CASE WESTERN RESERVE UNIVERSITY

Case School of Engineering
Department of Electrical Engineering and Computer Science

ENGR 210. Introduction to Circuits and Instruments (4)

Quiz No. 12

12/5/03

Name (Section):

PUT ANSWERS IN THE SPACE PROVIDED AND SHOW YOUR WORK

Problem 1 (10 points)

Find the impedance of each element in this circuit for operation in sinusoidal steady state at an angular frequency $\omega=4000$ rad/sec, then find the total impedance of the circuit seen by $v_s(t)$ at this frequency. Finally, find the phasor current I given $V_s=7.5 \le 0^\circ$. Numerical values are required. Complete the table.

QUANTITY	VALUE
Resistor Impedance, Z _s	75 R
Capacitor Impedance, Z _c	-125 R
Inductor Impedance, Z	i 100 /2
Circuit Impedance, Z _{FO}	(75+j75)12 =
Phasor Current, I	0.05(1-1) =

75V2 145° \\
0.05\sqrt{5} \(\alpha \) \(\frac{\frac{\frac{1}{25}}{260}}{\frac{1}{25}} \)

Problem 2 (10 points)

Consider this passive filter in which the input voltage is applied across the left-hand interface and the output voltage is taken from the right-hand interface. Determine the filter type (low-pass, high-pass, band-pass, or band-stop), its passband gain, and its cutoff frequency. *Numerical* answers are required. Complete the table.

Hint: a capacitor acts as an open circuit for dc and a short circuit for very high frequencies. The input interface is considered to be a short circuit when calculating the Thevenin resistance seen by the capacitor.

QUANTITY	VALUE
Filter type	high-pass
Cutoff frequency, ω_c	15 × 10 3 rad/s
Passbnad gain	3