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13

Projective Structure
- from Motion

This chapter addresses once again the recovery of scene structure and/or camera motion from
correspondences established by matching the images of n points in m pictures. This time, how-
ever, we assume a perspective projection model. Given n fixed points P; (j =1, ... , n) observed
by m cameras and the corresponding mn homogeneous coordinate vectors p; ;= (uij, vij, DT of
their images, let us write the corresponding perspective projection equations as

b= M Py
ij =

m;3 - P; . o .
v,,__miZ'Pj for 1_1""’m and J_ll"'in, (13.)
U_m,‘3-Pj

where ml.Tl, miTz, and mi’; denote the rows of the 3 x 4 projection matrix M; associated with
camera number i in some fixed coordinate system, and P; denotes the homogeneous coordinate
vector of the point P; in that coordinate system. We define projective structure from motion as
the problem of estimating the m matrices M; and the n vectors P; from the mn image corre-
spondences p;;.

When M; and P; are solutions of Eq. (13.1), so are of course A;M; and u jPj for any
nonzero values of A; and ;. In particular, as already noted in chapter 2, the matrices M; sat-
isfying Eq. (13.1) are only defined up to scale, with 11 independent parameters, and so are the
vectors P;, with 3 independent parameters (when necessary, these can be reduced to the canoni-
cal form (x;, y;, z;, 1)7 as long as their fourth coordinate is not zero, which is the generic case).
Like its affine cousin, projective structure from motion suffers from a deeper ambiguity that jus-
tifies its name: When the camera calibration parameters are unknown, the projection matrices
M,; are, according to Theorem 1 (chapter 2), arbitrary rank-3 3 x 4 matrices. Hence, if M; and
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P; are solutions of Eq. (13.1), so are M] = M;Q and P, = Q 1P;, where Q is a projec-
tive transformation matrix (i.e., an arbltrary nonsingular 4 x 4 matrix). The matrix Q is only
defined up to scale, with 15 free parameters, since multiplying it by a nonzero scalar simply
amounts to applying inverse scalings to M; and P;. Since Eq. (13.1) provides 2mn constraints
on the 11m parameters of the matrices M; and the 3n parameters of the vectors P;, taking into
account the projective ambiguity of structure from motion suggests that this problem admits a
finite number of solutions as soon as 2mn > 11m + 3n — 15. For m = 2, seven point corre-
spondences should thus be sufficient to determine (up to a projective transformation) the two
projection matrices and the position of any other point. This is confirmed formally in Sections
13.2 and 13.3.

In the rest of this chapter, projective geometry plays the role that affine geometry played
in chapter 12, and it affords a similar overall methodology. Once again, ignoring (at first) the _
Euclidean constraints associated with calibrated cameras allows us to linearize the recovery of
the projective scene structure and camera motion from point correspondences. We then exploit
the geometric constraints associated with (partially or fully) calibrated perspective cameras to
upgrade the projective reconstruction to a Euclidean one.

13.1 ELEMENTS OF PROJECTIVE GEOMETRY

The means of measurement available in projective geometry are even more primitive than those
available in affine geometry. The affine notion of ratios of lengths along parallel lines and,
in fact, the notion of parallelism are gone. The concepts of points, lines, and planes remain,
however, as well as a new, weaker scalar measure of the arrangement of collinear points—
the cross-ratio. As in the affine case, a rigorous axiomatic introduction to projective geom-
etry would be out of place in this book, and we remain rather informal in the rest of this
section.

13.1.1 Projective Spaces

Let us consider a real vector space X of dimension n + 1. If v is a nonzero element of X, the
set Rv of all vectors proportional to v is called a ray, and it is _uniquely characterized by any one
of its nonzero elements. . The real projective space X = P(X ) of dimension n associated with
X is the set of rays in X or, equlva.lently, the quotient of the set X \O of nonzero vectors in X
under the equivalence relation “v ~ ' if and only if v = kv’ for some k € R”. Elements of X are
called points, and we say that a family of points are linearly dependent (resp. independent) when
representative vectors for the corresponding rays are linearly dependent (resp. independent). The
map p : X \0 - P(X ) associates with any nonzero element v of X the corresponding point p(v)
of X.

Example 13.1 A Model of P(R3).

Consider an affine plane IT of R3. The rays of R? that are not parallel to IT are in one-to-one corre-
spondence with the points of this plane. For example, the rays R4, Rg, and R¢ associated with the
vectors vy, vg, and v¢ below can be mapped onto the points A, B and C where they intersect IT. The
vectors v4, vg, and v¢ are linearly independent, and so are (by definition) the points A, B, and C.

As a ray gets close to being parallel to IT, the point where it intersects this plane recedes to
infinity, and in fact it can be shown that a model of the projective plane P(R?) (i.e., a projective space
1T of dimension 2 isomorphic to P (R?)) can be constructed by adding to IT a one-dimensional set of
points at infinity associated with the rays parallel to this plane. Here, for example, the ray R, parallel
to IT maps onto the point at infinity D of I1.
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Since any affine plane can be mapped onto R? by choosing some affine coordinate system,
Example 13.1 suggests that affine planes, and for that matter E3 or any other affine space, can
somehow be embedded in projective spaces, an appropriate choice of points at infinity complet-
ing the embedding. Such a completion process is presented in Section 13.1.3.

13.1.2 Projective Subspaces and Projective Coordinates

Consider an (m + 1)-dimensional vector subspace Y of X. The set Let ¥ = P(f’) of rays in
Y is_,called a projective subspace of X, and its dimension is m. Given a basis (eg, e, .. . , €m)
for Y, we can associate with each point P in Y a one-parameter fax_pily of elements of R™*+1—
namely, the coordinate vectors (xo, X1, . .. , )T of the vectors v € Y such that P = p). These
tuples are proportional to one another, and a representative tuple is called a set of homogeneous
projective coordinates of the point P.

Homogeneous coordinates can also be characterized intrinsically in terms of families of
points in ¥: Consider m + 1 (m < n) linearly independent points Ay, Ay, ..., A, and m + 1
vectors v; (i =0, 1,... , m) representative of the corresponding rays. If an additional point A*
linearly depends on the points A; and v* is a representative vector of the corresponding ray, we
can write

V' = uovo + U1vi + - + UmVm.

The coefficients w; are not uniquely determined since each vector v; is only defined up to a
nonzero scale factor. However, when none of the coefficients w; vanishes (i.e., when v* does not
lie in the vector subspace spanned by any m vectors v; or, equivalently, when the corresponding
points are linearly independent), we can uniquely define the m + 1 nonzero vectors e; = w;v;
such that

Vi=eyt+e +- - +ep.
In particular, any vector v linearly dependent on the vectors v; can now be written uniquely as
V= Xo€o + x1€1 + -+ - + Xmep.

This defines a one-to-one correspondence between the rays R(xg, x1, . .. , xm)T of R™+! '
and a projective subspace S,, of X. S, is, in fact, the projective space Y associated with the

_vector subspace Y of X spanned by the vectors v; (or, equivalently, by the vectors ;). If P =

p(v) is the point of S, associated with the ray Ry, the numbers X0, X1, ... , Xm are called the
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homogeneous (projective) coordinates of P in the projective coordinate system determined by
the m + 1 fundamental points A; and the unit point A*. Note that, since the vector v associated
with a ray is only defined up to scale, so are the homogeneous coordinates of a point.

Itis a simple matter to verify that the coordinate vectors of the fundamental and unit points
in the corresponding projective frame have a particularly simple form—namely,

1 -~ /0 0 1
0 1 0

A0= ’ Al-' ’ ’ Am= andA*:
0 0 1 1

It should be clear that the two notions of homogeneous coordinates that have been intro-
duced in this section coincide. The only difference is in the choice of the coordinate vectors
€y, e, ... ,en, that are given a priori in the former case and constructed from the points forming
a given projective frame in the latter one.

Example 13.2 Projective Coordinate Changes.

Given some coordinate system (A) = (Aq, A1, A;, A3, A*) for the three-dimensional projective
space X, we can define the (homogeneous projective) coordinate vector of any point P as 4P =
(“x0,4 x1,% x3,4 x3)T. Let us now consider a second projective frame (B) = (By, B1, B, B3, B*)
for X. It can easily be shown (see Exercises) that the corresponding change of coordinates can be
written as ‘

0P =2T4pP, (13.2)

where 87 is a 4 x 4 projective transformation matrix defined up to scale, and p is a scalar chosen
so the scales of the two sides of the equations are the same. Let us now show how to compute this
matrix. Writing Eq. (13.2) for the points defining the frame (A) yields

1 0 0 0

BA _BTO B _BT 1 B —BTO B _BTO
Lo 0= 4 prl AI—A 07102A2—A 1 ’p3A3_‘A 0
0 0 0/ 1

and
1
*B Ax B 1
P A=AT1
1

Since the matrix 27 is only defined up to a scale factor, we can choose p* = 1, and it follows that
AT = (%40 mPA1 pPAr pBA),
where the scalars p; are the solutions of the linear system

Lo
(BAO BA1 BA2 BA}) Zi =BA*.
P3

Note the obvious similarity with the formulas for changes of Euclidean or affine coordinate
systems in chapters 2 and 12. Similar formulas for coordinate changes can be written for arbitrary
projective spaces of finite dimension.
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A projective subspace S; of dimension 1 of X is called a line. Linear subspaces of dimen-
sion 2 and n — 1 are, respectively, called planes and hyperplanes. A hyperplane S,_; consists of
the set of points P linearly dependent on 7 linearly independent points Po, Py, ... , Pp-1.

Example 13.3 Projective lines and planes.

A projective line is uniquely determined by two dlStlIlCt points A and B lying on it, but deﬁmng
a projective frame requires three distinct points Ao, A;, and A* on that line. Likewise, a plane is
uniquely determined by three points A, B, and C lying in it, but defining a projective frame requires
four points in that plane: Three fundamental points Ay, A, and A, forming a nondegenerate triangle
and a unit point A* not lying on one of the edges of this triangle.

However, if A and B denote the coordinate vectors of two distinct points in some projective
frame for the line passing through these points, the coordinate vector P of any point on that line can
be written uniquely as P = AA + wB. This follows immediately from the fact that the rays R4 and
Rp associated with distinct points A and B are linearly independent, but the ray Rp associated with
a point P on the same line lies in the vector plane defined by R4 and Rjp. Likewise, if A, B, and C
denote the coordinate vectors of three noncollinear points in some projective frame for the plane they
lie in, the coordinate vector P of any point in that plane can be written uniquely as P = XA +uB+vC.

13.1.3 Affine and Projective Spaces

Example 13.1 introduced (informally) the idea of embedding an affine plane into a projective
one with the addition of a one-dimensional set of points at infinity. More generally, it is possible
to construct the projective closure X of an affine space X of dimension » by adding to it a set of
points at infinity associated with the directions of its lines. These points form a hyperplane of X
called the hyperplane at infinity and denoted by coy. '

Let us pick some point A in X and introduce x & P(X x R), where X is the vector
space underlying X. We can embed X into X via the injective map Jy : X — X defined by

Ja(P) = p(A_ﬁ 1) (Flgure 13.1).! The complement of J4(X) in X is the hyperplane at infinity

00y ) P(X x {0}) mentioned earlier.

"Here we identify X and the underlying vector space X by identifying each point P in X with the vector AP.
This vectorialization process is of course dependent on the choice of the origin A, but it can easily be shown that X is
indeed independent of that choice. A more rigorous approach to the projective completion process is to introduce the
universal vector space associated with an affine space, but it would be out of place here. See Berger (1987, chapter 5) for
details. Note also the abuse of notation in writing p(v, A) for p((v, A)).
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Figure 13.1 The projective completion of an affine space.

Now consider a fixed affine frame (Ag, A1, ..., A,) of X and embed X into X using J4,.

The vectors AgA; (i = 1,...,n) form a basis of )_f, thus the n + 1 vectors e; &f (ApA4;, 0)
i=1,...,n)and e, &f (0, 1) form a basis of X xR.In particular, if (xy, ... , x,) denote the

affine coordinates of P in the basis (A, A1, ... , An) of X, we have

Jay(P) = p(AgP, 1) = p(x1A0A) + - - + Xn AgApn, 1)
= p(xlel +--- +_xnen +en+l),

and the homogeneous projective coordinates of J4,(P) associated with the basis of X xR formed
by the vectors (ey, ... ,en+1) are thus (xi, ..., x,, 1). The coordinates of points in cox, on
the other hand, have the form (x, ... , x,, 0). In particular, the projective completion process
justifies, at long last, the representation of image and scene points by homogeneous coordinates
introduced in chapter 2 and used throughout this book.

The introduction of points at infinity frees projective geometry from the numerous excep-
tions encountered in the affine case. For example, parallel lines in some affine plane IT do not
intersect unless they coincide. In contrast, any two distinct lines in a projective plane intersect in
exactly one point (this is because the associated vector spaces intersect along a ray), with pairs of
parallel lines in IT intersecting at the point at infinity in IT that is associated with their common
direction (see Exercises).

13.1.4 Hyperplanes and Duality

As mentioned before, two distinct lines of a projective plane have exactly one common point.
Likewise, two distinct points belong to exactly one line. These two statements can actually be
taken as incidence axioms, leading to a purely axiomatic construction of the projective plane.
Points and lines play a symmetric or, more precisely, dual role in these statements.

To introduce duality a bit more generally, let us equip the n-dimensional projective space X
with a fixed projective frame and consider » + 1 points Py, Py, ... , P, lying in some hyperplane
S.—1 of X. Since these points are by construction linearly dependent, the (n + 1) x (n + 1)
matrix formed by collecting their coordinate vectors is singular. Expanding the determinant of
this matrix with respect to its last column yields

uoxo +uix1 + - +upxy, =0, (13.3)
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where (xg, X1, . .. , X,) denote the homogeneous coordinates of P, and (ug, 4y, ... , 4,) are func-
tions of the coordinates of the points Py, Py, ... , P,—1. Note that we have refrained to set the last
coordinate of the point P, to 1 here to emphasize the symmetry between the scalars u; and x;.

Equation (13.3) is satisfied by every point P, in the hyperplane S,_;, and it is called the
equation of S,_; (note the similarity with the affine case). Conversely, it is easily shown that
any equation of the form in Eq. (13.3) where at least one of the coefficients u; is nonzero is the
equation of some hyperplane. Since the coefficients u; in Eq. (13.3) are only defined up to some
common scale factor, there exists a one-to-one correspondence between the rays of R"*+! and
the hyperplanes of X, and it follows that we can define a second projective space X* = P(X *)
formed by these hyperplanes and called the dual of X (this is justified by the fact that X* can
be shown to be the projective space associated with the dual vector space X*of X ). The scalars
(uo, u1, ... , u,) define homogeneous projective coordinates for the point corresponding to the
hyperplane S,_; in X*, and Eq. (13.3) can also be seen as defining the set of hyperplanes passing
through the point P,.

Example 13.4 The Dual of a Line.

Points and lines are dual notions in P? & E2, points and planes are dual in P> & 2, but points and
lines are not dual in IP3. In general, what is the dual of a line in X ? A line is a one-dimensional linear
subspace of X whose elements are linearly dependent on two points on the line. Likewise, a line of
X* is a one-dimensional subspace of the dual, called a pencil of hyperplanes, whose elements are
linearly dependent on two hyperplanes in the pencil. In the plane, the dual of a line is a pencil of
lines intersecting at a common point.

EVANR

In three dimensions, the dual of a line is a pencil of planes that intersect along a common line.

Let us close this section by noting (without proof) that any geometric theorem that holds
for points in X induces a corresponding theorem for hyperplanes (i.e., points in X*) and vice
versa, the two theorems being said to be dual of each other.

13.1.5 Cross-Ratios and Projective Coordinates

This section focuses on the three-dimensional projective space 3. The nonhomogeneous pro-
jective coordinates of a point can be defined geometrically in terms of cross-ratios. In the affine
case, given four collinear points A, B, C, D such that A, B, and C are distinct, we define the
cross-ratio of these points as

o CA D
(A,B;C,D} ¥ == x ==,
CB DA

o]
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where P Q denotes the signed distance between two points P and Q for some choice of orienta-
tion of the line A joining them. The orientation of this line is fixed but arbitrary since reversing it
obviously does not change the cross-ratio. Note that {A, B; C, D} is, a priori, only defined when
D # A since its calculation involves a division by zero when D = A. We extend the definition
of the cross-ratio to the whole affine line by using the symbol oo to denote the ratio formed
by dividing any nonzero real number by zero and to the whole projective line A by defining
{A, B; C,00,} = CA/CB. Alternatively, given three points A, B, and C on a projective line
A, it can be shown that there exists a unique projective transformation 2 : A — R mapping A

onto the projective completion R = R U 0o of the real line such that h(A) = 00, h(B) = 0 and

h(C) = 1. The cross-ratio can also be defined by {A, B; C, D} &f h(D).

Given a projective frame (Ag, A;, A*) for aline A and a point P lying on A with homoge-
neous coordinates (xg, x1) in that frame, we can define a nonhomogeneous coordinate for P as
ko = xo/x1. The scalar kg is sometimes called projective parameter of P, and it is easy to show
that kg = {Ag, A1; A,, P}.

As noted earlier, a set of lines passing through the same point O is called a pencil of lines.
The cross-ratio of four coplanar lines A, A,, Az and A4 in some pencil is defined as the cross-
ratio of the intersections of these lines with any other line A in the same plane that does not pass
through O, and it is easily shown to be independent of the choice of A (Figure 13.2a).

Consider now four planes Iy, [T, I3, and I14 in the same pencil, and denote by A their
common line. The cross-ratio of these planes is defined as the cross-ratio of the pencil of lines
formed by their intersection with any other plane IT not containing A (Figure 13.2b). Once again,
the cross-ratio is easily shown to be independent of the choice of IT.

In the plane, the nonhomogeneous projective coordinates (kg, k1) of the point P in the
basis (Ag, A1, A, A*) are defined by kg = xo/x; and k; = x;/x3, and it can be shown that

ko = {A14o, A1A2; A1A™, A1 P},

ki = {AoA1, AoAz; ApA*, AoP},
where M N denotes the line joining the points M and N, and {A;, Ay; A3z, A4} denotes the cross-
ratio of the pencil of lines Aj, Ay, A3z, Ag. '

Similarly, the nonhomogeneous projective coordinates (ko, k1, k2) of the point P in the
basis (Ao, Al, Az, A3, A*) are defined by ko = xo/x3, kl = xl/x3, and kz = JC2/X3, and it can be

Figure 13.2 Definition of the cross-ratio of: (a) four lines, and (b) four planes.
As shown in the exercises, the cross-ratio {A, B; C, D} only depends on the three
angles o, B, and . In particular, we have {A, B; C, D} = {A’, B’; C', D'}.
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shown that

ko = {A1A2A0, A1A2A3; A1ALAY, A1Ay P},
= {A2A0A1, A2ApA3; A2ApA*, A2A(P),
= {AgA142, ApA143; AgA 1A%, ApA P},

where LM N denotes the plane spanned by the three points L, M, and N, and {I1;, ITy; I3, I14}
denotes the cross-ratio of the pencil of planes Iy, Iy, I3, I14.

13.1.6 Projective Transformations

Consider a bijective linear map 1 1// X — X' between two vector spaces X and X'. By linearity,
1/f maps rays of X onto rays of X', Since itis leeCtIVC italso maps nonzero vectors onto nonzero

vectors, and we can define the induced map ¥ : P(X) — P(X’) by ¥ (p(v)) &f p(!/f(v)) for any
v # 0in X. The map v is bijective and is called a projective transformation (or homography).

It is easy to show that projective transformations form a group under the law of composition of
maps. When X' = X, this group is called the projective group of X = PX).

Example 13.5 Projective correspondence between coplanar points and their pictures.

Consider two planes and a point O lying outside these planes in E>. As shown in the exercises,
the perspective projection mapping any point A in the (projective closure of the) first plane onto
the intersection of the line AO with the (projective closure of the) second plane is a projective
transformation.

A

Scene plane

This property should not come as a surprise since, following Example 13.1, the two (pro-
jective) planes can be thought of as models of the projective spaces associated with the set of rays
through the point O.

Projective geometry can be thought of as the study of the properties of projective spaces
that are preserved by homographies. An example of such an invariant is the linear independence
(or dependence) of a family of points. Given a projective transformation ¢ : X — X', let us
consider m + 1 linearly independent vectors v, ¥1, ..., Vm in X and the corresponding points
Ao, A1, ..., A, in X. Since 1/; is bijective, the vectors I/I(V,) are linearly mdependent and so are
the points A’ = Y (A;). It follows immediately that if (A) = (Ao, A1, ..., Ay41) i a projec-
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tive frame for the n-dimensional projective space X, so is (A’) = (A, A}, ..., 4, ) for X'.
Conversely, given two n-dimensional projective spaces X and X', equipped respectively with the
bases (Ao, A1, ..., Any1) and (Ag, A, ..., Ay ), it can be shown that there exists a unique
homography ¢ : X - X suchthat1/f(A ) _A’ fori =0,1,... ,n+ 1.

Projective coordinates form a second invariant. Indeed, due to the linearity of the un-
derlying map ¥, if the point P has coordinates (xo, x1,...,X,) in the projective frame
(Ag, A1, ..., Apt1) of X, the point yr(P) has the same coordinates in the coordinate frame
of X’ formed by the points A] = y(A;). In fact, projective transformations can be characterized
as mappings that transform lines into lines and preserve cross-ratios (thus projective coordinates).
Coming back to Example 13.5, it follows that an image of a set of coplanar points completely
determines the projective coordinates of these points relative to the frame formed by four of
them. This proves useful in designing invariant-based recognition systems in later chapters.

Like a rigid or an affine transformation, a homography i between two projective spaces
of dimension n can conveniently be represented by an (n + 1) x (n + 1) matrix once coordinate
systems (F) and (F’) for these spaces have been chosen: This is agam due to the linearity of
the underlying operator 10 Thus, if P/ = ¢ (P), we can write © P/ = QF P, where Q is a
nonsingular (n+1) x (n+1) matrix defined up to scale since homogeneous projective coordinates
are only defined up to scale.

Example 13.6 Parameterizing the Fundamental Matrix.

Let us revisit the problem of determining the epipolar geometry of uncalibrated cameras. This prob-
lem was introduced in chapter 10, where we gave without proof an explicit parameterization of the
fundamental matrix. We now construct this parameterization. Let us define the epipolar transforma-
tion as the mapping from one set of epipolar lines onto the other one. As shown by the diagram, this
transformation is a homography.

6) o

Indeed, the epipolar planes associated with the two cameras form a pencil whose spine is the
baseline joining the two optical centers. This pencil intersects the corresponding image planes along
the two families of epipolar lines, and the cross-ratio of any quadruple of lines in either family is of
course the same as the cross-ratio of the corresponding planes. In turn, this means that the epipolar
transformation preserves the cross-ratio and is therefore a projective transformation.

Let us denote by (x, 8)T and (o, )T the (affine) coordinates of the two epipoles e and
¢ in the corresponding image coordinate systems, and let us use (u, v)T and (&, v')T to denote the
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coordinates of points on matching epipolar lines / and /. Using the fact that the linear map associated
with the epipolar transformation maps the ray R(u — &, v — 8)7 onto the ray R(u’ — o, v' — g)7, it
is easy to show (see Exercises) that the slopes 7 and ¢’ of the lines [ and /' satisfy

at+b . def U — def V' — B
'=——, with = v-F and = ——.
ct+d U—a w—ao

(13.4)

Clearing the denominators in Eq. (13.4) yields a bilinear expression in u, v and u’, v/, easily
rewritten as p” Fp’' = 0, where F is written in the form given without proof in chapter 10—that is,

b a —af — ba
F= —d —c cB +da .
dp' —ba' cf —aa’ —cBp —dB'a+aBa’ + baa’

13.1.7 Projective Shape

Following the approach used in the affine case, we say that two point sets S and §’ in some
projective space X are projectively equivalent when there exists a projective transformation ¥ :
X — X such that S’ is the image of S under . As in the affine case, it is easy to show that
projective equivalence is an equivalence relation, and the projective shape of a point set S in X
is defined as the equivalence class of all projectively equivalent point sets. Likewise, projective
structure from motion can now be redefined as the problem of recovering the projective shape
of the observed scene (and/or the equivalence classes formed by the corresponding projection
matrices) from features matched in an image sequence.

13.2 PROJECTIVE STRUCTURE AND MOTION FROM BINOCULAR CORRESPONDENCES

The rest of this chapter is concerned with the recovery of the three-dimensional projective struc-
ture of a scene assuming that » points have been tracked in m images of this scene. This section
focuses on the case of two images. Structure and motion estimation from three or more views are
addressed in the next two sections. We assume that the epipoles are known, which, as shown in
chapter 10, requires establishing at least seven point correspondences.

13.2.1 Geometric Scene Reconstruction

Let us start with a geometric method for estimating the projective shape of a scene when the
epipoles are known. The inherent ambiguity of projective structure from motion simplifies our
task by allowing us to choose appropriate points as a projective frame.

Let us assume that we observe four noncoplanar points A, B, C, D with a weakly-
calibrated stereo rig (Figure 13.3). Let O’ (resp. O”) denote the position of the optical center
of the first (resp. second) camera. For any point P let p’ (resp. p”) denote the position of the
projection of P into the first (resp. second) image and let P’ (resp. P”) denote the intersection
of the ray O'P (resp. 0" P) with the plane ABC. The epipoles are ¢’ and e”, and the baseline
intersects the plane ABC in E. (Clearly, E' = E" = E, A’ = A" = A, etc.)

We choose A, B, C, O’, O” as a basis for projective three-space, and our goal is to re-
construct the position of D. Choosing a’, ', ¢/, ¢’ as a basis for the first image plane, we can
measure the coordinates of 4’ in this basis and reconstruct the point D’ in the basis A, B, C, E
of the plane ABC. Similarly, we can reconstruct the point D” from the projective coordinates of
d" in the basis a”, b”, ¢, e of the second image plane. The point D is finally reconstructed as
the intersection of the two lines O’ D’ and O D"
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Figure 13.3 Geometric construction of the projective coordinates of the point
D in the basis formed by the five points A, B, C, O’, and O”".

We can now express this geometric construction in algebraic terms. It turns out to be sim-
pler to reorder the points of our projective frame and calculate the nonhomogeneous projective
coordinates of D in the basis formed by the tetrahedron A, 0", O’, B and the unit point C. These
coordinates are defined by the following three cross-ratios:

ky={0"0'A, 0"0O'B; 0"0'C, 0"0’'D},
ki ={0’A0", O'AB; O'AC, O’'AD},
={A0"0', AO"B; AO0"C, AO"D}.

By intersecting the corresponding pencils of planes with the two image planes, we imme-
diately obtain the values of ko, k1, k» as cross-ratios directly measurable in the two images:

kO — {e/a /b/ e C e/d/} —_ {e// I/ //b//; e//CII, elld/l},
={d'e, a'b’; d'c/, a'd'},
{all // I/b// a/lc// alldl/} .

Figure 13.4 illustrates this method with data consisting of 46 point correspondences estab-
lished between two images taken by weakly calibrated cameras. Figure 13.4(a) shows the input
images and point matches. Figure 13.4(b) shows a view of the corresponding projective scene re-
construction, the raw projectives coordinates being used for rendering purposes. Since this form
of display is not particularly enlightening, we also show in Figure 13.4(c) the reconstruction ob-
tained by applying to the scene points the projective transformation mapping the three reference
points (shown as small circles) and the camera centers onto their calibrated Euclidean positions.
The true point positions are displayed as well for comparison.

13.2.2 Algebraic Motion Estimation

This section presents a purely algebraic approach to the problem of estimating the projective
shape of a scene from binocular point-correspondences, assuming once again that the stereo
rig has been weakly calibrated. The perspective projection Eq. (2.15) introduced in chapter 2
extends naturally to the projective completion of E? and maintains the same form in arbitrary
projective frames for that space. Indeed, if we rewrite Eq. (2 15) as zp = MP in some Euclidean
coordinate system (F), we obtain a similar equation z p = M'P in a pro;ectlve frame (F’),

where P' = F'TP and M/ = M ET".
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(®) (©

Figure 13.4 Geometric point reconstruction: (a) input data, (b) raw projec-
tive coordinates, (c) corrected projective coordinates. Reprinted from “Relative
Stereo and Motion Reconstruction,” by J. Ponce, TA. Cass, and D.H. Mari-
mont, Tech. Report UIUC-BI-AI-RCV-93-07, Beckman Institute, Univ. of Illinois
(1993). Data courtesy of Boubakeur Boufama and Roger Mohr.

B In particular, let us consider five points Ag, A, A2, A3, A4 and choose them as a basis for
IE3, with A4 playing the role of the unit point. We consider a camera observing these points, with
projection matrix M, and denote by ay, a1, az, a3, a4 the images of these points, choosing the
points ag to a3 as a projective basis of the image plane, a3 being this time the unit point. We also
denote by «, B, and y the coordinates of a4 in this basis.

Writing that z;a; = MA, fori =0, 1,2, 3, 4 yields immediately

zo 0 0 z3 40 = 20 + 23,
M=]0 z1 0 z3 and up =z +z3,
0 0 z» z3 24y = 22 + 23.

Since a perspective projection matrix is only defined up to scale, we can divide its coeffi-
cients by z3, and defining A = z4/z3 yields

Ao —1 0 0 1
M= 0 AB-1 0 1
0 0 rAay—1 1

Let us now suppose we have a second image of the same scene, with projection matrix M’
and image points ay, a1, a3, a3, a;. The same construction applies in this case, and we obtain
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No' —1 0 0 1
M = 0 VB -1 0 1
0 0 Ay -1 1

The stereo configuration of our two cameras is thus completely determined by the two
parameters A and A’. The epipolar geometry of the rig can now be used to compute these param-
eters. Let us denote by C the optical center of the first camera and by e’ the associated epipole
in the image plane of the second camera, with coordinate vectors C and e’ in the corresponding
projective bases. We have MC = 0, and thus

1 1 1 !
C= ’ ’ ’1 .
T—da' 1-28" 1—y

Substituting in the equation M'C = ¢ then yields

T
Vo' =1 NE -1 Ay —1

O PO Sk O e 4 .
o — 1 B—1 1

Now if &’ and v’ denote this time the nonhomogeneous coordinates of e’ in the projective
basis formed by the points a;, we finally obtain

W@y =2y )a —1) = (Aa — Vo) Ay — 1),
VQay =AMy =D =8 =AYy — 1).

A system of two quadratic equations in two unknowns A and A’ such as Eq. (13.5) admits
in general four solutions, that can be thought of as the four intersections of the conic sections
defined by the two equations in the (A, A") plane. Inspection of Eq. (13.5) reveals immediately
that (A, A") = (0, 0) and (A, A") = (1/y, 1/y’) are always solutions of these equations. It is easy
(if a bit tedious) to show that the two remaining solutions are identical (geometrically, the two
conics are tangent to each other at their point of intersection) and the corresponding values of the
parameters A and A’ are given by

woa o w a o
Det{v B B Det{v B B
1 1 !
vy v and N = vy v
o

(13.5)

<

~

A=

wo o A A A
Det|{vB B B Det|{v8' B B
y v v v v v

These values uniquely determine the projection matrices M and M’. Note that taking into
account the equations defining the second epipole would not add independent constraints because
of the epipolar constraint that relates matching epipolar lines. Once the projection matrices are
known, it is a simple matter to reconstruct the scene points.

13.3 PROJECTIVE MOTION ESTIMATION FROM MULTILINEAR CONSTRAINTS

The methods given in the previous two sections reconstruct the scene relative to five of its points,
thus the quality of the reconstruction strongly depends on the accuracy of the localization of
these points in the two images. In contrast, the approach presented in this section takes all points
into account in a uniform manner and uses the multilinear constraints introduced in chapter 10
to reconstruct the camera motion in the form of the associated projection matrices.
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13.3.1 Motion Estimation fro'm Fundainental Matrices

Let us assume that the fundamental matrix .7-' assomated with two plctures has been estimated
from binocular correspondences As in the affine case, the projection matrices can in fact be es-
timated from a parametenzatlon of F that exploits the inherent ambiguity of pro_]ectlve structure
from motion. Since in the projective setting the scene structure and camera motion are only de-
fined up to an arbitrary projective transformatlon we can reduce the two matrices to canonical
forms M = MQ and M' = M'Q by postmultiplying them by an appropriate 4 x 4 ma-
trix Q. This time we take M’ to be proportional to (Id 0) and leave M in the general form
(A b). This reduction process determines 11 of the entries of Q, and we refrain from using the
4 remalmng degrees of freedom of Q to reduce M to a simpler form.

Let us now derive a new expression for the fundamentat matrix using the canonical form -
of M.IfP = (x, ¥,z, 1)T denotes the homogeneous coordinate vector of the point P in the
corresponding world coordinate system, we can write the projection equations associated with
the two cameras as zp = (.A b)Pand 7/ Zp=(1d 0)P or, equivalently,

w=A0d 0OP+b=7Ap +b.

It follows thdt zb x p = z’ b x Ap’, and forming the dot product of this expression with p
finally yields

pTFp =0 where F =[b.]A.

Note the similarity with the expression for the essential matrix derived in chapter 10.

In particular, we have F7b = 0, so (as could have been expected) b is the homogeneous
coordinate vector of the first epipole in the corresponding image coordinate system. This new
parameterization of the matrix F provides a 51mp1e method for computing the prOJectlon matnx
M. First note that, since the overall scale of M is irrelevant, we can always take |b| =
This allows us to first compute b as the linear least-squares solution of F7b = 0 with umt
norm, then pick Ay = —[by]F as the value of A. It is easy to show that, for any vector a,
[ax)? = aa” — |a|?1d; thus,

(6x1Ao = —[b, °F = —bb" F + |b|*F = F,

since FTb = 0 and |b|?> = 1. This shows that A = (Ao ) is a solution of our problem. As
shown in the exercises, there is in fact a 4-parameter family of solutions whose general form is

M= (A b) with A=2rA+( ub|vb|zh).

The four parameters correspond, as could have been expected, to the remaining degrees of free-
dom of the projective transformation Q. Once the matrix M is known, we can compute the
position of any point P by solving in the least-squares sense the nonhomogeneous linear system
of equations in z and z’ defined by zp = 7/ Ap’ + b.

13.3.2 Motion Estimatidn from Trifocal Tensors

We now rewrite in a projective setting the trilinear constraints associated with the trifocal tensor
first introduced in chapter 10. As in the previous section, we can postmultiply the projection
matrices by an appropriate 4 x 4 matrix so they take the form

My=(d 0), Ny=(A by, and M;= (A by).
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Under this transformation, b, and b3 can still be interpreted as the homogeneous image
coordinates of the epipoles e, and e;3, and the trilinear constraints in Egs. (10.14) and (10.15)
still hold, with the trifocal tensor defined this time by the three matrices?

G =bAT — ALBT, (13.6)

where A} and A} (i = 1, 2, 3) denote the columns of .4, and A;.
Assuming that the trifocal tensor has been estimated from point or line correspondences

as described in chapter 10, our goal in this section is to recover the projection matrices M; and
M. Let us first observe that

(b2 x AT G = [(b2 x ADTB, ] AT — [(B2 x ADTAL]B] =0,
and, likewise,
Gi(bs x AL) = [ALT (b3 x A ] b, — [b] (B3 x A))]AL = 0.

It follows that the matrix G} is singular (a fact already mentioned in chapter 10) and the
vectors by x Aé and b3 x Ag lie, respectively, in its left and right nullspaces. In turn, this means
that, once the trifocal tensor is known, we can compute the epipole b, (resp. b3) as the common
normal to the left (resp. right) nullspaces of the matrices g;’ (i=1,2,3).

Once the epipoles are known, writing Eq. (13.6) for i = 1, 2, 3 provides 27 homogeneous
linear equations in the 18 unknown entries of the matrices A; (j = 2, 3). These equations can be
solved up to scale using linear least squares. Alternatively, it is possible to estimate the matrices
A; directly from the trilinear constraints associated with pairs of matching points or lines by
writing the trifocal tensor coefficients as functions of these matrices, which leads once again to
a linear estimation process.

Once the projection matrices have been recovered, the projective structure of the scene can
be recovered as well by using the perspective projection equations as linear constraints on the
homogeneous coordinate vectors of the observed points and lines.

13.4 PROJECTIVE STRUCTURE AND MOTION FROM MULTIPLE IMAGES

Section 13.3 used the epipolar and trifocal constraints to reconstruct the camera motion and the
corresponding scene structure from a pair or triple of images. Likewise, the quadrifocal tensor
introduced in chapter 10 can in principle be used to estimate the projection matrices associated
with four cameras and the corresponding projective scene structure. However, multilinear con-
straints do not provide a direct method for handling m > 4 views in a uniform manner. Instead,
the structure and motion parameters estimated from pairs, triples, or quadruples of successive
views must be stitched together iteratively. We now present an alternative where all images are
taken into account at once in a nonlinear optimization scheme.

13.4.1 A Factorization Approach to Projective Structure from Motion

In this section, we present a factorization algorithm for motion analysis that generalizes the
Tomasi~Kanade algorithm presented in chapter 12 to the projective case. Given m images of n

2Formally, postmultiplying the three projection matrices by Q has the same effect as taking the calibration matrix
K, equal to the identity in the equations defining the (uncalibrated) trifocal tensor in chapter 10. Note, however, that
we do not assume here that the calibration parameters are known. Instead, we use an appropriate change of projective
coordinates to simplify the form of the projection matrices.
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points, we can rewrite Eq. (13.1) as

D=MP, 13.7)
where
ZuPun 2Pz -+ AnPia M,
p¥ | Pu mPn - TP | | Mol p & (p p, P,
Zmlpml Zm’Zp’mZ Zm.n.l;mn Mm

As the product of 3m x 4 and 4 X n matrices, the 3m x n matrix D has (at most) rank 4;
thus, if the projective depths z;; were known, we could compute M and P, just as in the affine
case, by using singular value decomposition to factor D. On the other hand, if M and P were
known, we could read out the values of the projective depths z;; from Eq. (13.7). This suggests
an iterative scheme for estimating the unknowns z;;, M and P by alternating steps where some
of these unknowns are held constant while others are estimated.

‘We minimize the squared Frobenius norm of D — MP—that is,

EED-MP2=Y|zp; - MiP;?
i

with respect to the unknowns M;, P; and z;;. Note that the minimization of E is ill-posed unless
some constraints are imposed on the parameters M;, P;, and z;;. Indeed, as mentioned earlier,
these unknowns are not independent: The matrices M; and the vectors P; are only defined up
to scale. If M;, Pj, and z;; are solutions of Eq. (13.1), so are o; M;, B,;P;, and «;B;z;; for
arbitrary values of the scalars o; and 8;. In particular, Eq. (13.1) always admits the trivial solution
M; =0,P; =0, z;; = 0. In fact, this equation admits a much wider class of trivial, nonphysical
solutions—for example, z;; = 0, M; = My, and P; = Py, where M) is an arbitrary rank-3
3 X 4 matrix and Py is a unit vector in its kernel. Here we impose the constraint that the columns
d; of the matrix D have unit norm, which eliminates these trivial solutions.

Let us assume that we are at some stage of the minimization process, fix the value of M to
its current estimate and compute, for j =1, ..., n, the values of z; o (21js - +2Zm;)T and P;
that minimize

m

def

Ej = E IZijpj—MinP.
i=1

These values minimize E as well. Writing that the gradient of E; with respect to the vector P;
should be zero at a minimum yields

dE; ”
0=—22=2% M (zp; — MiP)),
aP] i=1
or
MTd; = MTMP; <= P; = M'd;,
where M' & (MT M)~ MT is the pseudoinverse of M. In turn, substituting this value in the
definition of E; yields E; = |(Id — MM")d;|%.
Now M is a 3m x 4 matrix of rank 4 whose singular value decomposition Y/WVT is formed

by the product of a column-orthogonal 3m X 4 matrix U, a 4 x 4 nonsingular diagonal matrix W,
and a 4 x 4 orthogonal matrix V7. The pseudoinverse of M is Mt = VW17, substituting
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this value in the expression of E; and taking into account the fact that |d;|> = 1 immediately
yields

E; = |ld - uu"1d;[* = 1 — ud; 2.

In turn, this means that minimizing E; with respect to z; and P; is equivalent to maximiz-
ing |[Ud;|* under the constraint |d;|> = 1. Finally, observing that

p; 0 ... 0
dj = sz]', where Qj déf 0 p2j 0 s
0 0 ... pu

shows that minimizing E; is equivalent to maximizing |R;z;|> with respect to z; under the

constraint |Q;z;|? = 1, where R; Eurg ;. This is a generalized eigenvalue problem, whose
solution is the unit vector z; corresponding to the largest scalar A such that RTR ;z; = A QJT Qjz;.

The minimization step where the projective depths are held constant and M and P are
updated is the same as in the Tomasi-Kanade approach to affine structure from motion. The
overall process is summarized in Algorithm 13.1. The initial projective depth values are set to 1
or they can be computed as before from estimates of the epipolar geometry.

It is easy to show that the error E eventually converges to some value E*. Indeed, let E,
be the current error value at the beginning of each iteration; the first two steps of the algorithm
do not change the vectors z;, but minimize E with respect to the unknowns M and P;. If E,
is the value of the error at the end of Step 2, we have E, < Ey. Now Step 3 does not change
the matrix M, but minimizes each error term E; with respect to both the vectors z; and P;.
Therefore, the error E3 at the end of this step is smaller than or equal to E;,. This shows that
the error decreases in a monotone manner at each iteration. Since it is bounded below by zero,
we conclude that the error converges to some value E* > 0. The convergence of its error is
not sufficient to guarantee the convergence of an optimization algorithm to a local minimum.
However, a convergence proof for Algorithm 13.13.1, based on the Global Convergence Theorem
(Luenberger, 1985) from numerical analysis and far too complex to be included here, can be
found in Mahamud et al. (2001). Whether this local minimum turns out to be the global one
depends, of course, on the choice of initial values chosen for the various unknown parameters. A

Algorithm 13.1: A Factorization Algorithm for Projective Shape from Motion.

1. Compute an initial estimate of the projective depths z;;, with i = 1,... ,m and
j=1,...,n.

2. Normalize each column of the data matrix D.

3. Repeat:

(a) use singular value decomposition to compute the 2m x 4 matrix M and the
4 x n matrix P that minimize |D — MP|?;

(b) for j = 1 to n, compute the matrices R; and Q; and find the value of z;
that maximize |R;z j|2 under the constraint |Q;z j|2 = 1 as the solution of a
generalized eigenvalue problem;

(c) update the value of D accordingly;
until convergence.
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Figure 13.5 Iterative projective estimation of camera motion and scene struc-
ture: (a) a sample image in the sequence; (b) plot of the average and maximum
reprojection error as a function of iteration number. Two experiments were con-
ducted: In the first one (alternate), alternate images in the sequence are used as
training and testing datasets; in the second experiment (inner), the first five and
last five pictures were used as training set, and the remaining images were used
for testing. In both cases, the average error falls below 1 pixel after 15 iterations.
Reprinted from “Iterative Projective Reconstruction from Multiple Views,” by
S. Mahamud and M. Hebert, Proc. IEEE Conference on Computer Vision and
Pattern Recognition, (2000). © 2000 IEEE.

possible choice, used in the experiments presented in Mahamud and Hebert (2000), is to initialize
the projective depths z;; to 1, which effectively amounts to starting with a weak-perspective
projection model.

Figure 13.5(a) shows the first image in a sequence of 20 pictures of an outdoor scene.
Thirty points were tracked manually across the sequence, with a localization error of 1 pixel.
Figure 13.5(b) plots the evolution of the average and maximum errors between the observed and
predicted image point positions when various subsets of the image sequence are used for training
and testing.

13.4.2 Bundle Adjustment

Given initial estimates for the matrices M; (i = 1,... ,m) and vectors P; (j = 1, ... ,n), we
can refine these estimates by using nonlinear least squares to minimize the global error measure

2 2
1 m; - P; mi - P;
E = __Z uij — il J + vij — i2 Jj
mn ] mi3-Pj mi3-Pj
This is the method of bundle adjustment, whose name originates from the field of
photogrammetry. Although it may be expensive, it offers the advantage of combining all mea-
surements to minimize a physically significant error measure—namely, the mean-squared error

between the actual image point positions and those predicted using the estimated scene structure
and camera motion.

13.5 FROM PROJECTIVE TO EUCLIDEAN IMAGES

Although projective structure is useful by itself, in most cases it is the Euclidean structure of
the scene that is the true object of interest. We saw in chapter 12 that the absolute scale of
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a scene cannot be recovered from weak-perspective or paraperspective images even when the
intrinsic parameters of the corresponding cameras are known. The same ambiguity holds in the
perspective case: Given a camera with known intrinsic parameters, we can take the calibration
matrix to be the identity and write the perspective projection Eq. (2.15) in some Euclidean world

coordinate system (W) as
1 P 1 AP
=—-(R ¢ =—(R M
P Z( )(1> Az( )(1)

for any nonzero scale factor A. This ambiguity is not surprising given the fact that ¢ is defined in
Eq. (2.15) as the position of the origin of (W) relative to the camera: Moving both the scene and
the camera observing it away from (or toward) this point at constant speed alters the apparent
depth of the scene, but does not change its image. Adding more cameras does not help, and the
best we can hope for is to estimate the Euclidean shape of the scene, defined, as in chapter 2, up
to an arbitrary similarity transformation.

Let us assume from now on that one of the techniques presented in Section 13.4 has
been used to estimate the projection matrices M; (i = 1,...,m) and the point positions P;
(j = 1,...,n) from m images of these points. We know that any other reconstruction and in
particular a Euclidean one is separated from this one by a projective transformation. In other
words, if M; and P ; denote the shape and motion parameters measured in some Euclidean co-
ordinate system, there must exist a 4 x 4 matrix Q such that Mi = M;Q and P ;= Q-lp ;. The
rest of this section presents a method for computing the Euclidean upgrade matrix Q and thus
recovering the Euclidean shape and motion from the projective ones when (some of) the intrinsic
parameters of the camera are known.

Let us first note that, since the individual matrices M; are only defined up to scale, so
are the matrices M; that can be written (in the most general case where some of the intrinsic
parameters are unknown) as

M =piKi(Ri  8),

where p; accounts for the unknown scale of M;, and K; is a calibration matrix as defined by
Eq. (2.13). In particular, if we write the Euclidean upgrade matrix as Q@ = (Q3 ¢q,), where Q3
is a4 x 3 matrix and g, is a vector in R*, we obtain immediately

M; Q3 = piKiR;. (13.8)

Using this equation, it is a simple matter to adapt the affine methods introduced in chap-
ter 12 to the projective setting when the intrinsic parameters of all cameras are known so the
matrices K; can be taken equal to the identity: According to Eq. (13.8), the 3 x 3 matrices M; Q3
are in this case scaled rotation matrices. Writing that their rows miTj (j =1, 2, 3) are perpendic-
ular to each other and have the same norm yields

m Q:0Tm; =0,
m}, Q30 m;; =0,
m{;Q;Qfm;1 =0, (13.9)
m% Q30T m;; —m5,Q;0 m;; =0,
m5, 00 mi; —m5Q30 m;3 = 0.
The upgrade matrix Q is of course only defined up to an arbitrary similarity. To determine it
uniquely, we can assume that the world coordinate system and the first camera’s frame coincide.

Given m images, we obtain 12 linear equations and 5(rm — 1) quadratic ones in the coefficients
of Q. These equations can be solved using nonlinear least squares.
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Alternatively, the constraints in Eq. (13.9) are linear in the coefficients of the symmetric

. def N N . -
matrix A = Q3 Q7 allowing its estimation from at least two images via linear least squares.

Note that A has rank 3—a constraint not enforced by our construction. To recover Qs, let us also
note that, since A is symmetric, it can be diagonalized in an orthonormal basis as A = UDUT,
where D is the diagonal matrix formed by the eigenvalues of A and U is the orthogonal matrix
formed by its eigenvectors. In the absence of noise, A is positive semidefinite with three positive
and one zero eigenvalues, and Q3 can be computed as Us+/Ds, where Us is the matrix formed
by the columns of U associated with the positive eigenvalues of .4, and Ds is the correspond-
ing submatrix of D. Because of noise, however, A usually has maximal rank, and its smallest
eigenvalue may even be negative. As shown in Ponce (2000), if we take this time /3 and D;
to be the submatrices of U and D associated with the three largest (positive) eigenvalues of A,
then U3 D3UT provides the best positive semidefinite rank-3 approximation of A in the sense of
the Frobenius norm,? and we can take as before Q3 = Us+/D;. At this point, the last column
vector g, of Q can be determined by (arbitrarily) picking the origin of the frame attached to the
first camera as the origin of the world coordinate system.

This method can easily be adapted to the case where only some of the intrinsic camera
parameters are known: Using the fact that R; is an orthogonal matrix allows us to write

MAMT = pHGKT . (13.10)

Thus, every image provides a set of constraints between the entries of K; and .4. Assuming, for
example, that the center of the image is known for each camera, we can take ug = vy = 0 and
write the square of the matrix K; as

1 cos 6;
e Py,
KKl = p cosb; , 1
—ubigre Pt
0 0 1

In particular, the part of Eq. (13.10) corresponding to the zero entries of K; KT provides
two independent linear equations in the 10 coefficients of the 4 x 4 symmetric matrix .A. With
m > 5 images, these parameters can be estimated via linear least squares. Once A is known, Q
can be estimated as before. Figure 13.6 shows a texture-mapped picture of the 3D model of a
castle obtained by a variant of this method (Pollefeys et al. (1999)).

The short introduction to projective geometry given at the beginning of this chapter focuses on
the analytical side of things. See, for example, Todd (1946), Berger (1987), and Samuel (1988)
for thorough introductions to analytical projective geometry, and Coxeter (1974) for an axiomatic
presentation. Projective structure from motion is covered in detail in the books of Hartley and
Zisserman (2000) and Faugeras, Luong, and Papadopoulo (2001). _

As mentioned by Faugeras (1993), the problem of calculating the epipoles and the epipolar
transformations compatible with seven point correspondences was first posed by Chasles (1855)
and solved by Hesse (1863). The problem of estimating the epipolar geometry from five point
correspondences for internally calibrated cameras was solved by Kruppa (1913). An excellent

3Note the obvious similarity between this result and Theorem 4.
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Figure 13.6 A synthetic texture-mapped image of a castle constructed via pro-
jective motion analysis followed by a Euclidean upgrade. The principal point
is assumed to be known. Reprinted from “Self-Calibration and Metric 3D Re-
construction from Uncalibrated Image Sequences,” by M. Pollefeys, PhD Thesis,
Katholieke Universiteit, Leuven, (1999).

modern account of Hesse’s and Kruppa’s techniques can be found in Faugeras and Maybank
(1990), where the absolute conic, an imaginary conic section invariant through similarities, is
used to derive two tangency constraints that make up for the missing point correspondences.
These methods are of course mostly of theoretical interest since their reliance on a minimal
number of correspondences limits their ability to deal with noise. The weak-calibration methods
of Luong et al. (1993, 1996) and Hartley (1995) described in chapter 10 provide reliable and
accurate alternatives.

Faugeras (1992) and Hartley et al. (1992) introduced independently the idea of using a
pair of uncalibrated cameras to recover the projective structure of a scene. Other notable work in
this area includes, for example, Mohr et al. (1992) and Shashua (1993). Section 13.2.2 presents
Faugeras’ original method, and its geometric variant presented in Section 13.2.1 is taken from
Ponce et al. (1993). The two- and three-view motion analysis techniques also presented in this
chapter are variants of the methods proposed by Hartley (1992, 19945, 1997) and Beardsley et
al. (1997). When the cameras are calibrated, it is also possible, as shown in the exercises and
(Longuet-Higgins, 1981), to recover (up to a two-fold ambiguity) the similitude associated with
the corresponding essential matrix. An iterative algorithm for perspective motion and structure
recovery using calibrated cameras is given in Christy and Horaud (1996). The extension of fac-
torization approaches to structure and motion recovery was first proposed by Sturm and Triggs
(1996). The variant presented in Section 13.4.1 is due to Mahamud and Hebert (2000) and has
the advantage of being provably convergent (Mahamud et al., 2001). Algorithms for stitching
together pairs, triples or quadruples of successive views can be found in Beardsley et al. (1997)
and Pollefeys et al. (1999) for example. v

The problem of computing Euclidean upgrades of projective reconstructions when some of
the intrinsic parameters are known has been addressed by a number of authors (e.g., Heyden and
Astrém, 1996, Triggs, 1997, Pollefeys, 1999). The matrix A = Q3 Q?{ introduced in Section 13.5
can be interpreted geometrically as the projective representation of the dual of the absolute conic,
the absolute dual quadric (Triggs, 1997). Like the absolute conic, this quadric surface is invariant
through similarities, and the (dual) conic section associated with X; K7 is simply the projection
of this quadric surface into the corresponding image. Self-calibration is the process of comput-
ing the intrinsic parameters of a camera from point correspondences with unknown Euclidean
positions. Work in this area was pioneered by Faugeras and Maybank (1992) for cameras with
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fixed intrinsic parameters.-A number of reliable self-calibration methods are now available (Hart-
ley, 19944, Fitzgibbon and Zisserman, 1998, Pollefeys et al., 1999), and they can also be used
to upgrade projective reconstructions to Euclidean ones. The problem of computing Euclidean
upgrades of projective reconstructions under minimal camera constraints such as zero skew is
addressed in Heyden and Astrom (1998, 1999), Pollefeys et al. (1999), and Ponce (2000).

13.1. Use a simple counting argument to determine the minimum number of point correspondences re-

. quired to solve the projective structure-from-motion problem in the trinocular case.

13.2. Show that the change of coordinates between two projective frames (A) and (B) can be represented
by Eq. (13.2). :

13.3. Show that any two distinct lines in a projective plane intersect in exactly one point and that two
parallel lines A and A’ in an affine plane intersect at the point at infinity associated with their
common direction v in the projective completion of this plane.

Hint: Use J, to embed the affine plane in its projective closure, and write the vector of IT x R
associated with any point in J4(A) (resp. J4(A’)) as a linear combination of the vectors (ﬁ, 1)
and (;ﬁ + v, 1) (resp. (ﬁ, 1) and (A_B)’ + v, 1)), where B and B’ are arbitrary points on A and

A

13.4. Show that a perspective projection between two planes of P? is a projective transformation.

13.5. Given an affine space X and an affine frame (Ao, . . . , A,) for that space, what is the projective basis
of X associated with the vectors e; &f (ApA;,0) i = 1,...,n)and the vector e,; = (0, 1)? Are

the points J,, (A;) part of that basis?
13.6. In this exercise, you will show that the cross-ratio of four collinear points A, B, C, and D is equal to

sin(a + B) sin(8 + y)

{A,B;C,D} = — =,
sin(a@ + B + y) sin B

where the angles «, 8, and y are defined as in Figure 13.2.
(a) Show that the area of a triangle P QR is

1
A(P,Q,R) = %PQ x RH = EPQ x PRsiné,

where P Q denotes the distance between the two points P and Q, H is the projcction of R onto
the line passing through P and Q, and 6 is the angle between the lines joining the point P to
the points Q and R.

(b) Define the ratio of three collinear points A, B, C as

AB
R(A,B,C) = —
BC

for some orientation of the line supporting the three points. Show that
R(A,B,C)=A(A, B,0)/A(B, C, 0),

where O is some point not lying on this line.
(¢) Conclude that the cross-ratio {A, B; C, D} is irideed given by the formula above.

13.7. Show that the homography between two epipolar pencils of lines can be written as

at+b
ct+d’

T>1T =

where T and 7’ are the slopes of the lines.
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13.8.

13.9.

13.10.

13.11.
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Here we revisit the three-point reconstruction problem in the context of the homogeneous coordi-
nates of the point D in the projective basis formed by the tetrahedron (A, B, C, O’) and the unit
point O”. Note that the ordering of the reference points, and thus the ordering of the coordinates, is
different from the one used earlier: This new choice is, like the previous one, made to facilitate the
reconstruction.

We denote the (unknown) coordinates of the point D by (x, y, z, w), equip the first (resp.
second) image plane with the triangle of reference a’, &', ¢’ (resp. a”, b”, ¢”') and the unit point ¢/
(resp. e"), and denote by (x’, y’, z') (resp. (x”, y”, z")) the coordinates of the point d’ (resp. d”).

Hint: Drawing a diagram similar to Figure 13.3 helps.

(a) What are the homogeneous projective coordinates of the points D’, D”, and E where the lines
O'D, 0"D, and O’ 0" intersect the plane of the triangle?
(b) Write the coordinates of D as a function of the coordinates of O’ and D’ (resp. 0" and D") and
some unknown parameters.
Hint: Use the fact that the points D, O’, and D’ are collinear.
(c) Give a method for computing these unknown parameters and the coordinates of D.
Show that if M = (A b)and M’ = (Id 0) are two projection matrices, and if F denotes the
corresponding fundamental matrix, then [b].A is proportional to F whenever b = 0 and

A= —AbJF+( pub | vb|1h).

We derive in this exercise a method for computing a minimal parameterization of the fundamental

matrix and estimating the corresponding projection matrices. This is similar in spirit to the technique

presented in Section 12.2.2 of Chapter 12 in the affine case.

(a) Show that two projection matrices M and M’ can always be reduced to the following canonical
forms by an appropriate projective transformation:

(100 0 G
M=[0 1 0 0| and At'=|al b

Note: For simplicity, you can assume that all the matrices involved in your solution are
nonsingular.

(b) Note that applying this transformation to the projection matrices amounts to applying the in-
verse transformation to every scene point P. Let us denote by P = (x, y, z)7 the position of the
transformed point P in the world coordinate system and by p = (, v, 1)T and p =, DT
the homogeneous coordinate vectors of its images. Show that

(' —b1)(@, - p) = (V' — by)(a; - p).

(c) Derive from this equation an eight-parameter parameterization of the fundamental matrix, and
use the fact that F is only defined up to a scale factor to construct a minimal seven-parameter
parameterization.

(d) Use this parameterization to derive an algorithm for estimating F from at least seven point
correspondences and for estimating the projective shape of the scene.

Here we address the problem of recovering the rotation R and translation ¢ associated with an

essential matrix £ = [£,]R (this exercise is courtesy of Andrew Zisserman). The translation part is

easy since ¢ can be recovered (up to scale since we know that the structure of a scene can only be
determined up to a similitude) as the unit vector satisfying £7¢.

(a) Show that the SVD of the essential matrix can be written as

£ =U diag(1, 1,0)VT7,

and conclude that ¢ is the third column vector of /.
(b) Show that the two matrices

Ri=UWVT R, =UWTVT
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satisfy £ = [#]« R, where

Programming Assignments

13.12. Implement the geometric approach to projective scene estimation introduced in Section 13.2.1.
13.13. Implement the algebraic approach to projective scene estimation introduced in Section 13.2.2.
13.14. Implement the factorization approach to projective scene estimation introduced in Section 13.4.1.



