CASE WESTERN RESERVE UNIVERSITY

Case School of Engineering
Department of Electrical Engineering and Computer Science

ENGR 210. Introduction to Circuits and Instruments (4)

Quiz No. 4

Name (Section): Solutions

9/26/03

PUT ANSWERS IN THE SPACE PROVIDED AND SHOW YOUR WORK

Problem 1 (10 points)

Determine the proportionality factors that relate each independent source to the output v_0 , in terms of R_1 and R_2 . Then, *given* that $K_1 \equiv (v_0/v_S) = 0.25$ and $K_2 \equiv (v_0/i_S) = 2 \text{ k}\Omega$, calculate the value of v_0 for specific inputs. Complete the table.

		To tage
PROP. FACTOR	EXPRESSION	[divider
$K_1 \equiv (v_O/v_S)$	$\frac{R_2}{R_1 + R_2}$	ט ווט
$K_2 \equiv (v_0/i_S)$	$\frac{R_1}{R_1 + R_2} \cdot R_2$	K,IIK2

Vs	İs	OUTPUT FOR $K_1 = .25$, $K_2 = 2 \text{ K}\Omega$
0 V	1 mA	2 V
1 V	0 mA	0.25 V
1 V	1 mA	2. 25 V

Problem 2 (10 points)
Find the Thevenin and Norton equivalent circuit parameters for the interface A-B in this circuit.
Complete the table.

ELEMENT	VALUE
V _T	2.5 V
R _T	60 R.
i _N	1/24 A
R_N	60 D