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Digital Image Processing, 2nd ed.

Review
Matrices and Vectors

Objective

To provide background material in support of topics in Digital
Image Processing that are based on matrices and/or vectors.
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Review: Matrices and Vectors

Some Definitions

An mxn (read "m by n") matrix, denoted by A, is a

rectangular array of entries or elements (numbers, or symbols
representing numbers) enclosed typically by square brackets,
where m is the number of rows and » the number of columns.
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* Ais square if m=n.

* A is diagonal if all off-diagonal elements are 0, and not all
diagonal elements are 0.

* A is the identity matrix (1) if it is diagonal and all diagonal
elements are 1.

* A is the zero or null matrix (0) if all its elements are 0.

¢ The trace of A equals the sum of the elements along its
main diagonal.

* Two matrices A and B are equal iff the have the same

number of rows and columns, and a;= b,.j .
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* The transpose AT of an mxn matrix A is an nxm matrix
obtained by interchanging the rows and columns of A.

* A square matrix for which A7=A is said to be symmetric.

* Any matrix X for which XA=I and AX=I is called the
inverse of A.

* Let c be a real or complex number (called a scalar). The
scalar multiple of ¢ and matrix A, denoted cA, is
obtained by multiplying every elements of A by c. If ¢ =—
1, the scalar multiple is called the negative of A.

l© 2001 R. C. Gonzalez & R. E. Woods 4




Digital Image Processing, 2nd ed.

WWW.

Review: Matrices and Vectors

Definitions (Con't)

A column vector is an m x 1 matrix:

aj

am

A row vector is a 1 X n matrix:
| b= [bibab] |

A column vector can be expressed as a row vector by using
the transpose:

! al = [a1, a2, dm] ]
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Some Basic Matrix Operations

* The sum of two matrices A and B (of equal dimension),
denoted A + B, is the matrix with elements a;+ b,.j.

* The difference of two matrices, A— B, has elements a;,— b,

* The product, AB, of mxn matrix A and pxq matrix B, is an
mxq matrix C whose (i,j)-th element is formed by
multiplying the entries across the ith row of A times the
entries down the jth column of B; that is,

cy = anby +anby + - +auby
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Some Basic Matrix Operations (Con't)

The inner product (also called dot product) of two vectors

day bl

a b
a= : b= ‘2

am bm

is defined as

a’b=b"a= arby +azby + - + ambm

Note that the inner product is a scalar.
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Vectors and Vector Spaces

A vector space is defined as a nonempty set V of entities called vectors

and associated scalars that satisfy the conditions outlined in A through

C below. A vector space is real if the scalars are real numbers; it is

complex if the scalars are complex numbers.

+ Condition A: There is in ¥ an operation called vector addition,
denoted x +y, that satisfies:

1. x +y =y +x for all vectors x and y in the space.

2.x+(ytz)=(x+y)+zforallx,y, and z.

3. There exists in V" a unique vector, called the zero vector, and
denoted 0, such that x + 0 =x and 0 + x = x for all vectors x.

4. For each vector x in V, there is a unique vector in ¥, called
the negation of x, and denoted —x, such that x + (— x) =0
and (-x)+x=0.
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Vectors and Vector Spaces (Con't)

+ Condition B: There is in V an operation called multiplication by a
scalar that associates with each scalar ¢ and each vector x in V' a
unique vector called the product of ¢ and x, denoted by cx and xc,
and which satisfies:

1. c(dx) = (cd)x for all scalars ¢ and d, and all vectors x.
2. (c + d)x = cx + dx for all scalars ¢ and d, and all vectors x.
3. c(x +y) =cx + cy for all scalars ¢ and all vectors x and y.

« Condition C: 1x = x for all vectors x.
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We are interested particularly in real vector spaces of real mx1
column matrices. We denote such spaces by R™ , with vector
addition and multiplication by scalars being as defined earlier
for matrices. Vectors (column matrices) in R™ are written as

X1

X7

Xm
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Vectors and Vector Spaces (Con't)

Example

The vector space with which we are most familiar is the two-
dimensional real vector space R? , in which we make frequent
use of graphical representations for operations such as vector
addition, subtraction, and multiplication by a scalar. For
instance, consider the two vectors

o

Using the rules of matrix addition and subtraction we have

1] [
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Vectors and Vector Spaces (Con't)

Example (Con’t)
The following figure shows the familiar graphical
representation of the preceding vector operations, as well as

multiplication of vector a by scalar ¢ =-0.5.

4
b3
2

—03a

12
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Consider two real vector spaces ¥, and ¥ such that:
* Each element of V is also an element of V (i.e., V), is a subset

of V).
* Operations on elements of V| are the same as on elements of
V. Under these conditions, ¥}, is said to be a subspace of V.

A linear combination of v ,v,,...,v,_is an expression of the form
172 n

a1V +d2Vy) + - + AuVy

where the o’s are scalars.
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Vectors and Vector Spaces (Con't)

A vector v is said to be linearly dependent on a set, S, of vectors
Vy,Vy,...,V, if and only if v can be written as a linear combination
of these vectors. Otherwise, v is linearly independent of the set
of vectors v,,v,,...,v,, .
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Vectors and Vector Spaces (Con't)

A set S of vectors v ,v,,...,v, in Vis said to span some subspace
V, of V if and only if S is a subset of ¥, and every vector v, in V;,
is linearly dependent on the vectors in S. The set S is said to be a
spanning set for V. A basis for a vector space V is a linearly
independent spanning set for . The number of vectors in the
basis for a vector space is called the dimension of the vector
space. If, for example, the number of vectors in the basis is n, we
say that the vector space is n-dimensional.
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Vectors and Vector Spaces (Con't)

An important aspect of the concepts just discussed lies in the
representation of any vector in R™ as a linear combination of
the basis vectors. For example, any vector

X1

in N3 can be represented as a linear combination of the basis

vectors
0 0
1 |, and| 0
0 0 1
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Vector Norms

A vector norm on a vector space V is a function that assigns to
each vector v in V' a nonnegative real number, called the norm
of v, denoted by ||v||. By definition, the norm satisfies the
following conditions:

D |v]] > 0forv = 0; ||0] =0,

(2) llevll = le]

B) lu+v

CcV v

for all scalars ¢ and vectors v, and

v

< Jull+
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Vector Norms (Con't)

There are numerous norms that are used in practice. In our
work, the norm most often used is the so-called 2-norm,
which, for a vector x in real R™, space is defined as

= [} +ad+ -+ x3]

X

which is recognized as the Fuclidean distance from the origin
to point x; this gives the expression the familiar name Euclidean
norm. The expression also is recognized as the length of a
vector x, with origin at point 0. From earlier discussions, the

norm also can be written as
[x]| = [x"x

172
]
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The Cauchy-Schwart; inequality states that

Ty < [lx Iy

Another well-known result used in the book is the expression

xTy

=Tyl

cos @ =

where 0 is the angle between vectors x and y. From these
expressions it follows that the inner product of two vectors can
be written as

x"y =[x|[[[y]/cos

Thus, the inner product can be expressed as a function of the
norms of the vectors and the angle between the vectors.

l© 2001 R, C, Gonzalez & R, E, Woods
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Vector Norms (Con't)

From the preceding results, two vectors in R™ are orthogonal if
and only if their inner product is zero. Two vectors are
orthonormal if, in addition to being orthogonal, the length of
each vector is 1.

From the concepts just discussed, we see that an arbitrary
vector a is turned into a vector a, of unit length by performing
the operation a, = a/||a||. Clearly, then, ||a,|| = 1.

A set of vectors is said to be an orthogonal set if every two
vectors in the set are orthogonal. A ser of vectors is
orthonormal if every two vectors in the set are orthonormal.
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Some Important Aspects of Orthogonality

Let B = {v,,v,,...,v, } be an orthogonal or orthonormal basis
in the sense defined in the previous section. Then, an
important result in vector analysis is that any vector v can be
represented with respect to the orthogonal basis B as

V=Q1V] +QAvVy + -~ +AuyVy

where the coefficients are given by

“ =\ Thuee are The dob ploducts
v, of v witheadn of 4 basts vectors
[lvill?

21
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Orthogonality (Con't)

The key importance of this result is that, if we represent a
vector as a linear combination of orthogonal or orthonormal
basis vectors, we can determine the coefficients directly from
simple inner product computations. It is possible to convert
a linearly 4fidependent spanning set of vectors into an
orthogonal spanning set by using the well-known Gram-
Schmidt process. There are numerous programs available
that implement the Gram-Schmidt and similar processes, so
we will not dwell on the details here.

22
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Eigenvalues & Eigenvectors (Con't)

Example

Suppose that we have a random population of vectors, denoted
by {x}, with covariance matrix (see the review of probability):

Cy = E{(x -my)(x - mx)T}}

Suppose that we perform a transformation of the form y = Ax on
each vector x, where the rows of A are the orthonormal
eigenvectors of C,. The covariance matrix of the population {y}
is
Cy = E{(y - my)(y - my)"}

= F{(Ax — Am)(Ax — Amy)7}

= E{A(x - my)(x —my)TAT}

= AE{(x = my)(x - my) AT

= AC;AT
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Eigenvalues & Eigenvectors

Definition: The cigenvalues of a real matrix M are the real
numbers A for which there is a nonzero vector e such that
The eigenvectors of M are the nonzero vectors e for which
there is a real number A such that Me = A e.

If Me = A e for e # 0, then e is an eigenvector of M
associated with eigenvalue A, and vice versa. The
eigenvectors and corresponding eigenvalues of M constitute
the eigensystem of M.

Numerous theoretical and truly practical results in the
application of matrices and vectors stem from this beautifully

o 200 = c SHANIE definition.
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Example: Consider the matrix

10
0 2

It is easy to verify that Me; = Aie; and Me> = Asexfor 1) = 1,1, = 2 and

In other words, e, is an eigenvector of M with
associated

eigenvalue A, and similarly for e, and A,.

l© 2001 R, C, Gonzalez & R, E. Woods
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Eigenvalues & Eigenvectors (Con't)

The following properties, which we give without proof, are
essential background in the use of vectors and matrices in
digital image processing. In each case, we assume a real
matrix of order mxm although, as stated earlier, these results
are equally applicable to complex numbers.

1 If{A, Aoy Kq, q < m, is set of distinct eigenvalues of M, and
e, is an eigenvector of M with corresponding eigenvalue A, i
=1,2,...,q, then {el,ez,...,eq} is a linearly independent set of
vectors. An important implication of this property: If an mxm
matrix M has m distinct eigenvalues, its eigenvectors will
constitute an orthogonal (orthonormal) set, which means that
any m-dimensional vector can be expressed as a linear
combination of the eigenvectors of M.

25
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Eigenvalues & Eigenvectors (Con't)

2. The numbers along the main diagonal of a diagonal matrix
are equal to its eigenvalues. It is not difficult to show
using the definition Me = A e that the eigenvectors can be
written by inspection when M is diagonal.

3. A real, symmetric mxm matrix M has a set of m linearly
independent eigenvectors that may be chosen to form an
orthonormal set. This property is of particular importance
when dealing with covariance matrices (e.g., see Section
11.4 and our review of probability) which are real and
symmetric.
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4. A corollary of Property 3 is that the eigenvalues of an mxm real
symmetric matrix are real, and the associated eigenvectors may
be chosen to form an orthonormal set of m vectors.

5. Suppose that M is a real, symmetric mxm matrix, and that we
form a matrix A whose rows are the m orthonormal
eigenvectors of M. Then, the product AAT=I because the rows
of A are orthonormal vectors. Thus, we see that A~'= AT when
matrix A is formed in the manner just described.

6. Consider matrices M and A in 5. The product D= AMA-! =
AMA is a diagonal matrix whose elements along the main
diagonal are the eigenvalues of M. The eigenvectors of D are

the same as the eigenvectors of M.
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From Property 6, we know that Cy=ACxAT is a diagonal matrix
with the eigenvalues of C, along its main diagonal. The elements
along the main diagonal of a covariance matrix are the variances
of the components of the vectors in the population. The off
diagonal elements are the covariances of the components of these
vectors.

The fact that C, is diagonal means that the elements of the vectors
in the population {y} are uncorrelated (their covariances are 0).
Thus, we see that application of the linear transformation y = Ax
involving the eigenvectors of C, decorrelates the data, and the
elements of C, along its main diagonal give the variances of the
components of the y's along the eigenvectors. Basically, what has

© 2001 R, C, Gonzalez & R, E. Woods
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Eigenvalues & Eigenvectors (Con't)

been accomplished here is a coordinate transformation that
aligns the data along the eigenvectors of the covariance
matrix of the population.

The preceding concepts are illustrated in the following figure.
Part (a) shows a data population {x} in two dimensions, along
with the eigenvectors of C, (the black dot is the mean). The
result of performing the transformation y=A(x — m,) on the
x's is shown in Part (b) of the figure.

The fact that we subtracted the mean from the x's caused the
y's to have zero mean, so the population is centered on the

coordinate system of the transformed data. It is important to
note that all we have done here is make the eigenvectors the

@ 2001 R, C. Gonzalez & R, E. Woods 30
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Eigenvalues & Eigenvectors (Con't)

new coordinate system (y,,y,). Because the covariance matrix
of the y's is diagonal, this in fact also decorrelated the data.
The fact that the main data spread is along e, is due to the fact
that the rows of the transformation matrix A were chosen
according the order of the eigenvalues, with the first row
being the eigenvector corresponding to the largest eigenvalue.

@ 2001 R, C. Gonzalez & R, E. Woods
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Figure 13-9 Transforms of an image containing an impulse: (a) DST; (b)
DCT; (c) Hadamard: (d) Haar. The input is an eight-by-eight matrix, zero
everywhere except the upper left element, which has value eight



1.4 Uee of Pr\nc,\puﬁ components for cmd%sx s .

-

For om \QGB\mm@L we camwnle each pixel as

Xy
X = |k
A3

For n re.gxs‘rere_& images The cnrrcs.tpondnnir \D\xef vector will be.
¥
0=\
Xn

The mean pecior for oo Po’mﬂmhon of \3\“—’ 1e. PW"\AUW’\ vector's X,

= glx]

where, W covnsu&g The ex Pe,djeA valua %CQC.\/\ e‘emen't.
Tha co\)aux/tc:smm.. Vnc»‘*rll X O‘C this  vectoe popuimhon s 3\0&\ \oj

o, = €0 ) tmma)' |

———

—

For l« Sc\m\p\es from o ram&om PO?UQOA‘KOYI

Z"k

\

—

_X

1
K

k;

K T T
L 7 Fp¥e DIy
K k=

3
>
i
A
K
&
1
w ——



TraMyFor*m the data X b"&,
4= A (x=my)

-

~ T
g,

wwre A gz whoe G, &n 0 The elqen vectors % Cy
G-N\&' '>\>')\-2 > >’>\n

:T
Lg"l J

Tihie 1s clled & Hotellin Tramzformaton. T 1o ophmomin ThLdn‘ A
sen se that 1+ minimizes eYror batwew X omd\OME\gen vedor o.Pproxlm on X

ny= £ 14 =0

d

and, Cy = ﬁgx é‘.T

0 P
Thed mo&en*a\\\a indicake s Thet the ,\% veckors are uncorrelated.

This com be nverted Yo gﬁve_
T : ! =
\A_‘ = ﬁ% + mx ’LOE» .ﬁ. --ﬁ-
\OECa.Mge ﬁ\i oﬂhonormwQ

Construck am estimale ﬁ of X using Cm\?f the k IC\/\gGS\"Q\SGhVQ\uQA,




Digital Image Processing, 2nd ed.

Chapter 11
Representation & Description

FIGURE 11.26 Six
spectral images
from an airborne
scanner.
(Courtesy of the
Laboratory for
Applications of
Remote Sensing,
Purdue
University.)
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Chapter 11
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TABLE 11.4

Channiel numbers Channel Wavelength band (microns)

0.40-0.44
0.62-0.66
0.66-0.72
0.80-1.00
LiK-1.40
2.00-2.60

and wavelengths

R B
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Spectral band 6
Spectral band §
A
X2 Spectral band 4
x=|P
:: Spectral band 3
o Spectral band 2
Spectral band |
FIGURE 11.27 Formation of a vector from corresponding pixels in six images.
M A As A As A '::Alllli l.l -5 of
210 314 H8S 83.8% 64.00 13.40 | the covariance
matrix obtained
from the images
in Fig. 11.26.
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FIGURE 11.28 Six principal-component images computed from the data in Fig. 11.26.
(Courtesy of the Laboratory for Applications of Remote Sensing. Purdue University.) 36
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a
be¢
FIGURE 11.29 (a) An object. (b) Eigenvectors. (¢) Object rotated by using Eq. (11.4-6).
“The net effect is to align the object along its cigen axes.
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