CHAPTER

Sl BINARY MACHINE VISION

Region Analysis

Introduction

The analysis phase of binary machine vision consists of computing global properties
for each region produced by the connected components labeling algorithm or each
segment produced by the signature segmentation. The properties of each region or
segment are stored as a measurement vector that is the input to a classifier. This
chapter describes the computation of properties from regions and segments. The next
chapter provides an introduction to the classification of these property vectors by
statistical pattern recognition. Structural matching, another classification technique,
is described in Chapter 17.

Region Properties

The connected components labeling operator produces regions. A variety of property
measurements can be made on each region on the basis of the region’s shape and the
gray level values for those pixels that participate in the region. The gray level values
for all pixels in a region give rise to a histogram of the gray level values of the region,
just as all the pixels in an image give rise to the histogram of the image. Mean gray
level value is only one summary statistic of the histogram. Variance, skewness, and
kurtosis are other statistics of the region’s gray levels. Co-occurrence measures of
the region’s spatial distribution of gray levels constitute summary statistics about a
region’s microtexture.

Other properties include its gray level spatial second moments, its area, its
bounding rectangle, its extremal points, its second central moments, and its orien-
tation. The gray level spatial second moments can measure the degree to which a
region is shaded, with one side slightly brighter than the other. It can also measure
the orientation of the shading. The bounding rectangle of a region is the smallest
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60  Binary Machine Vision

rectangle—with sides oriented parallel to the row and column axes of the image—
that contains or circumscribes the region. The region has eight extremal points:
leftmost bottom, leftmost top, rightmost bottom, rightmost top, topmost left, top-
most right, bottommost left, and bottommost right. A region has shape properties,
such as area, number of holes, length of perimeter, length of major and minor axes
of best fitting ellipse, and orientation of major axis.

In the discussion that follows, we denote the set of pixels in a region by R.
Simple global properties include the region’s area A and centroid (7,€). Assuming
square pixels, we define these properties by

Area:
A=>" 1
(r,c)€R

Centroid: )

F = Z Z r

(r,c)eER
_ 1
c=—

.«
(r,c)ER

Note that even though each (r,c) € R is a pair of integers, (7,C) is generally not a
pair of integers.

The length of the perimeter P of a region is another global property. A simple
definition of the perimeter of a region without holes is the sequence of its interior
border pixels. A pixel of a region is a border pixel if it has some neighboring pixel
that is outside the region. When 8-connectivity is used to determine whether a pixel
inside the region is connected to a pixel outside the region, the resulting set of
perimeter pixels is 4-connected. When 4-connectivity is used to determine whether
a pixel inside the region is connected to a pixel outside the region, the resulting set
of perimeter pixels is 8-connected. This motivates the following definition for the
4-connected perimeter P, and the 8-connected perimeter P of a region R.

Py = {(r,c) € R|Ny(r,c) =R # 0}
Py = {(r,c) € R|N,(r,c) — R # 0}

To compute length |P| of perimeter P, the pixels in P must be ordered in a
sequence P =< (r,,C,),...,(rg_1,Cx—-1) >, each pair of successive pixels in the
sequence being neighbors, including the first and last pixels. Then

|P| = #{k|(res1€ks1) € Na(re,co)}
+ V2#{k|(Fes1,Cis1) € Ng(riycx) — No(re, i)}

where k£ + 1 is computed modulo X.

The length of the perimeter ||P| squared divided by the area (A) is sometimes
used as a measure of a shape’s compactness or circularity. However, Rosenfeld
(1974) shows that for digital shapes, ||P||*/A assumes its smallest value not for
digital circles, as it would for continuous planar shapes, but for digital octagons or
diamonds, depending on whether the perimeter is computed as the number of its
4-neighboring border pixels or as the length of its border, counting 1 for vertical or
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horizontal moves and /2 for diagonal moves. Other common properties computed
for a shape include the radius of its circumscribing circle, the radius of its maximal
inscribed circle, the mean distance ux from the centroid to the shape boundary, and
the standard deviation o of the distances from the centroid to the shape boundary.
The properties uz and oz can be defined in terms of the pixels (ry,ci), kK =
0,...,K —1 in the perimeter P.

K-1

1
kR =F Z |(re,ce) — (F,0)|
k=0

K—1

1
=% ; e co) = 7,00 — el

Haralick (1974) shows that ug /o has the following properties:

1. As the digital shape becomes more circular, the measure p /0 increases mono-
tonically.

2. The values of pug/ox for similar digital and continuous shapes are similar.
3. It is orientation and area independent.

Furthermore, the number N of sides to a regular digital polygon can be esti-
mated from the circularity measure uz/or by the relation

4724
N = 14111 (’“‘—R>
OR

We can determine for each region R its gray level mean u and its gray level
variance o2. The gray level mean is a first-order property. The gray level variance
is a second-order property. Average gray level:

1
n = Z Z I(r’ C)
Gray level variance:
c=g Y UCo-w=[3 Y I160]-w
(r,c)€R (r,c)€ER

We can determine for each region R some microtexture properties that are a
function of the region’s co-occurrence matrix. Let S be a set of all pairs of pixels
in the region R that are in a designated spatial relationship. For example, S could
be the set of all pairs of pixels in R that are 4-neighbors. Define the region’s
co-occurrence matrix P by

#{[(ri,c1),(ry el €8 | I(ry,¢)) = giand I(ra,¢;) = g2}
#S

Common texture features include the texture second moment M, the entropy E, the

P(glng) =
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correlation p, the contrast C, and the homogeneity A (Haralick, Shanmugam, and
Dinstein, 1973). They can all be dgﬁned in terms of the co-occurrence P:

M= Pg,8)
£1,82
— ) P(g1,82)log P(g1,22)
£1,82
p=> (& —mg: —WPE,E)/0*
£1,82

where

b= % [Z > ePene) +) Y &:PE1ey)]

&1 &2 g1 82

[Z Z(gl - uw)’P(g1,82) + Z Z(gz )2P(g1,g2)]
81 81
C= ZZ g\ — 8:1P(g1,82)

g1 82
H= ; g T i(éll’gZ) where k is some small constant

Other features can be found in Gleason and Agin (1979) and Pavlidis (1977).

For each region, we can determine properties that relate to its shape and ori-
entation. The first-order measurements that relate to shape and orientation can be
derived from the region’s extremal pixels. Second-order measurements that relate
to shape and orientation can be obtained from the second order spatial moments.
First we will discuss a region’s extremal pixels and some shape properties com-
putable from them. Then we will discuss a region’s second order spatial moments
and the properties computable from them.

3.2.1 Extremal Points

As shown in Fig. 3.1, there can be as many as eight distinct extremal pixels to a
region: topmost right, rightmost top, rightmost bottom, bottommost right, bottom-
most left, leftmost bottom, leftmost top, and topmost left. Each extremal point has
an extremal coordinate value in either its row or column coordinate position. Each
extremal point lies on the normally oriented bounding rectangle of the region. This
too is shown in Fig. 3.1. Figure 3.2 shows two simple regions in which different
extremal points may be coincident. For example, in the rectangle the topmost right
extremal point and the rightmost top extremal point are coincident. In the elongated
diamond the topmost right and the topmost left extremal points are coincident.

To help discuss and mathematically define the extremal points of a region, we
use the associations given in Table 3.1.
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Topmost left Topmost right
(rl' C|) Ll (rz' Cz)

Leftmost top
(rg, cg)

Leftmost bottom
(ry ¢

Rightmost bottom
'(r 5 Cy)

Bottommost left L5 Bottommost right

Figure 3.1 The eight extremal points a region can have and the normally oriented
bounding rectangle that encloses the region. The interior dotted lines pair together
opposite sides.

Topmost left

Topmost left Topmost right .
. T t right
Leftmost top L, Rightmost top opmost ng
) \ : ’ ! Rightmost top
N N Rightmost bottom
/
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2 . EE
,o \\ Leftmost top
/2 Leftmost bottom
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Leftmost bottom Ly Rightmost bottom
Bottommost left Bottommost right

Bottommost left
Bottommost right

Figure 3.2 Two regions in which the extremal points are not unique and in
which they pair differently. The interior dotted lines pair together opposite sides.
Because some extremal points are coincident, some opposite sides have zero
length.
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I
Table 3.1 Association of the name of the eight extremal points with their coordinate
' representation. ‘

Name of Ext;emal Point

Coordinate Representation

Topmost left
Topmost right
Rightmost top
Rightmost bottom
Bottommost right
Bottommost left
Leftmost bottom

Leftmost top

(r, ¢1)
(r2, €3)
(rs, ¢3)
(ra, C4)
(rs, ¢s)
(rs5 Cs)
(rs, ¢7)

(rs, cs)

Let R be the given region. The extremal points of R can be defined in terms
of the topmost row, rmin, of R; the bottommost row, rmax, of R; the leftmost
column, cmin, of R; and the rightmost column, cmax, of R. The definitions for
these extremal coordinates are given in Table 3.2. -

Now we can directly define the coordinates of the extremal points:

r,=r, =rmin
¢; = min{c|(rmin, c) € R}
¢, = max{c|(rmin, c) € R}
ry = min{r|(r, cmax) € R}
ry = max{r|(r, cmax) € R}
C3 = ¢4 = cmax

rs =re =rmax
¢s = max{c|(rmax, c) € R}
¢s = min{c|(rmax, c) € R}
r; = max{r|(r, cmin) € R}
ry = min{r|(r, cmin) € R}
c; = Cg = cmin

Table 3.2 Association of the name of an extremal coordinate with its definition.

Name of Extremal Coordinate

Coordinate Representation
and Definition

Topmost row
Bottommost row
Leftmost column

Rightmost column

rmin = min{r|(r, c¢) € R}
rmax = max{r|(r, ¢) € R}
cmin = min{c|(r, ¢) € R}

cmax = max{c|(r, ¢) € R}
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—> Column

Row

Figure 3.3 The eight extremal points a region can have and the normally oriented
bounding rectangle that encloses the region. The interior dotted lines pair together
opposite extremal points. They constitute the axes M, M;, M3, and My.

Extremal points occur in opposite pairs: topmost left with bottommost right;
topmost right with bottommost left; rightmost top with leftmost bottom; and right-
most bottom with leftmost top. Each pair of opposite extremal points defines an
axis. Useful properties of the axis include its axis length and orientation. Because
the extremal points come from a spatial digitization or quantization, the standard
Euclidean distance formula will provide distances that are biased slightly low. (Con-
sider, for example, the length covered by two pixels horizontally adjacent. From the
left edge of the left pixel to the right edge of the right pixel is a length of 2, but
the distance between the pixel centers is only 1.) The appropriate calculation for
distance adds a small increment to the Euclidean distance to account for this. The
increment depends on the orientation angle of the axis. Letting these respective axes
be M, M,, M, and M,, where M is the axis between extremal points (r;,c,) and
(rs,cs), M, is the axis between extremal points (r,,c,) and (rg,cs), M; is the axis
between extremal points (r3,c;3) and (r7,¢;), and Mj is the axis between extremal
points (r4,c4) and (rs,cs) (Fig. 3.3), we have

M, = \/("1 —rs)2+(c; —¢s)? +Q(dy)

M, = \/(r, —re} +(c2 — cs)* + Q(¢2)
M; = /(ry — 1 + (c5 — ¢7)* + Q(e3) (3.1)
M, = /(rs = 1o + (¢4 — o) + Q(04)

The axes M,, M,, M,, and M, have orientations ¢, ¢,, ¢3, and ¢,, where the

orientation of a line segment taken counterclockwise with respect to the column
(horizontal) axis as shown in Fig. 3.4 is defined by

_ ry—rs
¢, =tan” ———
~(¢y —¢s)

¢, =tan™' 2”76

—(€2 — Cé)
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Topmost left Topmost right
(ry-¢)) L, (ry €))

Ly |

Leftmost top

(rg, Cg)
Rightmost top

(r3 ¢3)
Ly
(rgs ¢y

Leftmost bottom
(rq, ¢9)

Rightmost bottom

(recgd  Ls  (rsco)
Bottommost left Bottommost right

Figure 3.4 Orientation convention for the axes. The orientation angle of an axis
is measured counterclockwise from the column axis.

1 v —n
=tan™' —————— 32
i ~(cs —¢7) G2
1 Ta—1g
=tan' ————
b —(Cs —Cy)
The exact value for Q(6) as shown in Fig. 3.5 is given by
o) = = if l6] <45° .
s if10]>45° ’

If a quick calculation for distance needs to be done, the average value 1.12 can be
used for Q(). The largest error incurred for this approximation is .294.

The axes are also paired: M, with its mate M,, and M, with its mate M,.
Major and minor axes of thin elongated or linelike regions can be determined
from M, M,, M;, and M,. The major axis will be the one having length
max{M,, M,, M;, M,}. The minor axis will be its mate. When the major axis
is not unique, the minor axis will be the shortest among the axes mating to the
longest-length axis. An example is shown in Fig. 3.6. There the major axis is
M, = M, = M;. The minor axis is M,, and it will, in general, be longer than
the width of the region since it is not necessarily orthogonal to the major axis. The
width of the region can, however, be estimated by multiplying the minor axis by
the absolute value of the size of the difference in the orientation of the major and
minor axes. '
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(a)

——T1 )’

(b)

Figure 3.5 Diagram showing why the distance between two pixels must be in-
creased if it is to count length going from the left edge of the left pixel to the
right edge of the right pixel. Part (a) shows the distance between pixel centers;
(b) shows the left edge to right edge distance. Each pixel must add a length that
is the length of the hypotenuse of a right triangle having base 1/2. For |f| < 45°,
this length is 1/2cos for each pixel.

To characterize elongated triangular shapes, the distances between all pairs of
extremal points must be computed. The extremal point having the greatest sum of
its two largest distances to other extremal points can be selected as the apex of the
triangle. The two other extremal points then constitute the vertices at the base of the
triangle. To be more precise, define the distance between the ith and jth extremal
point by

M, = \/(r,- — I+ (c =P + 112

Let ky, k,, and k5 be any indices maximizing M, x, + My «,. Then the vertices of
the triangle are (7, Ci,), (Feys Cky), and (Feg, Ciy).

For a triangle known to be an isosceles triangle, the length L of the long sides
can be estimated by L = (M, «, + My,«,)/2, and the length B of the base can be
estimated by B = M,,.,. From the geometry of the isosceles triangle, the height of

altitude A is given by
B 2
= LR
h=L (2)

The orientation of the isosceles triangle can be estimated as the orientation ¢, of its
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()= (re) = (ry )= (2,7)

[+

+

(rgnc)=(18,7)

+

(g ¢ = 21,5)

L+

(rsrcs) = (rg, cg) = (ry, c1) = (36, 5)

M, =M, =M; = /(2 —-36)* +(7 —5)*) + 1.12 = 35.18
M, =/(18 =212+ (7 -5 +1.12 =473
-34
— _ — -1 — o
’ 61 = ¢y = ¢3 =tan —_(2) 93.37

Figure 3.6 Calculation of the axis length and orientation of a linelike shape.

altitude, which is given by

%("l@ +rey) — i,

¢, = tan™!
g _[%(Ckz +ck3) - ckl]

Figure 3.7 illustrates these calculations for an example isosceles triangle.

The orientation for square and rectangular shapes can also be determined from
M, M,, My, M, and ¢,, ¢,, ¢3, ¢.. From the geometry of Fig. 3.8 it is apparent
that the two longest axes of M, M,, M;, and M, are the diagonals of the square
or rectangle and that these two longest axes are mates. Denote the length of the
longest axis by M(;,. Let the length of its mate be M,,;,. Denote the orientation of
the longest axis by ¢;). Let the orientation of its mate be ¢,,,. From Fig. 3.8,

¢1=180+0R+C¥ ¢2=180+0R+C{
¢3 = 180+0R —a ¢4 = 180+0R - (3.4)
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l—' (rpe) =0y, ) =(6,7)

+1

(rgr ¢g) = 21, 6)

+ (13, ¢3)=(26,9)

o () =(35,9)

(rg: c5) = (rg, cg) = (ry, ¢;) = (36, 6)

ki =1, k=4, k3 =5
Mz =My =1/(6-26)2 +(7-9)2+1.12=2122 L =30.67
My =My = /(6 —35)2 + (7 —9)2 +1.12 = 30.19 B =428

Ms =Mjys = Mg = My =My =My =

\/(6—36) +(7—6)2 +1.12=31.14 h =30.60
_ _ — 2 — 2 _ _ —1 3(35+36)-6
Mg =My = /(6 —21)2 +(7 —6)? +1.12 = 16.15 ¢ = tan “ I

M3y = /(26 =352 + (9 —9)% + 1.12 = 10.12 = tan—1 23
Mss = M3s = M37 = /(26 —36)2 + (9 — 6)2 + 1.12 = 11.56 =90.97°
Mg = /(26 =212 + (9 — 6) + 1.12 = 6.95

Mas = Mas = My = /(35 — 362 + (9 — 6 + 1.12 = 4.28

Mg = /(35— 212 + (9 — 62 + 1.12 = 15.44

Msg = Meg = Mg = /(36 —21)? + (6 — 6)2 + 1.12 = 1642

Figure 3.7 Calculations for length of sides, base, and altitude for an example
isosceles triangle.

Hence, regardless who the mates are, the orientation 6 of the rectangle is given by

St Om g0 (3.5)

)

Or = -
where 63 is the counterclockwise angle to the first side encountered from the hori-
zontal axis and 0° < 6z < 90°.

Care must be used in the computation of ¢; and ¢;, which are defined by
Eq. (3.4). The topmost, bottommost, leftmost, and rightmost vertices must be as-
sociated with coordinates exactly as shown in Fig. 3.8 and used in Eq. (3.1). The
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(ry,¢9)
(rg cg)

¢|‘9R’°‘:’ 180°
¢,~ 00 180°
05— Ot 0= 180°
¢4—0R+az=180°

Figure 3.8 Geometry of the tilted rectangle. The diagram shows the relationship
between the angular orientation 6z and the angles of the axes joining opposite
pairs of extremal points. Here (r1,¢1) is the topmost vertex; (r3,¢3) the rightmost
vertex; (rs,cs) the bottommost vertex; and (r7,c7) the leftmost vertex.

relationship given in Eq. (3.5) is the relation when ¢; > 0 and ¢; > 0. Should ¢,
or ¢; be computed as a negative value from the arctangent function, 360° must be
added to it to make it positive before it can be used in Eq. (3.5). Shown in Fig. 3.9
is an example calculation.

Also from Eq. (3.4), the included angle o between the rectangle side and the
diagonal is given by

R |¢‘(1) - q5m(1)| ]¢'1 - ¢m1|
a = mln{ > ,180 3

The length L and width W of the rectangle are functions of « :

M, +M,
L= —("———+ D cosa
2
M
W = __(‘_)_izm sin o

We can define the line segment lengths L,,...,Ls between successive pairs
of extremal points as shown in Fig. 3.10. These lengths can form the basis of
the description of octagonal shapes in terms of their axes. There are four possible
axes for octagonal-shaped regions. Each axis has a length and an orientation. The
dominant axis will be taken to be the major axis of the region, and its orientation
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~

rpe)=9,9) (ryc) =9, 16)

(ry ¢ = (13,41)

(ryc) = (20, 41)

(rqs c9) = (rg, cg) = (33, 6)

(re» cg) =(37,31) (rs, c5) = (37, 36)

M, = JO-37)2+(9-38)+1.12=41.43
My =/O-372+(16-31)2 + 1.12=32.88
My = (13-33)2+ (41-6)? + 1.12= 4143
M, = \/20-33)7+ (41 - 6)* + 1.12 = 38.46

My =M,
Yy =5 )37 8
a_h=rs o 2- ran-! 228 = _43.990
¢((|) t s tan 938 an 9 3.99
_ 13 - _
91y = tan” (r; ’Z) =tan™! (43;1 32) tan"! % = -150.26°
3T oy - - -
+
6, = UMD 2¢”’“)+ 90° = -7.13°

Figure 3.9 Calculation for the orientation of an example rectangle.
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A, (45,0)  A,(-4.5,9.56)

L3
(0,0 A, (0,5.295)

A, (45,1.94)
Side length Extremal point Axis length Axis orientation
L =3 (rc) = (2,13) A,:5.295 0°
L, =551 (ryc,) = (2,15) A,:4.935 -66.9°
Ly=3 (ryc) = (6,17) A;:45 90°
Ly = 1055  (r,c)=(8,17) 4,:10.575 25.2°
Ly=5 (rcg) = (13.9)
Ly=428  (rc = (13.5)
L,=6 (r;c;) = (10, 4)
Ly = 10.6 (rgicg) = (5,4)

Figure 3.10 Axes and their mates that arise from octagonal-shaped regions and
their extremal points.

will be the orientation of thé region. The line segment lengths are defined by:
Li=|c,~c|+1
Ly = \/(r: = 1) + (¢ — €30 + Q(6)
Ly=|r;—ry+1
Ly =\/(rs —rs) + (cs — c5)? + Q(6s)
Ls =|cs —c|+ 1
Lg = \/(rs — r7)* + (cs — c1)* + Q(65)
Ly=1r;—rg|+1
Ly = \/(rs — 1) + (cs — ¢, + Q(6,)

The lengths of the four axes are denoted by 4,, 4,, A;, and A,. They are
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determined by

(Ly +Ls)

A =—
' 2

Ly + L)
A=

_(Ls+Ly)
A = >

A, = (L4 ‘Zf-Ls)

Axes for each region occur in mating pairs: A, with A;, and 4, with 4,. The
major axis is the one having the largest length. The minor axis is its axis mate.
These axes are different from M,, M,, M, and M,.

The orientation angle for A, is always 0°, since the line segments that define
it are horizontal, and the orientation angle for A; is always 90°, since the line
segments that define it are always vertical. The counterclockwise orientation angle
for A, is given by

1 r,—r r,—r
0, = — |L,t -1_f2773 Lt -1_"17776
? 2A2[ 21an —(Cz—cs)+ stan —(c7 —¢e)

The orientation angle for A, is given by

—(c4 —C5) —(cy —c¢y)

1
0, = — -1
i =3 : [L4tan

ry —7Ts .y =7
+Lgtan™' ———

3.2.2 Spatial Moments

There are three second-order spatial moments of a region. They are denoted by .,
tre, and p.. and are defined as follows:

1 _
Second-order row moment: W = i (rék(, — P

. 1 _ _
Second-order mixed momént. Upe = 1 (,;GRU - r)(g —0)

1 =\2
Second-order colum‘n moment: ;fcc = Z(,éR(C — 0)

The second spatial moments have value and meaning for a region of any
shape, the same way that the covariance matrix has value and meaning for any
two-dimensional probability distribution. If the region is an ellipse, an algebraic
meaning can be given to the second spatial moments.
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If a region R is an ellipse whose center is the origin, then R can be expressed

as
R ={(r, ¢) | dr* +2erc + fc* <1}

A relationship exists between the coefficients d, e, and f of the equation of the
ellipse and the second moments g,,, ft,c, and .., as shown in Appendix A. It is

given by
(d e > _ 1 ( fee —Hhre )
e f Aprrpoce — pk) \ —Hre Krr

Since the coefficients d, e, and f determine the lengths of the major and minor axes
and the orientation of the ellipse, this relationship means that the second moments
Rrrs tre, and p.. also determine the lengths of the major and minor axes and the
orientation of the ellipse.

To determine the lengths of the major and minor axes and their orientations
from the second-order moments, we must consider four cases. These are discussed
in Appendix A and are summarized here:

1. pre =0and p, > p

The major axis is oriented at an angle of —90° counterclockwise from the col-
umn axis and has a length of 4u!/2. The minor axis is oriented at an angle of 0°
counterclockwise from the column axis and has a length of 4u!22.

2. Kre = 0and g, < prec

The major axis is oriented at an angle of 0° counterclockwise from the column
axis and has a length of 4u!/2. The minor axis is oriented at an angle of —90°
counterclockwise from the column axis and has a length of 4u}/>.

3. B ?é 0 and p, < pree
The major axis is oriented at an angle of

—1 _zﬂ'rr:
tan 2 N 1z
Mrr — Mec + [(/"rr - P‘cc) +4I"rc]

counterclockwise with reépect to the column axis and has a length of

1/2
[8 {p'rr + pec + [(/"'" - /"'CC)2 +4“3"]1/2}]

The minor axis is oriented at an angle 90° counterclockwise from the major axis
and has a length of

[8 {un +hee = [(er = o)’ +4ufc]l/2}] *

4. Krc 7é 0 and Krr > Kee
The major axis is oriented at an angle of

-1

[{#cc + prr + I:(/“‘cé — ) +4""Ec]l/2}] 1/2

tan
_2# re
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counterclockwise with respect to the column axis and has a length of

[3 {P'rr F pee + [(Brr = ree)’ +4p] 1/2}] v

The minor axis is oriented at an angle of 90° counterclockwise from the major axis
and has a length of

[3 {un +btee = [(Brr = peo)” + 40l ”2}] v

3.2.3 Mixed Spatial Gray Level Moments

Region properties include properties about the region’s position, extent, and shape
as well as properties about the gray levels of pixels that participate in the region.
Simple gray level properties include gray level mean and variance. Other gray level
properties include the mixed spatial gray level moments we discuss here.

There are two second-order mixed gray level spatial moments. They are defined
by

be=g 3 =P, O -l

(r,c)ERs

1 .
pes == D (¢ —OUr, ) = p]

(r,c)ER

The mixed gray level spatial moments can be used to determine the least-
squares, best-fit gray level intensity planes to the observed gray level spatial pattern
of the region R. The least-squares fit to the observed I(r, c) is the gray level intensity
plane a(r — F) + B(c — ) + v determined from the «,3, and + that minimizes

& — Z [a(r —F)+B(c—-0)+y —I(r,C)]2

(r,c)€R

Taking partial derivatives of € with respect to o, 3, and v and setting these partial
derivatives to zero leads to the normal regression equation that in this instance is

S (r—ry N (r—=Fc-¢) > (r-p
(r,©)ER (r,c)ER (r,c)€R o
> (r=nP(c -0 > (c—¢y > (c-0) (3)=
(r,c)ER (r,c)€ER (r,c)ER

> - Y (-0 T 1 v
(r,c)ER (r,c)ER (r,c)€R
S (r=nI(r,c)
(r,c)ER
Y (e =0d(r,c)
(r,c)ER
Y I(r,c)

(r,0)ER



76  Binary Machine Vision

Since ) (r—F)=0and ) (c—7C) =0, this system of three equations
(r, )R (r,c)ER
simplifies to

> (r—r) > (r=F)c—=7) 0

(r,c)ER (ry C)GR‘ o
Y (r=r)(c-20) Y (c—¢y 0 g | =
(r,c)ER (r,c)ER
0 0 S o1 \7
(r,c)ER
Y. (r=nd(r,e) - v)
(r,c)ER
Y. (c=o)I(r,c) =)
(r,c)ER
> I(r,0)
(r,c)ER

Hence
1 «—
y=5 > 1o =4
(r,c)ER
Recalling that

1 «— 2
Prr = Z Ed (r - r)
» (r,0)ER

b= 30 ¢ =Pe -2

(r,c)ER
1 =

=32

l‘-cczz E_J (C—C)
(r,c)€R

we know that the unknown parameters « and 8 must satisfy

(o) (5) =)
HBre  Pee ﬁ Peg

Now by Kramer’s rule we can solve for « and 3, obtaining

Hrg  Hre
o = Meg  Hecc
Krr Hrc
Ure  Mecc
and
Krr Hrg
8= Prc  Hcg
Krr Pre
MHre  Hce

Therefore the equation of the fitted plane is given by

I(r, ¢) =a(r —F) +B(c =) + 1, (r, ¢)eR
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. EXAMPLE 3.1

To illustrate what connected components analysis does, consider the gray scale
image shown in Fig. 2.1. It contains a background of 0. There are two line
objects and three blob objects. The purpose of the image processing task is to
determine the position, size, and orientation of each

e bright line,
e dark line,
e bright blob,
o dark blob.

We use the convention that dark means a low-valued gray level (less than 6 in
our example) and bright means a high-valued gray level (6 or greater in our
example). Notice that the processing must analyze units that are not pixels. The
units of analysis are lines and blobs. The properties of these units are location,
shape, and gray level. The properties of these higher level units are not the
corresponding properties of pixels. However, the gray level properties of an
object’s pixels will determine the gray level properties of the objects to which
they belong. The spatial arrangement of an object’s pixels will determine the
shape of the higher level unit to which they belong. The positions of the pixels
will determine the positions of the higher-level unit to which they belong.

The connected components grouping operation on a binary image is a unit
transformation operation. It changes the unit of analysis. The binary image for
our example is shown in Fig. 2.2. All pixels greater than O on the original
gray scale image are marked binary-1 on the thresholded image. The unit on
the thresholded image is the pixel. The unit on the labeled image is the region.
The regions are the maximal-sized connected groups of pixels all having the
value binary 1 on the thresholded image. The connected components labeling
operation assigns to each binary-1 pixel the unique label of the connected com-
ponent to which it belongs. Operations that follow the connected components
labeling treat the region as a unit, measuring a variety of gray level and shape
properties for each region.

The connected components labeled image in Fig. 3.11 has five regions,
whose names or labels are 1 through 5. Each of the five regions can be measured
on the basis of several properties. Most of the properties discussed in Section
3.3 for the example are tabulated in Table 3.3. For the example problem, we
use the criterion that a mean gray level less than 6 signifies a dark region and
a mean gray level greater than or equal to 6 signifies a bright region. Also,
we use the criterion that a major-to-minor axis ratio greater than 3 signifies a
line object and a ratio less than or equal to 3 signifies a blob object. By these
analysis criteria, we find that region 1 is a bright blob, region 2 is a dark line,
region 3 is a bright line, region 4 is a dark blob, and region 5 is also a dark

blob.
u
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I 111
111
2 1{1]1
2 111
2 3
2 3
2 3
2 3
3
44 50515/|s
44 505|155
4|4 505|515

Figure 3.11 Connected components labeling of the image in Fig. 2.2.

—
Table 3.3 All the properties measured from each of the regions determined by the con-
nected components labeling.

Property 1 2 3 4 5

Topmost left (r,,c,) (1,9) 3,3 (5,7 (11,2) (11,10
Topmost right (r,,c,) (1,11) (@3,3) (5,7 (11,3) (11,13)
Rightmost top (r3,c3) 4,14) (3,3 9,9 (11,3) (11,13)

Rightmost bottom (r4,cq)  (4,14) (5,3) (9,9 (13,3) (13,13)
Bottommost right (rs,cs) 4,14) (8,1) (9,9 (13,3) (13,13)
Bottommost left (rg,Cs) 4,12) (8,1) (9,9 (13,2) (13,10)
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N
Table 3.3 Continued.

Property 1 2 3 4 5
Leftmost bottom (r,,¢7)  (1,9) (8,1) 6,7) (13,2) (13,10)
Leftmost top (rs,cs) 1,9 @& 5,7 (11,2) (11,10)
L, 2 0 0 1 3

L, 424 0 4.47 0 0
L, 0 2 1 2 2

L, 0 3.61 0 0 0
L 2 0 0 1 3
L 424 0 4.47 0 0
L, 0 0 1 2 2

Lg 0 5.39 0 0 0
A, 2 0 0 1 3
A, 424 0 4.47 0 0
As 0 1 1 2 2
Ay 0 4.50 0 0 0
Major axis orientation —45°  61.43> —6343° 90° 0°
Major axis length 424 450 4.47 2 3
Area a 12 6 6 6 12
Row centroid 7 2.5 5.5 7.5 1.83 12
Column centroid © 11.5 2.33 8.0 2.5 12.5
Gray level mean u 8.0 4.0 6.33 3.83 3.42
Gray level variance o2 1.82 64 .82 777  6.45
Minor axis orientation 0° 90° 90° 0° 90°
Minor axis length 2 1 1 1 2
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Signature Properties

We assume here that we are able to obtain, as discussed in Chapter 2, the re-
quired projections for any designated region R of an image. The projections are
easily obtainable in pipeline hardware (Sanz, 1985; Sanz and Dinstein, 1987). The
projections have been used in diverse applications, including character recognition
(Breuer and Vajta, 1975; Spinrad, 1965; Pavlidis, 1968; Nakimoto et al., 1973;
Yamamoto and Mori, 1978; Fujita, Nakanishi, and Miyata, 1976), shape analy-
sis and recognition (Ma and Kusic, 1979; Wang, 1975; Pavlidis, 1978; Wong and
Steppe, 1969), corner detection (Wu and Rosenfeld, 1983), chromosome recog-
nition (Rutovitz, 1970; Klinger, Koehman, and Alexandridis, 1971), and cytology
(Preston, 1976), to name a few. We will show how properties obtainable from verti-
cal, horizontal, and diagonal projections include area, centroid of the region, second
moments, and bounding rectangle. Then we will illustrate the use of signature anal-
ysis to determine. the orientation and position of a rectangle and the position of a
circle. - : - -

First we recall the definition of projections and show how to compute the
- properties just mentioned from the projections. The vertical projection Py is defined
by

Py(c) = #{r|(r, c) eR}

The horizontal projection Py is defined by
Py(r) = #{c|(r, ¢c) €R}

There are two diagonal projections: one going from lower left to upper right and
one going from upper left to lower right. The diagonal projection P, goes from
lower left to upper right and is defined by

Pp(d) = #{(r, c) ER|r +c =d}
The diagonal projection Pg goes from upper left to lower right and is defined by
Pg(e) = #{(r, ©) ER|r —c = e}

The area A can be obtained from any projection. For example,

A=Y 1=> 3 1

(r, c)ER r {cl(r,c)ER}
=Y " Pu(r)

The top row, rmin, of the bounding rectangle is given by
' rmin = min{r|(r, ¢) € R}
= min{r|Py(r) # 0}
The bottom row, rmax, of the bounding rectangle is given by
rmax = max{r|(r, ¢) € R}
= max{r|Py(r) # 0}
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The leftmost column, cmin, of the bounding rectangle is given by

cmin = min{c|(r, ¢) € R}
= min{c|P,(c) # 0}

The rightmost column, cmax, of the bounding rectangle is given by

cmax = max{c|(r, ¢) € R}
= max{c|Py(c) # 0}

The row centroid 7 can be obtained from the horizontal projection Py, as shown
by the following straightforward calculation.

F:%Zr

r, o€k
1
= Z r
r A{eltr,e)€R}
1

=—Zr Z 1
r {c|(r,c)ER}

= j— > rPy(r)

The column centroid ¢ can be obtained from the vertical projection P, as
follows:

E:%Zc

(r,c)ER

ZX ¥

¢ {r|(r,c)eR}

=;11_Zc S

c {c|(r,c)ER}
1
= a Z cPy(c)
The diagonal centroid d can be obtained from the diagonal projection Pp.
= 1 —
d=- Zd: dPp(d)
The diagonal centroid € can be obtained from the diagonal projection Pp.

1l '
e :ZZ’QPE(e)
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The diagonal centroid d is related to the row and column centroid

cf:%z:d oot

d {(r,c)ER|r+c=d}

-2 Y ¢+o

d {(r,c)ER|r+c=d}

P ONDNES DV VI

d {(r,c)€R|r+c=d} d {(r,c)ER|r+c=d}
1 1
A (r%;R’ v A (r%ch
=r+c
Similarly, the diagonal centroid € is related to the row and column centroid
e=r-c
The second row moment u,, can be obtained from the horizontal projection
Py.

Il'rr:% z: (7—7)2

(r,c)ER

-ZX ¥ -

r {cl|(r,c)ER}

=%Z(r —F)? Z 1
r {cltr, )R}
1 .
=7 > (r = P?Py(r)

Likewise, the second column moment y.. can be obtained from the vertical projec-
tion Py.

Hec =% Z: (c _6)2

(r,0)€R

“AX Y ey

¢ (r|(r,c)ER}

=%Z(C—6)2 Z 1

{r|(r,c)€ER}
1 ~
=5 D€ =0PPy(0)
The second diagonal moment p,, can be obtained from the diagonal projection Py,

1 .
pas = 7 Z‘(d —d)’Pp(d)
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The second diagonal moment u,, is related to u,., ., and pcc.

Mdd=%z Z (r+c—-F-2¢)y

d {(r,c)ER|r+c=d}

=2 Y w-n+e-or

(r,c)€R

=% Yo (r=FP+2r —F)c -8 +(c—¢)

(r,c)ER
= Prr + 20re F phec

Hence the second mixed moment can be obtained from the second diagonal moment

Haa by
_ Paa — Krr — Kee

l“rc - 2
The second diagonal moment u., is also related to u,, u,r, and pcc.

uee=/1—1z > (r—c-F+oy

e {(r,c)ER|r—c=e}

1
=7 2 lr=-n-(c-or

(r,c)ER

=% Z (r —F)? =2(r —F)(c —=¢) +(c —¢)°

(r,c)ER

= WYrr — 2/~‘ch + Pee

Hence the second mixed moment can also be obtained from the second diagonal
moment ., by
_ B + Pec — Hee
Bre = )
The relationship between the two diagonal moments u,s and p.. implies that the
mixed moment u,. can be obtained directly from pyy and p..

fre = HKdad = Hee
4 4

3.3.1 Using Signature Analysis to Determine the Center and
Orientation of a Rectangle

Signature analysis is important because of its easy, fast implementation. Many prob-
lems in industrial application can be solved with signature analysis. In SMD circuit
board inspection, one inspection task is concerned with the position and orienta-
tion of rectangular parts and the position of circular parts. If 16 parts, for example,
can be in one image frame, then in one frame time, video-rate hardware may com-
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may compute the signatures for 16 parts. In this section we show how signature
analysis can be used for rectangular parts. In the next section we show how it can
be used for circular parts.

To determine the center and orientation of a rectangular region of known size
by signature analysis, such as in Fig. 3.12, we can partition the rectangle into six
regions formed by two vertical lines, a known distance g apart, and one horizontal
line, as shown in Figure 3.13. This partition constitutes the projection index image.
We assume that the corners of the rectangle are guaranteed to be in the extreme
sextants of the partition. That is, the upper left-hand corner is in the sextant labeled
A in Fig. 3.14, the lower left-hand corner, in the sextant labeled B; the upper
right-hand corner, in the sextant labeled C; and the lower right-hand corner, in
the sextant labeled D. Consistent with the model-based approach, the height # and
width w of the rectangle are assumed known. The sextant partition constitutes the
projection index image. The area of intersection of the rectangle with each sextant
is determined by masking the projection index image with the binary image of
the rectangle, as discussed in Section 2.4. A histogram of the masked projection
image (the signature) then provides the area of intersection of each sextant with the
rectangle. The problem is how to use the six area numbers to determine the units
and orientation of the rectangle.

To solve the problem, set up a local x-,y-coordinate system whose origin is
in the center of the six-celled partition. In actual practice there might be many

(a3, by

—> x

w (a, b,)

w h_.
(Ax) . a+ sy cose—zsm 0
Ay b+ %’sine—gcose
Figure 3.12 Geometry for determining the translation of the center of a rectangle

in terms of the location of one corner, the length of its sides, and its orientation
angle.
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Ax) i %g - u cos 9+L;cose—g sin@

Ay vcose—%—sine—gcose

Figure 3.13 Geometry for determining the translation of the center of a rectangle
in terms of the lengths » and v.

partitions on the image, one for the determination of each part in the image. We
first suppose that the coordinates (a;,b,) of the upper left-most corner are known
and that the orientation angle 6 that the side of length w makes with the horizontal
line is known. We solve for the coordinates (Ax, A y) of the center of the rectangle
as follows.

First we determine the coordinate (Ax,Ay) of the center of the rectangle in
terms of the line segment length v from the upper left corner of the rectangle to
the horizontal line and the line segment length # from the upper left corner of the
rectangle to the left-most vertical line. From the geometry shown in Figure 3.13,
we immediately have the results.

For a clockwise rotation of 6, a point (x,y) is rotated to the point (X,or, Vror)»

where
X\ _ [ cosf  sind X
Y )\ —sinf cosf / \ y

For a rotation and shift of (Ax, Ay), the point (x, y) becomes the point (X ey s Vnew)»

where
Xnew Xrot Ax
= +
(ynew) (yrat> (Ay>
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Figure 3.14 Geometry for determining the lengths u and v in terms of the mea-
sured areas A,B,C,D,E,and F.

For the case of the corner (a;,b,), we have from Figure 3.12
a\ _ [ cosf sind ‘7”- n Ax
b, ) — \ —sinf cosé 1 Ay
_ :%ﬂgosG +h’2-'sin0 + Ax\
5 sinf -+ 3 cosf Ay
from which it immediately follows that
Ax\ _ a,+§cos0—h’3'sin0
Ay ) \ by —%sinf —%2cosf
Upon substituting —g /2 — u cos @ for @, and v cos for b,, we obtain

Ax =2 _ycosh + %cosh — Zsinf
= 2 2 2
(Ay) ( vecosf — ¥sinf — 4 cosf ) (3.6)

Next we determine the lengths # and v in terms of the measured areas A,B,C,D, E,
and F as shown in Figure 3.14. From the geometry we can directly derive the
appropriate equations.

From Fig. 3.14 we have

A+B=uh +%h2tan0

(w_ & _Np_Llp
C+D_(w = u)h 54" tang
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We use both equations to maintain symmetry and numerical stability to determine
an expression for «. Subtracting the first from the second,

_ = (w8 \n—2uh_n?
(C+D)—(A+B) = (w=- ") h—2uh—htan
Bringing the 2uh term as the sole term on one side of the equation, yields

2uh = ~(C+D)+(A+B)+ (w- £ ) h—hano

Hence

_(A+B)-(C+D) 1 g 1
u= > + > (w — cose) - 2htan0 3.7)

Also from Figure 3.14 we have

A+E+C =vw - %wztano

B+F+D=0h-vw+ %w"tano

Again we use both equations to maintain symmetry and numerical stability to deter-
mine an expression for v. Subtracting one from the other, we obtain

(A+E+C)—(B+F +D)=vw — %wztane —hw +vw — %tan&

=2uvw —hw —w?tanf
Solving for v yields

2uw =(A+E+C)—(B+F +D)+hw +wtan@

_(A+E+C)—(B+F+D) h w
v = o + 3 + ) tan 6 (3.8)

Substituting the derived values of # and v from Egs. (3.7) and (3.8) in terms of
the measured area 4,B,C, D, E, and F into Eq. (3.6) for the rectangle center, we
have for Ax

_8 _ ¥oosd - P
Ax = > ucosf + > cos @ 2>m6
g (A+B)—(C+D) 1 8 _1
Ax = > [ 2 +2 (w+cos0> 2htan0 cosf
w h .
+7COSO—§Sln0
Ax=(C+D)_(A+B)cos0

2h



88  Binary Machine Vision

And for Ay

Ay =uc0s0——g—sin0—}%cos(9

B [(A +E+C)—-(B+F+D) h w

+ - + —tanf | cosf — %sine —gcose

2w 2 2

= A+E+CO)-B+F+D) cosf + ﬁcost’:H—Esinl? - -‘Y-sino - ’—1cos0
2w 2 2 2 2

_ A +E+C)2;(B +F + D) cosf

Finally, it is easy to determine the rotation angle § in terms of the areas E and F,
which constitute a parallelogram. From the geometry it is obvious that

E+F = hg
cos 6
from which
o= "8
cost = E+F

3.3.2 Using Signature Analysis to Determine the
Center of a Circle

To determine the center position of a circular region from signature analysis, we first
partition the circle into four quadrants formed by two orthogonal lines guaranteed to
meet inside the circle; then we measure the area in each quadrant from the histogram
of the masked projection index image that consists of the four quadrants of a circle.
To understand how to convert the area measurements into position information,
consider the situation resulting when a chord partitions a circle into two regions 4
and B. Suppose the chord is a distance d from the circle center and that the radius
of the circle is r.

Let 0 be the angle between the perpendicular bisector of the chord and a line
segment from the chord to the circle center (Fig. 3.15). Then the total area of the
two right triangles is d+/r? — d? and the area of the sector with central angle 26
and radius r is r?6. The angle 6 is given by 6 = cos™' 4. Therefore the area of the

segment determined by the chord and the circle circumference is

A =rtcos™! g —d\r: —a?

2
=r? cos“f{—g 1- (g)
r ’V r

Noting that 6 = cos~' ¢, we can rewrite the segment area.

A= %[20 — sin20]
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Figure 3.15 Geometry for the circle, its center, and a chord.

The total area of fhe circle is :
A+ B =m7r?

Hence the radius of the circle can be determined by

Using this in the expression for the segment area, we obtain

27A

A+B =260 — sin26

This transcendental equation has no closed-form solution for 6. It can be approx-
imately solved for 6 by a table-look-up technique. Then once 6 has been computed,
the offset d is determined by

A+B

d =1/~ cos
T

Now we are ready to consider the original problem of determining the center of a
circle in unknown position. Measure the areas A, B,C,and D (Fig. 3.16).

If A+ B > C + D, then the y-coordinate of the circle’s center is positive;
otherwise it is negative. If B + D > A + C, then the x-coordinate of the circle’s
center is positive; otherwise it is negative.

The magnitude of the y-coordinate is given by
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Figure 3.16 Circle projected onto the four quadrants of the projection index
image.

where 0, satisfies

2n(A+B) .
ATBiC+D 20 —sin2,

The magnitude of the x-coordinate is given by
/[A+B
|Ax| = __-F—_—:C +D cos b,

27(B + D) .
e T =20, —sin20,
A+B+C+D 20, —sin29

where 0, satisfies

Summary

In this chapter we have discussed a set of important properties of regions obtained
from connected components or signature analysis. The properties have included
spatial moments and mixed spatial gray level moments as well as extremal points.
We have illustrated how it is possible to infer from the extremal points the sizes and
orientation of linelike, trianglelike, rectanglelike, and octagonlike regions. Finally,
we have shown how signature analysis can be used to determine the center and
orientation of a rectangle and the center of a circle.
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B Exercises

3.1.

3.2

3.3.

3.4.

3.5.

3.6.

3.7.

Consider an elongated region whose extremal points are given by

(ri,c1) (24,137) (rs,cs) (39,155)
(ra,c2) (24,163) (rs,cs) (39,145)
(7‘3,(,‘3) (30, 181) (I‘7,C7) (32,119)
(ra,cs) (32,181) (rs,cs) (30,119)

Determine M1, M, M3, M4, ¢1,$2,¢3 and ¢4. If this region is considered to be a
rectangle, what would the computed orientation, length, and width of the rectangle
be? What is the problem with assuming a rectangle model for a region whose shape
does not satisfy the assumed model?

Determine the value of ||P|[* /A for a regular planar polygon having N sides and show
that it is always greater than the value of ||P||* /A for a circle.

Show that for a regular polygon of N sides the mean radii between the centroid and
the boundary is given by

Nb | g<1+sm r/N)

=—71Io
KR T cos m/N

where b is the perpendicular distance between the polygon centroid and one of its
sides.

Show that for a regular polygon of N sides the standard deviation of the radii between
the centroid and the boundary is given by

1
" _Nb T oan™ _log? 1+sin #/N\|?
R=7 |IN"'"N T cos /N

Write a computer program to construct binary digital images of a digital circle or a
digital diamond. Digital circles are specified by their radius and digital diamonds by
the length of their sides. For any generated figure determine the value of [|1P|I*/A
where the length of the perimeter is the number of interior border pixels that are
4-adjacent to the background. Compare the values of ||P|[*/A4 for digital circles
and digital diamonds by graphing each as a function of 4.

A rectangle of width W and length L has an unknown orientation §, where 6 is the
angle between the horizontal axis and the side of length L. A connected component
analysis of an image of the rectangle measures the width W and length Lp of the
bounding rectangle. Show that the orientation of the rotated rectangle satisfies

2(WgLlp —WL)
W2+ L2

Perform the following experiment to determine the accuracy of the signature analysis
technique of Section 3.3.1 for determining the center and orientation of a rectangle
as a function of noise and scale. Fix the rectangle to be L pixels in length by
W pixels in width and the sextant partition to have a middle sextant of length ’3“
pixels. Orient the rectangle so that the length L side is horizontal. Then choose a
random rotation 6 between -45° and 45° and a random translation (r,c) for row
and column between "TL and % pixels. Finally, with probability p, change a 0-pixel
to a 1-pixel or a 1-pixel to a O-pixel. With the noisy rectangle use the signature

sin20 =
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analysis technique to estimate the position of the center (7, ¢) of the rectangle and its

orientation 6. Repeat the experiment 100 times observing (#;, ¢;, 0,),1 =1,...,100.
Define
1 100 1 100
4=\ le(n —FP (i = and  dy= o5 166l
I=

where (r;,c;) is the true position of the ith rectangle. Plot d; and dy as a function
of noise parameter p. Change L and W and repeat the experiments. Compare the
results.

3.8. Perform the following experiment to determine the accuracy of the signature analysis
techniques of Section 3.3.2 for determining the center of a circular region. Generate
circular regions having radius . With probability p, change a 0-pixel to a 1-pixel
or a 1-pixel to a O-pixel. With the noisy circle, use the signature analysis technique
to estimate the position of the center (7,¢) of the circle. Repeat this experiment
100 times observing (7:,¢:), i = 1,...,100. Define

— L L) L )2
d, = 100;0. Fi)2 +(ci —¢i)

Plot d; as a function of noise parameter p and radius r.
3.9. Determine the extremal points of the ellipse (x —x.)’A(x —x;) = 1, where x. = (;)

and
1 /10 =2
A"1_43(—2 15)

3.10. Consider an ellipse defined by x’4x = 1, where

d e
A= .
(e Y )
Show that the major axis length can be given by

Va\Jd +f +\fd— 7+ de
Vas —e?

and the minor axis length can be given by

ﬁ\/d +f —Jd = P 1ie
Vdf —e? ‘

3.11. Write a program that inputs a connected component image and outputs a property vector
for each connected component. The property vector should have components of
area, perimeter, centroid, orientation of fitted ellipse, length of major axis, length
of minor axis, extremal points, standard deviation of the distance between centroid
and boundary, and mean distance between centroid and boundary.

3.12. Write a program that generates binary images having nontouching squares and circles.
Make the squares have random orientation. Make a histogram of the values for each
property for the square regions and for the circle regions. What property looks most
promising to distinguish circles from squares? How large do the squares and circles
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have to be before it becomes easy to distinguish a square from a circle by using
the standard deviation of the distance between the centroid and boundary and the
mean distance between centroid and boundary?

B Bibliography

Breuer, P., and M. Vajta, ““Structural Chracter Recognition by Forming Projections,” Prob-
lems in Control Information Theory, Vol. 4, 1975, pp. 339-352.

Fujita, T., M. Nakanishi, and K. Miyata, ‘“The Recognition of Chinese Characters (Kanji)
Using Time Variation of Peripheral Belt Patterns,” Proceedings of the Third In-
ternational Joint Conference on Pattern Recognition, Coronado, CA, 1976,
pp. 119-121.

Gleason, G. J., and G. J. Agin, “A Modular Vision System for Sensor Controlled Manip-
ulation and Inspection,” Proceedings of the Ninth International Symposium on
Industrial Robots, Washington, DC, March, 1979, pp. 57-70.

Haralick, R. M., “A Measure of Circularity of Digital Figures,” IEEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-4, 1974, pp. 394-396.

Haralick, R. M., K. Shanmugam, and I. Dinstein, “Textural Features for Image Classifi-
cation,” IEEFE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3,
1973, pp. 610-621.

Klinger, A., “Pattern Width at a Given Angle,”” Communications of the ACM, Vol. 14,
1971, pp. 21-25.

Klinger, A., A. Koehman, and N. Alexandridis, ‘“‘Computing Analysis of Chromosome
Patterns: Feature-Encoding for Flexible Decision Making,” IEEE Transactions
on Computers, Vol. C-20, 1971, pp. 1014-22.

Ma, K., and G. Kusic, “An Algorithm for Distortion Analysis in Two-Dimensional Patterns
Using Its Projections,” Proceedings of the Seventh New England Bioengineering
Conference, Troy, NY, 1979, pp.177-180.

Nakimoto, Y., et al., “Improvement of Chinese Character Recognition Using Projection
Profiles,” Proceedings of the First International Joint Conference on Pattern
Recognition, Washington, D.C., 1973, pp. 172-178.

Pavlidis, T., “Computer Recognition of Figures through Decomposition,” Information and
Control, Vol. 14, 1968, pp. 526-537.

——, Structural Pattern Recognition, Springer-Verlag, New York, 1977.

——, “Algorithms for Shape Analysis of Contours and Wave-Forms,” Proceedings of the
Fourth International Conference on Pattern Recogntion, Kyoto, Japan, 1978,
pp. 70-85.

Preston, K., “Digital Picture Analysis in Cytology,”’ Digital Picture Analysis, A. Rosenfeld
(ed.), Springer-Verlag, New York, 1976, pp. 209-294.

Rosenfeld, A., “Compact Figures in Digital Pictures,” IEEE Transactions on Systems,
Man, and Cybernetics, Vol. SMC-4, 1974, pp. 221-223.

Rutovitz, D., “Centromere Finding: Some Shape Descriptors for Small Chromosome Out-
lines,” Machine Intelligence, Vol. 5, 1970, pp. 435-462.

Sanz, J. L. C., “A New Method for Computing Polygonal Masks in Image Processing
Pipeline Architectures,” Pattern Recognition, Vol. 18, 1985, pp. 241-247.

Sanz, J. L. C., and 1. Dinstein, ‘‘Projection-Based Geometrical Feature Extraction for Com-

. puter Vision: Algorithms in Pipeline Architectures,”” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol. PAMI-9, 1987, pp. 160-168.



94  Binary Machine Vision

Spinrad, R. J., “Machine Recognition of Hand Printing,” Information and Control, Vol.
8, 1965, pp. 124-142.

Wang, Y. R., “Characterization of Binary Patterns and Their Projections,” IEEE Transac-
tions on Computers, Vol. C-24, 1985, pp. 1032-35.

Wong, E., and J. A. Steppe, “Invariant Recognition of Geometric Shapes,” Methodologies
of Pattern Recognition, S. Watanabe (ed.), Academic Press, New York, 1969,
pp. 535-546.

Wu, Z. Q., and A. Rosenfeld, “Filtered Projections as an Aid in Corner Detection,” Pattern
Recognition, Vol. 16, 1983, pp. 31-38.

Yamamoto, K., and S. Mori, “Recognition of Handprinted Characters by Outermost Point
Methods,” Proceedings of the Fourth International Conference on Pattern
Recognition, Kyoto, Japan, 1978, pp. 794-796.



