C1 = Vo/lln (a/b)],

_ In (r/b) .
P = Vom (3.25)

The electric and magnetic fields of a TEM mode propagating in the
+z direction are given by (3.22) and are

= — 9? —~skos = e _L’_. g'..’.’ —Jikoz
E A P (a/b) e
i Vo a_‘" —3kos
= m - e (3.26@)
YoVo a4 : '
3 ~jket = . 2 _ "2 p—jkes
H = Y, X ee I (5/a) 7 e~ (3.26b)

The potential difference between the two conductors is obviously Vo; so
the voltage wave associated with the electric field is

V = Vee—ikes (3.27)
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The current density on the inner conductor is

Y o‘ 0 a,
In (b/a) a

e—jko:

Jo=nxH-= a,xH

The total current, apart from the factor e—* is

YoVo 2r YoVoz‘n'

aln6/a) Jo 2% = I (5/a) (3.28)

Io=

‘The current on the inner surface of the outer conductor is readily shown
to be equal to I, also, but dirccted in the —z direction. The current
wave associated with the magnetic field is therefore

I = Jpe~% - (3.29)

The power, or rate of energy flow, along the line is given by

_ 1 b [2x * ! 1 YoVo 2% d¢ dr
P=3Re [’ ["ExH* ardrds = 3 [In (/@) f A
TYoVo

= In (b/a) .

The power transmitted is seen to be also given, as anticipated, by the
expression

(3.30)

TrEy — 1 - .47I'Yo .
%Re (II ) = ;Volo —2Vo 1 (b/a)
The characteristic impedance of the line is defined by the ratio
Vo )

in terms of which the power may be expressed as P = $Z.[y* = $Y.V,?,
- where Y. is the characteristic admittance of the line and equal to Z.~*.
The characteristic impedance is a function of the cross-sectional shape of
the transmission line.

Transmission line with small losses

Practical transmission lines always have some loss caused by the finite
conductivity of the conductors and also loss that may be present in the
dielectric material surrounding the conductors. Consider first the case
when the conductors are surrounded by a diclectric with permittivity
€ = ¢ — je¢’ but the conductors are still considered to be perfect. The
presence of a lossy diclectric does not affect the solution for the scalar
potential . Conscquently, the field solution is formally the same as
for the ideal line, except that ko and Y are replaced by k = ko(x’ — jxk’’)}
and Y = Yo' — jx")}, where the diclectric constant k = ¥’ — jx” = e/eo.
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For small losses such that «'’ << «’, the propagation constant is

b= ki = 56 (1 =i ) ~ (W) ko + S ko

2(x")}
Thus
Nk .
a = 2-"(—'(—)% ‘ : (3.320)
= («)ko (3.32b)

where « is the attenuation constant and g is the phase constant. The
wave consequently attenuates according to e—= as it propagates in the.
+z direction.

It will be instructive to derive the above expression for a by means of a
perturbation method that is widely used in the evaluation of the attenua-

“tion, or damping, factor for a low-loss physical system. This method is

based on the assumption that the introduction of a small loss does not
substantially perturb the field from its loss-free value. The known field
distribution for the loss-free case is then used to evaluate the loss in the
system, and from this the attenuation constant can be calculated. In
the present case, if «/ = 0, the loss-free solution is

E = —VPe—it: H=Ya,xE

where k = (k')ko and Y = («')}Y,. When «” is small but not zero, the
imaginary part of ¢, that is, ¢”, is equivalent to a conductivity

o = we’ = we”’

A conductivity o results in a shunt current J = ¢E between the two con-

ductors. The power loss per unit length of line is
=1 * _ we” *

Pi=o [ J-J*dS =% [(E-E*dsS (3.33)

where the integration is over the cross section of the line, and the loss-free
solution for E is used to carry out the evaluation of P, Since loss is

~ present, the power propagated along the line must decrease according to

a factor e~?:, The rate of decrease of power propagated along the
line cquals the power loss. If the power at z = 0 is Po, then at z it is
P = Pye—?:  Consequently,

_opP

~ % = P; = 2aqP~?: = 2aP (3.34)

which states that the power loss at any plane z is directly proportional to”
the total power P present at this plane. The power propagated along the



line is given by

P

}Re [(ExH*-a,dS

Y : _ Y r
fT_;RefsEx(a:xE*)-a,dS=:2—/sE-E*dS \‘
Hence the attenuation « is given by

Pl o wé” 1

= X
3P T 2Y 2V, () "2()

which is the same as the expression (3.32a). For this example the
perturbation method does not offer any advantage. However, often the
field solution for the lossy case is very difficult to find, in which case the
perturbation method is extremely useful and simple to carry out by com-
parison with other methods. The case of transmission lines with con-
ductors having finite conductivity is an important example of this, and is
discussed below.

If the conductors of a transmission line have a finite conductivity, they
exhibit a surface impedance

_1+J

Zn = s (3.35)
where 8, = (2/wuo)! is the skin depth (Sec. 2.9). At the surface the elec-
tric field must have a tangential component equal to Z.J,, where J, is
the surface current density. Therefore it is apparent that an axial
component of electric field must be present, and consequently the field
is no longer that of a TEM wave. The axial component of electric field
gives rise to a component of the Poynting vector directed into the con-
ductor, and this accounts for the power loss in the conductor. Gen-
erally, it is very difficult to find the exact solution for the fields when the
conductors have finite conductivity. However, since |Zn| is very small
comparcd with Z,, the axial component of electric field is also very small
relative to the transverse components: Thus the field is very nearly
that of the TEM mode in the loss-free case. The perturbation method
outlined earlier may be used to evaluate the attenuation caused by finite
conductivity.

The current density J, is taken equal to n X H, where n is the unit
outward normal to the conductor surface and H is the loss-free magnetic
field. The power loss in the surface impedance per unit length of line is

P,={;ReZ,,.95

R,
BN ¢81+S: (n x H) (@ x HY) dl

sivs, Jer I dl

Rn’ ‘
= —:?_- ¢SI+32 H-H*dl (3-36)
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where Rm = 1 /o8, is the high-frequency surface resistance, and
(nxH) - (nxH*)=n-Hx(@mxH* ,
=n-[(H-H*)n — (H-n)H*] = H.-H*

since n-H = 0 for the infinite-conductivity case. The integration is
taken around the periphery S; + S: of the two conductors. The attenua-
tion constant arising from conductor loss is thus

. %
_ Pl _ Rm ¢S|+S:H H dl (3.37)
a =5 = >
2P 2ZfH-H*dS

“where the power propagated along the line is given by

Re }fE x H*-a,dS = $Z/H - H*dS

-and Z is the intrinsic impedance of the medium; that is, Z = (u/e)}.

When both dielectric and conductor losses are present, the attenuation
constant is the sum of the attenuation constants arising from each cause,
provided both attenuation constants are small.

Ezample 3.2 Lossy coaxial line Let the coaxial line in Fig. 3.3 be
filled with a lossy dielectric (¢ = ¢ — j€'’), and let the conductors have
finite conductivity o. For the loss-free case (¢ = 0,0 = =) the fields
are given by (3.26), with ko and Y, replaced by k = (¢'/€0) ko,

Y = (é)‘yo
€0 .

Thus
E = e S e | (3.380)
H = IB%C/%) "‘7 gt _ | (3.38b)
The power propagated along the line is
P—_-%Re/:‘/;”ExH*.a,rdwmﬂ%% (3.39)
The power loss P;; from the lossy dielectric is, from (3.33)A,

' Pu= ‘—";— S [PE Bt dedr - ‘;’;(Z’/";’; ' | (3.40a)

The power loss from finite conductivity is given by (3.36), and is

"2 [In (b/a)]? a

= Bnr?Vo') + a (3.40b)
(In (b/a)]* ab .

» 217 2 . 1
P11=R l_Y_o__[oz (l-l"z)dd’
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Hence the attenuation constant « for the coaxial line is given by

_ Pu+ P _ we + R.Y b+a
2P 2Y ' 2In(b/a) ab

Ion + Rm b +a
2(::’)* 2Z In (b/a) ab

(3.41)

For the lossy case the propagation constant is consequently taken as

a+j8 = a+jk

with « given by (3.41).

3.3 Transmission lines (distributed-circuit analysis)

In the previous section it was shown that a unique voltage and -current
wave was associated with the electric and magnetic fields of a TEM mode
on a transmission line. Also, the transverse fields of a TEM mode have
a transverse variation with the coordinates that is the same as for static
fields. For these reasons the transmission line can be described in a
unique manner as a distributed-parameter electric network. Energy

storage in the magnetic field is accounted for by the series inductance L -

_ per unit length, whereas energy storage in the electric field is accounted
for by the distributed shunt capacitance C per unit length. Power loss
in the conductors is taken into account by a series resistance R per unit
length. Finally, the power loss in the dielectric may be included by
introducing a shunt conductance G per unit length. Suitable definitions
for the parameters L, C, R, and G based on the above concepts are

L= ﬁ]o J{H-H*dsS (3.420)
C= ’Voij B E*dS (3.420)
R= I—{% o HH (3.42¢)
G = V v* [ E-E*dS (3.42d)

where I, is the total current on the line, and V the potential difference.
These expressions are obtained, for example, by equating the magnetic
- energy +IoI§L = W, stored in the equivalent series inductance L to the
expression for 1V, in terms of the field. The above definitions are readily
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Table 3.1 Parameters of common transmission linest
Z. R
LY e e D
T \e d xd [(D/d)* — 1}}
1 fu\}, b R, (1 l)
27(&’) lna 2r a+b
1 .uo)*[ ( 1—¢*\ 2Ra [ l+ p' ]
(& 2 = a -
T (e' PIF 1+¢ 7rd + (
144p2 ] B [ 1+ 4}"]
1 — 4q2 = ala 2) —
16p° ( q%) | +8 — ¢ | 0+e) 5

_ % For all TEM transmission lines

’ ’ 1”?
C = ﬁ‘i;-)— L= (ue)iZ, G=== C
GZ, RY. ( )
M=, T d&.

shown to be equivalent to the other commonly used definitions such ast

I = magnetic flux linkage

- total current - (3:43a)

- total charge per unit length (3.43)
voltage difference between conductors ’

total shunt current (3.43¢)

= voltage difference between conductors

The series resistance R is most conveniently defined on an energy basis
as in (3.42c¢) since the current density J, = n X H is not always uni-
formly distributed around the conductor periphery.
common transmission lines are given in Table 3.1.

The equivalent circuit of a section of transmission line of differential
length dz is illustrated in Fig. 3.4. If the voltage and current at the
input are U(z, {), 9(z, {) and at the output are

9V a9
'0+a—zdz 9+‘—9;dz

t See, for example, R. Plonsey and R. E. Collin, “Principles and Applications of
. Electromagnetic Ficlds,” sec. 10.5, McGraw-Hill Book Company, New York, 1961.

Parameters of some
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I = Ldz Rdr 9+g%dz
s— )  — - —&
. 18]
’01 ) ‘UI C‘dzT 6dz t'u-r-aydz

Fig. 3.4 Equ'ivalent circuit of a differential length of transmission line.

then Kirchhoff’s laws give

LeX 0] ad9
—(‘U-{-B—z-dz) —9Rdz+Lszt

or

av a9 ._
5 = —$R-L | (3.44a)
Similarly,

a9 ' av
-<9+5;dz)—'UG'dz+Cdz?t-

or

a9 ‘ '
ki —0@F - c (3.44b)

The first equation states that the potential difference between the input
and output is equal to the potential drop across R and L. The second
equation states that the output current is less than the input current by
an amount equal to the shunt current flowing through C and G. Differ-
entiating (3.44a) with respect to z and (3.44b) with respect to time ¢ gives

8°0 o9 3%
a7 - Ry Ll ; ' (3.450)
8% Ay 3?0

dtar et T (3.450)

Using (3.44b) and (3.45b) in (3 45a) now gives the followmg equation for
the line voltage :

a'b
(e o) (o o)

or
3™ 9?0
S5~ (RC + LG) LC 57 — RGU =0 (3.46)

The current ¢ satisfies thls one-dimensional wave equation also. If a
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solution in the form of a propagating wave
U = Re (Veretivy)

is assumed, substitution into (3.46) shows that the propagation constant -
must be a solution of

¥? — jw(RC + LG) + wLC — RG =0 : (347

If only the steady-state sinusoidally time-varying solution is desired
phasor notation may be used. If welet ¥ and I represent the voltage anc
current without the time dependence e/, the basic equations (3.44) may
be written as

%g = —(R 4+ joL)I | (3.48¢;
g—f = —(@G + juC)V :  (3.48b)

The wave equation (3.46) becomes
Y ~ (RG — W LC)V ~ ju(RC + LE)V = 0 (3.49)
The general solution to (3.49) is
V = Vters 4 V-ers (3.50)
where ¥ = a 4 jB is given by

= [—wLC + RG + ju(RC + LO)} - @.51)

from (3.47). The constants V+and V—are a;l:bitrary amplitude constants
for waves propagating in the 42z and —z directions, respectively. The
solution for the current I may be found from (3.48q), and is’

I = Iter — [ete = o — g (Ve = Vo) (3.52)
The parameter _

. _ R4jeL _ (R+ juL\

Z, = p” = (G +ij‘) (3.53)

is called the characteristic impedance of the line since it is equal to the
ratio V+/I* and V-/I-. Note that y = [(R + jwL)(G + jwC)]L

Loss-free transmission line

For a line without loss, i.e., for which B = G = 0, the propagation con-
stant is

y = jB = joVLC (3.5%)
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and the characteristic impedance is pure real and given by

=L .
Z. = /G : : (3.55)

According to the field analysis, g8 is also equal to w(ue)}, and hence
LC = ue (3.56)

for a transmission line. This result may also be verified from the solu-
tions for L and C, as shown below in the section on transmission-line
parameters. Using (3.56) in (3.55) shows that the characteristic imped-
ance is also given by :

L [me_e [p_, e :
Z“\/;“\/Cz‘c\/e“zc (3.57)

where Z is the intrinsic impedance of the medium. The characteristic
impedance differs from the intrinsic impedance Z by a factor ¢/C, which
is a function of the line configuration only.

Low-loss transmission line

For most microwave transmission lines the losses are very small; that is,
R K wL and G < wC. When this is the case, the term RG in the expres-
sion (3.51) for v may be neglected. A binomial expansion then gives

7zmviﬁ+%vu(%+%)=a+ﬁ (3.58)

To first order the characteristic impedance is still given by (3.55) or
(3.57). Thus the phase constant for a low-loss line is

8 =w+IC (3.59a)

and the attenuation constant « is
a =4 vIC(§+§) - sy + 620 (3.59%)

where Y, = Z-1 = v/C/L is the characteristic admittance of the trans-
mission line. : :

~ %3.4 Transmission-line parameters

In this section the field analysis to determine the circuit parameters L,
R, C, and G for a transmission line is examined in greater detail. This
"will serve further to correlate the field analysis and circuit analysis of
transmission lines.
Consider first the case of a loss-free line such as that illustrated in Fig.
3.2. When the scalar potential & has been ‘determined, the charge
density on the conductors may be found from the normal component of
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electric field at the surface; thatis, p, = en-e = —en+ V® = —e dd/an,
where ¢ is the permittivity of the medium surrounding the conductors.

~ The total charge Q per unit length on conductor S: is

Q=¢ m-ed

The total charge on the conductor Sy is —@Q per meter. The potential of
S is Vo, and hence the capacitance C per unit length is

¢ [ n-ed | (3.605
/sf‘ e-dl » ‘

The total current on S; is

-9 _
C =3 =

Io = 9Ss.h.-d1 = §, Yn-ed =_Z;9‘

since |h| = Y|e| = Yn- e at the surface of S: because the normal com-
ponent of h and the tangential component of e are zero at the perfectly
conducting surface S;. The characteristic impedance of the line is given
by '

A knowledge of the capacitance per unit length suffices to determine the
characteristic impedance. '

To determine the inductance L per unit length, refer to Fig. 3.5, which
illustrates the magnetic flux lines around the conductors. Since h is
orthogonal to e, these coincide with the equipotential lines. All the flux
lines from the ® = 0 to the ® = V,o/2 line link the current on S;. The
flux linkage is the total flux cutting any path joining the & = 0 line to the
surface 8. If a path such as PyS: or P,S; is chosen, which is orthogonal
to the flux lines, this path coincides with a line of electric force. The

Fig. 8.5 Magnetic flux lines in a trans-
mission line.




86 Foundations for microwave engineering |
flux cutting such a path is

v = [:’gh dl = uY f: —e-dl = ,;sz—“

since [h| = Yle| for a TEM wave. The inductance of one conductor of
the line is

_¥_ vV
Ll—lo—[JY'é'n

The inductance of both conductors per unit length is twice this value; so
Vo
I,

From this relation and (3.61) it is seen that Z = uZ./L = CZ./¢, and
hence

L =puY +— = uYZ, ‘ (3.62)

which gives
I .
Equations (3.61) and (3.62) also show that

re = LC (3.64)

for a transmission line. The above expressions for C and L can also be

obtained from the definitions based on stored energy. The derivation

is left as a problem.

If the dielectric has a complex permittivity e = ¢ — je’, where ¢
includes the conductivity of the dielectric if it is not zero, the total shunt
current consists of a displacement current Ip and a conduction current
Is. The current leaving conductor S: per unit length is

’

I=1Ip+1Is=jue e-nd =jud P e-ndl+aw’P, e-ndl

where the first integral on the right gives the displacement current and
the second integral gives the conduction current. The total shunt admit-
tance is given by Y = jwC 4 G = (Is + Ip)/Vo, and hence it is seen
that

since jwC = Ip/V, and jwC/jwe’ = C/e’. This relation shows that G
differs from C by the factor we’’/¢’ only.
The transmission-line loss from finite conductivity may be accounted
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for by a scries resistance R per unit length provided R is chosen so that

sRIg =22 g neal (3.66)

The right-hand side gives the total power loss per unit length arising
from the high-frequency resistance of the conductors. In terms of this
quantity, the resistance R is thus defined as

th|2 dl .
R =R, 958*”’ (3.67)

($,, i d1)’

where R, = 1/a§, and &, is the skin depth. ‘
~ A further effect of the finite conductivity is to increase the series
inductance of the line by a small amount because of the penetration of
the magnetic field into the conductor. This skin-effect inductance L, is
readily evaluated on an energy basis. The surface impedance Z.. has an

" inductive part jX. = j/o¢d, equal in magnitude to Ra.. The magnetic

energy stored in X, is (note that X, is equivalent to a surface inductance
Xm/w = Lm)
- X’” 2
Wn = 40 ¢sl-‘+& 1Jo[* dl
= X 2d] = 2m = =9
- Z(:)_¢SI+SQ lhl dl = 40 R, - 4w

by using (3.66) to replace the integral. Defining L, by the relation
%LaI o2 = Wm

gives ' .

L, = R - (3.68)

The series inductive reactance of the line is increased by an amount equal
to the series resistance. However, for low-loss lines, B << wL, so that
L, K L, and the correction is not significant for most practical lines.
The inductance L, is called the internal inductance since it arises from
flux linkage internal to the conductor surfaces.

It should not come as a surprise to find that wL, = R since both the-
inductive reactance and resistance arise from the penetration of the
current and fields into the conductor. The effect of this penetration
into the conductor by an effective distance equal to the skin depth &, is
correctly accounted for in a simplified manner by introduction of the
surface impedance Zn = (1 - 7)/aé,.

Ezample 3.3 Coazxial-line parameters For the coaxidl line of Fig. 3.3
the potential & is given by

_In(r/b)
® = Vor /b
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4
The charge on the inner conductor is

Q= eﬂ)z'a,-ead¢=eﬁ)2'—é§)ad¢

d
- -‘eVo 2fd¢ = 21reVo
In (a/b) Jo In (b/a)
‘Hence the capacitance per unit length is
C = €0 _  2xd
=V, " In (b/a) (3.69)

six_mce the capacitance arises only from that part of the charge associated
with ¢ whereas ¢’ gives rise to the shunt conductance. :
The magnetic field is given by (3.38b) as

H = he s = __},_I{o__ E'_Q e-jkgz

"~ In@/a) r
The current I, is

2r 2 4
Io=/0 h-a¢ad¢=l‘l'l——7r%;—}a% g
Thus the characteristic impedance is
gz, =Yo_ 2 |
“=T, = o (b/a) ' (3.70)
The flux linking the center conductor is '
w___“f:h.a,dr=l% :%=uYVo

Consequently, the inductance per unit length is

_ Y _w¥Ve, b_ ., b
L=t= e~ =", (3.71)
from which it is seen that LC = ue’ and Z, = (L/C)%.

The shunt conductance G is given by we’C/¢, and is
" 2né 2rwe’’

, St r Yy R Y (V) (3.72)

To find the series resistance the power loss in the inner and oufer con-
ductors must be evaluated. This was done in Example 3.2, with the
" result [Eq. (3.40b)]
R.xY?Vib 4+ a
fIn (b/a)]* ab

Solving for R gives

%RIoz = Pzg =

R.b+a
Rs;z-—g';— (3:78)
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The internal inductance L, is equal to R/w; so the total series line induct-
ance per unit length is . :

b+a

2rwabd,o (3.74)

_ b b
L+L.—21rlna+

3.5 Terminated transmission line

In this section the properties of a transmission line terminated in an
arbitrary load impedance Zy are examined. This will serve to illustrate
how the forward and backward propagating waves can be combined to
satisfy the boundary conditions at a termination. Figure 3.6 illustrates
schematically a transmission line terminated in a load impedance Zy.
The line is assumed lossless and with a characteristic impedance Z. and

* g propagation constant y = j8. It should be noted that at microwave

frequencies conventional low-frequency resistors, inductors, or capacitors,

.. when connected across the two conductors of a transmission line, may

behave as impedance elements with quite different characteristics from
the low-frequency behavior. o .

If a voltage wave V+e—#: with an associated current I +¢—3% is incident
on the termination, a reflected voltage wave V—e/* with a current — I-¢?
will, in general, be created. The ratio of the reflected and incident wave
amplitudes is determined by the load impedance only. At the load the
total line voltage must equal the impressed voltage across the load and
the line current must be continuous through the load. Hence, if Z; is
located at z = 0,

V=Vt4+V-=7V, (3.75a)
I=I+-I-=1, (3.75b)

But I+ = Y,V+, I- = Y.V-, and V./I. = Z, by definition of load
impedance. Therefore '

Ve V- =T (3.76a)

V= V- = zé Vs ' (3.76b)
L

‘The ratio of V- to V+ is usually described by a voltage reflection coeffi-

I~ —

¥
To generator .
1 ! 2

Fig. 8.8 Terminated transmission line.
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cient T defined as

V-
T=33 _ , (3.77)

In place of (3.76) we may write
T*+(Q 4+ T) =V,

V+H1—-7T) = —ng Ve

L
Dividing one equation by the other yields

14T 7, -

1I-T Z.- @78)
The quantity Z;/Z. is called the normalized load impedance (load imped-
ance measured in units of Z.), and (1 4 I')/(1 — T)is then the normalized
input impedance seen looking toward the load at 2 = 0. The normalized
load impedance will be expressed as Z;, with the bar on top signifying a
normalized impedance in general. Solving for the voltage reflection
coefficient T gives

_Zu—Z. _Zi/Z.—1 _Zy—1
Zr+Z. Zu/Z.+1)  Zp+1

Analogous to a vbltage reflection coefficient, a _current reflection coeffi-
cient T's could also be introduced. In the present case

_I_ - YcV— -

I+ Y.Vt

In this text, however, only the voltage reflection coefficient will be used;
so the adjective “voltage’” can be dropped without confusion.

The incident voltage wave can be considered as transmitting a voltage
V1 across the load, and a voltage transmission coefficient T can be defined
as giving V in terms of V*; thus

Vie=TV+=(1+TI)V+

r

(3.79)

Ir= -T

So

T=14T (3.80)

A corresponding current transmission coefficient is not used in this book.
Returning to (3.79), it is seen that if Z; = Z., the reflection coefficient

is zero. In this case all the power in the incident wave is transmitted to

the load and none of it is reflected back toward the generator. The
power delivered to the load in this case is

P = 1 Re (VI*) = }|V+°Y. = }|V.|?YL | (3.81)

The load is said to be matched to the transmission line when T' = 0.
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If Z. does not equal Z., the load is mismatched to the line and a
reflected wave is produced. The power delivered to the load is now
given by
P =} Re (Vo I]) = $ Re [(V* + V-)(I+ — [7)¥]

3 Re [Y(VF + V-)(VF — V)*] = § Re [V |VH*(1 + T)(1 — TI)*]
Y [VH(L - T} - (3.82)

The final result states the physically obvious result that the power
delivered to the load is the incident power minus that reflected from the
load.

In the absence of reflection, the magnitude of the voltage along the
line is a constant equal to |V+|. When a reflected wave also exists, the

- incident and reflected waves interfere to produce a standing-wave pattern
" along the line. The voltage at any point on the line (z <.0) is given by

V = Vtei8s + TV+eit:z

~ and has a magnitude given by

[V| = |V* |1 + Te2®| = [V+| |1 + Te~28]

where [ = —zis the positive distance measured from the load toward the
generator, as in Fig. 3.6. Let T be equal to pe®, where p = |T|; thent

[V] = |V |1 + pei®-2D| = |V+|{[1 + p cos (8 — 26])]*
4 + p?sin? (§ — 28D}
= |[VH{(Q + p)? — 201 — cos (6 — 281} '

= V¥ [(1 + p)? — 4p sin? (az - g)]* | (3.83)

This result shows that |V| oscillates back and forth between maxi-
mum values of |V+(1 + p) when 8l — 6/2 = nr and minimum values
|V+[(1 — p) when Bl — 6/2 = nw + 7/2, where n is an integer. These
results also agree with physical intuition since they state that voltage
maxima occur when the incident and reflected waves add in phase and
that voltage minima occur when they add 180° out of phase. Successive
maxima and minima are spaced a distance d = x/8 = Ar/2r = /2
apart, where A is the wavelength for TEM waves in the medium sur-
rounding the conductors. The distance between a maximum and the
nearest minimum is A/4.

Since the current reflection coefficient is equal to —T, the current
waves subtract whenever the voltage waves add up in phase. Hence

" 1 The symbol p denotes both charge density and the modulus of the reflection coef-

ficient. The context makes it clear which quantity is under discussion; so confusion
should not occur.
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l—
Z d‘jszc

Fig. 8.7 Voltage and current standing-
wave patterns on a line terminated in a
load impedance equal to 3Z..

current. maxima and minima are displaced A\/4 from the corresponding

voltage maxima and minima. Figure 3.7 illustrates the voltage and
current standing-wave patterns that result when Z. is a pure resistance

equal to 3Z..
The ratio of the maximum line voltage to the minimum line voltage is

called the voltage standing-wave ratio S; thus

_VHA 40 1+,
5= [VH1 —p) 1-—»p (3.84)

This is a parameter of considerable importance in practice for the follow-
ing reasons: At microwave frequencies instruments for the direct abso-
lute measurement of voltage or current are difficult to construct and use.
On the other hand, devices to measure relative voltage or current (or
electric or magnetic field) amplitudes are easy to construct. A typical

" device is a small probe inserted into the region of the electric field around
a line. The output of the probe is connected to a crystal rectifier, and
produces an output current which is a measure of the relative electric
field or voltage at the probe position. By moving the probe along the
line, the standing-wave ratio can be measured directly in terms of the
maximum and minimum probe currents. The location of a voltage
minimum can also be measured, and this permits the phase angle 6 of T
to be calculated. Since p is known from the measured value of S, T is
specified, and the normalized load impedance may be calculated from
(3.78).

Although the reflection coefficient was introduced as a measure of the
ratio of reflected- to incident-wave amplitudes at the load, the definition
may be extended to give the corresponding voltage ratio at any point on
the line. Thus, at z = —1I, the reflection coefficient is

V—e# V-

Vel W-e—ml = Ipe~# (3.85)

() =

where T, = V-/V+ now denotes the reflection coefficient of the load.
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The normalized impedance, seen looking toward the load, at z = ~1, is

7 Zin _ V. VHeifl 4 V=gt
. T I1Z, T Ve =yt
14T _ 14w
1 =T(@) 1 ~Tpe®

(3.86)

By replacing Tz by (Z: — Z.)/(Z1 + Z.) and exi® by cos 8! + jsin 8l,
this result may be expressed as

= Zin _ Z1 + jZ. tan gl
Zin Z. Z.+ jZg tan gl (3.87)

A similar result holds for the normalized input admittance ; SO

g Yo _Ye+iVetangl _ Po+jtangl
Yc_ Y. + Y. tan 8l 1 +j?1, tan B{

(3.88)

Of particular interest are two special casés, namely, Bl = r or I = )\/2»
rand Bl = #/2 or I = \/4, for which

\ .

Zin (z = 5) =27 : (3.89a)
A Z2 ’

Zin (l = Z) = Z; . (3.89b)

The first is equivalent to an ideal one-to-one impedance transformer,
whereas in the second case the impedance has been inverted with respect
to Z.2 '

Terminated lossy line

In the case of a lossy line with propagation constant ¥y = jB + «, the
previous equations hold except that j8 must be replaced by j8 + «, where
a is usually so small that, for the short lengths of line used in most experi-
.menta.l setups, the neglect of « is justified. N evertheless, it is of some
fnterest to examine the behavior of a lossy transmission line terminated
in a load Z;. One simplifying assumption will be made, and this is that
the characteristic impedance Z, can still be considered real. This
assumption is certainly valid for low-loss lines of the type used at micro-
wave frequencies. A detailed calculation justifying this assumption for
a typical case is called for in Prob. 3.6.

Clearly, the presence of an attenuation constant a does not affect the
definition of the voltage reflection coefficient T for the load. However,
ajc any other point a distance I toward the generator, the reflection coeffi-
cient is now given by

T(l) = T'pe-2isi-2al " (3.90)
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Z (12=3%

Fng. 38 .Voltage-standing-wave pattern on a lossy trans-
mission line. (1) Envelope of incident-wave amplitude;
(2) envelope of reflected-wave amplitude; (3) standing-
wave pattern.

As l_ is increased, T" decreases exponentially until, for large [, it essentially
vamshes.. Thus, whenever a load Z, is viewed through a long section
of lossy line, it appears to be matched to the line since I' is negligible at
the point considered. This effect may also be seen from the expression
for the input impedance, namely, '

1 + I‘Le—'_’jﬂl-—Zal
1 — Tpe-tmi—zal

Z1 + Z. tanh (j8l + i)

Zin = Zc 13
Z,+ Zg tanh (Bl + al)

(3.91)

which apprf)achgs Z. for | large since tanh z approaches 1 for z large and
not a pure imaginary quantity.

The losses also have the effect of reducing the standing-wave ratio S g

toward unity as the point of observation is moved away from the load
toward the generator. As the generator is approached, the incident-
wave amplitude increases exponentially whereas the reflected-wave
amplitude decreases exponentially. The result is a standing-wave pat-
tfarn of the type illustrated in Fig. 3.8. "For illustrative purposes a rela-
tively large value of « has been assumed here.

The power delivered to the load is given by

Py = { Re (VoI]) = 3{V.|*YL = % [V+2(1 = [Tz)?) (3.92)'

as before. At some point z = —I, the power directed toward the load
is
P(l) = } Re (VI*) = }|V}]?Y. ==Z‘IV+ al|2[] f‘l 2
HVIY. = 32 [Vestilt — [TQ)IY
= ._]:° [V+|z ( 2al 2
4 el — [T,)%) (3.93)
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where |T'le®* has been replaced by |Tz|. Of the power given by (3.93),
only that portion corresponding to Py as given by (3.92) is delivered to
the load. The remainder is dissipated in the lossy line, this remainder
being given by ’

P(l) — PL = 1;— |VH2(e? — 1)

3.6 Rectangular waveguide

The rectangular waveguide with a cross section as illustrated in Fig. 3.9 is
an example of a waveguiding device that will hot support a TEM wave.
Consequently, it turns out that unique voltage and current waves do not
exist, and the analysis of the waveguide properties has to be carried out
as a field problem rather than as a distributed-parameter-circuit problem.

In & hollow cylindrical waveguide a transverse electric field can exist
only if a time-varying axial magnetic field is present. Similarly, a trans-
verse magnetic field can exist only if either an axial displacement current
or an axial conduction current is present, as Maxwell’s equations show.
Since a TEM wave does not have any axial field components and there is
no center conductor on which a conduction current can exist, a TEM wave
cannot be propagated in a cylindrical waveguide.

The types of waves that can be supported (propagated) in a hollow
empty waveguide are the TE and TM modes discussed in Sec. 3.1. The
essential properties of all hollow cylindrical waveguides are the same, so
that an understanding of the rectangular guide provides insight into the
behavior of other types as well. "As for the case of the transmission line,
the effect of losses is initially neglected. The attenuation is computed .
later by using the perturbation method given earlier, together with the
Joss-free solution for the currents on the walls.

The essential properties of empty loss-free waveguides, which the
detailed analysis to follow will establish, are that there is a double infinity
of possible solutions for both TE and TM waves. These waves, or
modes, may be labeled by two identifying integer subscripts n and m, for
example, TE.». Theintegersn and m pertain to the number of standing-
wave interference maxima occurring in the field solutions that describe

Fig. 8.9 Rectangular waveguide. 2
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the variation of the ficlds along the two transverse coordinates. It will
be found that cach mode has associated with it a characteristic cutoff
frequency f..m below which the mode does not propagate and above
which the mode does propagate. The cutoff frequency is a gcometrical
parameter dependent on the waveguide cross-sectional configuration.
When f. has been determined, it is found that the propagation factor 8 is
given by

B = (ko* — Kk} ‘ (3.94)

where ko = w vV poeo and k. = 2xf. v/ puoee. The guide wavelength is
readily seen to be given by

2r _ Ao _ Ao
R R v/ Yo RV ey 77

_ where A, is the free-space wavelength of plane waves at the frequency
f = «/27. Since k. differs for different modes, there is always a lower
band of frequencies for which only one mode propagates (except when
k. may be the same for two or more modes). In practice, waveguides
are almost universally restricted to operation over this lower-frequency
band for which only the dominant mode propagates, because of the
difficulties associated with coupling signal energy into and out of a
waveguide when more than one mode propagates. This latter difficulty
arises because of the different values of the propagation phase constant 8
for different modecs, since this means that the signal carried by the two
or more modes does not remain in phase as the modes propagate along
the guMe. This necessitafes the use of separate coupling probes for
each mode at both the input and output and thus leads to increased
system complexity and cost.

Another feature common to all empty uniform waveguides is that the
phase velocity v, is greater than the velocity of light ¢ by the factor A,/X,.
On the other hand, the velocity at which energy and a signal are prop-
agated is the group velocity v, and is smaller than ¢ by the factor N¢/\,.
Also, sinee 3, and hence A,, v,, and v,, are functions of frequency, any
signal consisting of several frequencies is dispersed, or spread out, in
both time and space as it propagates along the guide. This dispersion
results from the different velocities at which the different frequency
components propagate. If the guide is very long, considerable signal
distortion may take place. Group and signal velocities are discussed in
detail in Seec. 3.11.

With some of the general properties of waveguides considered, it is
now necessary to consider the detailed analysis that will establish the
above properties and that, in addition, will provide the relation between
k. and the guide configuration, the expressions for power and attenuation,
ete. The case of TE modes in a loss-free empty rectangular guide is
" considered first.

A = (3.95)
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. TE waves

For TR, or If, modcs, ¢, = 0 and all the remaining field components can
be determined from the axial magnetic ficld k, by means of (3.16). The
axial ficld &, is a solution of

_ngh, + kczhz = (

or
a%h,
oz

ayz (3.96)

If a product solution h, = f(z)g(y) is assumed, (3.96) becomes

1d¥ |, 1d%y

fdx2+gdy2+lvc -‘0

_after substituting fg for A, and dividing the equation by fg. The term

L is a function of z only, — 1d? ", is a function of y only, and klis a
f dz? g dy

constant, and hence this equatlon can hold for all values of z and y only
if each term is constant. Thus we may write

1 d?f

Fia= =k or B k=0
2 2 .
;Zy —k?  or g_y_gz + k=0

where k.2 + k,2 = k.2 in order that the sum of the three terms may
vanish. The use of the separation-of-variables technique has reduced the
partial differential equation (3.96) to two ordinary simple-harmonic
second-order equations. The solutions for f and g are easily found to be

f= Aicoskx + Assin k.

= Bjcos k,y + B:sin ky
where 4, As, By, B, are arbitrary constants. These constants, as well
as the separation constants k., k,, can be further specified by considering

the boundary conditions that h, must satisfy. Since the normal com-
ponent of the transvérse magnetic field h must vanish at the perfectly

" conducting waveguide wall, (3.16b) shows that n. V;h, = 0 at the walls,
where n is a unit normal vector at the walils. When this condition holds,

tangential e will also vanish on the guide walls, as (3.16¢) shows. The

‘requirements on &, are thus

oh. _
ax
oh,
a9y

atz=0,a

=0 aty =0,0b
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where the guide cross scetion is taken to be that in Fig. 3.9. In the solu-
tion for f, the boundary conditions give

k. Arsinkx + bodscosl,x =0 atr =0,a

Hence, from the condition at 2 = 0, it is found that A, = 0. Atz =
it is necessary for sin k;a = 0, and this specifies k. to have the values

=22 a=01,52
a

In a similar manner it is found that B; = 0 and

k,=-’-”5’-' m=0,1,2, .
Both n and m equal to zero yields a constant for the solution for &, and
no other ficld components; so this trivial solution is of no interest.

If we use the above relations and put 4181 = A.s, the solutions for

h, are seen to be

By = Anm cos 2% cos 7Y (3.97)
a b v
form=0,1,2,...;m=0,1,2, yn =m0, The éonstant
A.m is an arbitrary amplitude constant associated with the nmth mode.
For the nmth mode the cutoff wave number is designated k. .m, given by

e[+ ()]

and is clearly a function of the guide dimensions only. The propagation
constant for the nmth mode is given by

Yum = JBam = j(ko? — ki) ‘
27 nr\2 mr\? } :
=i (&) - ) - ()] . e

When k¢ > kcam, Bum is pure real and the mode propagates; when
ko < Ecnm, then vy, is real but 8., is imaginary and the propagation factor
is e~7='s! which shows that the mode decays rapidly with distance |z|
from the point at which it is excited. This decay is not associated with
energy loss, but is a characteristic feature of the solution. Such decay-
. ing, or evanescent, modes may be used to represent the local diffraction,
or fringing, fields that exist in the vicinity of coupling probes and obstacles
in waveguides. The frequency separating the propagation and no-prop-
- agation bands is designated the cutoff frequency f...m. This is given by
the solution of k¢ = k¢..m; that is,

_ ¢, _ ¢ fnr\ mar\? |}
Jenm = o = 2—'7rl\c.nm =57 [('g) + <—E") ] (3.100)
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where ¢ is the velocity of light. The cutoff wavelength is given by

2ad
)\c.nm = Wm (3.101)

A ﬁypical guide may have a = 2b, in which case

}\ _ 2a
“nm = (nt 4 4m?)}

and A.10 = 28, Aeo1 = @, A\eq1 = 2a/4/5, ete. In this example there is
a band of wavelengths from a to 2a, that is, a frequency band

2a<f<—

for which only the Hj, mode propagates. This is the dominant mode
in a rectangular guide and the one most commonly used in practice.
Above the frequency c/a, other modes may propagate; so the useful
frequency band in the present case is & one-octave band from ¢/2a to ¢/a.

The remainder of the field components for the TE,m, or H,.m, mode are
readily found from (3.97) by using (3.16). The results for the complete
nmth solution are

H, = A, cos —%5—0 cos @—gg gTBnme _ - (3.102a)

nrx m ,
H,= %j Ig""‘ A,.,,. T sin —Z— cos -—b’ﬂ—/ &Fibums

c,nm

. (3.102b)

nrr . mry

H,= +j5~ k* ™ A 5 T cos - sin —< 5 ¢FiBant C o (3.102¢)
E: = ZynmAwmi ,f:""' 7% cos n%-x sin 1—%{3 €T iBnms (3.102d)
E, = ~ZramAnm] ,ﬁ”"‘ 7 sin mar cos 7—'—%@ eFiBans (3.102¢)

where the wave impedance for the nmth H mode is given by

ko

2 7, | ' (3.103)

Zh,mn =

" When the mode does not propagate, Zs,.» is imaginary, indicating that

there is no net energy flow associated with the evanescent mode. A gen-
eral field with E, = 0 can be described in a complete manner by a linear
superposition of all the i, modes.
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Power

For a propagating /7, mode the power, or rate of encrgy flow, in the
positive z direction is given by

Pun=}Re [ ['E xH* a,dzdy

L]

1 Re [0 A * (E.H* — E,H?) dz dy

]

YR Zuww [ [ (HH] + H.HE) drdy . (3.104)

If we substitute from (3.102b) and (3.102c) and note that

La /;)bsin?nllE os’ml:r—"/dx dy = [ / sm,m;ry dz dy
ab
= ab
5 norm =20
we find that
— ab Bnm mm 2 nw 2
Pnﬂl = 1‘4,."'! €0n€om ,\: nm Zh " [(T) + (_a—) ]
2,
= lAnmI ab ( Bnm) Zh am (3.105)
€0n€om c,nm .

where eom is the Neumann factor and equal to 1 for m = 0 and equal .

to 2 form > 0.

If two modes, say the H,, and H,, modes, were present simultaneously,
it would be found that the power is the sum of that contributed by each
individual mode, that is, P,m + P,. .This is a general property of loss-
free waveguides, and is discussed in detail in a later section. This power
orthogonality arises because of the orthogonality of the functions (eigen-
functions) that describe the transverse variation of the fields when inte-
grated over the guide cross section; e.g.,

/a in hmt in T dr =0 #
sin — sin — n#r
0 a a

Even when small losses are present the energy flow may be taken to be
that contributed by each individual mode, with negligible error in all
cases except when two or more degeneratec modes are present. Degen-
erate modes are modes which have the same propagation constant v, and
for these the presence of even small losses may result in strong coupling

between the modes. This phenomenon is explained more fully in
Sec. 3.10.
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Attenuation

If the waveguide walls have finite conductivity, there will be a continuous
loss of power to the walls as the modes propagate along the guide. Con-
sequently, the phase constant j8 is perturbed and becomes ¥ = a + j8,
where « is an attenuation constant that gives the rate at which the mode
amplitude must decay as the mode progresses along the guide. For
practical waveguides the losses caused by finite conductivity are so small
that the attenuation constant may be calculated using the perturbation
method outlined in Sec. 3.2 in connection with lossy transmission lines.
The method will be illustrated for the dominant H;o mode only. Ior the
H,n and also the E,» modes, the calculation differs only in that somewhat

greater algebraic manipulation is required.

For the Hj, mode, the fields are given by (apart from the factor e""w‘)

Tz
h, = Ao cos -

. T . X
he = J ___3210 Ay —sin =
kc.lo
ey = —Zn14 JBrT sin 7%
/] ,1042 10 k;z,]o a a

as reference to (3.102) shows. From (3.105) the rate of energy flow along
the guide is '

Py = |A1o|2 (kﬁl‘)) Zh10

The currents on the lossy walls are assumed to be the same as the Ioss-
free currents, and hence are given by

Ja=HXH

where n is a unit inward directed normal at the guide wall. Thus, on
the walls at z = 0, a, the surface currents are

{a,xH-——-—a,,Aw z=0

—a; X H = —8,,A10 r=a

L4

whereas on the upper and lower walls the currents are

a, xH = ‘7'31 Am {—+a,Amcos£;-: y=0"
010
J. =
I8 T . T T
—a,,xH a,,{c;:AmESln?—azAxoCOS—&- y=b

With a finite conductivity o, the waveguide walls may be characterized

t The case for degenerate modes may require a modified analysis, and this is covered
in Sec. 3.10.



Table 3.2 Properties of modes in a rectangular guidet

TE modes TM modes
H, cos 2= cos MY o iBams ' 0
a b
Tz MY e
E. 0 N sin - 5
Z3BumnT s P in ™Y g iBams
E, Zh.mnHy . 7,:};—“ cos a sin 5 e?
— y m
E ~ZynmH: -—gg:lrﬂr sin 7—‘;—:‘ cos —;ﬂ e~ iBnms
Y o i cnm
H‘ JBamnw in "™ cos MY Bams _ E,
* ak,_m Zenm
Bamm .. mmy _. E.
H, % cos n_T_::r sin —;:—‘I g~ ifnms 7
k
Zk.mn ﬂ”’_: ZO
’ ﬁﬂ’l‘
—Z
Zeam o 2o
nr\? mr\? |}
k‘.nm [(;> +( b ) ]
Brm .. (ko’ - k:mm)}
) 2ab )
Aeonm (n’b’ T mzaz)}
: 2Rm L; - : 2Rm ntb* + m‘(:"
* VZo(l — KL, ke 2.0 = k2 /koh)} nib%a + mia

bfeom K ,,,,,) nab + m’a’]

a\2 ket Jn? 4 mia?

t Rm = (wn0/20)}, com = 1 for m = 0 and 2 for m > 0. The expression for a is not
valid for degenerate modes (Sec. 3.10).

as exhibiting a surface impedance given by

1+.7

Znm = = (1 +j)Rn

where 8, is the skin depth. The power loss in the resistive part Rm 0!
Z. per unit length of guide is

- Rm . *
Pi==2¢  J.-Jrdl

walls

,,.IAmI ( [ dy +2f B“’ z smzndx-i-zf cos’-—dx)
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Since A.,10 = 7/a, the above gives

2
Py = R|Ay? [b + g(kf%) + g]

If Pyis the power at z = 0, then Pyp = P~ is the power in the guide
at any z. The rate of decrease of power propagated is

_dPy
dz

= 2aPy = P;

and equals the power loss, as indicated in the above equation. The
attenuation constant « for the Hjo mode is thus seen to be

B1o
p P r3(e) +5]

- 2P1° B10
5} (kc 10) Zho

R..
abﬁ 10k

7 (2bk? 40 + ako®) nepers/m (3.106)
The attenuation for other TE,.. modes is given by the formula in
Table 3.2, which summarizes the solutions for TE.. and also TM,n
modes. In Fig. 3.10 the attenuation for the Hj;, mode in a copper
rectangular guide is given as a function of frequency. To convert atten-
uation given in nepers to decibels, multiply by 8.7.
The theoretical formulas for attenuation give results in good agreement

~ with experimental values for frequencies below about 5,000 Mc. For

higher frequencies, measured values of « may be considerably higher,
depending on the smoothness of the waveguide surface. If surfaee
imperfections of the order of magnitude of the skin depth §, are present,
it is readily appreciated that the effective surface area is much greater,
resulting in greater loss. By suitably polishing the surface, the experi-

Fig. 3.10 Attenuation of H;, mode in a
copper rectangular waveguide, ¢ = 2b, f in
units of 1010 ¢ps.
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mental values of attenuation are found to be in substantial agreement
with the theoretical values.t

Dominant TE,, mode

Since the TE;, mode is the dominant mode in a rectangular guide, and
also the most commonly used mode, it scems appropriate to examine this
mode in more detail. From the results given earlier, the field components

for this mode are described by the following (propagation in the +z

direction assumed):

H, = A cos %I- ol . (3.107a)
H, = ‘%é A sin '7—33 g8z : - (3.107b)
E, = —iZn L sin i | (3.107¢)

where the subscript 10 has beet dropped for convenience sitice this dis:
cussion pertains only to the TEj, mode. The parameters g, k., and Z
are given by

. =T : : . (3.108a)

ke - , 3 108a)'
A\ ' .

B = [Is'oz - (a) ] . (3.108b)

v k - 1R

Zy = — -g— = 59 Zo (3.108¢)

The guide waveiength A is°

A= X N (3.1084)

BT = (/20

. L KT ...‘.' vronn velocea
since the cutoff wavelength \, = 2a. The phase & <i group velocities are

by = :_:C | (3.108¢)
o, =N (3.108f)
e Ag . *

and are discussed in detail in Sec. 3.11.. Y
..In Fig. 3.11 the magnetic and electric, ﬁeldllnesaqsoclatedWItﬁ stﬁe
TE1, mode are illustrated. Note that the magnetic. flux lines encircle
the electric field lines; so these can be considered to be the source {dis-
placement current) for the magnetic field. On the other hand, the
1 See J. Allison and F. A. Benson, Surface Roughness and Attenuation. of P;ebisioi;
Drawn, Chemically Polished, Electropolished, Electroplated. and Electroformed
Waveguides, Proc. IEE (London), vol. 102, pt. B, pp. 251-259, 1955.
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: f(m)g g,ii Magh‘itic and electric field lines for the TEy, mode
(@) Transverse plane; (b) top view; (c) mutual ¢ ,
and magnetic field linkages. ’ o total current

Fig. 3.4%  Decoposition of TH;; miode

into two plane waves:

e i o e o sl oyt dn o e
inng ' upper and lower waveguide walls. This charge
osclll?.tes back and forth in the axial and transverse directions and thus
constitutes an axial and transverse conduction current that forms the
contu}u_atlon of the displacement current. The to"réi current, displace-
me:int plus conduction, forms a closed linkage of the magnetic’ﬁeldplines
zzticasﬂ ‘s;l;c}tlhr:ay'b% regarde({ as being generated by the changing mag-’
petio fu Yy enc ose.:!.Thxs_ completes the required mutual-support
action etwee_l?“t‘he electric and magnetic fields which is required for
wave propagation.. ... Lo .

,/The fields for a B, Imode by be docémposed futo th s of £

plane TEM waves propagating along zigzag baths betiveen the tio wave.

guide walls at z = R =B F TS PR RV IS N
%V ¢ have atz=0and z =g, asin F ig. 3.12. For the electric field

o
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If #/a and B are expressed as
"‘=I\’05in0 B=I\'00050

the relation (r/a)? + 82 = ko?still holds. The electric field is now given
by

)

Zy B

- 21 = ~jko(x sin 642cos 8) __ p~jko(—zsin 0+2zcos 6)
Y (e e )

2 k.

a’

which is clearly two plane waves propagating at angles + 8 with respect
to the z axis, as illustrated. Alternatively, the field may be pictured
as a plane wave reflecting back and forth between the two guide walls.
As shown in Sec. 2.7, the constant phase planes associated with these
obliquely propagating plane waves move in the z direction at the phase
veloeity ¢/cos 8 = Bc/ko, and this is the recason why the phase velocity
of the TE;o mode exceeds the velocity of light. Since the energy in a
TEM wave propagates with the velocity ¢ in the direction in which the
plane wave propagates, this energy will propagate down the guide at a
velocity equal to the component of ¢ along the z axis. This component
is r, = ccos 6 = (ko/B)c and is the group velocity for the TE;, mode.
When 8 = #/2, the plane waves reflect back and forth, but do not pro-
gress down the guide; so the mode is cutoff.

The above decomposition of the TE;, mode into two plane waves may
be extended to the TE,.. modes also. When n and m are both different
from zero, four plane waves result. Although such superpositions of
plane waves may be used to construct the field solutions for rectangular
guides, this is a rather cumbersome approach. However, it does lend
msight into why the phase velocity exceeds that of light, as well as other
properties of the modes.

TM modes

For T modes, k, equals zero and e, plays the role of a potential function
from which the remaining field components may be derived. This axial
electric field satisfies the reduced Helmholtz equation

Ve, + ko2, =0 ‘ (3.109)

of the same type encountered earlier for k,, that is, (3.96). The solution
may be found by using the scparation-of-variables method. In the
present case the boundary conditions require that e, vanish at z = 0,
aand y = 0,b. This condition requires that the solution for e, be

e: = Aumsin 222 sin 7Y (3.110)

a b

instead of a product of cosine functions which was suitable for describing
h,. Again, there are a doubly infinite number of solutions corresponding
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to various integers n and m. However, unlike the situation for TE
modes, n = 0 and m = 0 are not solutions. The cutoff wave number is
given by the same expression as for TE modes; that is,

Kem = [(’%’)g + ("%)2]’ . (3.111)

and the propagation factor B.m by
= (koi‘_ kinm)‘ ) (3'112)

The lowest-order propagating modeisthen = m = 1 mode, and this has
a cutoff wavelength equal to 2ab/(a? 4+ b?)}. Note that the TE;o mode
can propagate at a lower frequency (longer wavelength), thus verifying
that this is the dominant mode.f It should also be noted that for the
same values of n and m, the TE,.. and TM,.. modes are degenerate since
they have the same propagation factor. Another degeneracy occurs
when a = b, for in this case the four modes TE.m, TEm., TM,n, and
TM... all have the same propagation constant. Still further degeneracies
exist if a is an integer multiple of b, or vice versa.

. The rest of the solution for TM modes is readily constructed using the
general equations (3.17) given in Sec. 3.1. A summary of this solution
is given in Table 3.2. The TM modes are the dual of the TE modes and
apart from minor differences have essentially the same properties. For
this reason it does not seem necessary to repeat the preceding discussion.

3.7 Circular waveguides

Figure 3.13 illustrates a cylindrical waveguide with a circular cross section
of radius a. In view of the cylindrical geometry involved, cylindrical
coordinates are most appropriate for the analysis to be carried out.
Since the general properties of the modes that may exist are similar to
those for the re.tangular guide, this section is not as detailed.

t In any hollow waveguide the dominant mode is a TE mode because the boundary
conditions e, = 0 for TM modes always require e, to have a greater spatial variation
in the transverse plane than that for , for the lowest-order TE mode, and hence the
smallest value of k. occurs for TE modes. Hence a TE mode has the lowest cutoff
frequency, i.e., is the dominant mode.

A

: e — 1
Fig. 8.13 The circular cylindrical wave-
guide.
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TM modes
For the TM modes a solution of
Vile. + I\'czez =0

is required such that e, will vanish at » = a. When we express the
transverse laplacian@“ in cylindrical coordinates (Appendix I), this
equation becomes

d%.  1de, . 1 9%,
o 7o Trgg T ki =0 (8.113)

The separation-of-variables method may be used to reduce the above
to two ordinary differential equations. Consequently, it is assumed
that a product solution f(r)g(¢) cxists for e.. Substituting for e, into
(3.113) and dividing the equation by fg yicld

Ly 1 df 1 dy
fdr: " aofdr r"gt?d?z

Multiplying this result by »? gives

r_zﬂ f(_i-l 2 2 — ldyg
Fave T jar ¥kt = — o o

The left-hand side is a function of r only, whereas the right-hand side
dep‘ends on ¢ only. Therefore this equation can hold for all values of the
variables only if both sides are equal to some constant »2. As a result
(3.113) is scen to separate into the following two equations: ’

+ +ki=0

df |, 1df v ‘ ’

T Tdr + (kcz — ?‘-’-)f = ( (3.114a)
‘.’g W :

T + g =0 (3.114b)

I}l this case the ficld inside the \\'aVeguide must be periodic in ¢ with
period 2, tbat is, single-valch. It is therefore necessary to choose »
equal to an integer n, in which case the general solution to (3.114b) is

g(¢) = Aycosng + A,sin ne

where 4, and A. are arbitrary constants.

' Equation (3.114a) is Bessel’s differential equation and has two solu-
tions (a sccond-order differential equation always has two independent
solutions) J,(k.r) and Y,(ker), called Bessel functions of the first and
.secon('i kind, respectively, and of order v.f For the problem under
Investigation here, only J,(ks) is a physically acceptable solution since
Ya(kr) becomes infinite at » = 0. The final solution for e, may thus

t ¥, is also called a Neumann function.

Sce. 3.7 B B 7

be expressed as
e.(r, ¢) = (A1 cosnep + A:sin n(b)J,,(k,r) (3.115)

Reference to Appendix II shows that J.(x) bchaves like a damped
sinusoidal function and passes through zero in a quasi-periodic fashion.
Since e, must vanish when » = @, it is necessary to choose h.a in such a
manner that J.(k.a) = 0. If the mth root of the equation J.(z) =0
is designated p.m, the allowed values (eigenvalues) of k. are

kenm = —(’-;ﬂ | ‘ (3.116)
The values of p.» for the first three modes for n = 0, 1, 2 are given in
Table 3.3. As in the case of the rectangular guide, therc are a doubly
infinite number of solutions.

Each choice of n and m specifies a particular TM,, mode (eigen-

function). The integer n is related to the number of circumferential

variations in the field, whereas m relates to the number of radial varia-
tions. The propagation constant for the nmth mode is given by

s _ Pam?\!
Brm = | ko® — D , . (3.117)
the cutoff wavelength by
2ra ’
)‘c,nm = 3.118
P~ ‘ ( )

and the wave impedance by

Dum = B2 7, . @119

ko

A cutoff phenomenon similar to that for the rectangular guide exists. °
For the dominant TM mode, A\. = 2ra/po = 2.61a, a value 30 percent
greater than the waveguide diameter.

Expressions for the remaining field components may be derived by
using the general equations (3.17). Energy flow and attenuation may

Table 3.3 Values of p.. for-

TM modes

n Pn1 Pn2 Pn3
0 2.405 5.520  8.654
1 3.832 7.016 10.174
2 5.135  8.417  11.620
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Table 3.4 Properties of modes in circular waveguides
TE modes TM modes
H, J,. (__pm,J') e'iﬁnwl [ C?S 7l¢ 0
a sin n¢ R
E. 0 Jn (u> emifnes { cos e
a sin n¢
H, _ jﬂm:P:.m J:. p:-mr e—jﬁnmt C_OS né —_ ___Eé
ak? .. a sin n¢ Zeinm
janm P' r . — sin ne E,
H, —_ — Jal = ~iBamz
° Tk m ( a >e { cosne Zenm
Er ZA.anQ = ]‘___Bm:p_n_m J:‘ (———pnmr) e-iﬂnul ‘ C.OS n¢
ak? .. a sin n¢
Es  —ZuwnH, — D2 g, (”——"’"’) eifams ' —smné
Tk am a cos n¢
! i} nm 2}
a a
k ’
ZAmm Efu Zo
ﬁnm
Z(.ﬂ” Z
ko °
Kenm  2om Pre
a a
2ra N . 2ma
x«'.um ’ )
p'l.n pnm
ZkBam , Yok
Power =% (p2, — n2)Ja2(p)) e 1T (k)2
4k:'nm 4kr.nm
Rm kf am _; Rm kcz.nm -4
a — 2] — Lom —l ] - onm
aZo ko’ aZo ’Co2

ko n?
X% Y e

be determined by methods similar to those used for the rectangular
guide. A summary of the results is given in Table 3.4.

TE modes.

The solution for TE modes parallels that for the TM modes with the
exception that the boundary conditions require that dk,/dr vanish at

Sec. 3.7 Transmission lines and waveguides 1t

r = a. An appropriate solution for A, is .

h.(r, ¢) = (B1cos n¢ + B, sin ng)Ja(k.r) (3.120)
with the requirement that ‘
Qna(?kc_") =0 atr=a (3.121)

The roots of (3.121) will be designated by p..; so the eigenvalues k. .m are
given by

) kc.mn = ?'ﬂ‘ (3.122)

a

Table 3.5 lists the values of the roots for the first few modes. Note

Table 3.5 Values of p.,, for
TE modes

n k P;xv P»’.: P:n
0 3.832 7.016 10.174
1 1.841 5.331 8.536
2 3.054 6.706 9.970

that pg, = Pim since dJo(z)/dz = —Ji(z), and hence the TE,, and
TM 1~ modes are degenerate.
The first TE mode to propagate is the TE;; mode, having a cutoff

" wavelength A\, 11 = 3.41a. This mode is seen to be the dominant mode

for the circular waveguide, and is normally the one uséd. A sketch of
the field lines in the transverse plane for this mode is given in Fig. 3.14.

If the expression for the attenuation constant for TE modes is ex-
amined, it will be seen that, for the TE,» modes, the attenuation is

_ Bn feom ‘
= e FE = fTa (3.123)

Fig. 8.1; Field lines for TE;; mode in a circular guide.
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Fig. 3.16 Attenuation of low-loss TEm
modes in a circular copper waveguide, f in
units of 101 ¢ps, f..10 = 1.83 X 10*%/a cps,
where a = radius in centimeters.

and falls off as -} for high frequencies since R.. increases as f*. The rapid
decrease in attenuation with increasing frequency is a unique property of
the TEo» modes in circular waveguides and makes possible the construe-
tion of very long low-loss waveguide communication links.t In Fig.
3.15 the attenuation in decibels for the TEo, modes as a function of
frequency for a copper waveguide is plotted. Although very low attenua-
tions are achieved for frequencies well above the cutoff frequency f. o1,
certain practical difficulties are encountered which limit the overall per-
formance of such guides to less than the theoretical predictions. These
practical difficulties stem from operating the guide at a frequency well
above the dominant-TE;;-mode cutoff frequency, i.e., in a frequency
region where many modes can propagate. Any small irregularity in the
guide causes some of the power in the TE(; mode to be converted into
power in other modes (mode conversion). Two serious effects arise from
mode conversion. The most obvious effect is the loss of power in the
desired TE,; mode when some of this power is converted into other more
rapidly attenuating modes. The more serious effect arises when the
power in the TE, mode is converted into power in other modes, with
different propagation phase constants and at a position farther along
the guide converted back into a TE,; mode, since this leads to signal dis-
tortion. To avoid signal distortion arising from this mode conversion
and reconversion, it is desirable that the waveguide have a high attenua-
tion for the undesired modes, so that these will be rapidly attenuated
and not converted back into a TE; mode. The currents associated with
the TE,.» modes are in the circumferential direction only. This property
may be utilized to construct mode filters that will suppress modes having

t 8. E. Miller, Waveguide as a Communication Medium, Bell System Teck. J., vol. 33,
pp. 1209-1265, November, 1954; also Millimeter Waves in Communications, Proc.
Symp. Millimeter Waves, Polytechnic Institute of Brooklyn, New York, 1959, pp.
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