INDUSTRIAL ROBOTS

Computer Interfacing
and Control

WESLEY E. SNYDER

North Carolina State University

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632



13
COMPUTER
VISION

In this chapter, we will introduce the basic concepts in the field of study
known as computer vision. This discipline emphasizes the development
of techniques which allow a computer to recognize or otherwise under-
stand the content of a picture. Numerous books have been written on
this subject, and we could not hope to do it justice in one chapter.
Therefore, we concentrate on a subdiscipline called IMV (industrial
machine vision), which includes robot vision.

Researchers in the field of IMV concentrate their efforts on prob-
lems appropriate to the industrial environment. In such an environ-
ment, one may be able to control the background, the lighting, the
camera position, or other parameters. Such control may allow the use
of techniques that would be inappropriate to a general-purpose vision
system. o

In this chapter, the reader will be introduced to the concept of
an electronic image and its digital representation. Then, several strategies
for processing such images will be covered. These strategies will allow
the computer to make use of image information to guide a robot.

13.1 FUNDAMENTALS

The first section in this chapter will show the reader how digital images
may be acquired and represented in the memory of a computer. The
operations which the computer must perform to make use of that in-

formation for industrial applications will be presented in later sections.
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13.1.1 The Formation of a Digital Image

The imaging literature is filled with a variety of imaging devices,
including dissectors, flying spot scanners, videcons, orthicons, plumbi-
cons, CCDs (charge-coupled devices), and others (Castleman, 1977;
Chien and Snyder, 1975). These devices differ both in the ways in_
which they form images and in the properties of the images so formed.
However, all these devices convert light energy to voltage in similar ways.
Since our intent in this chapter is to introduce the reader to the funda-
mental concepts of image analysis, we will choose one device, the
videcon, and discuss the way in which digital images are formed using
such a device.

Image Formation With a Silicon Videcon

As shown in Figure 13.1, a lens is used to form an image on the
faceplate of the videcon. When a photon of the appropriate wave-
length strikes the special material of the faceplate, a quantum of charge
is created (an electron-hole pair). Since the conductivity of the material
is quite low, these charges tend to remain in the same general area where
they were created. Thus, to a good approximation, the charge, g, in a
local area of the faceplate follows

r
q= f idt (13.1)
0

where i is the incident light intensity, measured in photons per second.
If the incident light is a constant over the integration time, then q = ity,
where f is called the frame time.

The mechanism for reading out the charge, be it electron beam, as
in the videcon, or charge coupling, as in CCD cameras, is always designed
so that as much of the charge is set to zero as possible. We start the
integration process with zero accumulated charge, build up the charge
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Figure 13.1 Videcon camera.
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at a rate proportional to local light intensity, and then read it out. Thus,
the signal read out at a point will be proportional to both the light inten-
sity at that point and to the amount of time between read operations.

Since we are interested only in the intensities and not in the integra-
tion time, we remove the effect of integration time by making it the same
everywhere in the picture. This process, called scanning, requires that
each point on the faceplate be interrogated and its charge accumulation
zeroed, repetitively and cyclically. Probably the most straightforward,
and certainly the most common way in which to accomplish this is in a
top-to-bottom, left-to-right scanning process called raster scanning
(Figure 13.2).

In the videcon, an electron beam is used to neutralize the accumu-
lated (positive) charge. Cancellation of the charge causes a current to
flow in the circuit proportional to the charge neutralized. Deflection
electronics steers the electron beam across the faceplate in a horizontal
line. The beam is then shut off and repositioned at the left-hand end of
the next, lower, line. The time the beam is off is referred to as blanking.
This process is repeated until the entire faceplate has been swept clean
of charge. However, while the beam is busy neutralizing charge at the
bottom of the faceplate, charge is once again building up at the top.
Since charge continues to accumulate over the entire surface of the
videcon faceplate at all times, it is necessary for the beam to return
immediately to the top of the faceplate and begin scanning again. The
scanning process is repeated many times each second. In American
television, the entire faceplate is scanned once every 33.33 ms (milli-
seconds) (in Europe, the frame time is 40 ms).

To compute exactly how fast the electron beam is moving, we
compute

Isec . 525 lines

30 frame  frame

= 63.5 us/line (13.2)

Figure 13.2 Raster scanning: Active video is indicated by a solid line, blanking
(retrace) by a dashed line. This simplified figure represents noninterlaced scanning.
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Sixty-three and a half microseconds (us) to scan one line of the
picture is fairly fast. (Using the European standard of 625 lines and 25
frames per second, we arrive at almost exactly the same answer, 64 us
per line.) This 63.5 us includes not only the active video signal but also
the blanking period, approximately 18 percent of the line time. Sub-
tracting this dead time, we arrive at the active video time, 52 usperline.

Figure 13.3 shows the output of a television camera as it scans
three successive lines. One immediately observes that the raster scanning
process effectively converts a picture from a two-dimensional signal to a
one-dimensional signal, where voltage is a function of time. Figure 13.3
shows both composite and noncomposite video signals, that is, whether
the signal does or does not include the sync and blanking timing pulses.

The sync signal, while critical to operation of conventional tele-
vision, is not particularly relevant to our understanding of digital image
processing at this time. The blanking signal, however, is the single most
important timing signal in a raster scan system. Blanking refers to the
time that the electron beam is shut off. There are two distinct blanking
events: horizontal blanking, when the beam moves from the end of one
line to the start of the next, and vertical blanking, when the beam moves
from the bottom of the picture to the top in preparation for a new scan.
In a digital system, both blanking events may be represented by pulses
on separate digital wires. Composite video is constructed by shifting
these special timing pulses negative and adding them to the video signal.

Active
video

1.5VH

[VAVA o

Blanking Sync

Composite Time

Non-composite

Figure 13.3 The video signal.
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Now that we recognize that horizontal blanking signifies the be-
ginning of a new line of video data, we can concentrate on that line and
learn how a computer might acquire the brightness information encoded
in that voltage.

13.1.2 The Sampling Process

The analog voltage is converted to a digital representation using an
analog-to-digital converter such as the flash converters described in
Chapter 2. This device performs two functions simultaneously: sampling
and quantization. Although these functions occur together, we will
discuss them separately since they have different effects.

Figure 13.4(a) shows an analog voltage represented as a function
of time, and Figure 13.4(b) shows the same voltage after sampling. The
sampling process can be considered a mechanism for approximating the
waveform. At discrete times, the waveform is interrogated and that
value remembered until the next sampling time. The sampled analog
waveform thus consists of a series of steps, with constant values be-
tween the steps. The conditions under which this process results in an
accurate approximation of the waveform will be discussed later.

Resolution

The resolution of a system is determined in large part by the
sampling process. The number of samples on a single line defines the
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Figure 13.4(a) Analog signal.

Figure 13.4(b) Sampled analog signal.
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horizontal resolution of the system. Similarly, the number of lines
defines the vertical resolution. This is demonstrated by a comparison
of American and European television in which the greater vertical res-
olution of the European picture, with the standard of 625 lines, is
obvious to the viewer.

One common sampling rate is 100 ns (nano seconds) per pixel.
Such a sampling rate is easily derived from a 10-MHz clock and results
in just over 512 samples on each line. The number 512 is very con-
venient from a hardware point of view since it is a power of 2. Using
a sampling rate of 103 ns/pixel gives 512 samples on exactly one full
line of video.

Dynamic Range

Once an analog signal has been sampled, it is converted to digital

form by a process known as quantization as shown in Figure 13.5. The
digital representation of a signal can have only a finite number of pos-
sible values, defined by the number of bits in the output word. For
example, video signals are often encoded to 8 bits of accuracy, thus
allowing a signal to be represented as one of a possible 256 values. A
larger number of bits allows a signal to be represented to a greater degree
of accuracy.
) The accuracy (number of bits) of the digital representation is often
referred to as the dymnamic range of the imaging system. We must
caution the reader that the meaning of the term dynamic range some-
times varies. An alternative definition specifies the dynamic range as
the range of input signals over which a camera successfully operates.
For example, if we open the iris on the camera, we may be said to alter
the dynamic range of the camera. Both meanings are accepted and are
in common use, but they differ according to their contexts.

Thus, we conclude that the digital image is ‘““discrete in space and
discrete in value.”” We also observe that there is a one-to-one relation-
ship between time and space. That is, if we refer to the sampling time,

0123456738

Figure 13.5 Quantized sampled signal.
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we must speak of it relative to the top-of-picture signal (vertical blanking).
That timing relationship identifies a unique position on the screen.

The Sampling Theorem

In 1948, Claude Shannon derived the sampling theorem. This
theorem states, simply, that if an analog signal is filtered by an ideal
low-pass filter with cutoff at a frequency f, then that (filtered) signal
can be exactly reconstructed if it is sampled using a sampling rate
greater than or equal to 2f. Said another way, if we wish to sample
and store 'an analog signal and to be able to reconstruct that signal
exactly from the sampled version, our sampling rate must be at least
equal to twice the highest frequency in the signal.

The sampling theorem addresses only the effects of errors due to
the sampling process; it says nothing about the effects of quantization.

Black-and-white television systems are generally designed to have a
5-MHz bandwidth. Thus, a sampling rate of 10-MHz is required to com-
pletely recover the original signal. In fact, the sampling rate of 103 ns
which we proposed earlier is very close to this rate. We chose 512 samples
per line rather arbitrarily in the earlier discussion, presumably because
it was a power of 2. Now, we can see, however, that 512 pixels is not
only a power of 2, but it also results naturally from the application of
~ the sampling theorem to the video signal.

The sampling theorem appears to lead to a fascinating contradic-
tion. If we undersample the video signal, say, with 100 points per line,
or even lower, and then reconstruct the image, when you and I look at
it, we can still recognize the contents of .the scene. How can this be?
The sampling theorem seems to say that we must sample at 512 (or
more) points per line.

In fact, there is no contradiction at all. The sampling theorem says
that we must sample at twice the bandwidth to be able to reconstruct
the image without distortion. Images are highly redundant in their
information content, and the human brain is an excellent image-inter-
polating machine.

Exaxhple 13.1 Effects of Sampling

Show the effects of undersampling a television image in both the horizontal and
vertical directions. Assume an initial image of 512 lines of 512 pixels each. Show
the results of 2:1, 4:1,and 8:1 undersampling. Determine the clock rate required
to produce such images, and the memory required to store them.

Solution: Figure 13.6 shows the results of the three cases. To achieve 2:1 under-
sampling horizontally, we use a clock period of 103 X 2 =206 ns per clock. To
achieve such undersampling vertically, we store only every other line. 64K bytes
of memory are required (assuming that 1 byte is used to store 1 pixel).
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Figure 13.6(a) Image represented by
using 256 X 256 pixels.

Figure 13.6(b) Image represented by
using 128 X 128 pixels.

Figure 13.6(c) Image represented by
using 64 X 64 pixels.
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For 4:1 undersampling, the clock period =412 ns, and we store every fourth
line. 16K bytes of memory are required.

For 8:1 undersampling, the clock period = 1.8 us, every eighth line is stored,
and 4K are required.

Quantization error is the term used to refer to the fact that infor-
mation is lost whenever the continuously valued analog signal is parti-
tioned into discrete ranges by the limited dynamic range of the A/D
converter. Quantization error is observed in reconstructed images either
as random noise effects or as contouring. Figure 13.7(a) shows an image
that has been quantized to 16 grey levels; Figure 13.7(b) shows the
same image quantized to 8 levels.

Experiments have shown that at a given light level, the human
eye can discern only about 30 grey levels. Of course, with an overall
change in brightness, the eye undergoes dark cdaptation, a chemical
process, and the iris opens; therefore, which 30 shades of grey are dis-
tinguishable may vary from one environment to another.

Figure 13.7(a) Sixteen grey levels..

Figure 13.7(b) Eight grey levels.
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Figure 13.8 An analog sine wave sampled at too low a rate.

Thirty shades of grey would seem to indicate that 5 bits is all the
dynamic range needed. Most systems, however, use 8 bits, which allows
a limited emulation of the effects of the iris. Furthermore, 8-bit mem-
ories are conveniently available.

Aliasing

Aliasing is the phenomenon that occurs when the requirements of
the sampling theorem are not met. This may be best explained by con-
sidering Figure 13.8, which shows a sine wave being sampled at a sampling
rate only slightly less than its own frequency. The data acquisition sys-
tem is unable to correctly reconstruct the original signal because it
“thinks” that it is sampling a signal much lower in frequency, as shown
by the dotted line.

Example 13.2 Effects of Quantization

Show the effects of quantizing a 512 X 512 image using 16 shades of grey and 8
shades of grey. Determine the memory required for each.

Solution: See Figure 13.7. Sixteen shades of grey can be encoded into 4 bits.
Therefore 512 X 512 X 4 =1 megabits of memory is required. This would probably
be stored as 2 pixels per byte.

Eight shades of grey can be encoded into 3 bits. Therefore, 512 X 512 X 3 =
786,432 bits. However, it would be difficult to store 3-bit/pixels in a byte-addressed
memory. The most convenient means would probably be a 4-bit/pixel, resulting
in the same memory requirements as the 16-shade case.

13.2 IMAGE PROCESSING FUNCTIONS

In Section 13.1, we discussed how digital images could be acquired,
stored, and represented. Once this proces is completed, and we have
a digital representation of our image stored in the memory of our com-
puter, we can begin to operate on that image and use it in industrial
applications. There are three generic classes of operations that we could
ask the computer to perform on images: enhancement, restoration, and
analysis. Analysis is the emphasis of the remainder of this chapter, and
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we will, therefore, touch only on enhancement and restoration here to
a degree sufficient to define the terms.

Enhancement

Image enhancement could be most simply defined as the science
of making images “look better.” Generally, this means looking better
from the point of view of a human observer, although enhancement
techniques may also be used to preprocess an image prior to analyzing
it.

In general, the computer does not need to have any knowledge of
the contents of the scene to enhance it. As an example, we will describe
what is probably the simplest form of enhancement, grey scale stretching,
or contrast stretching. '

First, we (that is, the computer) make a pass over the image, mem-
orizing the largest intensity value in the image, and the smallest. Let us
refer to them as Iy, and Iy, . If the maximum possible value is 255
(for 8-bit images) and the smallest possible value is O, we can stretch
the contrast by updating each pixel value in the following way:

o = (Ioia = Imin) 255
new ([max - Imin)

(13.3)

Thus, the new image will have a maximum value of 255 and a
minimum value of 0, effectively utilizing the total dynamic range of
the output (viewing) system. Similar techniques are also useful on
input to normalize images to compensate for variations in lighting.

Many more sophisticated techniques exist for enhancing images,
including histogram modification and edge enhancement (see Pratt,
1978; Gonzalez and Wintz, 1977).

Restoration

In the process of acquiring images, distortion always occurs (Chien
and Snyder, 1975). There are many sources of distortion, including

Vignetting: Lenses transmit more efficiently near the center than near
the outside, resulting in images that are darker near the outside.

Parabolic distortion: Electron beam efficiency is greater if the beam
is normal to the faceplate, resulting in exactly the same effects as
vignetting.

Blooming: Too much light in a single spot on the faceplate allows
the accumulated charges to diffuse outward during a single scan time,
resulting in bright spots that seem too large.
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Lag: The electron beam is not 100 percent efficient, leaving some
accumulated charge not neutralized after each scan, resulting in a
“ghost” image when the scene changes.

Motion blur: If image motion is more rapid than the scan time, the
image of the same point may be smeared over several pixels.

Geometric distortion: Lenses are not perfect, nor are faceplates, and
the resulting image may be distorted geometrically. The image of a
perfect circle, for example, may not be a perfect circle.

Blur: Improperly focused optics or an improperly focused electron beam
can result in an image in which edges are not as sharp as they could
be. In fact, in almost all systems of high resolution (e.g., 512 X 512),
edges are never perfect step functions.

If we known the exact mathematical form of these distortions, we
could write

g(x,y)=D[f(x,»)] (13.4a)

where f(x, y) is the “true” undistorted image, D is a distortion operator,
and g(x, y) is the measured image. If the D operator has an inverse, then
we could recover the original image from the distorted one by simply
computing

fGe,y)=D7 gx, »)]. (13.4b)

Of course, in general, D is extremely complex and may not have
an inverse. The field of research that studies such distortion functions
and attempts to find inverse operators is called image restoration. In
most industrial applications, restoration techniques are not used explic-
itly or rigorously. However, corrections for geometric distortion
(warping) are routinely done (see Pratt, 1978; Gonzalez and Wintz,
1977; Andrews and Hart, 1977).

13.3 IMAGE ACQUISITION HARDWARE

There are many ways in which to acquire and access a digital image.
Here, we will describe only one technique, which allows the acquisition
of a single frame of video data in real frame.

13.3.1 The Frame Buffer

Figure 13.9 shows a block diagram of a digital data acquisition
system designed to acquire and store one frame of video data, quantized
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Figure 13.9 A video data acquisition system.

to 8 bits per pixel. The memory in this system, referred to as a frame
buffer, will store a 512 X 512 picture and will acquire it in 33 ms.*

The fundamental concept behind the design is the use of counters
which count in synchronism with the motion of the electron beam. The
9-bit column counter counts from 0 to 511 at a 100-ns/count rate.
The column counter is cleared by the horizontal blanking pulse (HB).
Hence, a zero in this counter indicates that the beam is at the left-
hand end of a scan line.

Although the horizontal blanking pulse clears the column counter,
it is used to increment the row counter. Thus, the row counter keeps
track of which row the electron beam is currently on. The vertical
blanking pulse (VB), which signifies that the beam is at the top of the
picture, is used to clear the row counter.

The combination of the row and column counters composes the
18-bit address to the memory. Thus, for each position on the screen,
there exists a unique address.

*In this simple design, we are assuming interlaced scanning.
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To make use of the information stored in the frame buffer, the
computer must be able to read it. This is accomplished via 2-1 multi-
plexers, one on the row address bus and one on the column address bus.
During a computer access, the 18-bit address is provided by the com-
puter rather than coming from the counters. To prevent erroneous
addressing, the memory WRITE operation of data from the A/D con-
verter must be disabled while the computer is reading.

This rather straightforward design provides data at the video rate.
In the past, such high-speed configurations have not been popular due
to the cost of high-speed A/D converters and memory. With the rapid
decline in costs of both items, this frame grabber technique has now
replaced virtually all the other, lower-speed techniques.

Another factor influencing the popularity of frame grabbers is the
fact that the same hardware can provide raster scan graphics capabilities.
In a graphics application, the memory is read in synchronism with the
scan. The data are converted to analog video by a D/A converter and
are transferred from there to a TV monitor. Consequently, to convert
a raster scan graphics system to a frame grabber requires little more than
addition of an A/D converter.

The Pixel Array

In this section, we have discussed a video acquisition system cap-
able of sampling the video signal at a rate of one sample every 100 ns,
resulting in an array of 512 samples on each line and 512 lines. Once
stored in a digital memory, this array may be accessed as a conventional
two-dimensional array of numbers. Each number is referred to as a
pixel, short for “picture cell.” (The term pel, representing “picture
element,” is sometimes used in the same way, especially in Europe.)

Typically a single pixel is represented by one 8-bit byte. The most
important observation to be made at this point with respect to the pixel
array is its size. A typical 512 X 512 array requires a quarter of a million
bytes of memory. At one time, this would have been a prohibitive
amount of memory. Memory cost is no longer a significant restriction,
but using a serial computer on such a massive amount of data is still
extremely time consuming. For this reason, much of the ongoing re-
search in vision today is directed toward the development of algorithms
that can make use of parallelism (Fu and Ichikawa, 1982).

In addition to frame grabbers, several manufacturers are now
marketing frame buffer systems augmented with other special high-speed
hardware for performing operations on the digital image. In the next
section, we will examine a few of these operations.
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13.4 SEGMENTATION

In many robot vision applications, the set of possible objects in the scene
is quite limited. For example, if the camera is viewing a conveyer, there
may be only one type of part which appears, and the vision task could
be to determine the position and orientation of the part. In other applica-
tions, the part being viewed may be one of a small set of possible parts,
and the objective is to both locate and identify each part.* Finally,
the camera may be used to inspect parts for quality control.

In this section, we will assume that the parts are fairly simple and
can be characterized by their two-dimensional projections, as provided
by a single camera view. Furthermore, we will assume that the shape
is adequate to characterize the objects. That is, color or variation in
brightness is not required. We will first consider dividing the picture
into connected regions.

A segmentation of a picture is a partitioning into connected regions,
where each region is homogeneous in some sense and is identified by a
unique label. For example, in Figure 13.10, region 1 is identified as the
background. Although region 4 is really background also, it is labeled
as a separate region since it is not connected to region 1. While there are
several ways to perform segmentation, we will discuss only one here.

13.4.1 Segmentation by Thresholding

In applications where grey scale is not important, we can segment
a picture into “objects’ and “background” by simply choosing a thresh-
old in brightness. We define any regions whose brightness is above the
threshold as object and all below the threshold as background.

There are several different ways to choose thresholds, ranging from
trivially simple techniques to quite sophisticated methods. As the
sophistication of the technique increases, performance improves at the
cost of increased computational complexity.

Probably the most important factor to note is the local nature of
thresholding. That is, a single threshold is almost never appropriate for
an entire scene. It is nearly always the local contrast between object
and background that contains the relevant information. Since camera
sensitivity drops off from the center of the picture to the edges due to
parabolic distortion and/or vignetting, it is useless to attempt to establish
a global threshold. A dramatic example of this effect can be seen in an

*A special case of this application occurs when only one type of part comes down the
line, but that part has substantial three-dimensional structure and may be resting in one of several
possible stable states. In this case, the view corresponding to each stable state may be treated
as the view of a different object.
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Figure 13.10(a) A picture with two
foreground regions.

111111111111 111111
111111111111 111111
1111111111111 11111
1111111111131 11111
1111122111331 11111
1111222211133 11111
111122221113331111
111112211113331111
111112213333111111
111112213331111111
1111122111111 11111
1111122111111 11111
1111222211111 11111
1112242211111 11111
tr1222221 111111111 Figure 13.10(b) A segmentation and
1111222111111 11111 . . .
labeling of the picture in Figure 13.10(a).
111111111111 111111 . ; ure 1n
Region 4 is a hole in region 2.

image of a chess board, in which the white squares at the corners are
actually darker than the black squares in the center.

Effects such as parabolic distortion and vignetting are quite pre-
dictable and easy to correct. In fact, off-the-shelf hardware is available
for just such applications. It is more difficult, however, to predict and
correct effects of nonuniform ambient illumination, such as sunlight
through a window, which changes radically over the day.

Since a single threshold cannot provide sufficient performance, we
must choose local thresholds. The most common approach is called
block thresholding, which the picture is partitioned into rectangular
blocks and different thresholds are used on each block. Typical block
sizes are 32 X 32 or 64 X 64 for 512 X 512 images. The block is first
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analyzed and a threshold is chosen; then that block of the image is
thresholded using the results of the analysis.

Choosing a Threshold

The simplest strategy for choosing a threshold is to average the
intensity over the block and choose i,y, + Ai as the threshold, where
Ai is some small increment, such as 5 out of 256 grey levels. Such a
simple thresholding scheme can have surprisingly good results (Page,
Snyder, and Rajala, 1983).

However, when the simpler schemes fail, one is forced to move
to more sophisticated techniques, such as thresholding based on histo-
gram analysis. Before we describe this technique, we will first define a
histogram.

The histogram h(i) of an image i(x, y) is a function of the per-
missible intensity values. In a typical imaging system, intensity takes
on values betwen 00 (black) and FF, ¢ (white). A graph that shows,
for each grey level, the number of times that level occurs in the image
is called the histogram of the image. Figure 13.11 shows a typical
histogram for an image of black parts on a white conveyor.

In Figure 13.11 we note two distinct peaks, one at grey level 3,
almost pure black, and one at grey level 193, bright white. With the
exception of noise pixels, every point in the image belongs to one of
these regions. A good threshold, then, is anywhere between the two
peaks.

Histograms are seldom as “nice” as the one in Figure 13.11 and
some additional processing is generally needed (Chew and Kaneko,
1972; Rosenfeld and Kak, 1976). However, the philosophy of his-

Percent of pixels

A

20 40 60 80 100 120 140 160 180 200 220

Figure 13.11 Histogram of a picture with a mixture of pure black and pure white.
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togram-based thresholding is the same: find two peaks in the histogram
and choose the threshold to be between them.

In general, different thresholds are used in different areas of the
picture. In many industrial environments, the lighting may be extremely
well controlled. With such control, the best thresholds will be constant
over time and may be chosen interactively during system set up. In_
other, more variable, situations, the computer may be required to analyze
the distribution of grey levels over the area of interest to choose an
appropriate threshold.

Region Labeling

Let us assume, for now, that a good threshold has been chosen
and that our picture has been partitioned into regions of pure black
and pure white, as shown in Figure 13.10(a). The production of a seg-
mented picture such as Figure 13.10(b) requires an analysis of connected-
ness. That is, a pixel is in region i if it is above threshold and is adjacent
to a pixel in region i. Since regions may curve and fork, the analysis
cannot be as simple as starting at the top and marking connected pixels
going down. Instead a more sophisticated technique is needed.

One such algorithm is known as region growing. It utilizes a label
memory corresponding to the frame buffer just as Figure 13.10(b)
corresponds to 13.10(a). In this description, we will refer to “black”
pixels as object and “white” as background.

Initially, each cell in the label memory M is set to zero. We will
refer to the picture memory as P. Thus, the grey scale of a point with
coordinates {x, y) is P(x, y), and the labeling operation can be written
M(x, y) < N for some label number N.

Algorithm Grow

This algorithm implements region growing by using a push down
stack on which to temporarily keep the coordinates of pixels in the
region.

1. Find an unlabeled black pixel; that is, M(x, y) =0. Choose
a new label number for this region, call it N. If all pixels have
been labeled, stop.

2. If P(x - 1, y) is black and M(x - 1,y) =0, push {x - 1, y) onto
the stack.

If P(x + 1, y)isblack and M(x + 1, y) =0, push {x + 1, y) onto
the stack.
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If P(x,y- 1)isblack and M(x,y - 1) =0, push {x,y - 1) onto
the stack.

If P(x, y + 1)is black and M(x,y + 1) =0, push {x, y + 1) onto
the stack.

3. M(x,y) < N.

4. Choose a new {x, ) by popping the stack.

5. If the stack is empty, go to 1, else go to 2.

This labeling operation results in a set of connected regions, each
assigned a unique label number. To find the region to which any given
pixel belongs, the computer has only to mterrogate the correspondmg
location in the M memory and read the region number.

Example 13.3 Applying Region Growing

The figure below shows a 4 X 7 array of pixels. Assume the initial value of {x, y) is
{2, 4). Apply algorithm “grow” and show the contents of the stack and M each
time step 3 is executed. Let the initial value of Nbe 1.

NW A N

Solution:
Pass 1: Immediately after execution of step 3.

Stack: (3, 4) <« top
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Segmentation

Sec. 134

Pass 2:

0

7/010(0]0
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Stack: (3,5) <« top
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Pass 3:
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Pass 4:

0

710/0|0]0
6/0(0]1]0

Stack: (3,3) <« top
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Pass 5:
Stack: Empty

o ©O O O o o o

N O O © = O O O
—
A O O O O ©O O ©O

0
0
1 3
This region-growing algorithm is just one of several strategies for per-
forming connected component analysis. Other strategies exist which
are faster than the one described, including some that run at raster scan

rates (Snyder and Savage, 1982). We will now consider techniques for
making use of this information.

13.5 SHAPE DESCRIPTORS

In the process of generating the segmented version of a picture, the
computer performs a region-growing operation that acts on each pixel
in the region. In so doing, the computer can easily keep track of the
area. Area is one of many features that can help us to distinguish one
type of object from another. For example, the image of a connecting
rod typically occupies more area (more black pixels) than does the image
of a valve. Thus, by measuring the area of a region, we may discern the
type of object. v

In this section we will present a few of the many other features
which may be used to characterize regions (Ballard and Brown, 1983).

13.5.1 Features

Average grey value: In the case of black and white “silhouette” pictures,
this is simple to compute.

Maximum grey value: Is straightforward to compute.
Minimum grey value: Is straightforward to compute.
Area: Comes directly from the region-growing algorithm.

Perimeter: Several different definitions exist. Probably the simplest
is a count of all pixels in the region that are adjacent to a pixel not
in thg region.
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Diameter: The diameter describes the maximum chord—the distance
between those two points on the boundary of the region whose
mutual distance is maximum (Snyder and Tang, 1980;Shamos, 1975).

Thinness: Two definitions for thinness exist: T4 = P?/A measures the
ratio of the squared perimeter to the area; T = D/A measures the
ratio of the diameter to the area. Figure 13.12 compares these two
measurements on example regions.

Center of gravity: The x and y coordinates of the center of gravity may
be written

1
my =—A72x

1
my =NZJ’

for all points in a region with N points.

X-Y aspect ratio: See Figure 13.13(a). The aspect ratio is the length/
width ratio of the bounding rectangle. This is simple to compute.

Minimum aspect ratio: See Figure 13.13(b). Again, a length/width,
but much more computation is required to find the minimum such
rectangle.

Moments: A moment of order p + g may by defined on a region as
mxy = Z xqu
This definition assumes that the region is uniform in grey value and
that grey value is arbitrarily set to 1. The area is then m, and we

Ta Tg
Small Large
Large Small

Figure 13.12 Results of applying two
different thinness measurements on var-
ious regions.
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Figure 13.13(a) y/x is the aspect ratio -
using one definition, with horizontal and
vertical sides to the bounding rectangle.

This definition is very sensitive to .
. '«-———x —-—-»,
rotations.

Figure 13.13(b) y/x is the minimum
aspect ratio. This definition is invariant
to rotation.

find that the center of gravity is

_ Mo _My
x = my =
Moo Moo

We can now define as many features as we wish by choosing higher
orders of moments or combinations thereof. Of particular interest
are the invariant moments (Gonzalez and Wintz, 1977). Those mo-
ments have the characteristics that they are invariant to translation,
rotation, and scale change, which means that we get the same num-
ber, even though the image may be moved, rotated, or zoomed.

The first invariant moment is

2 2

moomzo - mlo + moomoz - mm
3
Moo

There are six others (Gonzalez and Wintz, 1977).

Convex discrepancy: If one were to stretch a rubber band around a
given region, the region that would result would be the convex hull

Figure 13.14 Convex hull of a region.
The shaded area is the convex discrep-
ancy.
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(Figure 13.14). The difference in area between a region and its con-
vex hull is the convex discrepancy. See Shamos (1975) for fast algo-
rithms for computing the convex hull.

Number of holes: One final feature that is very descriptive and reason-
ably easy to compute is the number of holes in a region.

In this section, several features were defined that could be used to
quantify the shape of a region. Some, like the moments, are easy measure-
ments to make. Others, such as the diameter or the convex discrep-
ancy, require development of fairly sophisticated algorithms to avoid
extremely long computation times. Space does not permit a discussion
of those algorithms here, but the reader may find adequate direction in
the sources cited in the reference list.

13.6 USING SHAPE DESCRIPTORS

The features described in the previous section can be used in many dif-
ferent ways to identify, locate, and orient parts. A thorough discussion
of those techniques is the basis of entire books. In this section we
simply introduce the reader to some of the basic concepts of machine
vision and to whet his or her intellectual appetite for more knowledge
about this potentially very productive field. For that reason, we will
consider only the problem of recognizing parts and leave the issues of
location and orientation for another text. As before, we consider only
parts which can be recognized by their two-dimensional silhouettes.

We define a feature vector x as an ordered d-tuple {x;x, *** xg4)
in which each element is a scalar feature, as discussed in Section 13.5.

The event w; means that the object being viewed by the camera
belongs to class w,(i=1"---¢). Typical classes of objects would be
valves, rods, bolts, covers, and so on.

P(w;) is the probability that the object being viewed belongs to
class i, before any measurements have been made. P(w;) i is the a priori
probability.

Given a measurement x made on the object, we can define the
conditional probability P(w,]x) that the object is in class i, given that
the measurement vector has value x.

Finally, the conditional probability density p(x[w ;) is a function
of the feature that represents the probability that a member of class
w; will have feature value x. Note that a different function p (x|w) exists
for each different w. Figure 13.15 shows the probability density func-
tions for one feature and different classes. Since X is a vector quantity,
p(x|w) is typically a vector function. For simplicity, Figure 13.15 has
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p(l)

Hatchets

1 1 |
1 2 3 4 I = length

Figure13.15 Probability density function for length of hatchets and axes. From
this graph, we see that an object of length 2 is more likely to be an axe than a
hatchet.

treated only one of the components of the feature vector, so that the
corresponding density functions may be shown as graphs of only two
dimensions.

Now, we can state Bayes’ rule, which relates these probabilities.

p(x|w;) P(w;)
3 p(x|wy) P(wy)
7

P(wy|x) = (13.5)

This equation relates the conditional probability of class w; (which
is what we want) to the conditional density of the measurement (which
we know from past experience) and includes the a priori probabilities
of each class (also known from prior experience).

We will assume all the classes are equally likely and, therefore,
simply ignore P(w;). Furthermore, we observe that the denominator
is a normalizing factor and does not help us to distinguish one class
from another. Hence we can define a decision rule:

Decide class w; if, for all j # i
p(x|w;) > p(x|w;) (13.6)

Exactly how to determine and represent p(xlw,) can be a subject
unto itself. In the most straightforward approach, it is determined
experimentally and is stored in a tabular form. While convenient for
scalars, this approach is awkward for x vectors of high dimensionality.
In these cases, we usually approximate the experimental p(xlw) with
a continuous function. A Gaussian function is often chosen because
of its mathematical simplicity and because the Gaussian approximates
naturally occurring densities quite well.

In the Gaussian approximation, we use
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p(x|w;) = exp [— %(x )" Cit(x - l-‘i)]

1
(27T)d/2 ] Ctl 172
(13.7)

where d is the dimension of the vector x. w; is the mean vector of a
training set X; of samples, all known to belong to class i, and NV, is the
number of samples in X;:

"= 3 x (13.8)

M xEX;

The covariance matrix C; is determined, using that Gaussian assump-
tion, by

1
Cr=oy 2 (x-m) (x- )T (13.9)
i XEX;
With this introduction, we can define a strategy developing a statis-
tical pattern recognition system for recognizing parts.

1. Define features and develop algorithms for measuring features.

2. Choose a large set of objects of type A and measure the features,
determine mean and variance for the features for class A. Re-
peat for classes B, C, and so on.

3. Given an unknown x, a part on the conveyor, measure the fea-
ture vector X, and apply Eq. 13.7 once for each class. The
application returning the highest value is the most likely class.

This discussion has, of course, glossed over most of the field of
statistical pattern recognition. Many books are available which go into
more detail, including Duda and Hart (1973), Ballard and Brown (1983).

Example 13.4: Object Recognition Using Shape Descriptors

An unknown object is measured by a vision system to have a length of 2.5 units.

A large number of flanges, all of the same type, have been measured and found
to have an average (mean) length of 2.1 units and a variance in length of 0.8. Simi-
larly, a large number of gaskets have been measured and found to have an average
length of 2.8 units and a variance in length of 1.3.

Is the unknown most likely a flange or a gasket?

Solution: Using the Gaussian assumption described in Eq. 13.7, we find

1 -(2.5 - 2.1)°
p(2.5|flange)= exp ( ) =0.404

Vv2m(0.8) 2:(0.8)
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1 -(2.5-2.8)°

ex
V2m(1.3) P 2-13

Using Eq. 13.6, we make the decision that the unknown is more likely to be a flange,
since that decision has the higher probability of being correct. However, two ob-
servations are in order. First, the two results were very close; therefore, our con-
fidence in the accuracy of our decision is not very high. We need to make another
measurement, perhaps the perimeter of the object image, to improve our decision-
making capabilities. Second, this analysis has assumed that the Gaussian distribution
modeled in Eq. 13.7 accurately reflects the shape of the probability density func-
tion. This assumption may not be correct for the length of flanges and gaskets and
should be tested before being put into operation.

p(2.5|gasket) = =0.338

13.7 STRUCTURED ILLUMINATION

For a number of years, popular fantasy painted the picture of the robot
with human vision or better as being just around the corner. Today,
we know better. Computer vision is a very difficult problem that is not
likely to be solved in general in the foreseeable future. However, in the
industrial environment, general-purpose vision is not required and prob-
ably not even desired. We need only to locate and/or identify a very
restricted set of objects. Furthermore, in the industrial environment,
we have one other tremendous advantage: we can control the lighting.

The strategy that takes advantage of control of lighting to make
the vision problem easier is called structured illumination, and it takes
many forms. In this section, we will provide three examples, each of
which uses controlled lighting to considerable advantage to solve a
different problem. One technique eliminates problems with object
reflectivity, a second finds objects by triangulation, and a third uses
controlled lighting for inspection.

13.7.1 Silhouetting

Many industrial parts have the property that they are uniquely
identifiable by their silhouette. That is, neither three-dimensional nor
grey scale information is required for the part to be uniquely identified
and its orientation determined. In these cases, particularly simple tech-
niques exist for extracting and processing the object’s silhouette.

For example, in General Motors’ CONSIGHT system (Ward et al.,
1979) a linear sensor array is used rather than a two-dimensional camera.
Such arrays typically have more resolution per line than a camera;
2000 pixels on a line is not uncommon. To form a two-dimensional
picture, either the part or the camera may be moved or a mirror may
move the image of the part. In CONSIGHT, the part is moved, a trivial
task since the sensor is focused on a conveyor.
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Light » Linear Array
\gource | Camera
N H

\\ \\ H
\ D |

\
\
a \\ Conveyor
\\ Belt

Figure 13.16 (Ward) The camera is positioned to image a line across the con-
veyor belt. (Robotics Today, used with permission)

The structured illumination concept applies.to CONSIGHT in the
way in which the part is illuminated. A narrow stripe of light is focused
at an angle on the conveyor at exactly the point of focus of the sensor.
With an empty conveyor, the sensor detects a bright bar. When a part
moves into the field of view, however, the stripe of light shines on the
part (Figure 13.16). Since the part has depth and the light is at an angle,
the light stripe is displaced horizontally and the sensor detects darkness.
By taking a series of stripe images as the part moves, the system can
build up a profile of the part.

The system as implemented (Figure 13.17) actually uses two light
projectors. This eliminates the problem of shadows being erroneously
identified as parts.

The. reflectivity of parts, especially metallic ones, is one of the
most difficult problems in image analysis. To see that this is a problem,
we should recognize that a shiny metallic part is really a mirror. Con-
sider the intrinsic difficulty in analyzing the image of a mirror. Since
the CONSIGHT system makes use of only the displacement of the light

Camera
Interface

Solid-State Stanford

PDP 11/34 Line Camera Robot Arm

Computer

Light Light
Source Source

' ( )5 Conveyor ( )
Belt Position/
Speed Measurement

| Robot
Interface

Figure 13.17 (Ward) Schematic diagram of CONSIGHT.
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stripe, it has the additional advantage that it is independent of the sur-
face reflectivity of the part.

13.7.2 Range Triangles

In many systems, the concept of the range triangle has been used
to determine three-dimensional position and orientation of parts. In
Page, Snyder, and Rajala (1983), a system is described which determines
the position and orientation (often these two terms are lumped together
and are referred to as pose) of steam turbine blades.

Such blades have shiny metallic surfaces and, therefore, reflect
most of the light in undesirable ways. However, the surface scatters
enough light back to the camera to detect a horizontal bar, if such a bar
is projected on the blades.

Figure 13.18 shows a light source projecting a narrow (0.2 centi-
meters) stripe of light across a scene containing a blade. The scene
detected by the camera is shown in Figure 13.19. The horizontal light
stripe appears curved to the camera when it is reflected off the blade.
The curved stripe is easy to detect in the image by using some of the
thresholding strategies described earlier in this chapter.

The three-dimensional position of the two corners of the blade are
determined by making use of a range triangle, as shown in Figure 13.20.
The camera position is known, as is the position of the light projectors.
The angle of the projector with respect to the scene is also known by
a calibration procedure. From the camera image, the computer finds
the angle «, which is all that is needed to determine the distance d to the
part.

Projected

light stripe source

Reflected
light

Cart

Turbine
blade Camera

Figure 13.18 System layout (side view).
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Typical
orientation

Figure 13.19(a) Camera’s view of a
single blade.

Top

Background

Figure 13.19(b) Camera’s view of multi-
ple blades in a cart, — o S

Again, the combination of controlled lighting and simple image
processing has provided a reasonable operational industrial vision system.

13.7.3 Range Sensors

One of the most exciting prospects of current research in image
analysis is the development of special sensors which explicitly deter-
mine a range image. By range image we mean a two-dimensional array
of pixels, exactly like a conventional “luminance” image. However, the
number stored in each pixel location represents the Euclidean distance
from the sensor to the surface being viewed, rather than the relative
brightness of the surface at that point. Such sensors may employ vari-
ous structured lighting strategies, such as those described earlier, or

Figure 13.20 Range triangle. The depth of the point was derived from the following trigono-
metic relationships:
y=90° —a sin () _ sin (180° -8 - )

r h
Recall that 4 and g were known and that a was measured by the camera. Then,
[# X sin ()]

r=-—-—.—_
sin (180° - 8 - )

Observed
light

Camera
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Figure 13.21 (Porter & Mundy) Sinusoidally modulated light. (Courtesy 1982 .
IEEE)

even more sophisticated techniques, such as pulsed lasers. Indepen-
dent of the internal strategy of the sensor, the result is a range pic-
ture. Such a picture gives surface pose information immediately and,
thus, can readily provide the three-dimensional information needed by
robots for grasping.

Such sensors are still under development, as are techniques for
making use of such information. Porter and Mundy (1982) describe
one such sensor that uses sinusoidally modulated light patterns (Figure
13.21). The sensor makes use of the difference of two patterns pro-
jected at different wavelengths to reduce the undesirable effects of sur-
face reflectivity. The system reported is used in an inspection applica-
tion to identify small defects on parts.

13.8 CONCLUSION

Vision provides the robot with its most flexible and powerful capability.
In this chapter we have presented a few of the currently relevant re-
search and development topics in the area of industrial machine vision.
With the introduction and terminology provided here, the reader can
more easily follow the developments in this exciting and growing field.
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13.9 SYNOPSIS
Vocabulary

You should know the definition and application of the following
terms:

aliasing

aspect ratio
blanking

block thresholding
blur

composite video
contouring

convex discrepancy
convex hull
decision rule
dynamic range
enhancement
feature

feature vector
frame buffer

frame grabber
frame time
Gaussian density
geometric distortion
histogram
industrial machine vision
invariant moment
lag

moment

motion blur
parabolic distortion
pel

pixel

quantization

range sensor

raster scan

region growing
region labeling
resolution
restoration
sampling

sampling theorem
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segmentation
shape descriptor
silhouetting
structured illumination
thinness
thresholding
undersampled
videcon
vignetting
warping
Notation
Symbols Meanings
i Incident light intensity
ty Frame time
q Charge
fx,») The true image
g(x,y) The image perceived by the sensor system
D Distortion operator
My A moment
T4 One definition of thinness
Ty Another definition of thinness
X A feature vector
Pw;) Probability of event w;
p(x]w B Probability density of making measurement x, given
that event w; has occurred
J7e Mean of a Gaussian (normal) distribution
C; Covariance of a Gaussian distribution
X; Training set
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13.11 PROBLEMS

1. One type of slow scan television produces.one frame of 525 lines every second.
Determine the sampling rate necessary to produce an image with 525 lines and
256 pixels of video on each line. Assume that blanking occupies 18 percent of
of the line time.

2. Assume that you are given a memory which can acquire data at the rate of 1
pixel every 200 ns. Discuss the options you have in trading off dynamic range
and resolution, given that you must acquire data at video rates.
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3. For the system described in problem 2, design a circuit that will acquire 2-bit
pixels and pack them into 8-bit memory words to be read into the memory.
Assume that the memory will accept data when it is given a MSTROBE signal,
which you must provide.

4. A pattern consisting of 500 vertical black bars on a white background is scanned
by a conventional, black and white, NTSC TV camera. The width of the white
and black areas is equal, and the array of bars encompasses the entire frame.
The TV signal is sampled by a clock scanning at 103 ns per sample. This results
in an undersampled signal, resulting in an aliased signal at a lower frequency.
What will be this frequency (or the dominant frequency component of the
aliased signal). Note: The solution of this problem may require research into,
or knowledge of, signal processing literature not included in this text.

5. The equation for contrast stretching (Section 13.2) could be written Ipey =
(Ioid ~ Imin) @ A picture is determined to have a maximum brigh*ness of 200
and a minimum brightness of 60. Determine @. Show that this equation will

stretch the contrast to between 0 and 255.

6. Determine the memory capacity required to store a 512 X 512 array of 6-bit
pixels. Discuss alternative memory organizations.

7. The figure below shows a 7 X 4 array of pixels. Determine a “good” threshold
to separate black from white pixels. Justify your decision based on a histogram.

161]55]60]61
6263|5758
56| 5813832
55(35(36(37
37|134(39(35
40|39 (3839
35134139140

8. A bimodal histogram (that is, a histogram with two peaks) can be modeled as
the sum of two Gaussian density functions.

(a) Simplify Eq. 13.7 for the case where d =1. In this case, the vectors become
scalars and multiplication by the inverse of a matrix becomes division by a
constant. (You may wish to look up the form of the normal density
function.)

(b) Represent a bimodal histogram as the sum of two such functions.

(c) Suppose that we have an experimental histogram such as that illustrated
in Figure 13.11, which we wish to model analytically by the equation
derived in part 2. What are the unknowns? Discuss how one might go about
solving for these unknowns.

9. Algorithm grow (Section 13.4.1) gives one approach to labeling of connected
components. This approach requires two frame buffer memories: one to hold
the image and one to hold the labels. In addition, use of the stack is rather
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10.

11.

slow. An alternative algorithm would be to label pixels as they come from-the
camera, in raster scan order. That is, a black pixel at {x, y) would be assigned
‘the same label as the pixel at {x - 1, ) if that pixel were black, or assigned the
same label as the pixel at (x,y - 1) if that pixel were black.

(a) Develop a flow chart for assigning labels in this way

(b) Discuss any problems which arise. For example, consider U-shaped regions.

The following figure shows a 4 X 7 region of an image, containing a black figute
on a white background.
%%
* %
ok | kK
* %k

(a) What is the area of this region?

(b) What is the diameter of the region. Discuss any ambiguities in the definition.

(c) What is the perimeter? Propose at least two definitions.

(d) Determine and compare the two definitions of thinness when applied to
this region.

(e) Determine the center of gravity.

(f) Find the smallest rectangle that encloses the region.

(g) Determine the convex hull and convex discrepancy.

Example 13.4 presents a technique for distinguishing between flanges and

gaskets using only length. In this problem, we again distinguish flanges from

gaskets, but using both length and weight. We define

length
x =
weight
Training sets have been used, and statistics developed as follows:
2. 2.
Measket = | ) | #fange = 15
001 O 0.02 0.03
C = C =
gasket = | o o001] ™" 003 006

Apply Eq. 13.7 and distinguish whether the measurement

= [2a

is most likely a flange or a gasket.



