
EECS 490 DIGITAL IMAGE PROCESSING
December 2004

SESSION 3 Face Detection

Mike Adams Face Recognition in Digital Images using Kmeans

Clustering

Svend Johannsen Face Recognition

Michael K. Lee Face Recognition Using MATLAB

Deng-Hung Liu Face Recognition by Color Segmentation and

Morphological Image Processing

Iouri Petriaev Face Recognition: Color Segmentation and Principal

Component Analysis

Chris Roberts Face Detection in Complex Scene Images using Color

Segmentation and Morphological Techniques

Ira Ross Face Detection and Localization in Images using Color

Segmentation and Template Matching

Yu-Hong Yen Face Detection

Face Recognition in Digital Images using Kmeans Clustering
Mike Adams

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email: mda10@case.edu

ABSTRACT
This paper presents a method of recognizing facial regions

in digital images through the use of the Kmeans Clustering

algorithm [1]. Training data used in clustering is extracted

from color-segmented [2] images in which there are an

arbitrary number of facial regions with arbitrary size, fa-

cial-pose, resolution and lighting conditions. Kmeans is

one of many methods of classifying data for automated

decision-making, but is shown here as one that is viable for

use in face recognition.

KEYWORDS

Kmeans, face-recognition, digital image processing

INTRODUCTION

Face recognition is very important in many research areas

from machine vision to complex security systems. One

major difficulty in face recognition is the complexities in-

herent in characterizing a typical face. In an image there

are countless ways that faces can be posed (looking

up,down, straight ahead, etc.), rotated, shaded and lighted.

These complexities are only compounded by the addition-

nal condisderation specific facial features that can be dis-

torted depending on facial expression. The use of the

Kmeans clustering algorithm is therefore motivated by its

ability to classify or ‘cluster’ data based on any indicators

that might be buried within a set of data, such as the fea-

tures that describe facial regions in an image.

KMEANS CLUSTERING

The goal of Kmeans is to take a set of training data points

in N-dimensional space and group them into K separate

clusters for the purpose of then deciding in which clusters a

set of novel data points belong. The data points in N-

dimensional space can be thought of as vectors, each with

N components. The assignment of each of these vectors to

a cluster is then decided based on the vectors’ Euclidean

distance to the center of a cluster. A vector gets assigned to

the cluster closest in N-dimensional space to itself. Each

vector has an attribute, thus each cluster has an average

attribute. These attributes are the defining characteristics

of a vector and a cluster (i.e. Cluster 1 has an average at-

tribute value of .7, so its vector members each correspond

to a facial region and any new vector member assigned to

Cluster 1 must therefore correspond to a facial region) [1].

ALGORITHM [1]

1) Scale training data to be between 0 and 1.

2) Create the clusters by randomly choosing input pat-

terns and assigning each by itself to a cluster for the

desired number of clusters. Each cluster then has only

one member vector (pattern) and that pattern is the

cluster centroid.

3) Process every remaining input pattern by assigning

each to the closest cluster (Euclidean Distance in N-

space).

4) Update the clusters by re-computing the cluster cen-

troids and average cluster attributes (from the addition

of new patterns to each cluster, the centroid of each

cluster will change, as will the average attribute of

each cluster).

5) Update every single patter vector in N-space. Because

at this point, all cluster centroids have changed, a pat-

tern’s distance to its own cluster may be greater than

its distance to another cluster. Therefore, reassign that

pattern to the closest cluster.

6) Continue for a desired number of passes through the

input pattern population or until the system settles

down to the point that on a particular pass there are no

pattern reassignments.

TRAINING SET COMPILATION

The question then is what will the training set of input vec-

tors consist of? Later questions will follow in the imple-

mentation of the algorithm, such as the number of clusters

to be used and the size of the training set. As a first step,

digital images containing faces may be color segmented by

choosing one face (in a fully automated version, the color

segmentation would be based on an average facial color

vector, taken over many faces, not a face chosen by the

user). The result is a black and white image where many

non-face regions have been eliminated, and facial regions

are left in predominance. See the example here.

Nine such images were processed in this way, providing a

good variety of segmentation results, facial poses and dif-

ferent white-to-black region ratios. Pixel regions

(100x100) were extracted from these segmented images

resulting in over 7600 input patterns, 71 of which were

designated as ‘face’ regions.

Some different features were then extracted from the

100x100 pixel regions to compile the set of training input

pattern vectors. In the first case the mean and variance of

each column in a region were extracted, resulting in a set of

pattern vector each with 200 features (200-D data points in

200-D space) and one attribute (1 corresponding to a face

region, 0 corresponding to non-face). In the second case,

the eigenvalues of each 100x100 pixel region were ex-

tracted, resulting in 100-D pattern vectors. In either case

the final result is a training set consisting of 7644 possible

100- or 200-D pattern vectors, 71 of which correspond to

facial regions.

Preprocessing of the image to be evaluated follows in the

same manner, the instructions for which are given in the

Proj1.m Matlab script file printed as the Appendix. The

final step then is to run Proj.1m and follow the instructions

given. Kmeans will output a set of indices, each corre-

sponding to the top left corner of a 100x100 pixel region

that should contain a face or part of a face in the evaluation

image. The user is then instructed on displaying the final

result which is the original image containing 100x100

white squares marking the Kmeans facial locations. Note

that a single white square does not necessarily indicate the

location of an entire single face, but rather the location of a

region where face-designated pattern features are found.

RESULTS AND DISCUSSION

The two images shown below were used to evaluate the

effectiveness of this method and with each image, experi-

mentation with different numbers of clusters and different

size training sets was done. In changing the training sets,

only the number of non-face designated patterns was de-

creased while all available face patterns were kept in the

training sets.

It was immediately clear that the set of pattern features

corresponding to variances and means was the wrong sort

of data to use in describing regions containing faces.

Kmeans was returning too many indices corresponding to

faces or none at all. The rest of the experimentation was

therefore conducted using the training patterns correspond-

ing to the eigenvalues of each 100x100 pixel region. This

information seemed to better describe the 100x100 regions.

CLASSROOM PHOTO

Trained w/3500 Patterns Trained w/ 2500 Patterns

1000 Clusters 1000 Clusters

Trained w/3500 Patterns

500 Clusters 1000 Clusters

1500 Clusters 2000 Clusters

The first two images above illustrate the different results

obtained in with different size training sets. Training with

3500 patterns yields the best results in that the same num-

ber of faces are found with fewer false positive identifica-

tions.

The next four images are all trained with 3500 input pat-

terns but differing numbers of clusters. Clearly, the are

fewer false positive region identifications in the 500 and

1000 clusters cases, but the 1000-cluster case seems to have

the fewest false positives while correctly identifying 5 out

of 6 face regions. Using more than 1000 clusters seems to

yield more false positive identifications as the number of

clusters rises.

SHIRT ‘N TIE PHOTO

This is a smaller photo than the previous one so it makes

sense to train with a much smaller set and thus start with

much fewer clusters.

Trained w/ 1000 Patterns

200 Clusters 500 Clusters

800 Clusters

Trained w/ 200 Patterns

100 Clusters

Trained w/ 2500 Patterns

1200 Clusters

The best result above is for the case of training with 1000

patterns and using 800 clusters. 5 faces are correctly iden-

tified with a 6
th

 that could go either way on the far left.

Also the false positive identifications are no more than for

the cases with lesser clusters. To motivate careful decision

of training set size, the last two results are shown. Notice

that for the case of training with only 200 patterns and us-

ing 100 clusters, all skin regions are identified along with a

few other false positives. This result is an example of ‘un-

dertraining’ , because in using only 200 training patterns,

there are not enough examples of non-face regions or ex-

amples of differences between face pattern vectors and

non-face pattern vectors. The last image is an example of

‘overtraining’ in that there are two many examples of non-

face regions, therefore the number of face regions returned

by Kmeans is quite low, even yielding too many false nega-

tive identifications.

In general, this second evaluation image gets much fewer

false positive identifications than the Class Photo. The

reason may be that this second image lends itself much

better to color segmentation in terms of the singled out face

regions and hardly any other white regions showing up in

the segmented result. This proves to be a much better head

start for the Kmeans algorithm to do its work.

SUMMARY

Kmeans is a viable method or at least a good start in face

recognition. The method presented here though yields too

many false positives to be useful in any meaningful appli-

cation. Further work can be done in choosing pattern fea-

tures that more aptly capture the differences between face

regions and non-face regions in an image. If such pattern

features are found, Kmeans will produce much better re-

sults.

ACKNOWLEDGMENTS

Prof. Newman wrote most all the C++ code for the Kmeans

algorithm for the purpose of an EECS 484 assignment. The

training set of images was obtained from Prof. Merat’s

EECS 490 website.

REFERENCES

[1] Yoh-Han Pao, Wyatt S. Newman, "A Primer for

the Practice of Computational Intelligence".

[2] R. C. Gonzalez, Richard E. Woods, "Digital Image

Processing, "2
nd

 Edition, Prentice Hall, Upper

Saddle River, NJ, 2002.

Appendix

clc;clear;close all;

colhisteq; %histogram equalization using an average color histogram

colseg; %segmentation performed based on Facial ROI

bw(1:size(I,1),1:size(I,2)) = I(1:size(I,1),1:size(I,2),1);

P = getMasks(bw);

F = getPatFeats(P);

csvwrite('Evaluation Data.csv',F);

%in Evaluation Data.csv insert as the first column text cells with

%at least 4 chars in them and insert in the last column just a column off

%zeros (for purposes of the C++ code, ease of programming for me)

%save as tab delimited .txt, run Kmeans.exe,train with

%Eigen Faces Train2_3500.txt or other .txt training file options that

%differ only in number of training patterns but make sure that training

%file contains all available face-designated patterns,

%copy the face indices from the program window, read in

%original image,convert image to type double, run translateIndices, run showFaces

%i = indices copied from program window

%image = imread('bros.jpg');

%image = im2double(image);

%[m,n] = translateIndices(indices,bw);

%showFaces(indices,m,n,image)

 1

Face Recognition
Svend Johannsen

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email: skj7@cwru.edu

Abstract
This paper presents a design to perform face recognition in

an image. The design is focused on isolating the regions of

an image corresponding to peoples faces; it does not recog-

nize specific faces. Image processing techniques are used to

perform the said operation.

The RGB color of an average is face is acquired and this

color is used to perform color segmentation [1]. The result

of the color segmentation is a binary image where all re-

gions that potentially could be a face are colored white. The

smaller regions in this image represent things we are not

interested in such as people hands and objects around the

people that happened to have roughly the same color as

skin. These things will be referred to, throughout the paper,

as noise. A combination of dilation [2] and erosion [3] is

used to keep only the largest of these regions, thereby get-

ting rid of a lot of the noise. To improve the result, an

opening filter [4] is applied; an opening filter is basically

erosion followed by dilation using the same structuring

element for both operations.

The final result is a binary mask which when applied to the

original image, isolates the faces. Depending which faces

you choose to represent an average face, the design will

isolate either all or all but one face. The number of objects

that are incorrectly classified as being faces is usually be-

tween one and three, again depending on which faces are

chosen, to represent an average face.

KEYWORDS

Face recognition, image processing, color segmentation,

dilation filter, erosion filter, opening.

INTRODUCTION

When using color segmentation to isolate the faces, the

main problem is that faces are not uniformly colored. The

region around the eyes, for instance, is significantly darker.

To combat this problem a dilation filter is applied to the

color segmented image. Hopefully the gaps in the color

segmented image representing eyes, nose and mouth are so

small that a relatively weak dilation filter can cover them.

We are not interested in using a strong dilation filter be-

cause it will enhance noise as well.

An erosion filter is used to clean up the noise, such as

hands. The erosion should be as strong as it possible; i.e. it

should remove as much noise as it can without removing

the faces completely.

After applying the erosion filter the regions are sort of rug-

ged and there is still some noise left, so an opening filter is

used to smooth out the face regions and remove more of the

noise.

FACE RECOGNITION USING IMAGE

PROCESSING

The image Class Photo1.jpg is selected as the image

we wish to isolate the faces in. it is displayed in Figure 1.

Figure 1: The image used for face recognition.

The MatLab function roipoly is used to select a region

corresponding to a face in the image. All RGB color values

in this region are then extracted and their mean and stan-

dard deviation is calculated using the MatLab functions

mean and std. This procedure is similar to the one applied

to the cookie image when extracting the average color

value of a chocolate chip (midterm project).

The procedure is repeated four times, giving us an average

color value and standard deviation of 4 different faces.

Next the average of these 4 color values is computed along

with an average of the 4 standard deviations. This gives us

the color of an average face as well as the standard devia-

tion.

The average face color is used in the color segmentation

[1]. The result of the color segmentation is a binary image

where all pixels, in the original image, with a color rea-

sonably close to the average face color is given the value of

1 and all other pixels are 0. This is given by the following:

±±±

=
otherwise0

25.125.125.1 if1 BBijGGijRRij

ij

BGR
S

µµµ

 2

The equation defines a cube in color space. All pixels in the

original image with a color value within this cube are given

a 1 in the binary image; pixels with a color value outside

the cube are given a 0. The result is displayed in Figure 2.

Figure 2: Result of a color segmentation using the av-
erage color of a face.

The first challenge is to create uniform regions from the

sparsely outlined faces. A dilation filter [2] is chosen for

this purpose. A dilation filter is given as:

()[]{ }AABzBA
z

= ˆ|

The dilation is applied to the image A using the structuring

element B. In this case B is a disc with a small radius. A

small radius is used to avoid enhancing the noise to the left

and towards the bottom of Figure 2 too much.

The dilation filter creates an edge with a width equal to the

radius of the structuring element B around all white pixels

in Figure 2. The result of the slight dilation is shown in

Figure 3.

Figure 3: Slight dilation is used to create solid regions
in the face areas.

The faces are now for the most part uniform regions. In

order to get rid of all the noise as well as the smaller skin

colored regions, such as hands, an erosion filter [3] is ap-

plied. Since the faces are the largest white regions in Figure

3 we can apply quite heavy erosion without loosing our

primary information. An erosion filter can be thought of as

an inverse dilation filter and is given by:

(){ }ABzBA
z

= |

The structuring element B is now a disc with a larger radius

than what was used for the dilation filter. The erosion filter

removes the edge around all white objects in the image, this

means small objects, such as the noise, will completely

disappear. The result of the erosion is displayed in Figure 4.

Figure 4: Heavy erosion is used to clean up the noise.

The noise at the bottom of Figure 4 is not completely gone,

and some of the hands still show as well. Unfortunately one

cannot apply heavier erosion without starting to loose

faces.

In order to improve the result in Figure 4 an opening filter

[4] is applied. An opening filter is just an erosion of the

image A by B followed by a dilation of the intermediate

result by B. Again a disc is used as the structuring element;

notice that the radius of this disc is the same during both

the erosion as well as the dilation process. The result after

applying the opening filter is displayed in Figure 5.

Figure 5: An opening filter is used to smooth the shape
of the regions.

 3

The image displayed in Figure 5 can be used as a mask to

isolate the faces in the original image.

RESULTS AND DISCUSSION

The dilation filter uses a structuring element with a radius

of 5. This is a large enough radius to even out the facial

regions without enhancing the noise to the point where it

also becomes uniform regions.

When applying heavy erosion, a filter with radius 13 is

used, this is a rather high value for an erosion filter on an

image of this size. One should notice that the face of the

second person from the left is almost gone in Figure 4. At

this point one cannot clean up the image further without

removing the face of the second person to the left.

Applying the opening filter will sometimes result in the

loss of one face, as the example in Figure 5 shows; it de-

pends on which 4 faces are used to represent an average

face. It will however always make the remaining regions

more smooth, and clear up additional noise. The opening is

performed using a radius of 5; that is an erosion filter is

applied with a disc shaped structuring element of radius 5,

followed by a dilation filter with the exact same structuring

element.

Using the filter displayed in Figure 5 as a mask on the

original image the faces can be extracted.

Figure 6: The obtained mask is used to isolate the faces
in the original image.

The result is that 10 out of 11 faces were extracted and

apart from person 8’s neck, no noise is present in the im-

age.

Faces 1, 5, 6 and 7, from the left, were chosen to represent

an average face, had we instead choosen face number 1, 2,

5 and 6 to represent an average face the result of the face

recognition would be as shown in Figure 7.

Figure 7: Using 4 different faces to represent an aver-
age face.

One should notice that all 11 faces are present in Figure 7

but two objects have incorrectly been classified as being

faces. The reason for this result is that face number 2 is

darker than the other faces, and therefore increase the stan-

dard deviation of the average face. A higher standard devia-

tion will increase the chance of successfully isolating all

faces; on the other hand a higher standard deviation also

means more noise will be included in the final result.

SUMMARY

Image processing techniques have been applied to the se-

lected image in order to isolate the faces in the image. The

technique used involves finding the average color of 4 dif-

ferent faces and using these 4 colors to obtain the color of

an average face. The color of an average face is then used

to color segment the image.

The result from the color segmentation is a binary image

showing all the faces as well as hands and items in the bot-

tom and towards the left of image that happened to have the

same color as the average face. A dilation filter is applied

to make the regions representing the faces more uniform.

Once this is done the face regions are the largest white re-

gions in the image and an erosion filter can therefore be

used to get rid of most of the noise.

To clean up the rest of the noise and smooth out the face

regions an opening filter is applied, the resulting mask is

applied to the original image to isolate the faces. 10 or 11

out of a total of 11 faces are isolated, depending on the

choice of average face. This is a reasonably good result.

REFERENCES

[1] Raphael C. Gonzalez, Richard E. Woods, "Digital

Image Processing" 2
nd

 edition, pp. 331-339, 2002.

[2] Raphael C. Gonzalez, Richard E. Woods, "Digital

Image Processing" 2
nd

 edition, pp. 519-525, 2002.

[3] Raphael C. Gonzalez, Richard E. Woods, "Digital

Image Processing" 2
nd

 edition, pp. 525-528, 2002.

[4] Raphael C. Gonzalez, Richard E. Woods, "Digital

Image Processing" 2
nd

 edition, pp. 528-532, 2002.

Face Recognition Using Matlab
Michael K. Lee

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email: mkl7@cwru.edu

ABSTRACT

This paper presents an algorithm that detects a person’s

face on a static image using color segmentation and statisti-

cal data.

KEYWORDS

Face Recognition, Color Segmentation

INTRODUCTION

From an image, we can extract a lot of morphological in-

formation, such as finding which object is in the front most,

or identifying what the object is next to the left wall. An-

other information we can look is to count how many people

are in the image and locate their position. If we assume

that everybody was looking at the camera when they took

the picture, we could count the faces to find out how many

people are there.

THE SKIN-TONE APPROACH

First I manually loaded the sample face images, and seg-

mented the skin area. Then I used Matlab to calculate the

average skin tone color, which were RGB values (152, 86,

74). Using this statistical information, I tried to segment

the image with RGB values (152 d, 86 d, 74 d) where d

is the offset. If I chose a small d, the algorithm will seg-

ment out only a portion of the faces; if I chose a large d, the

algorithm may include the wooden chairs and doors as hu-

man skin. I tried to adjust the value of d to get the most

optimized result, but it seemed to have more problems than

I thought. If the environment such as the lights were

changed, the skin tones changed drastically, and the aver-

age skin tone would have to be evaluated all the way from

the beginning. Also, even in the same image, the lighting

was illuminating the object in a different manner.

Figure 1. Segmenting Skin-toned Areas with

Offset d = 15

Figure 2. Segmenting Skin-toned Areas with

Offset d = 23

Once I segmented the image, I had to cluster the pixels into

groups so I could “count” the number of faces – if I just

count the number of “regions” of skin-toned areas, there

would be a discrepancy regarding when a person is right

behind someone else, so two faces which are right next to

each other can be counted as one. Since a face is roughly

round or oval-shaped I made a function that groups a clus-

ter of pixels into a “face”. If a skin-toned area looks like a

rotated 8 shape (, or the infinity symbol), or too long

along the horizontal axis, I divided the region and count as

two faces. After a few experiments, I found the ratio of the

length along the vertical and horizontal axis would be op-

timal around 0.65 – if a skin toned region has height of 183

pixels and width of 248 pixels, I could say that the region

has two faces located right next each other. The ratio is

somewhat different from the actual face (0.65 means the

height is almost twice the width) because the skin tone area

also includes the neck, so the area becomes longer in the

vertical direction. Knowing the ratio of a typical face oval,

the same approach was used for identifying faces that are

connected in the vertical/diagonal directions.

However, there were so many cases that the algorithm

won’t work because the effect of the hair. Although most

people have similar skin tones, they have almost distinct

hair colors. People also and wear a hat, dye in some other

color and always can change the hairstyle that conceal the

face, which became a variable that is too big to handle.

One another case was with bright light. Not only the skin

tone was different from the average color, faces in a bright

light had lot of contrasts – the shadows of the eyes, nose

and mouth were distinct enough that the segmentation

won’t include them as a face, and the algorithm couldn’t

recognize the shape as a whole face.

THE TWINKLE APPROACH
[1]

The human eye is very spherical and reflective. Locating

the twinkle, a bright specular reflecton from the cornea due

to the lighting, would be another approach to recognize

faces. One advantage of this approach is that, most people

have dark-colored pupil, and the twinkle is very bright. I

could apply any edge detection algorithm, or a differential

filter to find which point has large change in graylevel in-

tensity. Not surprisingly, any small shiny objects such as

buttons, glasses and even teeth were identified as twinkles.

So, for the next algorithm, I added another condition for

finding the twinkle – for any high contrast point in the im-

age, try to look for another twinkle which is around 40~100

pixels apart in the horizontal axis. Again, the number

40~100 pixels comes from examining a set of pictures and

averaging the distance between a person’s eyes. Also, it

has to be surrounded by some skin-toned area.

The algorithm seemed to work well with the images, espe-

cially after adding another condition. However, this ap-

proach was insufficient to recognize faces in low-light con-

ditions where the twinkles of the eyes weren’t bright

enough. Also, if the picture was blurred, or the either the

object or the camera moved while taking the picture, the

twinkle approach won’t work at all.

COMBINING THE TWO

After experimenting with both algorithms, I new thought

came up – what happens if I try both algorithms at the same

image? The skin tone approach was fairly good, but it

needed a offset d small enough to segment the image con-

taining only the faces. The twinkle approach would only

work in bright conditions. So what would happen if I set

the skin tone for a darker region and a small d, and apply

both methods?

The result was promising than I expected. The skin tone

approach handled the case where there were low light – I

set the RGB values as (102, 53, 49), which was the average

of skin tones in low light conditions. I also tried to make d

as small as possible so it won’t recognize any background

as a person’s skin. The only thing is that this won’t include

the faces that are in the front, that are usually brighter.

However, it seemed that the one in the front would be rec-

ognized by the twinkle approach – people that are in the

near to the camera or a light source would have two twin-

kles. Of course, I set the “surrounding skin tone” higher

than before, where faces in the low light conditions would

be handled with the skin tone approach.

Another addition to the algorithm was, I could break down

the levels of skin tones with smaller offset d’s. I applied

the skin tone approach with a near-dark skin tone, repeating

the algorithm with a little brighter skin tone, until I could

find all of the faces. After a number of experiments, I real-

ized repeatedly applying 4 skin-tone algorithm would find

most of the faces.

Also I had to figure out how to identify which face in one

algorithm is the same one on the other algorithm. A simple

but effective solution was to find the size and location of

the face, compare if the characteristics are similar; if two

are far away I can say that they are faced that were not rec-

ognized on the other algorithm; if they are placed in a simi-

lar location and resemble in size, those two are the same

face.

RESULTS

I tried a number of pictures and ran the matlab functions to

recognize faces. Although I was to locate the faces, but the

number of faces would be a rules-of-thumbs of evaluating

the efficacy of an algorithm.

Number of

Faces

Skin Tone

Approach

Twinkle

Approach

Combined

Algorithm

6 4 2 6

6 5 3 5

5 5 1 5

4 3 2 4

4 4 3 4

3 2 3 3

0 1 1 0

SUMMARY

The face recognition was done in two different approaches

which complement each other. The skin tone approach

could recognize faces in low-resolution or blurry images

but only could identify faces with skin tones in a narrow

range of RGB color. The twinkle approach could accu-

rately locate the faces with ease, but it would only work in

high-resolution images taken in a bright environment.

Combining the two would give a nice result. However, the

algorithm here won’t recognize the ones that are not facing

the camera, or people with long hair screening the face.

REFERENCES

[1] Computer operation via face orientation by P. Bal-

lard and G.C. Stockman; Pattern Recognition,

1992 . Vol.1. Proceedings 11th IAPR International

Conference on Computer Vision and Applications,

30 Aug.-3 Sept. 1992 Pages:407 - 410

[2] Detecting faces in images: a survey by Ming-

Hsuan Yang; D.J. Kriegman, and N. Ahuja; IEEE

Transactions on Pattern Analysis and Machine In-

telligence,Volume: 24 , Issue: 1 , Jan. 2002.

Pages:34 - 58

[3] Low-dimensional procedure for the characteriza-

tion of human faces by L.Sirovich and M. Kirby,

in J. Optical Society of America, Vol. 4, No. 3,

Page 519-524, March 1987.

[4] Rafael C. Gonzalez, Richard E. Woods, "Digital

Image Processing" Second Edition, Prentice Hall,

2002.

[5] Kenneth R. Castleman, "Digital Image Process-

ing", Prentice Hall, 1995

Face Detection by Color Segmentation and
Morphological Image Processing

 Deng-Hung Liu

Department of Electrical Engineering and Computer Science,

EECS 490 Digital Image Processing, Midterm Project

Case Western Reserve University, Cleveland, OH, Email: dxl74@cwru.edu

Abstract
Face detection has been a fascinating problem for image

processing area during the last ten years because of many

important applications such as video face recognition at

some public area and security check point, digital image

archiving, etc. In this report, I attempt to detect faces in a

digital image using some basic image processing skills such

as skin color segmentation, and morphological processing.

Reasonable results were obtained with color segmentation,

morphological image processing.

Keywords
Face detection, color segmentation, morphological

Introduction
 We always take detection faces for granted because of

we have a pair of eyes. Once if we want to create a com-

puter program to perform the same task turns out to be a

very difficult problem for which more effective and more

efficient algorithms continue to surface. I simply use color

segmentation and various morphological image processing

to implement face detection.

 While doing the face detection, I am wondering what

is the definition of “ face detection” . Finally, I found a

paper which has a detail definition:

As Dr.Ming-Hsuan Yang and Dr. David J.Kreigman

defined face detection : Given as arbitrary image, the goal

of face detection is to determine whether or not there are

any faces in the image and, if present, return the image lo-

cation and extent of each face. The challenges associated

with face detection can be attributed to the following fac-

tors:
 Pose. The images of a face vary due to the rela-

tive camera-face pose (frontal, 45degree, profile,

upside down), and some facial features such as

an eye or the nose may become partially or

wholly occluded.

 Presence or absence of structural components.

Facial features such as beards, mustaches, and

glasses may or may not be present and there is

great deal of variability among these components

including shape, color and size.

 Facial expression. The appearance of faces are

directly affected by a person’s facial expression.

 Occlusion. Faces may be partially occluded by

other objects. In an image with a group of people,

some faces may partially occlude other faces.

 Image orientation. Face images directly vary for

different rotations about the camera’s optical

axis.

Brief introduction of other detection method
 Face detection is a hot subject that has already been

widely studied all over the world. So it’s fairly easy to get

some information.

1. Face detection using Haudorff distance: First, a face

model is built taking the average image of a training

set containing face images, which have passed

through an edge detector. Then all the pictures to be

processed will also go through that same edge detec-

tor. Second, a sliding window scans the image, and

the Hausdorff distance between the face model and

the window is computed.

2. Eigenfaces: This method based on KLT and on PCA

is of moderate complexity but is very powerful. First

of all, e can apply the scheme on color faces and use

color information to improve detection. Another ad-

vantage is that building eigenfaces does not require a

big training set using Sirovich and Kirby method: 30

face images are sufficient.

3. Neural-Network based face detection: It first scans

the image at different scales and applies a set of neu-

ral network-based filters to each block of pixels.

Once this is done we have a list of possible face lo-

cations in the images but some of them correspond to

the same face or are false positives: an arbitration

program then corrects these artifacts.

Overview
 In this section, I outline the main points of the face detec-

tion algorithm. The images are always taken as very high

resolution due to the fancy digital camera. Though face

detection can be done at much lower resolution. The input

image is downsampled to reduce computational complexity.

Then I do the color segmentation, which I can eliminate the

non-skin part. I implement this part in HIS color space and

I tune the threshold according to the picture. After skin

color segmentation, I use various morphological image

processing method to refine the image, like eliminate

noise,and the part I don’t want, etc. At last, I got the black

and white logical image. Each white spot means a face. I

sketch the block diagram below.

Figure 1.Block diagram

Skin color segmentation
 The first step of doing face detection is skin color detec-

tion. And I have to decide which color model we want to

implement. I think the HSI (Hue, saturation, intensity)

space is the best color space for color segmentation because

color is conveniently represented in the hue image. To ac-

complish the task of separating skin pixels form non-skin

pixels ,I have to know the histogram of skin color in HIS

space. Histograms were created in each of the three coor-

dinates of HIS space using each of the two inputs (skin and

non-skin). Figure 1 below shows the results of these histo-

grams.

Fig 2.Skin color histogram in HIS space.

 As the histogram shows, we can the skin color location

in Hue domain.

 Skin color (Hue)<20 and >230 ,

Figure 2 and 3 show the results of skin segmentation. I

use the image which professor posted on website.

Figure 3. Original color image

Figure 4.The skin color image.

 As we can see above, we also detect some region we

don’t want, like arms, hands, legs, etc. So we should re-

move these parts from the skin color image.

Morphological Image Processing
We can see Figure 3 shows that skin color segmentation did

a very good job of rejecting non-skin colors from the input

image. However, the resulting image has quite a lot of

noise and some parts we have to eliminate. A series of

morphological operations are performed to cleanup the

image and eliminate some parts we don’t want.

 Intensity thresholding : We can eliminate some back-

ground by thresholding and also break up dark re-

gions into many smaller regions so that they can be

clean up by morphological opening. But we need to

covert the image to gray scale first.

Fig 5. Remove hair by thresholding.

 Dilation and erosion: We can simply say the dilation

can “thinner” the object and erosion can “thicker” the

object. When combining these two operations, we

can remove irrelevant part in terms of size.

 Closing and opening: Morphological opening is per-

formed to remove very small objects from the image

while preserving the shape and size of larger objects

in the image. The definition of a morphological open-

ing of an image is an erosion followed by a dilation,

using the same structuring element for both opera-

tions. Closing also tends to smooth sections of con-

tours but, as opposed to opening, it generally fuses

narrow breaks and long thin gulfs, eliminates small

holes, and fills gaps in the contour.

 Hole filling is done to keep the faces as single con-

nected regions in anticipation of a second much

larger morphological opening. I always use hole fill-

ing accompany with closing.

 Shrink: This operation will shrink objects with no

holes to points; shrink objects with holes to rings. I

use this operation to remove parts like arms.

Fig 6. Shrinking the arm and use opening to remove

Special events

In this section, I mention some problem when I did the face

detection.

1. Hands : Hands show the most often in common pic-

ture. Especially when the pictures include some

“small” face and “large” hands. The picture one in

results show the problem.

 Figure 7.Hands and arms

2. Arms: Arm is along and thin part when compare

with faces. But it cost huge area in the skin color im-

age. When you do some morphological image proc-

essing, it will often connect to the noise or the part

you don’t want to select.

3. Occlude faces: It not easy to separate the occlude

faces, especially only appear half or less on the pic-

ture. And it has to be very careful when doing some

morphological processing , like closing.

 Figure 8. Occlude faces.

4. Color issues: When something has exactly the same

color space as human skin, it cause problem. Some-

times are caused by flashlight (like classroom chairs),

and sometimes are caused by the weather, like sun

and cloud or maybe reflection by water or glass.

Figure 9. Skin color at the background.

Results

Here are the results of the training pictures set. I think they

look reasonable.

PICTURE 1

PICTURE 2

PICTURE 3

PICTURE 4

PICTURE 5

PICTURE 6

PICTURE 7

PICTURE 8

PICTURE 9

PICTURE 10

PICTURE 11

PICTURE 12

PICTURE ACTUAL DETECTED ERROR

FACES FACES

1 11 11 1(HANDS)

2 6 6 0

3 6 6 0

4 4 4 2(HANDS)

5 14 N/A N/A

6 7 7 0

7 3 3 0

8 5 3 2(CHAIRS)

9 4 4 2(CHAIRS)

10 4 4 0

11 8 7 1(CHAIRS)

12 5 5 1(CHAIRS)

TOTAL 63 60 9
 Picture 5 is a very low resolution picture, I can’t do all the proc-

essing due to the low resolution. But I have already detected the

face area.
Table.1 The results of the processing.

According the results, I can detect 95% faces in the image

but I also has 1/7 errors. Most errors are due to the class-

room chairs. Because when professor use the flashlight, the

chairs’ color and intensity looks exactly the same as skin.

Also the size is similar to the face. It cause lots of errors.

Figure10. The chairs affect the outcome.

Summery
As the initial step of the algorithm, skin color segmen-

tation was by far the most effective means of eliminating

non-face regions from consideration. For the other steps, I

just implement various morphological operations. But I

think if I have more time, I am willing to learn some so-

phisticated approaches. Due to this project, I found many

interesting algorithm in digital image processing area.

This is a very interesting project for a graduate student.

But I think the loading for this project may be a little bit

heavy. At least, I finished.

Reference

[1] Rafael C. Gonzalez, Richard E. Woods, "Digital

Image Processing".

[2] Rafael C. Gonzalez, Richard E. Woods, Steven L.

Eddins, "Digital Image Processing using Matlab".

 [3] Computer operation via face orientation by P. Ballard

and G.C. Stockman; Pattern Recognition, 1992 . Vol.1.

Proceedings 11th IAPR International Conference on

Computer Vision and Applications, 30 Aug.-3 Sept.

1992 Pages:407 - 410

[4] Detecting faces in images: a survey by Ming-Hsuan

Yang; D.J. Kriegman, and N. Ahuja; IEEE Transactions

on Pattern Analysis and Machine Intelligence,Volume:

24 , Issue: 1 , Jan. 2002. Pages:34 - 58

[5] Low-dimensional procedure for the characterization of

human faces by L.Sirovich and M. Kirby, in J. Optical

Society of America, Vol. 4, No. 3, Page 519-524, March

1987.

Face Recognition
Color segmentation and Principal Component analysis

 Iouri Petriaev

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email: iap4@cwru.edu

Abstract
This paper presents the design details of an algorithm,

which will locate faces in a given mage containing one or

more faces. The goal of the designed algorithm is not to

recognize the person, but simply to locate faces in an im-

age. Common techniques used in this discussion include

color segmentation and principal component analysis.

Weaknesses and possible improvements to the resulting

solution are also analyzed.

KEYWORDS

Color Segmentation, Object Segmentation, Principal Com-

ponent, Correlation, IPT, Fourier transform, frequency do-

main, RGB

INTRODUCTION

Segmentation is one area in which better results generally

are obtained by using RGB color vectors. Objective of us-

ing color segmentation is to classify each RGB pixel in a

given image as having a color in the specified range or not.

Performing pixel comparison, it is necessary to have a

measure of similarity. There are three popular ways of

performing this measurement: solid sphere, elliptical, and

bounding box. First two methods make a good use of

Euclidean distance between the RGB vector of average

color ‘a’ and an arbitrary point in RGB space ‘z’.

 Although, mathematically convenient, the implementation

of these first two methods is computationally expensive for

images of practical size. The third method is a compromise

in which the box is centered on ‘a’, and its dimensions

along each of the color axes is chosen proportional to the

standard deviation of the samples along each of the axis.

The color segmentation is achieved by determining whether

or not the arbitrary color point is on the surface or inside

the box.

A generalization of the distance equation mentioned above

is a Mahalanobis distance measure of the form

where C is the covariance matrix of the samples representa-

tive of the color we wish to segment.

Assume that n denotes number of MxN images located on

top of each other. There are n pixels for any given pair of

coordinates (i, j), one pixel at that location for each image.

These pixels form vector

There are total of MN vectors containing all the pixels in

the given images.

The mean vector is obtained by sample average:

The covariance matrix obtained by

(MN-1) is used to obtain an unbiased estimate of covari-

ance matrix C for the samples. Covariance matrix C is

symmetric and real.

Principal Components used as the basis for describing sets

of images that are registered spatially, but whose corre-

sponding pixel values are different. It is used to describe

boundaries and regions in a single image as well. One of

the most important Hotelling transform properties deals

with the reconstruction of x from y, where x is the group

(vector) of n corresponding pixels of the n original images,

and y is a vector of mapped x-vectors

where elements of y are uncorrelated, and the covariance

matrix C is diagonal.

DESIGN OF THE ALGORITHM

To improve performance, all images loaded for testing

were scaled down to 700x700 by this algorithm. Every im-

age was a color image containing multiple faces. Faces

shown on the pictures had different level of shades over-

castting them. Most of them had distinct skin-tone. There

was a number of faces that were not fully visible or located

upright.

2/1222

2/1

])()()[(

)]()[(||||),(

BBGGrr

T

mzmzmz

mzmzmzmzD

++

===

2/11)]()[(),(mzCmzmzD
T

=

=

n
x

x

x

x
...

2

1

=

=

MN

k

kx
x

MN
m

1

1

=

=

MN

k

T

xkxkx
mxmx

MN
C

1

))((
1

1

)(xmxAy =

For every image loaded by the application, the mask of an

arbitrary face was taken by using MATLAB function

roipoly. This method was chosen so the user can have free-

dom to select any desirable part of an image. Since mask

consists of ones within enclosed area selected by the user

and zeros elsewhere, a fully colored representation of the

mask was obtained by:

red = immultiply(mask, J(:,:,1));

green = immultiply(mask, J(:,:,2));

blue = immultiply(mask, J(:,:,3));

g = cat(3, red, green, blue);

Obtained mask was used to retrieve principal –components

of the mask. At first, we would extract vectors from an im-

age stack of mask using imstack2vectors function. The

principal-component images were obtained by function

princomp(X, 3), where X is the vector population contained

in the rows of X, and 3 indicates the number of eigenvec-

tors used in constructing the components.

One of the obtained principal-components was passed for

segmentation. In this solution, we tried to pass one of each

component at first to determine which one of three would

yelled the best result. The segmentation is performed at

first by calling function reshape which returns m by n ma-

trix whose elements are taken column wise from the com-

ponent passed to it as first argument. Then non-zero ele-

ments found by function find. We calculate the mean vector

m by calling function covmatrix. The actual color segmen-

tation performed by colorseg(‘euclidian’,J,25,m) method

call where J is the actual image, 25 is the largest standard

deviation, and m is described above mean vector.

Using principal component to obtain the description of the

mask and then using that description to segment image left

us with relatively large number of segments on the image.

Quite often, majority of these segments were objects not

related to the faces and the algorithm clearly needed some

logic to distinct or filter faces from the rest of elements.

An attempt to do so consisted of creation of Gaussian low

pass filter and applying correlation operation to the image

in hopes that small bits of noisy pixels would get averaged

with the background.

Threshold filter is applied as the last process in this algo-

rithm.

RESULTS

Obtaining principal components of the mask of the first

image yelled relatively clear results stating that the princi-

pal component of the mask corresponding to the largest

eigenvalue provides better comparisons. This is not unex-

pected result, for the eigenvalues are the variances of the

elements of the y vectors. The Figure 1 on the next column

shows original image followed by three images of the three

principal components.

Figure 1. Original image

Figure 2. Mask

Figure 3. Principal components of the mask. First compo-

nent corresponds to the highest eigenvalue.

Table 1 shows eigenvalues corresponding to the principal

components above.

Table 1. Eigenvalues

1 2 3

600.2772 0.5358 0.3014

Three images below corresponds respectively to the eigen-

values listed in the Table 1. These images are output of the

algorithm and suppose to demonstrate recognized faces.

Only first image that corresponds to the largest eigenvalue

contains three faces. This result is not surprising. As was

mentioned before, the eigenvalues are the variances of the

elements of the y vectors, and the larger the variance the

bigger the contrast of an image.

Figure 4. Images produced by the algorithm. Each image

corresponds to the aigenvalue above. (see Table 1)

22 2/),(),(vuD
evuH =

Beside faces on the first image a number of edges and

bright spots can be seen as well. These elements of an im-

age are shown for they may have very similar color spec-

trum to that of faces. The solution for this problem that was

chosen in this design was described above. The following

discussion will concentrate on three images and attempts to

identify faces in them.

Following three images are the original images that will be

discussed further.

Figure 5. Original images.

Each of three original images contains multiple faces;

moreover, each one of them has enough disturbances such

as glare on the chairs (first image), discrepancy in color of

faces (second image), partially visible faces (second and

third images).

The following three images show masks selected from each

original one by calling roipoly method during separate exe-

cutions of algorithm.

Figure 6. Masks selected for each separate image by using

MATLAB function roipoly

Each mask contains a face presented under different angle

then the other two. This will allow us to test how much

position of the object on the image will effect the result

produced by this algorithm.

Principal components that correspond to largest eigenvalue

in each image were produced next. Due to the fact that

principal components have relatively general description

(some amount of image information is omitted by principal

components), there is a good chance that the algorithm will

be able to

Figure 7. Principal components generated from masks

selected by user from the images.

The following collection of images shows segmented im-

ages with pixels matching the mask equal to 1 and others

equal 0. Every image contains a number of unrelated and

unwanted elements that were selected by the segmentation

algorithm. In the first image, we can see light reflection

coming from the chairs in the room. The glare coming from

the first chair is particularly noticeable. The second image

has highlighted visible part of the face located in the upper

right corner. The face located on the upper left corner has

only its edge selected. Last image has a great amount of

reflection coming from the wall. The closest face to the

camera just like the one on the second image has only its

edges highlighted. This can caused by the difference in the

color between the faces located closer to the camera and

those located farther away from it.

Figure 8. Segmented images

Each image in the following collection of three images is

modified by the low-pass Gaussian filter. Although not

very noticeable on the images provided below, application

of this filter using correlation caused to some unwanted

elements of the image (noise) to fade into the background.

Filter mask used for all three images was of 64 by 64 size,

and had standard deviation =0.9. Any attempt to increase

the mask and standard deviation would eliminate the edges

and features of the faces visible on the images below.

Figure 9. Gaussian low-pass filter applied to all three im-

ages.

To eliminate noise with faded intensity but not completely

disappeared from the image all three images were filtered

by threshold filter. Any pixel greater then 0.9 was set to 1,

and to 0 otherwise. From the images below we can see

that a good amount of noise was eliminated. Unfortunately,

a god amount of data corresponding to the faces was elimi-

nated as well.

Figure 10. Threshold (g>0.9) applied.

The attempt was made to use Hough transform and line

detector to separate faces from the noise. The purpose of

doing so was to preserve as much face data as possible and

separate each face from the rest of the image by having

distinct boundaries identified. The existence of boundaries

of other objects in the image interconnected among each

other and faces made it close to impossible. The image

below shows one successful attempt of doing so.

SOURCE CODE

The source code of the main method is provided below.

%Load images

%f = imread('DSCN1126.jpeg');

%f=imread('DSCN1141.jpeg');

%f=imread('DSCN1118.jpeg');

f=imread('DSCN1120.jpeg');

f1 = f(:,:,1);

f2 = f(:,:,2);

f3 = f(:,:,3);

%calculate subimages located at the center of current image

%and 512x512 dimentions

offset = 700/2;

[row,cols]=size(f1);

center_x = row/2;

center_y = cols/2;

%select centered 700x700 subimages

f1 = f1((center_x - (offset-200)):(center_x + ((offset+200)-
1)),(center_y - offset):(center_y + (offset-1)));

f2 = f2((center_x - (offset-200)):(center_x + ((offset+200)-
1)),(center_y - offset):(center_y + (offset-1)));

f3 = f3((center_x - (offset-200)):(center_x + ((offset+200)-
1)),(center_y - offset):(center_y + (offset-1)));

J = cat(3,f1,f2,f3);

mask = roipoly(J);

red = immultiply(mask, J(:,:,1));

green = immultiply(mask, J(:,:,2));

blue = immultiply(mask, J(:,:,3));

g = cat(3, red, green, blue);

figure,imshow(g), title('After roipoly');

%Principal components for description

%Oranize the stack into array X.

[X,R] = imstack2vectors(g);

%Obtain the principal-component images by using q=3.

P = princomp(X,3);

%Generate and display all component images.

g1 = P.Y(:, 1);

g1 = reshape(g1,700,700);

g1 = gscale(g1);

figure,imshow(g1),title('Principal Components Description 1');

g2 = P.Y(:,2);

g2 = reshape(g2,700,700);

g2 = gscale(g2);

figure,imshow(g2),title('Principal Components Description 2');

g3 = P.Y(:,3);

g3 = reshape(g3,700,700);

g3 = gscale(g3);

figure,imshow(g3),title('Principal Components Description 3');

%Color segmentation

[M,N,K] = size(g);

R = reshape(g, M*N, 3);

idx = find(g3);%mask);

R = double(R(idx, 1:3));

[C, m] = covmatrix(R);

e25 = colorseg('euclidean', J, 25, m);

figure, imshow(e25), title('Segmentation');

e25 = im2double(e25);

w = fspecial('gaussian', [64 64], 0.9);

e25 = imfilter(e25, w, 'corr', 'replicate');

figure, imshow(e25), title('spatial filtering');

%apply threshold

e25 = e25 > 0.9;

figure, imshow(e25),title('thresholding');

%try Hough Transform

e25 = houghtrans(e25);

figure,imshow(e25),title('hough transform');

Source code for Hough transform function.

function g3 = houghtrans(f)

%Uses Hough Transform to center text document

%in a digital image

%gtheta = pi/6;

g = real(f);

%Transform

deltax = 0;

deltay = 0;

s = 1;%0.5;

[m,n]= size(g);

%Get longest boundary.

b = boundaries(g);

d = cellfun('length',b);

[max_d, k] = max(d)

bound = b{k(1)};

d(k) = 0;

%Convert to image.

bim = bound2im(bound,m,n);

figure, imshow(bim), title('bounded image 1');

[max_d, k] = max(d)

bound = b{k(1)};

d(k) = 0;

%Convert to image.

bim = bound2im(bound,m,n);

figure, imshow(bim), title('bounded image 2');

[max_d, k] = max(d)

bound = b{k(1)};

d(k) = 0;

%Convert to image.

bim = bound2im(bound,m,n);

figure, imshow(bim), title('bounded image 3');

[max_d, k] = max(d)

bound = b{k(1)};

d(k) = 0;

%Convert to image.

bim = bound2im(bound,m,n);

figure, imshow(bim), title('bounded image 4');

SUMMARY

The design of the color segmentation and principal compo-

nent analysis application for face recognition was demon-

strated. The algorithm developed was certainly able to ex-

tract faces from images through using user’s selection of

the mask. This algorithm also exposed the complexity of

the image segmentation. The technique proposed in this

discussion was composed of color segmentation, principal

component analysis, spatial and frequency filtering.

Main concentration of this solution was devoted to colors.

Concentrating on a single property (feature) of an image

would be rather risky attempt. As was shown in this discus-

sion, issues such as segmentation of an object surrounded

by noise may require additional techniques such as neural

networks, feature extraction from an image based on geo-

metric properties of elements of objects such as eyes and

nose on a face.

REFERENCES

[1] Rafael C. Gonzalez, Rechard E. Woods, Steven L.

Eddins, "Digital Image Processing using

MATLAB", Pearson Prentice Hall, 2004.

[2] Rafael C. Gonzalez. Richard E. Woods, "Digital

Image Processing", Prentice-Hall, 2002

Face Detection in Complex Scene Images using Color Segmenta-
tion and Morphological Techniques

Chris Roberts, Frank Merat
 Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email: Robert.Roberts@case.edu

Abstract
This paper presents a method for the detection of faces in a
complex scene image using color segmentation and mor-
phological techniques. These techniques allow for the fa-
cial structures to be mostly isolated before the process of
detecting the faces using template matching occurs. The
use of these methods makes human facial structures stand
out so that they can be detected. This algorithm has the
potential for use in areas such as personnel identification,
homeland security, and aiding the disabled in computer use
[3].

KEYWORDS
Facial Recognition, Color Segmentation, Image Morphol-
ogy, Template Matching

INTRODUCTION
With the invention of fast computing and inexpensive high
resolution digital imaging devices there has been a steady
interest in research centered on the detection and process-
ing of faces in images. Facial recognition has become a
large topic in recent times to help law enforcement in the
identification of criminals and other persons of interest at
our border, within our country, and throughout the world.
Other uses that have been explored include the use of facial
cues to control a computer for the physically challenged
[3].
One basic facial recognition technique that can be em-
ployed is to use an average face image as a template, and
perform template matching [4]. The average face is gener-
ated by combining many images into a common image that
will likely resemble faces found in an image [8]. This tem-
plate can then be convolved with the image where faces are
to be detected. Given that the face in the image is scaled to
match the template and is in full view, and that the face is
very distinct in the picture, a maximum will be created
where the template matches the face on the image. This
maximum can then be processed to extract the face from
the image for further processing.
Another method used for facial recognition in images is to
apply mathematical transforms to the template image to
create an eigenface [5]. This eigenface is a numerical rep-
resentation of a face that can then be used to computer
other faces in an image.

In real world conditions, faces are often obstructed or
skewed in an image. Also, aside from idealized conditions
such as photo studios, the backgrounds of most images are
commonly filled with very complex and colorful items
such as landscapes, furniture, buildings, etc. This “noise”
in an image makes the task of identifying faces in that im-
age much more difficult. A robust method must then be
used to defeat this noise. Other robust methods include
knowledge based methods, and appearance based methods
[4]. Knowledge based methods rely on using the knowl-
edge of what makes up a human face such as eyes, ears, a
mouth and a nose. Appearance based methods use a variety
of training images to “learn’ what a face looks like for the
use of facial recognition. Neural Networks may be facili-
tated to aid in this learning process.
Color also plays an important role in the detection of faces
in images. Skin color is often very different than the sur-
rounding colors in an environment. The hue and chromi-
nance of the skin can also set its color apart from similar
colors in the environment, such as sand or wood, if the
appropriate techniques are applied [1]. There are a variety
of color spaces that can be used, such as RGB, CMYK,
HSI, and a series of chrominance color spaces [2]. By con-
verting an image into a different color space, detecting the
face should become easier. The colors in an image are
greatly affected by the lighting of the environment which
can change the skin tones dramatically, and can also have a
large affect on the identification process.
A common technique employed to isolate a color differ-
ence is to implement color segmentation of an image. Seg-
mentation looks at the region of an image, such as a face,
and uses the mean color and its deviation to extract only
the similar colors in an image [7]. A binary mask can then
be created that can eliminate portions of the image that fall
outside of the desired color range. This can eliminate much
of the noise in an image.
Morphological Techniques are another common image
processing technique use to manipulate grayscale or binary
images. Readily existing implementations of morphology
can provide tasks such as removing small amounts of noise
from an image mask, and reducing regions of interest to a
single point [6]. These algorithms are extremely useful in
face detection as they can help remove small regions of
skin tone such as hands and feet, that color segmentation
does not eliminate.

TECHNICAL APPROACH
The technical approach taken was to create a simple and
relatively fast method to locate the faces on an image. The
first step is to read in the image containing the faces to be
detected. An original of this is stored, and a copy is used
for processing.
The template image is then read into the program [8]. It is
scaled to match the relative size of the faces in the image,
and is cropped to use only the eyes and the nose for the
template. This template is then padded with zeros to match
the dimension of the image is will be compared with.
Both of these images are then converted from RGB space
to HSI space to ready them for color segmentation and
processing.
The image containing the faces is then used to select a re-
gion to be segmented. A face containing the average look-
ing color of all of the faces in the image is used, and then
the segmentation algorithm generates a binary valued im-
age mask that isolates these color regions.
Noise in the mask such as hands is present, so the morpho-
logical technique of erosion is used to eliminate these small
regions of noise. Dilation is then applied to grow the re-
maining regions of the mask.
This mask is then multiplied with the Intensity layer of the
image to isolate only the facial regions. It is then convolved
with the intensity layer of the padded template to find the
correlation between the two images. This is done in the
frequency domain as it is much faster.
The correlation image is then thresholded to become a bi-
nary image with only the highest regions of correlation
remaining a non-zero value.
A morphological technique to collapse the remaining non-
zero regions is applied so that the mask contains only sin-
gle pixels; each where a face has been detected. The coor-
dinates of these pixels are then used to place a mark on the
original stored image to indicate where the algorithm de-
tects an image.

RESULTS AND DISCUSSION
To initially develop this algorithm an image was chosen
where all of the faces present were of similar size and were
not obstructed much, as shown in Figure 1. This would
allow for easier testing of the different techniques to assure
that the algorithm works.

Figure 1 – The original image supplied, apparently obtained

from Google Images.
Next, the average facial image was read in, scaled and cropped as
shown in Figure 2. This image is very small, so after padding, the
image was mostly zeros. Using different templates such as an
entire head, a single eye, and a mouth were explored. All of these
templates provided poorer results than using the eye and nose
combination.

Figure 2 - Template Image

Using the color segmentation code, and carefully adjusting the
parameters of the size of the erosion process, a color segmentation
mask that eliminates most of the limbs and noise besides the faces
was generated, as seen in Figure 3. Adjusting the morphology to
retain all of the faces, while rejecting other features in the image
proved very difficult and retaining all of the face data without
leaving significant noise was a problem. Other techniques should
be employed to aid with this in future experiments.

Color Slice

Figure 3 - The Color Segmentation Mask

This mask was then easily applied to the intensity layer of the
image and the correlation image from the convolution was gener-
ated. Since some non-facial regions remained in this process, and
the faces are very close together in this image, adjusting the
threshold of this image was very important. If the threshold was
set too low, noise would remain in the mask, and the faces would
appear to be connected together. If the threshold value was set too
high, some of the faces might be lost in the thresholding process.
After much experimentation with the threshold level, a successful
mask was created with all eleven of the faces being recognized as

near single regions, and all other elements in the image were
eliminated, as seen in Figure 4.

Figure 4 - The identified facial regions

To assure that each face region was made up of a single area,
dilation was applied to this mask to expand the regions slightly.
This mask was then shrunk down using morphological operations
to have 11 sets of single pixels whose coordinates were applied to
mark the faces on the original image as a white dot, shown in
Figure 5.

Identified Faces

Figure 5 - Image showing the algorithms identification of all

faces in a picture.
Looking closely at where the algorithm placed the marker, it is
usually found in the lower left hand side of the face, not in the
center by the eyes and nose where one would expect to see the
highest correlation. Also, in a few of the cases, the mark is on the
neck of the subject in the picture.
Exploration of this phenomenon revealed that the convolution
flips a signal before correlating the two images. With this in mind,
the template image was flipped and the faces located. This had
little to no change on the location of the face markers.
Further exploration and a morphological lecture showed that the
morphological operations operate from the upper right to the
lower left corner of an image. This seems to indicate that as the
operation shrunk each of the regions in the mask down to a pixel;
it slowly shrank each region down to the lower left hand pixel,
which would explain the markers location on the image. Another
technique such as the hit or miss algorithm should be explored to
find the center pixel of each region, to better indicate the face
location.

Expanding the algorithm to images such as the classroom image
below in Figure 6 provided interesting and important results.

Figure 6 - Another sample image with obstructed faces and

flesh colored backgrounds.
Figure 6 has an obstructed face, as well as chairs and a wall be-
hind the subjects that share a very similar color to the faces in the
image.
When applying the segmentation technique to this image, it was
not possible to extract the facial data without extracting a large
amount of the background. This rendered the morphological op-
erations to dampen small amounts of noise useless, and the algo-
rithm was highly ineffective at detecting faces.
Overall, exploration with this algorithm proved that it was very
sensitive to the lighting conditions and color differences in an
image. It would work very well at distinguishing faces in a con-
trolled environment where there is a consistent lighting condition
and a background that contrasts facial colors in an image.
The morphological operations are also very sensitive to the size
and orientation of the regions they are operating on. Since the
masks generated vary greatly from image to image, the parame-
ters are very high maintenance to keep the algorithm working
correctly.
One nice thing about this technique is that it finds the faces very
quickly. The operation takes about 10 seconds on a 1.4 Ghz com-
puter with 512MB of RAM. The algorithm could then be used to
find the region close to the face, a bounding box could then be
generated to extract the region containing the face, and more
complex algorithms could be applied to identify the face or to find
the identity of the person in the image.
This algorithm would also prove useful in other areas, such a
quality control and item identification in an industrial setting.
Since these applications offer a consistent background environ-
ment, a new mask could be created to identify another object, and
the algorithm could be useful identifying this object in a con-
trolled setting where the variables for the morphological opera-
tions and the threshold can remain constant. A sample application
could use this algorithm for counting components on an assembly
line.

SUMMARY

Facial recognition in images is a large field of research
with strong industry backing. Facial recognition techniques
are currently used for security, personnel identification, and
other applications. A wide variety of methods must be em-
ployed to differentiate and extract facial regions from the
complex environments that many images are created in.
This pre-processing of images to eliminate as much extra-
neous information as possible proves a much larger techni-
cal hurdle than the actual correlation process of template
matching the images.
The algorithm proposed and implemented in this paper was
successful at identifying all faces in a sample image. The
algorithm did not find the center of the faces due to the
methods employed, and proved to be less than robust when
it came to new lighting conditions that changed the color of
the faces in the image. Background colors that matched the
flesh tones of a face also proved too large of a challenge
for the implemented algorithm.
This paper gives a basic technique of one method of identi-
fying the faces in an image. Other techniques to eliminate
extraneous information or new techniques to identify the
faces themselves can be applied to increase the robustness
of this basic facial recognition algorithm.

ACKNOWLEDGMENTS
This work was done as a midterm project for the EECS 490
class taught by Dr. Frank Merat. Special thanks to Dr.
Merat for providing guidance for this project, as well as the
test images used in its implementation.

REFERENCES
[1] L. Torres, J. Y. Reutter, and L. Lorente. "The Im-

portance of Color Information in Face Recogni-
tion." IEEE International Conference on Image
Processing, Kobe, Japan, October 25-28, 1999.

[2] J.C. Terrillon and S. Akamatsu, "Comparative
Performance of Different Chrominance Spaces for
Color Segmentation and Detection of Human
Faces in Complex Scene Images." Proceedings Vi-
sion Interface Conference 19-21 May, 1999. pp.
180-188, 1999.

[3] P. Ballard and G.C. Stockman, "Computer Opera-
tion via Face Orientation," Proceedings 11th IAPR
International Conference on Computer Vision and
Applications, 30 Aug.-3 Sept. 1992, vol. 1, pp. 407
- 410, 1992.

[4] Ming-Hsuan Yang; D.J. Kriegman, and N. Ahuja,
"Detecting Faces in Images: A Survey," IEEE
Transactions on Pattern Analysis and Machine In-
telligence, Vol 24 , No 1. . pp. 34 - 58. Jan. 2002

[5] L.Sirovich and M. Kirby, "Low Dimensional Proce-
dure for the Characterization of Human Faces," J.
Optical Society of America, Vol. 4, No. 3 pp. 519-524,
March 1987

[6] Rafael C. Gonzalez, Richard E. Woods and Steven L.
Eddins, Digital Image Processing Using Matlab.
Prentice-Hall, Upper Saddle River, new Jersey, 2nd Ed.
2004

[7] Rafael C. Gonzalez and Richard E. Woods, Digital
Image Processing. Prentice-Hall, Upper Saddle River,
new Jersey, 2nd Ed. 2004

[8] Average Faces. Beauty Check. http://www.uni-
regens-
burg.de/Fakultaeten/phil_Fak_II/Psychologie/Psy
_II/beautycheck/english/durchschnittsgesichter/du
rchschnittsgesichter.htm. Modified: 7 January
2002. Viewed 27th November 2004.

Face Detection and Localization in Images
Using Color Segmentation and Template Matching

Ira Ross

Department of Electrical Engineering and Computer Science

Case Western Reserve University, Cleveland, OH, Email: ira.ross@case.edu

ABSTRACT

This paper presents a face detection and localization tech-

nique for intelligently identifying faces in color group pho-

tographs. The algorithm utilizes color segmentation to iso-

late human skin based on its chrominance properties, per-

forms simple morphology on the mask, then passes the

masked result through a correlation procedure with a de-

fined average face. Highly correlated points indicate areas

where the source image most represents facial features.

These points are processed and extracted to produce a sin-

gle set of coordinates at each instance of a face. With

proper thresholding, this technique for face detection and

localization is able to identify all faces in group photos of

forward facing subjects.

KEYWORDS

Face detection, face localization, color segmentation, image

morphology, template matching

INTRODUCTION

In the world of image processing, there are many motiva-

tions for the ability to autonomously detect and analyze the

human face. For national security purposes, there has been

a recent push towards facial and retinal recognition in order

to cross-reference potentially threatening individuals

against an image database of known terrorists. On another

level, detection of facial features and expressions is being

used by some computers to interactively gain information

about a user’s identify, state, and intent [3].

The first step of facial recognition is detecting the locations

in an image where faces are present. Extensive research on

the subject has produced many distinct approaches to the

problem of face detection in an image. The basic strategies

employed can be split into four categories – knowledge-

based methods, feature invariant methods, template match-

ing methods, and appearance-based methods [3]. Knowl-

edge-based, top-down methods operate on a set of rules

established for how a basic face is comprised, and check

for the presence of these properties in the source image.

Feature-based methods are bottom-up, and aim to define

facial features that are invariant of lighting, angle, or pose.

Template matching methods employ an image of an aver-

age face or facial features, and find the correlation between

the template and the source image. Last, appearance-based

methods learn the properties of a face from a set of repre-

sentative face templates, and calculate facial candidates

based on this information [3].

This project utilizes both bottom-up feature-based methods

and template matching methods in order to accurately iden-

tify human faces. First, potential face candidates are ex-

tracted by segmenting the source image based on skin tone.

Because skin can be uniquely represented independent of

luminance in a small range of chrominance, the YCbCr

color space is chosen in order to perform the segmentation

[4]. The result is a mask that can be multiplied by the

original image, but must first be enhanced using a morpho-

logical opening and closing to eliminate noisy patterns.

Finally, the template matching method is employed by tak-

ing the correlation of the masked areas with a scaled image

of an average face. The areas of highest correlation are

computed, and used to find the coordinates of the faces.

COLOR SEGMENTATION

If incorporated properly, color segmentation based on skin

tone can be a very powerful tool for facial detection. By

initially narrowing the detection field to areas representing

human skin, segmentation saves valuable time and in-

creases the success rate of other methods. For this paper,

the YCbCr color space is used, because research has found

that skin can be accurately represented independent of lu-

minance within a small range of chrominance (Figure 1)

[4,5].

Figure 1. Distribution of skin (.) and non-skin (+) pixels

in Cb vs. Cr chrominance plane [5]

Experimentally determining the range of chrominance for

skin gives a rectangular region spanning 77 Cb 127,

and 122 Cr 173 [5]. This is merely an estimate for

segmenting skin tone based on chrominance, but it will

work sufficiently for extracting important areas from the

test image. The result of implementing this range for skin

segmentation can be seen in Figure 2.

Figure 2. Original image before and after color
segmentation based on skin tone chrominance

Segmentation produces a very useful mask, but it is desired

to eliminate objects smaller than the size of a human head

in order to facilitate a more accurate correlation procedure.

It is necessary to perform some basic morphological image

processing to the mask, which will be discussed in the next

section.

MORPHOLOGICAL OPERATIONS

To get a more accurate result with the template matching

detection method, further processing of the color segmenta-

tion mask is needed. The morphological operations of dila-

tion and erosion are used in different combinations for the

elimination of unwanted areas that do not represent the

shape of a human face. Using a specified structuring ele-

ment, dilation expands an image’s borders in areas where

the element overlaps its edges. Conversely, erosion con-

tracts an image’s borders to where the structuring element

fits inside. By executing an erosion followed by a dilation,

one can perform an image opening - smoothing the contour

of an object, breaking narrow isthmuses, and eliminating

thin protrusions. Similarly, an image closing is a dilation

followed by an erosion, which will smooth contours, fuse

narrow breaks, eliminate holes, and fill gaps [1].

Since color segmentation lets everything pass within a

specified chrominance range, areas that do not resemble the

basic shape of a face need to be removed. By using an im-

age opening with a properly sized circular structuring ele-

ment, it is possible to cut out these unwanted areas from the

mask. This particular image requires a disk structuring

element with a radius of approximately 16 pixels to achieve

the desired opening (Figure 3).

Figure 3. Skin color segmented mask processed by
morphological opening with circular element

The new mask is now multiplied by a grayscale version of

the original image (Figure 4) for use in the template match-

ing procedure.

Figure 4. Morphed mask multiplied by grayscale of
original group photograph

TEMPLATE MATCHING

The last step in this project’s face detection procedure is to

run the processed image through a template matching algo-

rithm in order to locate points where the image is most cor-

related with an average face (Figure 5). First, a Sobel filter

is applied to both the average face and the source image to

extract edge information. Using edge filtered images will

result in a more accurate correlation procedure [3].

Figure 5. Image of an average face used in template
matching correlation procedure

Instead of trying to perform a correlation in the spatial do-

main, it is both easier and faster to convert to the frequency

domain. Simply take the 2-D FFT of the Sobel filtered

source image, along with the 2-D padded FFT of the fil-

tered average face. The conjugate of the face FFT multi-

plied times the FFT of the original image gives their corre-

lation in the frequency domain. By taking the real portion

of the inverse FFT of the product, the spatial correlation is

found (Figure 6) [2].

Figure 5. Correlation of original masked image with
average face

The correlation output is passed through a threshold to

eliminate pixels below a certain grayscale value. With this

image, a threshold of 170 is used to eliminate all extrane-

ous points, but to preserve at least one point from each

face. Because some faces are more correlated to the aver-

age face than others, it is necessary to combine any set of

points denoting a single face. A morphological dilation is

performed to connect all points within a certain neighbor-

hood, followed by the MATLAB function “bwmorph” to

shrink all connected regions to a single point [2]. Once a

pair of coordinates is found for each face in the image, a

loop is implemented to increment through points and to

draw a white square around the perimeter.

RESULTS AND DISCUSSION

Using the correct parameters, the facial detection algorithm

worked remarkably well at a 100 percent detection rate in

the first image with no false detections (Figure 6). The

high success rate depended on choosing the proper size and

type of structuring element used for the morphological op-

erations on the skin tone mask. Another factor that attrib-

uted to success was that the image had very few objects

with color close to human skin tone.

Figure 6. Final result of face detection procedure – detected

faces are outlined with a white box

One of the largest disadvantages to using template match-

ing is that the template must be approximate in size to the

faces in the image. Therefore, any images with multiple

face sizes should be passed with several scaled average

faces, followed by taking the intersection of the results to

get an accurate correlation. Although it would be enhanced

by this addition, the method presented in this paper has

shown to be best suited for detecting faces in a fixed envi-

ronment where face size is held relatively constant and ob-

jects close to skin tone are not present.

When tested with other images, the detection program per-

forms quite well. As shown in Figure 7(a), it is able to ac-

curately locate the faces of four men against a background

that could possibly cause problems some types of color

segmentation. With this image, it was necessary to adjust

the size of the morphological structuring element so that it

did not eliminate some faces. Using the same parameters

set for Figure 7(a), the result shown in Figure 7(b) was

achieved with a NASA team photograph. Only eight out of

nine faces were detected, most likely due to the fact that the

missed face has no eyebrows, a mustache, and is not com-

pletely forward-facing. Overall, out of 24 total faces in the

three photographs, the face detection program was able to

accurately locate 23 faces with no false positives. These

results are highly dependant upon the size and type of pho-

tograph chosen to pass into the face detection software.

(a)

(b)

Figure 7. Additional testing of face detection method

To create a truly bottom-up face detection program that

does not depend as much on face size and background

color, it is necessary to implement a feature-invariant

method instead of template matching. A well written neu-

ral net will have much more success in recognizing faces

and locating finer facial details. The skin chrominance

model used in this project was also a rough estimate of the

actual Cb-Cr distribution. Using finer modeling based on

Gaussians would most likely give a more accurate segmen-

tation that does not pick up as much background informa-

tion.

ACKNOWLEDGEMENTS

This work was inspired by Professor Frank Merat, who has

done a superb job teaching Digital Image Processing for the

fall semester of 2004 at Case Western Reserve University.

SUMMARY

A method for face detection and localization based on color

segmentation and template matching is presented in this

paper. From a set of three properly scaled images, the

method was able to detect 23 out of 24 faces for a success

rate of 96 percent. By combining multiple image process-

ing techniques, the program effectively eliminated any

cases of false identification.

Future work on the method should employ a more detailed

model for skin chrominance, as well as another feature-

invariant detection method to help classify faces of differ-

ent angle, size, and pose. Face detection is the initial step

for employing an effective facial recognition procedure

where finer facial details need to be located and analyzed.

REFERENCES

[1] R. C. Gonzalez and R. E. Woods, Digital Image

Processing, 2
nd

 ed., Prentice-Hall, 2002.

[2] R. C. Gonzalez, R. E. Woods, and S. L. Eddins.

Digital Image Processing Using MATLAB, Pren-

tice-Hall, 2002.

[3] M . Yang, D. J. Kriegman, and N. Ahuja, "Detect-

ing Faces in Images: A Survey," IEEE Transac-

tions on Pattern Analysis and Machine Intelli-

gence, vol. 24, no. 1, Jan. 2002.

[4] H. Wang and S.F. Chang, "A Highly Efficient

System for Automatic Face Region Detection in

MPEG Video," IEEE Transactions on Circuits

and Systems for Video Technology, vol. 7, no. 4,

Aug. 1997.

[5] P. H. Lee, V. Srinivasan, and A. Sundararajan,

"Face Detection," Stanford University.

Face Detection

 Yu-Hong Yen

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email: yxy61@cwru.edu

Abstract
The purpose of this project is to detect faces in vari-
ous images. There are many different applications in
which a face detection program could be used. The
querying of image databases is one possible applica-
tion that would use face detection. Also, face detec-
tion is the first step in the process of face recognition.
Many surveillance companies could make use of pro-
grams that can reliably scan a surveillance photo, and
recognize certain individuals. In order to recognize a
person in an image, it is first necessary to find the
face of each person in that image. This type of pro-
gram is especially useful in places such as airports to
find criminals.

KEYWORDS

Color segmentation, Morphological image processing,
Face Detection

METHOD

The flowchart of this project is as following:

The original image is as figure 1:

Figure 1

The first step of the program is to modify the original
image in which we are intending to detect faces. In
order to eliminate lighting effects (luminance), it is
necessary to take the original color image and convert
the colors into chromatic color (“pure color”) space.
The format of the RGB space (original image) in-
cludes luminance, which makes it difficult to charac-
terize skin colors because lighting effects can change
the appearance of the skin. The chromatic color
space will eliminate the luminance component. To
convert an image from RGB to chromatic colors you
simply compute:

r = R/(R+G+B)
b = B/(R+G+B)

The value of the g component is the same as the r
and b values and r+b+g=1. To convert from RGB to
chromatic color space in Matlab, the function
“rgb2ycbcr” is used. The following is the original im-
age, and the original image converted to chromatic
color space:

Color Segmentation
in YCbCr space

Detect non-face area

Original image

Template matching

Locate face

Figure 2

The next step is to create a skin model in chromatic
color space. To create the skin model, it was neces-
sary to use several images with people of varying skin
colors. I decided to use 5 different images of people
with different skin colors from the original image. Us-
ing these different images of people, I cropped small
portions of skin from each image and created new
images with only the cropped portions of skin. After
reading in each of the skin color images, they were
then converted to chromatic color space as previously
described. It will generate a filter that can filter the
non-skin color area. The result is as following:

Figure 3

It is now necessary to evaluate each segmented skin
region to determine if it is a face. The current seg-
mented image shows any skin regions such as arms,
legs or any other skin area. Since faces consist of
eyes, noses and a mouth, it is safe to say that a face
would consist of at least one hole in the segmented
image. To determine the number of holes in a region,
the following equation is used:
E = C – H

In this equation, E is the Euler number, C is the num-
ber of connected components and H is equal to the
number of holes. Since we are analyzing only one
segmented region at a time, the C is equal to one.

H = 1 – E

The Euler number is determined by the “bweuler”
function in Matlab. If an area with at least one hole is
found, we then continue to find some statistics about
the region to be used in the template-matching portion
of the code. Area is found by using the “size” function
in Matlab. The center of mass is determined by:

The orientation angle is found by:

Finally the Width and Height are determined. A ratio
of height to width is then determined. Since faces
normally have a ratio of about 1, this parameter can
be used to determine if the segmented area is a face.
To be safe, I used a range of values from 0.6 to 1.2 in
order for the segmented region to continue to be
evaluated for face characteristics. Similar the part of
the program that finds the number of holes, if the
value is not within this range, the area is determined
to not be a face and the next segmented area is then
evaluated.

The next step is template matching. The basic idea of
template matching is to convolve the image with an-
other image (template) that is representative of faces.
Finding an appropriate template is a challenge since
ideally the template (or group of templates) should
match any given face irrespective of the size and ex-
act features. The following template face was made
by Principal Components Process from 8 different
faces in figure 5.

FIGURE 4

FIGURE 5

The template face is first resized according to the
measurements taken on the segmented image.
Based on the height and width of the segmented skin
region, the template face is then converted to these
dimensions so that it can later be placed in the seg-
mented region. The theta of the segmented region is
then used to rotate the template face to the same an-
gle. The center of mass of the segmented skin region
is used to place the template face directly in the cen-
ter of the segmented image. This process will com-
pletely fill the segmented area with the image of the
template face.

Once the template face is placed inside the seg-
mented image, it is necessary to see how “well” the
template fits inside the region. A way to determine this
value is to use a correlation, which computes the two-
dimensional correlation coefficient between two matri-
ces. To find the correlation of these two matrices, we
use the “corr2” function in Matlab. This function oper-
ates on the
following algorithm:

It was found that a good correlation value between
the two matrices is close to 0.6. If the correlation be-
tween the test face matrix and the segmented region
matrix is 0.6 or higher, the original image is shown
with the template face replacing this region and is
shown as a grayscale image.

The same process is repeated by testing each seg-
mented region for a height to width ratio between 0.6
and 1.2 and a correlation greater than or equal to 0.6.
Once every region has been evaluated, the final
product of the original color image is displayed with
rectangles showing each of the detected faces in the

image. Once we have successfully determined that
the segmented area is a human face, a rectangle is
placed around the face showing the program has de-
tected a face in the image. Using the coordinates de-
termined from the height and width based on the cen-
ter of mass, the “rectangle” function in Matlab was
used to create the boxes. The final result is as follow-
ing:

Figure 6

CONCLUTION

The task of face detection in a digital image is a well
established problem. There are many approaches
which all try to achieve the same end result: efficiently
detecting all human faces in a given image and reject-
ing everything that is not a face. The illumination cor-
rected template matching yields near perfect results.

Another area that this project could be expanded
would be to add side face detection as well. This
would be relatively simple to achieve, the only extra
work would be to create an average side view of a
person and repeat the process used in this program.
Although the program is not perfect, for most applica-
tions, 83% accuracy would be sufficient. This type of
program would work best for taking the first step in
face recognition. For example, if a door was to be
opened by a new security system, this program could
be used. This program would be implemented by hav-
ing the person stand in front of the camera (preferably
with a solid background) next to the door and take a
frontal picture of the persons face. This program
would detect the positioning of the person’s face in
the image and then the face recognition process
could begin.

REFERENCES

[1] Jie Yang and Alex Waibel, "A Real-Time Face
Tracker", CMU CS Technical Report.

[2] Rafael C. Gonzalez and Richard E. Woods, Digital

Image Processing, 2nd Edition. Prentice-Hall.

[3] Rafael C. Gonzalez, Richard E. Woods, Steven L.
Eddins: “Digital Image Processing Using
MATLAB,” Prentice Hall; 1st edition

[4]http://ise.stanford.edu/2003projects/ee368/Project/r
eports/ee368group06.pdf

[5] Wei-min Huang and Robert Mariani. Face Detec-

tion and Precise Eyes Location IEEE 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

