Preview

The objective of restoration is to improve a given image in some predefined
sense. Although there are areas of overlap between image enhancement and
image restoration, the former is largely a subjective process, while image
restoration is for the most part an objective process. Restoration attempts to
reconstruct or recover an image that has been degraded by using a priori
knowledge of the degradation phenomenon. Thus, restoration techniques are
oriented toward modeling the degradation and applying the inverse process in
order to recover the original image.

This approach usually involves formulating a criterion of goodness that
yields an optimal estimate of the desired result. By contrast, enhancement
techniques basically are heuristic procedures designed to manipulate an image
in order to take advantage of the psychophysical aspects of the human visual
system. For example, contrast stretching is considered an enhancement tech-
nique because it is based primarily on the pleasing aspects it might present to
the viewer, whereas removal of image blur by applying a deblurring function is
considered a restoration technique.

In this chapter we explore how to use MATLAB and IPT capabilities to
model degradation phenomena and to formulate restoration solutions. As in
Chapters 3 and 4, some restoration techniques are best formulated in the spa-
tial domain, while others are better suited for the frequency domain. Both
methods are investigated in the sections that follow.
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Following conven-
tion, we use an
in-line asterisk in
equations to denote
convolution and a
superscript asterisk
to denote the com-
plex conjugate. As
required, we also use
an asterisk in MAT-
LAB expressions to
denote multiplica-
tion. Care should be
taken not to confuse
these unrelated uses
of the same symbol.

FIGURE 5.1

A model of the
image degradation/
restoration process.

.| A Model of the Image Degradation/Restoration Process

As Fig. 5.1 shows, the degradation process is modeled in this chapter as a
degradation function that, together with an additive noise term, operates on
an input image f(x, y) to produce a degraded image g(x, y):

g(x,y) = H[f(x,y)] + n(x, y)

Given g(x, y), some knowledge about the degradation function #, and some
knowledge about the additive noise term 1(x, y), the objective of restoration is to
obtain an estimate, f (x, y), of the original image. We want the estimate to be as
close as possible to the original input image. In general, the more we know about
H and 7, the closer f(x, y) willbe to f(x, y).

If H is a linear, spatially invariant process, it can be shown that the degraded
image is given in the spatial domain by

g(x,y) = h(x,y) * f(x,y) + n(x,y)

where A(x, y) is the spatial representation of the degradation function and, as
in Chapter 4, the symbol “*” indicates convolution. We know from the discus-
sion in Section 4.3.1 that convolution in the spatial domain and multiplication
in the frequency domain constitute a Fourier transform pair, so we may write
the preceding model in an equivalent frequency domain representation:

G(u,v) = H(u,v)F(u,v) + N(u,v)

where the terms in capital letters are the Fourier transforms of the corresponding
terms in the convolution equation. The degradation function H (u, v) sometimes
is called the optical transfer function (OTF), a term derived from the Fourier
analysis of optical systems. In the spatial domain, A(x, y) is referred to as the
point spread function (PSF), a term that arises from letting /4(x, y) operate on a
point of light to obtain the characteristics of the degradation for any type of
input. The OTF and PSF are a Fourier transform pair, and the toolbox provides
two functions, otf2psf and psf2otf, for converting between them.

Because the degradation due to a linear, space-invariant degradation func-
tion, H, can be modeled as convolution, sometimes the degradation process is
referred to as “convolving the image with a PSF or OTE” Similarly, the restora-
tion process is sometimes referred to as deconvolution.

In the following three sections, we assume that H is the identity operator,
and we deal only with degradation due to noise. Beginning in Section 5.6 we
look at several methods for image restoration in the presence of both H and .

Degradation 8xy) .
. Restoration 4
floy) = > funglon filter(s) —> f(x)
Noise
n(x, y)

Degradation Restoration



5.2 ® Noise Models

m Noise Models

The ability to simulate the behavior and effects of noise is central to image
restoration. In this chapter, we are interested in two basic types of noise
models: noise in the spatial domain (described by the noise probability density
function), and noise in the frequency domain, described by various Fourier
properties of the noise. With the exception of the material in Section 5.2.3, we
assume in this chapter that noise is independent of image coordinates.

5.2.1 Adding Noise with Function imnoise

The toolbox uses function imnoise to corrupt an image with noise. This func-
tion has the basic syntax

g = imnoise(f, type, parameters)

where f is the input image, and type and parameters are as explained later.
Function imnoise converts the input image to class double in the range [0, 1]
before adding noise to it. This must be taken into account when specifying
noise parameters. For example, to add Gaussian noise of mean 64 and variance
400 to an uint8 image, we scale the mean to 64/255 and the variance to
400/(255)? for input into imnoise. The syntax forms for this function are:

e g=1imnoise(f, 'gaussian', m, var) adds Gaussian noise of mean m
and variance var to image f. The default is zero mean noise with 0.01
variance.

e g=imnoise(f, 'localvar', V) adds zero-mean, Gaussian noise of local
variance, V, to image f, where V is an array of the same size as f containing
the desired variance values at each point.

e g = imnoise(f, 'localvar', image intensity, var) adds zero-mean,
Gaussian noise to image f, where the local variance of the noise, var,is a func-
tion of the image intensity values in f. The image_intensity and var argu-
ments are vectors of the same size, and plot (image_intensity, var) plots
the functional relationship between noise variance and image intensity. The
image_intensity vector must contain normalized intensity values in the
range [0, 1].

® g =imnoise(f, 'salt & pepper', d) corrupts image f with salt and
pepper noise, where d is the noise density (i.e., the percent of the image
area containing noise values). Thus, approximately d*numel (f) pixels are
affected. The default is 0.05 noise density.

® g =imnoise(f, 'speckle', var) adds multiplicative noise to image f,
using the equation g = f + n*f, where n is uniformly distributed random
noise with mean 0 and variance var. The default value of var is 0.04.

e g=imnoise(f, 'poisson') generates Poisson noise from the data instead
of adding artificial noise to the data. In order to comply with Poisson statis-
tics, the intensities of uint8 and uint16 images must correspond to the num-
ber of photons (or any other quanta of information). Double-precision
images are used when the number of photons per pixel is larger than 65535
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EXAMPLE 5.1:
Using uniform
random numbers
to generate
random numbers
with a specified
distribution.

(but less than 10'2). The intensity values vary between 0 and 1 and corre-
spond to the number of photons divided by 102,

Several illustrations of imnoise are given in the following sections.

5.2.2 Generating Spatial Random Noise with a Specified
Distribution

Often, it is necessary to be able to generate noise of types and parameters be-
yond those available in function imnoise. Spatial noise values are random num-
bers, characterized by a probability density function (PDF) or, equivalently, by
the corresponding cumulative distribution function (CDF). Random number
generation for the types of distributions in which we are interested follow some
fairly simple rules from probability theory.

Numerous random number generators are based on expressing the genera-
tion problem in terms of random numbers with a uniform CDF in the interval
(0,1). In some instances, the base random number generator of choice is a
generator of Gaussian random numbers with zero mean and unit variance.
Although we can generate these two types of noise using imnoise, it is more
meaningful in the present context to use MATLAB function rand for uniform
random numbers and randn for normal (Gaussian) random numbers. These
functions are explained later in this section.

The foundation of the approach described in this section is a well-known
result from probability (Peebles [1993]) which states that if w is a uniformly
distributed random variable in the interval (0, 1), then we can obtain a ran-
dom variable z with a specified CDF, F,, by solving the equation

z = F{(w)
This simple, yet powerful, result can be stated equivalently as finding a solu-
tion to the equation F,(z) = w.

# Assume that we have a generator of uniform random numbers, w, in the in-
terval (0, 1), and suppose that we want to use it to generate random numbers, z,
with a Rayleigh CDF, which has the form

F(2) = 1-ea%%  forz=aq
4207 V0 forz < a

To find z we solve the equation
1 — @b = 4

z=a+\/bln(l — w)

Because the square root term is nonnegative, we are assured that no values of z
less than a are generated. This is as required by the definition of the Rayleigh
CDF. Thus, a uniform random number w from our generator can be used in the
previous equation to generate a random variable z having a Rayleigh distribu-
tion with parameters a and b.

or
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In MATLAB this result is easily generalized to an M X N array, R, of ran-
dom numbers by using the expression

>> R = a + sqrt(b*log(1 — rand(M, N)));

where, as discussed in Section 3.2.2, log is the natural logarithm, and, as men-
tioned earlier, rand generates uniformly distributed random numbers in the inter-
val (0, 1). If we let M= N = 1, then the preceding MATLAB command line yields a
single value from a random variable with a Rayleigh distribution characterized by
parameters a and b. ]

The expression z = a + \/ b In(1 — w) sometimes is called a random num-
ber generator equation because it establishes how to generate the desired ran-
dom numbers. In this particular case, we were able to find a closed-form
solution. As will be shown shortly, this is not always possible and the problem
then becomes one of finding an applicable random number generator equation
whose outputs will approximate random numbers with the specified CDF.

Table 5.1 lists the random variables of interest in the present discussion, along
with their PDFs, CDFs, and random number generator equations. In some cases,
as with the Rayleigh and exponential variables, it is possible to find a closed-form
solution for the CDF and its inverse. This allows us to write an expression for the
random number generator in terms of uniform random numbers, as illustrated in
Example 5.1. In others, as in the case of the Gaussian and lognormal densities,
closed-form solutions for the CDF do not exist, and it becomes necessary to find
alternate ways to generate the desired random numbers. In the lognormal case,
for instance, we make use of the knowledge that a lognormal random variable, z,
is such that In(z) has a Gaussian distribution and write the expression shown in
Table 5.1 in terms of Gaussian random variables with zero mean and unit vari-
ance. Yet in other cases, it is advantageous to reformulate the problem to obtain
an easier solution. For example, it can be shown that Erlang random numbers
with parameters a and b can be obtained by adding b exponentially distributed
random numbers that have parameter a (Leon-Garcia [1994]).

The random number generators available in imnoise and those shown in
Table 5.1 play an important role in modeling the behavior of random noise in
image-processing applications. We already saw the usefulness of the uniform
distribution for generating random numbers with various CDFs. Gaussian
noise is used as an approximation in cases such as imaging sensors operating at
low light levels. Salt-and-pepper noise arises in faulty switching devices. The
size of silver particles in a photographic emulsion is a random variable de-
scribed by a lognormal distribution. Rayleigh noise arises in range imaging,
while exponential and Erlang noise are useful in describing noise in laser
imaging.

M-function imnoise2, listed later in this section, generates random num-
bers having the CDFs in Table 5.1. This function makes use of MATLAB func-
tion rand, which, for the purposes of this chapter, has the syntax

A = rand(M, N)
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This function generates an array of size M x N whose entries are uniformly dis-
tributed numbers with values in the interval (0, 1). If N is omitted it defaults to
m. If called without an argument, rand generates a single random number that
changes each time the function is called. Similarly, the function

A = randn(M, N)

generates an M x N array whose elements are normal (Gaussian) numbers
with zero mean and unit variance. If N is omitted it defaults to M. When called
without an argument, randn generates a single random number.

Function imnoise2 also uses MATLAB function find, which has the fol-
lowing syntax forms:

I = find(A)
[r, c] = find(A)
[ry, ¢, v] = find(A)

The first form returns in I all the indices of array A that point to nonzero ele-
ments. If none is found, find returns an empty matrix. The second form
returns the row and column indices of the nonzero entries in the matrix A. In
addition to returning the row and column indices, the third form also returns
the nonzero values of A as a column vector, v.
~ The first form treats the array A in the format A(:),so I is a column vector.
This form is quite useful in image processing. For example, to find and set to 0
all pixels in an image whose values are less than 128 we write

>> I = find(A < 128);
>> A(I) = 0;

Recall that the logical statement A < 128 returns a 1 for the elements of A that
satisfy the logical condition and 0 for those that do not. To set to 128 all pixels
in the closed interval [64,192] we write

>> I = find(A >= 64 & A <= 192);
>> A(I) = 128;

The first two forms of function find are used frequently in the remaining
chapters of the book.

Unlike imnoise, the following M-function generates an M x N noise array, R,
that is not scaled in any way. Another major difference is that imnoise outputs
a noisy image, while imnoise2 produces the noise pattern itself. The user speci-
fies the desired values for the noise parameters directly. Note that the noise
* array resulting from salt-and-pepper noise has three values: 0 corresponding to
pepper noise, 1 corresponding to salt noise, and 0.5 corresponding to no noise.
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imnoise2
R ——————

This array needs to be processed further to make it useful. For example, to cor-
rupt an image with this array, we find (using function find) all the coordinates
in R that have value 0 and set the corresponding coordinates in the image to the
smallest possible gray-level value (usually 0). Similarly, we find all the coordi-
nates in R that have value 1 and set all the corresponding coordinates in the
image to the highest possible value (usually 255 for an 8-bit image). This process
simulates how salt-and-pepper noise affects an image in practice.

function R = imnoise2(type, M, N, a, b)

%IMNOISE2 Generates an array of random numbers with specified PDF.
R = IMNOISE2(TYPE, M, N, A, B) generates an array, R, of size
M-by-N, whose elements are random numbers of the specified TYPE
with parameters A and B. If only TYPE is included in the

input argument list, a single random number of the specified
TYPE and default parameters shown below is generated. If only
TYPE, M, and N are provided, the default parameters shown below

® 0 o° d° o° O° O I° AP O° I° J° O O° O° I° S° I I O° I° A O Of O° O° S° OF OF O° S° O OP O° S° O Of O° o°

are used. If M =

N = 1, IMNOISE2 generates a single random

number of the specified TYPE and parameters A and B.

Valid values for TYPE and parameters A and B are:

'uniform’
'gaussian'

'salt & pepper'

'lognormal’

'rayleigh’
'exponential’

'erlang’

Uniform random numbers in the interval (A, B).
The default values are (0, 1).

Gaussian random numbers with mean A and standard
deviation B. The default values are A =0, B = 1.
Salt and pepper numbers of amplitude O with
probability Pa = A, and amplitude 1 with
probability Pb = B. The default values are Pa =
Pb = A =B = 0.05. Note that the noise has
values 0 (with probability Pa = A) and 1 (with
probability Pb = B), so scaling is necessary if
values other than 0 and 1 are required. The noise
matrix R is assigned three values. If R(x, y) =
0, the noise at (x, y) is pepper (black). If
R(x, y) =1, the noise at (x, y) is salt
(white). If R(x, y) = 0.5, there is no noise
assigned to coordinates (x, ).

Lognormal numbers with offset A and shape
parameter B. The defaults are A =1 and B =
0.25.

Rayleigh noise with parameters A and B. The
default values are A =0 and B = 1.

Exponential random numbers with parameter A. The
default is A = 1.

Erlang (gamma) random numbers with parameters A
and B. B must be a positive integer. The
defaults are A = 2 and B = 5. Erlang random
numbers are approximated as the sum of B
exponential random numbers.



5.2 & Noise Models

% Set default values.
if nargin ==
a=0;b
M=1; N
elseif nargin
a=0; b=
end

% Begin processing. Use lower(type) to protect against input
% being capitalized.
switch lower(type)
case 'uniform'
R=a+ (b - a)*rand(M, N);
case 'gaussian'’
R = a + b*randn(M, N);
case 'salt & pepper'
if nargin <= 3
a = 0.05; b = 0.05;
end
% Check to make sure that Pa + Pb is not > 1.
if (a +b) > 1
error('The sum Pa + Pb must not exceed 1.')
end
R(1:M, 1:N) = 0.5;
% Generate an M-by-N array of uniformly-distributed random numbers

| e =

1
1
== 3
1

% in the range (0, 1). Then, Pa*(M*N) of them will have values <=
% a. The coordinates of these points we call O (pepper

% noise). Similarly, Pb*(M*N) points will have values in the range
% >a&<= (a+t+bh). These we call 1 (salt noise).

X = rand(M, N);

¢ = find(X <= a);

R(c) = 0;

u=athb;

¢ = find(X > a & X <= u);

R(c) = 1;

case 'lognormal’
if nargin <= 3
a=1; b =0.25;
end
R = a*exp(b*randn(M, N));
case 'rayleigh'
R =a + (-b*log(1 — rand(M, N)))."0.5;
case 'exponential'
if nargin <= 3
a=1;
end
ifa<=0
error('Parameter a must be positive for exponential type.')
end
k
R

-1/a;
k*log(1 — rand(M, N));
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EXAMPLE 5.2
Histograms of
data generated
using the function
imnoise2.

case 'erlang'
if nargin <= 3
a=2; b=5;
end
if (b ~= round(b) | b <= 0)
error('Param b must be a positive integer for Erlang.")
end
k = —-1/a;
R = zeros(M, N);
for j = 1:b
) R =R + k*log(1 — rand(M, N));
end
otherwise
error('Unknown distribution type.')
end e

# Figure 5.2 shows histograms of all the random number types in Table 5.1.
The data for each plot were generated using function imnoise2. For example,
the data for Fig. 5.2(a) were generated by the following command:

>> r = imnoise2('gaussian', 100000, 1, 0, 1);

This statement generated a column vector, r, with 100000 elements, each
being a random number from a Gaussian distribution with mean 0 and stan-
dard deviation of 1. The histogram was then obtained using function hist,
which has the syntax

p = hist(r, bins)

where bins is the number of bins. We used bins = 50 to generate the his-
tograms in Fig. 5.2. The other histograms were generated in a similar manner.
In each case, the parameters chosen were the default values listed in the ex-
planation of function imnoise2. ]

5.7.3 Periodic Noise

Periodic noise in an image arises typically from electrical and/or electromechani-
cal interference during image acquisition. This is the only type of spatially depen-
dent noise that will be considered in this chapter. As discussed in Section 5.4,
periodic noise is typically handled in an image by filtering in the frequency do-
main. Our model of periodic noise is a 2-D sinusoid with equation

r(x,y) = Asin[2muy(x + B,)/M + 2mv(y + B,)/N]

where A is the amplitude, uy and vy determine the sinusoidal frequencies with
respect to the x- and y-axis, respectively, and B, and B, are phase displace-
ments with respect to the origin. The M X N DFT of this equation is

A_ .
R(u,v) = f?[(eﬂmoB"/M)a(u + g, v + vp) = (e2™0By/N)8(u ~ ug, v ~ wp)]
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which we see is a pair of complex conjugate impulses located at
(u + up,v + v5) and (u — uy, v — vy), respectively.

The following M-function accepts an arbitrary number of impulse locations
(frequency coordinates), each with its own amplitude, frequencies, and phase
displacement parameters, and computes 7(x, y) as the sum of sinusoids of the
form described in the previous paragraph. The function also outputs the Fourier
transform of the sum of sinusoids, R(u, v), and the spectrum of R(u, v). The sine
waves are generated from the given impulse location information via the inverse
DFT. This makes it more intuitive and simplifies visualization of frequency con-
tent in the spatial noise pattern. Only one pair of coordinates is required to de-
fine the location of an impulse. The program generates the conjugate symmetric

@b
T
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FIGURE 5.2
Histograms of
random numbers:
(a) Gaussian,

(b) ugiform,

(c) lognormal,
(d) Rayleigh,

(e) exponential,
and (f) Erlang. In
each case the
default
parameters listed
in the explanation
of function
imnoise2 were
used.
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impulses. (Note in the code the use of function ifftshift to convert the cen-
tered R into the proper data arrangement for the ifft2 operation, as discussed

in Section 4.2.)
imnoise3 function [r, R, S] = imnoise3(M, N, C, A, B)
b %IMNOISE3 Generates periodic noise.

[r, R, S] = IMNOISE3(M, N, C, A, B), generates a spatial
sinusoidal noise pattern, r, of size M-by-N, its Fourier
transform, R, and spectrum, S. The remaining parameters are as
follows:

C is a K-by-2 matrix containing K pairs of frequency domain
coordinates (u, v) indicating the locations of impulses in the
frequency domain. These locations are with respect to the
frequency rectangle center at (M/2 + 1, N/2 + 1). Only one pair
of coordinates is required for each impulse. The program
automatically generates the locations of the conjugate symmetric
impulses. These impulse pairs determine the frequency content

of r.

A is a 1-by-K vector that contains the amplitude of each of the
K impulse pairs. If A is not included in the argument, the
default used is A = ONES(1, K). B is then automatically set to
its default values (see next paragraph). The value specified
for A(j) is associated with the coordinates in C(j, 1:2).

B is a K-by-2 matrix containing the Bx and By phase components
for each impulse pair. The default values for B are B(1:K, 1:2)
= 0.

% Process input parameters.
[K, n] = size(C);
if nargin ==
A(1:K) = 1.0;
B(1:K, 1:2) = 0;
elseif nargin ==
B(1:K, 1:2) = 0;
end

d° d° o° o° o° o° O° O OF° I O° O O° d° O° O° OF O° O° O° O° o° o°

% Generate R.
R = zeros(M, N);
for j = 1:K
ult = M/2 + 1+ C(j, 1); vl =N/2 + 1+ C(j, 2);
R(ut, v1) =1 * (A(j)/2) * exp(i*2*pi*C(j, 1) * B(j, 1)/M);
% Complex conjugate.
u2 = M/2 +1—-20C(j, 1); v2 =N/2 +1 —=C(j, 2);
R(u2, v2) = -1 * (A(j)/2) * exp(i*2*pi*C(j, 2) * B(j, 2)/N);
end

abs(R);

Compute spectrum and spatial sinusoidal pattern.
= real(ifft2(ifftshift(R))); ——

%
S
r
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B Figures 5.3(a) and (b) show the spectrum and spatial sine noise pattern
generated using the following commands:

>> C = [0 64; 0 128; 32 32; 64 0; 128 0; —32 32];
>> [r, R, S] = imnoise3(512, 512, C);

>> imshow(S, [ 1)

>> figure, imshow(r, [ 1)

Recall that the order of the coordinates is (u, v). These two values are speci-
fied with reference to the center of the frequency rectangle (see Section 4.2 for
a definition of the coordinates of this center point). Figures 5.3(c) and (d)
show the result obtained by repeating the previous commands, but with

>> C = [0 32; 0 64; 16 16; 32 0; 64 0; —16 16];
Similarly, Fig. 5.3(e) was obtained with
>> C = [6 32; =2 2];

Figure 5.3(f) was generated with the same C, but using a nondefault amplitude
vector:

>> A = [1 5];
>> [r, R, S] = imnoise3(512, 512, C, A);

As Fig. 5.3(f) shows, the lower-frequency sine wave dominates the image. This
is as expected because its amplitude is five times the amplitude of the higher-
frequency component. B

5.24 Estimating Noise Parameters

The parameters of periodic noise typically are estimated by analyzing the
Fourier spectrum of the image. Periodic noise tends to produce frequency
spikes that often can be detected even by visual inspection. Automated analy-
sis is possible in situations in which the noise spikes are sufficiently pro-
nounced, or when some knowledge about the frequency of the interference is
available.

In the case of noise in the spatial domain, the parameters of the PDF may
be known partially from sensor specifications, but it is often necessary to esti-
mate them from sample images. The relationships between the mean, m, and
variance, o2, of the noise, and the parameters a and b required to completely
specify the noise PDFs of interest in this chapter are listed in Table 5.1. Thus,
the problem becomes one of estimating the mean and variance from the sam-
ple image(s) and then using these estimates to solve for a and b.

Let z; be a discrete random variable that denotes intensity levels in an
image, and let p(z;),i = 0,1,2,..., L — 1, be the corresponding normalized

EXAMPLE 5.3
Using function
imnoise3.
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FIGURE 5.3

(a) Spectrum of
specified impulses.
(b) Corresponding
sine noise pattern.
(c)and (d) A
similar sequence.
(e) and (f) Two
other noise
patterns. The dots
in (a) and (c) were
enlarged to make
them easier to see.
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histogram, where L is the number of possible intensity values. A histogram
component, p(z;), is an estimate of the probability of occurrence of intensity
value z;, and the histogram may be viewed as an approximation of the intensi-
ty PDF.

One of the principal approaches for describing the shape of a histogram is
via its central moments (also called moments about the mean), which are
defined as

L-1

Bn = > (z; = m)"p(z;)

i=0

where n is the moment order, and m is the mean:
L-1
m = 2) z;p(z;)
o

Because the histogram is assumed to be normalized, the sum of all its compo-
nents is 1, so, from the preceding equations, we see that uy = 1 and u; = 0.
The second moment,

L-1
M2 = ;} (z; — m)zp(zi)

is the variance. In this chapter, we are interested only in the mean and vari-
ance. Higher-order moments are discussed in Chapter 11.

Function statmoments computes the mean and central moments up to
order n, and returns them in row vector v. Because the moment of order 0 is
always 1, and the moment of order 1 is always 0, statmoments ignores these
two moments and instead lets v(1) = m and v(k) = pu for k = 2,3,..., n.
The syntax is as follows (see Appendix C for the code):

[v, unv] = statmoments(p, n)

where p is the histogram vector and n is the number of moments to compute.
It is required that the number of components of p be equal to 2% for class
uint8 images, 2'® for class uint16 images, and 2% or 2! for images of class
double. Output vector v contains the normalized moments based on values of
the random variable that have been scaled to the range [0, 1], so all the mo-
ments are in this range also. Vector unv contains the same moments as v, but
computed with the data in its original range of values. For example, if
length(p) = 256, and v(1) = 0.5, then unv(1) would have the value
127.5, which is half of the range [0, 255].

Often, noise parameters must be estimated directly from a given noisy
image or set of images. In this case, the approach is to select a region in an
image with as featureless a background as possible, so that the variability of in-
tensity values in the region will be due primarily to noise. To select a region of

statmoments
R ———
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histroi
T

interest (ROI) in MATLAB we use function roipoly, which generateé a
polygonal ROI. This function has the basic syntax

B = roipoly(f, ¢, r)

where f is the image of interest, and ¢ and r are vectors of corresponding (se-
quential) column and row coordinates of the vertices of the polygon (note that
columns are specified first). The output, B, is a binary image the same size as f
with 0’s outside the region of interest and 1’s inside. Image B is used as a mask
to limit operations to within the region of interest.

To specify a polygonal ROI interactively, we use the syntax

B = roipoly(f)

which displays the image f on the screen and lets the user specify the polygon
using the mouse. If f is omitted, roipoly operates on the last image displayed.
Using normal button clicks adds vertices to the polygon. Pressing Backspace
or Delete removes the previously selected vertex. A shift-click, right-click, or
double-click adds a final vertex to the selection and starts the fill of the polyg-
onal region with 1s. Pressing Return finishes the selection without adding
a vertex.

To obtain the binary image and a list of the polygon vertices, we use the
construct

[B, ¢, r] = roipoly(. . .)

where roipoly (. . .) indicates any valid syntax for this function and, as be-
fore, ¢ and r are the column and row coordinates of the vertices. This format is
particularly useful when the ROl is specified interactively because it gives the
coordinates of the polygon vertices for use in other programs or for later du-
plication of the same ROL

The following function computes the histogram of an image within a polyg-
onal region whose vertices are specified by vectors ¢ and r, as in the preceding
discussion. Note the use within the program of function roipoly to duplicate
the polygonal region defined by ¢ and r.

function [p, npix] = histroi(f, c, r)

%HISTROI Computes the histogram of an ROI in an image.

[P, NPIX] = HISTROI(F, C, R) computes the histogram, P, of a
polygonal region of interest (ROI) in image F. The polygonal
region is defined by the column and row coordinates of its
vertices, which are specified (sequentially) in vectors C and R,
respectively. All pixels of F must be >= 0. Parameter NPIX is the
number of pixels in the polygonal region.

0% of J° J° o° o°

w o°

Generate the binary mask image.
= roipoly(f, c, r);
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% Compute the histogram of the pixels in the ROI.
p = imhist(f(B));
% Obtain the number of pixels in the ROI if requested in the output.
if nargout > 1
npix = sum(B(:));
end PO

@ Figure 5.4(a) shows a noisy image, denoted by f in the following discussion. EXAMPLE 5.4:
The objective of this example is to estimate the noise type and its parameters Estimating noise
using the techniques and tools developed thus far. Figure 5.4(b) shows the Parameters.
mask, B, generated interactively using the command:

>> [B, ¢, r] = roipoly(f);

Figure 5.4(c) was generated using the commands

>> [p, npix] = histroi(f, c, r);
>> figure, bar(p, 1)

L

o

FIGURE 5.4

(a) Noisy image.
(b) ROI
generated
interactively.

(c) Histogram of
ROL

(d) Histogram of
Gaussian data
generated using
function
imnoise2.
(Original image
courtesy of Lixi,
Inc.)
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The mean and variance of the region masked by B were obtained as follows:

>> [v, unv] = statmoments(h, 2);
>> v

Vv =
0.5794 0.0063

>> unv
147.7430 410.9313

It is evident from Fig. 5.4(c) that the noise is approximately Gaussian. In
general, it is not possible to know the exact mean and variance of the noise be-
cause it is added to the gray levels of the image in region B. However, by se-
lecting an area of nearly constant background level (as we did here), and
because the noise appears Gaussian, we can estimate that the average gray
level of the area B is reasonably close to the average gray level of the image
without noise, indicating that the noise has zero mean. Also, the fact that the
area has a nearly constant gray level tells us that the variability in the region
defined by B is due primarily to the variance of the noise. (When feasible, an-
other way to estimate the mean and variance of the noise is by imaging a tar-
get of constant, known gray level.) Figure 5.4(d) shows the histogram of a set
of npix (this number is returned by histroi) Gaussian random variables with
mean 147 and variance 400, obtained with the following commands:

>> X = imnoise2('gaussian', npix, 1, 147, 20);
>> figure, hist(X, 130)
>> axis([0 300 0 140])

where the number of bins in hist was selected so that the result would be
compatible with the plot in Fig. 5.4(c). The histogram in this figure was ob-
tained within function histroi using imhist (see the preceding code), which
employs a different scaling than hist. We chose a set of npix random vari-
ables to generate X, so that the number of samples was the same in both his-
tograms. The similarity between Figs. 5.4(c) and (d) clearly indicates that the
noise is indeed well-approximated by a Gaussian distribution with parameters
that are close to the estimates v(1) and v(2). B

&Y Restoration in the Presence
of Noise Only—Spatial Filtering

When the only degradation present is noise, then it follows from the model in
Section 5.1 that

g(x,y) = f(x,y) + n(x,y)

The method of choice for reduction of noise in this case is spatial filtering, using
techniques similar to those discussed in Sections 3.4 and 3.5. In this section we sum-
marize and implement several spatial filters for noise reduction. Additional details

on the characteristics of these filters are discussed by Gonzalez and Woods [2002].
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5.3.1 Spatial Noise Filters

Table 5.2 lists the spatial filters of interest in this section, where S,, denotes an
m X nsubimage (region) of the input noisy image, g. The subscnpts on S indi-
cate that the subimage is centered at coordinates (x, y), and f(x, y) (an esti-
mate of f) denotes the filter response at those coordinates. The linear filters
are implemented using function imfilter discussed in Section 3.4. The
median, max, and min filters are nonlinear, order-statistic filters. The median
filter can be implemented directly using IPT function medfilt2. The max and
min filters are implemented using the more general order-filter function
ordfilt2 discussed in Section 3.5.2.

The following function, which we call spfilt, performs filtering in the spa-
tial domain with any of the filters listed in Table 5.2. Note the use of function
imlincomb (mentioned in Table 2.5) to compute the linear combination of the
inputs. The syntax for this function is

B = imlincomb(c1, A1, c2, A2, ., ck, Ak)
which implements the equation
B = c1*A1 + c2*A2 + - - + ck*Ak

where the c’s are real, double scalars, and the A’s are numeric arrays of the
same class and size. Note also in subfunction gmean how function warning can
be turned on and off. In this case, we are suppressing a warning that would be
issued by MATLAB if the argument of the 1og function becomes 0. In general,
warning can be used in any program. The basic syntax is

warning('message')

This function behaves exactly like function disp, except that it can be turned
on and off with the commands warning on and warning off.

function f = spfilt(g, type, m, n, parameter)
%SPFILT Performs linear and nonlinear spatial filtering.
% F = SPFILT(G, TYPE, M, N, PARAMETER) performs spatial filtering

% of image G using a TYPE filter of size M-by-N. Valid calls to
% SPFILT are as follows:

%

% F = SPFILT(G, 'amean', M, N) Arithmetic mean filtering.
% F = SPFILT(G, 'gmean', M, N) Geometric mean filtering.
% F = SPFILT(G, 'hmean', M, N) Harmonic mean filtering.
% F = SPFILT(G, 'chmean', M, N, Q) Contraharmonic mean

% filtering of order Q. The
% default is Q = 1.5.

% F = SPFILT(G, 'median', M, N) Median filtering.

% F = SPFILT(G, 'max', M, N) Max filtering.

% F = SPFILT(G, 'min', M, N) Min filtering.

ﬁgégggiﬁéng

spfilt
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% = SPFILT(G, 'midpoint', M, N) Midpoint filtering.
% = SPFILT(G, 'atrimmed', M, N, D) Alpha-trimmed mean filtering.

% Parameter D must be a nonnegative
% even integer; its default

% value is D = 2,

%
%

The default values when only G and TYPE are input are M = N = 3,
% Q=1.5,and D = 2.

% Process inputs.
if nargin ==
m=3;n=3;
elseif nargin == 5
Q = parameter; d = parameter;
elseif nargin ==

[=]
(=X
"
n

Q=1.5;d=2
else

error('Wrong number of inputs.');
end

% Do the filtering.
switch type
case 'amean’
w = fspecial('average', [m n]);
f = imfilter(g, w, 'replicate');
case 'gmean’
f = gmean(g, m, n);
case 'hmean’
f = harmean(g, m, n);
case 'chmean’
f = charmean(g, m, n, Q);
case 'median’
f = medfilt2(g, [m n], 'symmetric');
case 'max’
f = ordfilt2(g, m*n, ones(m, n), 'symmetric');
case 'min’
f = ordfilt2(g, 1, ones(m, n), 'symmetric'});
case 'midpoint’
f1 = ordfilt2(g, 1, ones(m, n), 'symmetric');
f2 = ordfilt2(g, m*n, ones(m, n), 'symmetric');
f = imlincomb(0.5, f1, 0.5, f2);
case 'atrimmed'
if (d < 0) | (d/2 ~= round(d/2))
error('d must be a nonnegative, even integer.')

mnon

end

f = alphatrim(g, m, n, d);
otherwise

error('Unknown filter type.')
end

161
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EXAMPLE 5.5:
Using function
spfilt.

function f = gmean(g, m, n)

% Implements a geometric mean filter.

inclass = class(g);

g = im2double(g);

% Disable log(0) warning.

warning off;

f = exp(imfilter(log(g), ones(m, n), 'replicate')).”(1 / m / n);
warning on;

f = changeclass(inclass, f);

function f = harmean(g, m, n)
% Implements a harmonic mean filter.
inclass = class(g);

= im2double(g);

f=m*n ./ imfilter(1./(g + eps), ones(m, n), 'replicate');
f = changeclass(inclass, f);
-

function f = charmean(g, m, n, q)

% Implements a contraharmonic mean filter.
inclass = class(g);

g = im2double(g);

f = imfilter(g.”(q+1), ones(m, n), 'replicate');

f=f ./ (imfilter(g."q, ones(m, n), 'replicate') + eps);

f = changeclass(inclass, f);
e

function f = alphatrim(g, m, n, d)
% Implements an alpha-trimmed mean filter.
inclass = class(g);
g = im2double(g);
f = imfilter(g, ones(m, n), 'symmetric');
for k = 1:d/2
f = imsubtract(f, ordfilt2(g, k, ones(m, n), 'symmetric'));
end
for k = (m*n — (d/2) + 1):m*n
f = imsubtract(f, ordfilt2(g, k, ones(m, n), 'symmetric'));
end
£
£

f [ (m*n - d);
changeclass(inclass, f);

P ]

¥ The image in Fig. 5.5(a) is an uint8 image corrupted by pepper noise only
with probability 0.1. This image was generated using the following commands

[f denotes the original image, which is Fig. 3.18(a)]:
>> [M, N] = size(f);

>> R = imnoise2('salt & pepper', M, N, 0.1, 0);
>> ¢ = find(R == 0);

>> gp = f;

>> gp(c) = 0;

The image in Fig. 5.5(b), corrupted by salt noise only, was generated using the

statements
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FIGURE 5.5

(2) Image
corrupted by
pepper noise with
probability 0.1.
(b) Image
corrupted by salt
noise with the
same probability.
(c) Result of
filtering (a) with a
3X3
contraharmonic
filter of order

Q0 =15.(d)
Result of filtering
(b) with

Q= -15.

(e) Result of
filtering (a) with a
3 X 3 max filter.
(f) Result of
filtering (b) with a
3 X 3 min filter.

>> R = imnoise2('salt & pepper', M, N, 0, 0.1);
>> ¢ = find(R == 1);
>> gs = f;

>> gs(c) = 255;
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A good approach for filtering pepper noise is to use a contraharmonic filter
with a positive value of Q. Figure 5.5(c) was generated using the statement

>> fp = spfilt(gp, 'chmean’, 3, 3, 1.5);

Similarly, salt noise can be filtered using a contraharmonic filter with a nega-
tive value of Q:

>> fs = spfilt(gs, 'chmean', 3, 3, —1.5);
Figure 5.5(d) shows the result. Similar results can be obtained using max and

min filters. For example, the images in Figs. 5.5(e) and (f) were generated from
Figs. 5.5(a) and (b), respectively, with the following commands:

>> fpmax = spfilt(gp, 'max', 3, 3);
>> fsmin = spfilt(gs, 'min', 3, 3);
Other solutions using spfilt are implemented in a similar manner. =

3.3.2 Adaptive Spatial Filters

The filters discussed in the previous section are applied to an image without
regard for how image characteristics vary from one location to another. In
some applications, results can be improved by using filters capable of adapting
their behavior depending on the characteristics of the image in the area being
filtered. As an illustration of how to implement adaptive spatial filters in
MATLAB, we consider in this section an adaptive median filter. As before, Sy
denotes a subimage centered at location (x, y) in the image being processed.
The algorithm, which is explained in detail in Gonzalez and Woods [2002], is as
follows: Let

Zmin = Minimum intensity value in S,
Zmax = Maximum intensity value in S,
Zmed = median of the intensity values in S,

Il

Zy, = intensity value at coordinates (x, y)

The adaptive median filtering algorithm works in two levels, denoted level A
and level B:

Level A: If Zomin < Zmed < Zmax, O to level B
Else increase the window size
If window size = Sp,,, repeat level A
Else output z;.4

Level B: If Zmin < Zxy < Zmax, OULPUL Z,,
Else output z,,4
where Sp,; denotes the maximum allowed size of the adaptive filter window.
Another option in the last step in Level A is to output z,,, instead of the median.
This produces a slightly less blurred result but can fail to detect salt (pepper)
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BEE

FIGURE 5.6 (a) Image corrupted by salt-and-pepper noise with density 0.25. (b) Result obtained using a
median filter of size 7 X 7. (c) Result obtained using adaptive median filtering with S, = 7.

noise embedded in a constant background having the same value as pepper
(salt) noise.

An M-function that implements this algorithm, which we call adpmedian, is
included in Appendix C. The syntax is

f = adpmedian(g, Smax)

where g is the image to be filtered, and, as defined above, Smax is the maxi-
mum allowed size of the adaptive filter window.

B Figure 5.6(a) shows the circuit board image, f, corrupted by salt-and-
pepper noise, generated using the command

>> g = imnoise(f, 'salt & pepper', .25);

and Fig. 5.6(b) shows the result obtained using the command (see Section 3.5.2
regarding the use of medfilt2):

>> f1 = medfilt2(g, [7 7], 'symmetric');

This image is reasonably free of noise, but it is quite blurred and distorted
(e.g., see the connector fingers in the top middle of the image). On the other
hand, the command

>> f2 = adpmedian(g, 7);

yielded the image in Fig. 5.6(c), which is also reasonably free of noise, but is
considerably less blurred and distorted than Fig. 5.6(b).

adpmedian
B —

EXAMPLE 5.6
Adaptive median
filtering.
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-7 Periodic Noise Reduction

by Frequency Domain Filtering
As noted in Section 5.2.3, periodic noise manifests itself as impulse-like bursts
that often are visible in the Fourier spectrum. The principal approach for fil-

tering these components is via notch filtering. The transfer function of a But-
terworth notch filter of order # is given by

1

H(u, 'U) = D2 n
1+ [ 0 }
Dy (u, v) Da(u, v)

where

Di(u,v) = [(w — M/2 — up)® + (v — N/2 — v)1]"2
and

Dy(u,v) = [(u — M/2 + up)* + (v — NJ2 + v)2]*

where (ug, vo) (and by symmetry) (—uy, —vp) are the locations of the “notches,”
and D, is a measure of their radius. Note that the filter is specified with respect
to the center of the frequency rectangle, so it must be preprocessed with func-
tion fftshift prior to its use, as explained in Sections 4.2 and 4.3.

Writing an M-function for notch filtering follows the same principles used
in Section 4.5. It is good practice to write the function so that multiple notches
can be input, as in the approach used in Section 5.2.3 to generate multiple si-
nusoidal noise patterns. Once H has been obtained, filtering is done using
function dftfilt explained in Section 4.3.3.

.| Modeling the Degradation Function

When equipment similar to the equipment that generated a degraded image is
available, it is generally possible to determine the nature of the degradation by
experimenting with various equipment settings. However, relevant imaging
equipment availability is the exception, rather than the rule, in the solution of
image restoration problems, and a typical approach is to experiment by gener-
ating PSFs and testing the results with various restoration algorithms. Another
approach is to attempt to model the PSF mathematically. This approach is out-
side the mainstream of our discussion here; for an introduction to this topic
see Gonzalez and Woods [2002]. Finally, when no information is available
about the PSF, we can resort to “blind deconvolution” for inferring the PSF.
This approach is discussed in Section 5.10. The focus of the remainder of the
present section is on various techniques for modeling PSFs by using functions
imfilter and fspecial, introduced in Sections 3.4 and 3.5, respectively, and
the various noise-generating functions discussed earlier in this chapter.

One of the principal degradations encountered in image restoration prob-
lems is image blur. Blur that occurs with the scene and sensor at rest with re-
spect to each other can be modeled by spatial or frequency domain lowpass
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filters. Another important degradation model is image blur due to uniform lin-
ear motion between the sensor and scene during image acquisition. Image blur
can be modeled using IPT function fspecial:

PSF = fspecial('motion', len, theta)

This call to fspecial returns a PSF that approximates the effects of linear
motion of a camera by len pixels. Parameter theta is in degrees, measured
with respect to the positive horizontal axis in a counter-clockwise direction.
The default value of 1en is 9 and the default theta is 0, which corresponds to
motion of 9 pixels in the horizontal direction.

We use function imfilter to create a degraded image with a PSF that is
either known or is computed by using the method just described:

>> g = imfilter(f, PSF, 'circular');

where ‘circular' (Table 3.2) is used to reduce border effects. We then com-
plete the degraded image model by adding noise, as appropriate:

>> g = g + noise;

where noise is a random noise image of the same size as g, generated using
one of the methods discussed in Section 5.2.

When comparing in a given situation the suitability of the various ap-
proaches discussed in this and the following sections, it is useful to use the
same image or test pattern so that comparisons are meaningful. The test pat-
tern generated by function checkerboard is particularly useful for this pur-
pose because its size can be scaled without affecting its principal features. The
syntax is

C = checkerboard(NP, M, N)

where NP is the number of pixels on the side of each square, M is the number of
rows, and N is the number of columns. If N is omitted, it defaults to M. If both M
and N are omitted, a square checkerboard with 8 squares on the side is gener-
ated. If, in addition, NP is omitted, it defaults to 10 pixels. The light squares on
the left half of the checkerboard are white. The light squares on the right half
of the checkerboard are gray. To generate a checkerboard in which all light
squares are white we use the command

>> K = im2double(checkerboard(NP, M, N)) > 0.5;

The images generated by function checkerboard are of class double with val-
ues in the range [0, 1].

Because some restoration algorithms are slow for large images, a good ap-
proach is to experiment with small images to reduce computation time and
thus improve interactivity. In this case, it is useful for display purposes to be

@%c gckerboard

Using the > operator
produces a logical
result; im2double is
used to produce an
image of class
double, which is
consistent with the
output format of
function
checkerboard.
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pixeldup

EXAMPLE 5.7
Modeling a
blurred, noisy
image.

e

FIGURE 5.7

(a) Original
image. (b) Image
blurred using
fspecial with
len=7,and
theta=-45
degrees.

(c) Noise image.
(d) Sum of (b)
and (c).

able to zoom an image by pixel replication. The following function does this
(see Appendix C for the code):

B = pixeldup(A, m, n)

This function duplicates every pixel in A a total of m times in the vertical direc-
tion and n times in the horizontal direction. If n is omitted, it defaults to m.

& Figure 5.7(a) shows a checkerboard image generated by the command
>> f = checkerboard(8);

The degraded image in Fig. 5.7(b) was generated using the commands

>> PSF = fspecial('motion', 7, 45);
>> gb = imfilter(f, PSF,

'circular');
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Note that the PSF is just a spatial filter. Its values are

>> PSF
PSF =

0 0 0 0 0 0.0145 0

0 0 0 0 0.0376 0.1283 0.0145

0 0 0 0.0376 0.1283 0.0376 0

0 0 0.0376 0.1283 0.0376 0 0

0 0.0376 0.1283 0.0376 0 0 0

0.0145 0.1283  0.0376 0 0 0 0

0 0.0145 0 0 0 0 0

The noisy pattern in Fig. 5.7(c) was generated using the command
>> noise = imnoise(zeros(size(f)), 'gaussian', 0, 0.001);

Normally, we would have added noise to gb directly using imnoise(gb,
'gaussian', 0, 0.001).However, the noise image is needed later in this
chapter, so we computed it separately here.

The blurred noisy image in Fig. 5.7(d) was generated as

>> g = gb + noise;

The noise is not easily visible in this image because its maximum value is on
the order of 0.15, whereas the maximum value of the image is 1. As shown in
Sections 5.7 and 5.8, however, this level of noise is not insignificant when at-
tempting to restore g. Finally, we point out that all images in Fig. 5.7 were
zoomed to size 512 X 512 and displayed using a command of the form

>> imshow(pixeldup(f, 8), [ 1)

The image in Fig. 5.7(d) is restored in Examples 5.8 and 5.9.

E7. Direct Inverse Filtering

The simplest approach we can take to restoring a degraded image is to form an
estimate of the form

G(u,v)

H(u,v)

and then obtain the corresponding estimate of the image by taking the inverse
Fourier transform of F(u, v) [recall that G(u, v) is the Fourier transform of

the degraded image]. This approach is appropriately called inverse filtering.
From the model discussed in Section 5.1, we can express our estimate as

N(u,v)
H(u,v)

f«"(u, v) =

F(u,v) = F(u,v) +



170  Chapter 5 ® Image Restoration

This deceptively simple expression tells us that, even if we knew H(u, v) ex-
actly, we could not recover F(u, v) [and hence the original, undegraded image
f(x,y)] because the noise component is a random function whose Fourier
transform, N(u, v), is not known. In addition, there usually is a problem in
practice with function H(u,v) having numerous zeros. Even if the term

N(u, v) were negligible, dividing it by vanishing values of H(u, v) would dom-
inate restoration estimates. :

_ The typical approach when attempting inverse filtering is to form the ratio
F(u,v) = G(u,v)/H(u,v) and then limit the frequency range for obtaining
the inverse, to frequencies “near” the origin. The idea is that zeros in H (u, v)
are less likely to occur near the origin because the magnitude of the transform
typically is at its highest value in that region. There are numerous variations of
this basic theme, in which special treatment is given at values of (u, v) for
which H is zero or near zero. This type of approach sometimes is called
pseudoinverse filtering. In general, approaches based on inverse filtering of
this type are seldom practical, as Example 5.8 in the next section shows.

b4 Wiener Filtering

Wiener filtering (after N. Wiener, who first proposed the method in 1942) is
one of the earliest and best known approaches to linear image restoration. A
Wiener filter seeks an estimate f that minimizes the statistical error function

& =E{(f - H

where E is the expected value operator and f is the undegraded image. The so-
lution to this expression in the frequency domain is

R
’ H(u,v) [H(u,v)|* + Sy(u, v)/S¢(u, v)

:IG(u, V)

where

H(u,v) = the degradation function

|H(u, v)? = H*(u, v)H (4, v)

H*(u,v) = the complex conjugate of H(u, v)

Sy(u,v) = |N(u, v)|? = the power spectrum of the noise

S¢(u,v) = |F(u, v)|* = the power spectrum of the undegraded image
The ratio S, (u, v)/S¢(u, v) is called the noise-to-signal power ratio. We see that
if the noise power spectrum is zero for all relevant values of u and v, this ratio
becomes zero and the Wiener filter reduces to the inverse filter discussed in
the previous section.

Two related quantities of interest are the average noise power and the aver-
age image power, defined as

1
N4 = —M_ﬁzu" ;Sn(u, )
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and
fa= 3w S 2w )

where M and N denote the vertical and horizontal sizes of the image and noise
arrays, respectively. These quantities are scalar constants, and their ratio,
R4
fa
which is also a scalar, is used sometimes to generate a constant array in place
~of the function S, (u, v)/S¢(u, v). In this case, even if the actual ratio is not
known, it becomes a simple matter to experiment interactively varying the
constant and viewing the restored results. This, of course, is a crude approxi-
mation that assumes that the functions are constant. Replacing
S,(u, v)/S¢(u, v) by a constant array in the preceding filter equation results in
the so-called parametric Wiener filter. As illustrated in Example 5.8, the simple
act of using a constant array can yield significant improvements over direct in-
verse filtering.
Wiener filtering is implemented in IPT using function deconvwnr, which
has three possible syntax forms. In all these forms, g denotes the degraded
image and fr is the restored image. The first syntax form,

fr = deconvwnr(g, PSF)

assumes that the noise-to-signal ratio is zero. Thus, this form of the Wiener fil-
ter is the inverse filter mentioned in Section 5.6. The syntax

fr = deconvwnr(g, PSF, NSPR)

assumes that the noise-to-signal power ratio is known, either as a constant or
as an array; the function accepts either one. This is the syntax used to imple-
ment the parametric Wiener filter, in which case NSPR would be an interactive
scalar input. Finally, the syntax

fr = deconvwnr(g, PSF, NACORR, FACORR)

assumes that autocorrelation functions, NACORR and FACORR, of the noise and
undegraded image are known. Note that this form of deconvwnr uses the au-
tocorrelation of n and f instead of the power spectrum of these functions.
From the correlation theorem we know that

[F(u,v)P = S[f(x,9)  £(x,9)]

where “ o ” denotes the correlation operation and I denotes the Fourier
transform. This expression indicates that we can obtain the autocorrelation
function, f(x, y) ° f(x,y), for use in deconvwnr by computing the inverse
Fourier transform of the power spectrum. Similar comments hold for the auto-
correlation of the noise.
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EXAMPLE 5.8:
Using function
deconvwnr to
restore a blurred,
noisy image.

FIGURE 5.8

(a) Blurred, noisy

image. (b) Result
of inverse
filtering.

(c) Result of
Wiener filtering
using a constant
ratio. (d) Result

of Wiener filtering

using
autocorrelation
functions.

If the restored image exhibits ringing introduced by the discrete Fourier
transform used in the algorithm, it sometimes helps to use function edgetaper
prior to calling deconvwnr. The syntax is

J = edgetaper(I, PSF)

This function blurs the edges of the input image, I, using the point spread func-
tion, PSF.The output image, J, is the weighted sum of I and its blurred version.
The weighting array, determined by the autocorrelation function of PSF,
makes J equal to I in its central region, and equal to the blurred version of I
near the edges.

# Figure 5.8(a) is the same as Fig. 5.7(d), and Fig. 5.8(b) was obtained using
the command

>> fr1 = deconvwnr(g, PSF);
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where g is the corrupted image and PSF is the point spread function computed
in Example 5.7. As noted earlier in this section, fr1 is the result of direct in-
verse filtering and, as expected, the result is dominated by the effects of noise.
(As in Example 5.7, all displayed images were processed with pixeldup to
zoom their size to 512 X 512 pixels.)

The ratio, R, discussed earlier in this section, was obtained using the original
and noise images from Example 5.7:

>> 8Sn = abs(fft2(noise))."2; % noise power spectrum
>> nA = sum(Sn(:))/prod(size(noise)); % noise average power
>> St = abs(fft2(f))."2; % image power spectrum
>> fA = sum(Sf(:))/prod(size(f)); % image average power
>> R = nA/fA;

To restore the image using this ratio we write
>> fr2 = deconvwnr(g, PSF, R);

As Fig. 5.8(c) shows, this approach gives a significant improvement over direct
inverse filtering.

Finally, we use the autocorrelation functions in the restoration (note the use
of fftshift for centering):

>> NCORR = fftshift(real(ifft2(Sn)));
>> ICORR = fftshift(real(ifft2(Sf)));
>> fr3 = deconvwnr(g, PSF, NCORR, ICORR);

As Fig. 5.8(d) shows, the result is close to the original, although some noise is
still evident. Because the original image and noise functions were known, we
were able to estimate the correct parameters, and Fig. 5.8(d) is the best that
can be accomplished with Wiener deconvolution in this case. The challenge in
practice, when one (or more) of these quantities is not known, is the intelligent
choice of functions used in experimenting, until an acceptable result is
obtained. =

EX] Constrained Least Squares (Regularized) Filtering

Another well-established approach to linear restoration is constrained least
squares filtering, called regularized filtering in IPT documentation. The defini-
tion of 2-D discrete convolution is

Hx ) = o 52 S Flmm)hx = oy =)

Using this equation, we can express the linear degradation model discussed in
Section 5.1, g(x, y) = h(x, y)*f(x,y) + n(x, y), in vector-matrix form, as

g=Hf + ¢
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For example, suppose that g(x, y) is of size M X N.Then we can form the first
N elements of the vector g by using the image elements in the first row of
g(x, y), the next N elements from the second row, and so on. The resulting vec-
tor will have dimensions MN X 1. These also are the dimensions of f and 7, as
these vectors are formed in the same manner. The matrix H then has dimen-
sions MN X MN. Its elements are given by the elements of the preceding con-
volution equation.

It would be reasonable to arrive at the conclusion that the resforation prob-
lem can now be reduced to simple matrix manipulations. Unfortunately, this is
not the case. For instance, suppose that we are working with images of medium
size; say M = N = 512. Then the vectors in the preceding matrix equation
would be of dimension 262,144 X 1, and matrix H would be of dimensions
262,144 X 262,144, Manipulating vectors and matrices of these sizes is not a
trivial task. The problem is complicated further by the fact that the inverse of
H does not always exist due to zeros in the transfer function (see Section 5.6).
However, formulating the restoration problem in matrix form does facilitate
derivation of restoration techniques.

Although we do not derive the method of constrained least squares that we
are about to present, central to this method is the issue of the sensitivity of the
inverse of H mentioned in the previous paragraph. One way to deal with this
issue is to base optimality of restoration on a measure of smoothness, such as the
second derivative of an image (e.g., the Laplacian). To be meaningful, the
restoration must be constrained by the parameters of the problem at hand. Thus,
what is desired is to find the minimum of a criterion function, C, defined as

M-1N-1

= xg 2 [V2f(x, »)]*

subject to the constraint

lg — Hf> = |l

where |[w|? £ wlw is the Euclidean vector norm,’ fis the estimate of the un-
degraded image, and the Laplacian operator V2 is as defined in Section 3.5.1.

The frequency domain solution to this optimization problem is given by the
expression

T

H*(u,v)
|H (u, ) + y|P(u, v)

Flu,v) = [ :|G(u, v)

where v is a parameter that must be adjusted so that the constraint is satisfied
(if v is zero we have an inverse filter solution), and P(u, v) is the Fourier trans-
form of the function

n
TFor a column vector w with 7 components, w'w = > w#, where wy, is the kth component of w.
=1
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0 10
plrxy)=11 -4 1
0 10

We recognize this function as the Laplacian operator introduced in Section 3.5.1.
The only unknowns in the preceding formulation are y and |y However, it can
be shown that vy can be found iteratively if |||, which is proportional to the noise
power (a scalar),is known.

Constrained least squares filtering is implemented in IPT by function
deconvreg, which has the syntax

fr = deconvreg(g, PSF, NOISEPOWER, RANGE)

where g is the corrupted image, fr is the restored image, NOISEPOWER is pro-
portional to |n|%, and RANGE is the range of values where the algorithm is lim-
ited to look for a solution for . The default range is [10~, 10°] ([1e~10, 1e10]
in MATLAB notation). If the last two parameters are excluded from the argu-
ment, deconvreg produces an inverse filter solution. A good starting estimate
for NOISEPOWER is MN[o? + mZ], where M and N are the dimensions of the
image and the parameters inside the brackets are the noise variance and noise
squared mean. This estimate is simply a starting point and, as the next example
shows, the final value used can be quite different.

B We now restore the image in Fig. 5.7(d) using deconvreg. The image is of
size 64 X 64 and we know from Example 5.7 that the noise has a variance of
0.001 and =zero mean. So, our initial estimate of NOISEPOWER is
(64)%[0.001 — 0] ~ 4. Figure 5.9(a) shows the result of using the command

>> fr =

deconvreg(g, PSF, 4);

EXAMPLE 5.9:
Using function
deconvreg to
restore a blurred,
noisy image.

-

FIGURE 5.9

(a) The image in
Fig. 5.7(d)
restored using a
regularized filter
with NOISEPOWER
equal to 4. (b) The
same image
restored with
NOISEPOWER equal
to 0.4 and a RANGE
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where g and PSF are from Example 5.7. The image was improved somewhat from
the original, but obviously this is not a particularly good value for NOISEPOWER.
After some experimenting with this parameter and parameter RANGE, we arrived
at the result in Fig. 5.9(b), which was obtained using the command

>> fr = deconvreg(g, PSF, 0.4, [1e-7 1e7]);

Thus we see that we had to go down one order of magnitude on NOISEPOWER,
and RANGE was tighter than the default. The Wiener filtering result in
Fig. 5.8(d) is much better, but we obtained that result with full knowledge of
the noise and image spectra. Without that information, the results obtainable
by experimenting with the two filters often are comparable. =

If the restored image exhibits ringing introduced by the discrete Fourier
transform used in the algorithm, it usually helps to use function edgetaper
(see Section 5.7) prior to calling deconvreg.

Iterative Nonlinear Restoration Using the
Lucy-Richardson Algorithm

The image restoration methods discussed in the previous three sections are
linear. They also are “direct” in the sense that, once the restoration filter is
specified, the solution is obtained via one application of the filter. This simplic-
ity of implementation, coupled with modest computational requirements and
a well-established theoretical base, have made linear techniques a fundamen-
tal tool in image restoration for many years.

During the past two decades, nonlinear iterative techniques have been gain-
ing acceptance as restoration tools that often yield results superior to those
obtained with linear methods. The principal objections to nonlinear methods
are that their behavior is not always predictable and that they generally re-
quire significant computational resources. The first objection often loses im-
portance based on the fact that nonlinear methods have been shown to be
superior to linear techniques in a broad spectrum of applications (Jansson
[1997]). The second objection has become less of an issue due to the dramatic
increase in inexpensive computing power over the last decade. The nonlinear
method of choice in the toolbox is a technique developed by Richardson
[1972] and by Lucy [1974], working independently. The toolbox refers to this
method as the Lucy-Richardson (L-R) algorithm, but we also see it quoted in
the literature as the Richardson-Lucy algorithm.

The L-R algorithm arises from a maximum-likelihood formulation (see
Section 5.10) in which the image is modeled with Poisson statistics. Maximiz-
ing the likelihood function of the model yields an equation that is satisfied
when the following iteration converges:

g(x,y) J

fk+1(x’ y) = fk(x, y)[h(_x, _y) * h(x, y) * fk(x, y)
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As before, “*” indicates convolution, f is the estimate of the undegraded
image, and both g and 4 are as defined in Section 5.1. The iterative nature of
the algorithm is evident. Its nonlinear nature arises from the division by f on
the right side of the equation.

As with most nonlinear methods, the question of when to stop the L-R al-
gorithm is difficult to answer in general. The approach often followed is to ob-
serve the output and stop the algorithm when a result acceptable in a given
application has been obtained.

The L-R algorithm is implemented in IPT by function deconvlucy, which
has the basic syntax

fr = deconvlucy(g, PSF, NUMIT, DAMPAR, WEIGHT)

where fr is the restored image, g is the degraded image, PSF is the point
spread function, NUMIT is the number of iterations (the default is 10), and
DAMPAR and WEIGHT are defined as follows.

DAMPAR is a scalar that specifies the threshold deviation of the resulting
image from image g. Iterations are suppressed for the pixels that deviate
within the DAMPAR value from their original value. This suppresses noise gen-
eration in such pixels, preserving necessary image details. The default is O (no
damping).

WEIGHT is an array of the same size as g that assigns a weight to each pixel
to reflect its quality. For example, a bad pixel resulting from a defective imag-
ing array can be excluded from the solution by assigning to it a zero weight
value. Another useful application of this array is to let it adjust the weights of
the pixels according to the amount of flat-field correction that may be neces-
sary based on knowledge of the imaging array. When simulating blurring with
a specified PSF (see Example 5.7),WEIGHT can be used to eliminate from com-
putation pixels that are on the border of an image and thus are blurred differ-
ently by the PSFE If the PSF is of size n X n, the border of zeros used in
WEIGHT is of width ceil(n/2).The default is a unit array of the same size as
input image g.

If the restored image exhibits ringing introduced by the discrete Fourier
transform used in the algorithm, it sometimes helps to use function edgetaper
(see Section 5.7) prior to calling deconvlucy.

B Figure 5.10(a) shows an image generated using the command
>> f = checkerboard(8);

which produced a square image of size 64 X 64 pixels. As before, the size of
the image was increased to size 512 X 512 for display purposes by using func-
tion pixeldup:

>> imshow(pixeldup(f, 8));

EXAMPLE 5.10:
Using function
deconvlucy to
restore a blurred,
noisy image.
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FIGURE 5.10

(a) Original
image. (b) Image
blurred and
corrupted by
Gaussian noise.
(c) through (f)
Image (b)
restored using the
L-R algorithm
with 5, 10, 20, and
100 iterations,
respectively.
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The following command generated a Gaussian PSF of size 7 X 7 with a
standard deviation of 10:

>> PSF = fspecial('gaussian', 7, 10);

Next, we blurred image f using PDF and added to it Gaussian noise of zero
mean and standard deviation of 0.01:

>> SD = 0.01;
>> g = imnoise(imfilter(f, PSF), 'gaussian', 0, SD*2);

Figure 5.10(b) shows the result.
The remainder of this example deals with restoring image g using function
deconvlucy. For DAMPAR we specified a value equal to 10 times SD:

>> DAMPAR = 10*SD;

Array WEIGHT was created using the approach discussed in the precedmg ex-
planation of this parameter:

>> LIM = ceil(size(PSF, 1)/2);
>> WEIGHT = zeros(size(g));
>> WEIGHT(LIM + 1:end — LIM, LIM + 1:end — LIM) =

Array WEIGHT is of size 64 X 64 with a border of Os 4 pixels wide; the rest of
the pixels are 1s.

The only variable left is NUMIT, the number of iterations. Figure 5.10(c)
shows the result obtained using the commands

>> NUMIT = 5;
>> fr = deconvlucy(g, PSF, NUMIT, DAMPAR, WEIGHT);
>> imshow(pixeldup(fr, 8))

Although the image has improved somewhat, it is still blurry. Figures 5.10(d)
and (e) show the results obtained using NUMIT = 10 and 20. The latter result is a
reasonable restoration of the blurred, noisy image. In fact, further increases in the
number of iterations did not produce dramatic improvements in the restored re-
sult. For example, Fig. 5.10(f) was obtained using 100 iterations. This image is only
slightly sharper and brighter than the result obtained using 20 iterations. The thin
black border seen in all results was caused by the Os in array WEIGHT. ]

Blind Deconvolution

One of the most difficult problems in image restoration is obtaining a suitable es-
timate of the PSF to use in restoration algorithms such as those discussed in the
preceding sections. As noted earlier, image restoration methods that are not based
on specific knowledge of the PSF are called blind deconvolution algorithms.

179
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EXAMPLE 5.11:
Using function
deconvblind to
estimate a PSF.

An approach to blind deconvolution that has received significant attention
over the past two decades is based on maximum-likelihood estimation (MLE),
an optimization strategy used for obtaining estimates of quantities corrupted
by random noise. Briefly, an interpretation of MLE is to think of image data as
random quantities having a certain likelihood of being produced from a fami-
ly of other possible random quantities. The likelihood function is expressed in
terms of g(x, y), f(x, y), and A(x, y) (see Section 5.1), and the problem then is
to find the maximum of the likelihood function. In blind deconvélution the op-
timization problem is solved iteratively with specified constraints and, assum-
ing convergence, the specific f(x, y) and h(x, y) that result in a maximum are
the restored image and the PSF.

A derivation of MLE blind deconvolution is outside the scope of the pre-
sent discussion, but the reader can gain a solid understanding of this area by
consulting the following references: For background on maximum-likelihood
estimation, see the classic book by Van Trees [1968]. For a review of some of
the original image-processing work in this area see Dempster et al. [1977], and
for some of its later extensions see Holmes [1992]. A good general reference
book on deconvolution is Jansson [1997]. For detailed examples on the use of
deconvolution in microscopy and in astronomy, see Holmes et al. [1995] and
Hanisch et al. [1997], respectively.

The toolbox performs blind deconvolution via function deconvblind,
which has the basic syntax

[fr, PSFe] = deconvblind(g, INITPSF)

where g is the degraded image, INITPSF is an initial estimate of the point spread
function, PSFe is the final computed estimate of this function, and fr is the
image restored using the estimated PSE The algorithm used to obtain the re-
stored image is the L-R iterative restoration algorithm explained in Section 5.9.
The PSF estimation is affected strongly by the size of its initial guess, and less by
its values (an array of 1s is a reasonable starting guess).

The number of iterations performed with the preceding syntax is 10 by de-
fault. Additional parameters may be included in the function to control the num-
ber of iterations and other features of the restoration, as in the following syntax:

[fr, PSFe] = deconvblind(g, INITPSF, NUMIT, DAMPAR, WEIGHT)

where NUMIT, DAMPAR, and WEIGHT are as described for the L-R algorithm in
the previous section.

If the restored image exhibits ringing introduced by the discrete Fourier
transform used in the algorithm, it sometimes helps to use function edgetaper
(see Section 5.7) prior to calling deconvblind.

B Figure 5.11(a) is the PSF used to generate the degraded image in
Fig. 5.10(b):

>> PSF = fspecial('gaussian', 7, 10);
>> imshow(pixeldup(PSF, 73), [ 1);
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5

As in Example 5.10, the degraded image in question was obtained with the
commands

>> 8D = 0.01;
>> g = imnoise(imfilter(f, PSF), 'gaussian', 0, SD"2);

In the present example we are interested in using function deconvblind to
obtain an estimate of the PSF, given only the degraded image g. Figure 5.11(b)
shows the PSF resulting from the following commands:

>> INITPSF = ones(size(PSF));

>> NUMIT = 5;

>> [fr, PSFe] = deconvblind(g, INITPSF, NUMIT, DAMPAR, WEIGHT);
>> imshow(pixeldup(PSFe, 73), [ 1);

where we used the same values as in Example 5.10 for DAMPAR and WEIGHT.
Figures 5.11(c) and (d), displayed in the same manner as PSFe, show the

PSFs obtained with 10, and 20 iterations, respectively. The latter result is close

to the true PSF in Fig. 5.11(a). B

FIGURE 5.11

(a) Original PSF.
(b) through (d)
Estimates of the
PSF using 5, 10,
and 20 iterations
in function
deconvblind.
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Geometric Transformations and Image Registration

We conclude this chapter with an introduction to geometric transformations
for image restoration. Geometric transformations modify the spatial relation-
ship between pixels in an image. They are often called rubber-sheet transfor-
mations because they may be viewed as printing an image on a sheet of rubber
and then stretching this sheet according to a predefined set of rules.

Geometric transformations are used frequently to perform irmage registra-
tion, a process that takes two images of the same scene and aligns them so
they can be merged for visualization, or for quantitative comparison. In the
following sections, we discuss (1) spatial transformations and how to define
and visualize them in MATLAB; (2) how to apply spatial transformations to
images; and (3) how to determine spatial transformations for use in image
registration.

5.11.1 Geometric Spatial Transformations

Suppose that an image, f, defined over a (w, z) coordinate system, undergoes
geometric distortion to produce an image, g, defined over an (x, y) coordinate
system. This transformation (of the coordinates) may be expressed as

(x,y) = T{(w, 2)}

For example, if (x, y) = T{(w,v)} = (w/2, z/2), the “distortion” is simply a
shrinking of f by half in both spatial dimensions, as illustrated in Fig. 5.12.

T{((5,2)} = (2.5,1)

/A

z y

FIGURE 5.12 A simple spatial transformation. (Note that the xy-axes in this figure do
not correspond to the image axis coordinate system defined in Section 2.1.1. As
mentioned in that section, IPT on occasion uses the so-called spatial coordinate
system in which y designates rows and x designates columns. This is the system used
throughout this section in order to be consistent with IPT documentation on the topic
of geometric transformations.)
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One of the most commonly used forms of spatial transformations is the
affine transform (Wolberg [1990]). The affine transform can be written in ma-

trix form as

[x vy 1]=[w z 1]T=[w z 1]| tn

by 0
t3 1

This transformation can scale, rotate, translate, or shear a set of points, de-
pending on the values chosen for the elements of T. Table 5.3 shows how to
choose the values of the elements to achieve different transformations.

IPT represents spatial transformations using a so-called tform structure.
One way to create such a structure is by using function maketform, whose call-

ing syntax is

tform = maketform(transform_type, transform_parameters)

Identity

Scaling

Rotation

Shear (horizontal)

Shear (vertical)

Translation

[=R )

cosf

—sinf

‘h
= o O

sinf 0
cosd O
0 1

S =, ™
o

x = wcosh — zsinf
y = wsinéd + zcosf

xX=w+ az
Y=z

X =w
y=pw+z

x=w+ 6,
y=z+5y

= PP P

183

See Sections 2.10.6
and 11.1.1 for a dis-
cussion of structures.

TABLE 5.3

Types of affine
transformations.
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The first input argument, transform_type, is one of these strings: 'affine’,
'projective', 'box', 'composite’, or 'custom'. These transform types are
described in Table 5.4, Section 5.11.3. Additional arguments depend on the
transform type and are described in detail in the help page for maketform.

In this section our interest is on affine transforms. For example, one way to
create an affine tformis to provide the T matrix directly, as in

> T=[200; 030; 00 1];
>> tform = maketform('affine', T)
tform =
ndims_in: 2
ndims_out: 2
forward_fcn: @fwd_affine
inverse_fcn: @inv_affine
tdata: [1 x 1 struct]

Although it is not necessary to use the fields of the tform structure directly
to be able to apply it, information about T, as well as about T7L, is contained in
the tdata field:

>> tform.tdata

ans =
T: [3 x 3 double]
Tinv: [3 x 3 double]

>> tform.tdata.T

ans =
2 0 O
0 3 0
0 0 1
>> tform.tdata.Tinv
ans =
0.5000 0 0
0 0.3333 0
0 0 1.0000

IPT provides two functions for applying a spatial transformation to
points: tformfwd computes the forward transformation, T{(w, z)}, and

tforminv computes the inverse transformation, T~}{(x, y)}. The calling
syntax for tformfwd is XY = tformfwd (WZ, tform). Here,WZisa P X 2
matrix of points; each row of WZ contains the w and z coordinates of one
point. Similarly, XY is a P X 2 matrix of points; each row contains the x and
y coordinates of a transformed point. For example, the following com-
mands compute the forward transformation of a pair of points, followed by
the inverse transform to verify that we get back the original data:

>> Wz
>> XY
XY =

[11; 3 2];
tformfwd (WZ, tform)
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2 3

6 6
>> WZ2 = tforminv (XY, tform)
wz2 =

1 1

3 2

To get a better feel for the effects of a particular spatial transformation, it
is often useful to see how it transforms a set of points arranged on a grid. The
following M-function, vistformfwd, constructs a grid of points, transforms
the grid using tformfwd, and then plots the grid and the transformed grid
side by side for comparison. Note the combined use of functions meshgrid
(Section 2.10.4) and linspace (Section 2.8.1) for creating the grid. The fol-
lowing code also illustrates the use of some of the functions discussed thus
far in this section.

function vistformfwd(tform, wdata, zdata, N)
%VISTFORMFWD Visualize forward geometric transform.

%  VISTFORMFWD(TFORM, WRANGE, ZRANGE, N) shows two plots: an N-by-N
% grid in the W-Z coordinate system, and the spatially transformed
% grid in the X-Y coordinate system. WRANGE and ZRANGE are
% two-element vectors specifying the desired range for the grid. N
% can be omitted, in which case the default value is 10.
if nargin < 4

N = 10;
end

% Create the w-z grid and transform it.
[w, z] = meshgrid(linspace(wdata(1), zdata(2), N),
linspace(wdata(1), zdata(2), N));

[w(:) z(:)];
tformfwd([w(:) z(:)], tform);

wz
Xy

% Calculate the minimum and maximum values of w and x,

% as well as z and y. These are used so the two plots can be

% displayed using the same scale.

X = reshape(xy(:, 1), size(w)); % reshape is discussed in Sec. 8.2.2.
y = reshape(xy(:, 2), size(z));

wx = [w(:); x(:)];

wxlimits = [min(wx) max(wx)];

zy = [z(:); y(:) 13

zylimits = [min(zy) max(zy)];

% Create the w-z plot.

subplot(1,2,1) % See Section 7.2.1 for a discussion of this function.
plot(w, z, 'b'), axis equal, axis ij

hold on

plot(w', z', 'b')

hold off

x1lim(wx1limits)

ylim(zylimits)

vistformfwd
P
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EXAMPLE 5.12:
Visualizing affine
transforms using

vistformfwd.

set(gca, 'XAxisLocation', 'top')
xlabel('w'), ylabel('z')

% Create the x-y plot.
subplot(1, 2, 2)
plot(x, y, 'b'), axis equal, axis 1ij

hold on

plot(x', y', 'b")

hold off

xlim(wxlimits)

ylim(zylimits)

set(gca, 'XAxisLocation', 'top')

xlabel('x'), ylabel('y'") J—

B In this example we use vistformfwd to visualize the effect of several dif-
ferent affine transforms. We also explore an alternate way to create an affine
tform using maketform. We start with an affine transform that scales horizon-
tally by a factor of 3 and vertically by a factor of 2:

> T1 =[300; 020; 00 1];
>> tform1 = maketform('affine', T1);
>> vistformfwd(tformi, [0 100], [0 100]);

Figures 5.13(a) and (b) show the result.
A shearing effect occurs when #y; or t;, is nonzero in the affine T matrix,
such as

> T2=[100; .210; 00 1];
>> tform2 = maketform('affine', T2);
>> vistformfwd(tform2, [0 100], [0 100]);

Figures 5.13(c) and (d) show the effect of the shearing transform on a grid.

An interesting property of affine transforms is that the composition of sev-
eral affine transforms is also an affine transform. Mathematically, affine trans-
forms can be generated simply by using multiplication of the T matrices. The
next block of code shows how to generate and visualize an affine transform
that is a combination of scaling, rotation, and shear.

>> Tscale = [1.5 00; 02 0; 00 1];

>> Trotation = [cos(pi/4) sin(pi/4) O
—sin(pi/4) cos(pi/4) O

00 1];

>> Tshear = [1 0 0; .21 0; 00 1];

>> T3 = Tscale * Trotation * Tshear;

>> tform3 = maketform('affine', T3);

>> vistformfwd (tform3, [0 100], [0 100])

Figures 5.13(e) and (f) show the results. &
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5.11.2 Applying Spatial Transformations to Images

Most computational methods for spatially transforming an image fall into
one of two categories: methods that use forward mapping, and methods that
use inverse mapping. Methods based on forward mapping scan each input
pixel in turn, copying its value into the output image at the location deter-
mined by T{(w, z)}. One problem with the forward mapping procedure is
that two or more different pixels in the input image could be transformed
into the same pixel in the output image, raising the question of how to
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EXAMPLE 5.13:
Spatially
transforming
images.

combine multiple input pixel values into a single output pixel value. Anoth-
er potential problem is that some output pixels may not be assigned a value
at all. In a more sophisticated form of forward mapping, the four corners of
each input pixel are mapped onto quadrilaterals in the output image. Input
pixels are distributed among output pixels according to how much each out-
put pixel is covered, relative to the area of each output pixel. Although
more accurate, this form of forward mapping is complex and computation-
ally expensive to implement.

IPT function imtransform uses inverse mapping instead. An inverse map-
ping procedure scans each output pixel in turn, computes the corresponding
location in the input image using 77*{(x, y)}, and interpolates among the
nearest input image pixels to determine the output pixel value. Inverse map-
ping is generally easier to implement than forward mapping.

The basic calling syntax for imtransform is

g = imtransform(f, tform, interp)

where interp is a string that specifies how input image pixels are interpolated to
obtain output pixels; interp can be either 'nearest', 'bilinear', or
'bicubic'.The interp input argument can be omitted, in which case it defaults
to 'bilinear'. As with the restoration examples given earlier, function
checkerboard is useful for generating test images for experimenting with spatial
transformations.

B In this example we use functions checkerboard and imtransform to
explore a number of different aspects of transforming images. A linear con-
formal transformation is a type of affine transformation that preserves
shapes and angles. Linear conformal transformations consist of a scale fac-
tor, a rotation angle, and a translation. The affine transformation matrix in
this case has the form

scosf ssinf O
T=| —ssinf scosf O
8, 3, 1

The following commands generate a linear conformal transformation and
apply it to a test image.

>> f heckerboard(50);

>> s 0.8;

>> theta = pi/6;

>> T = [s*cos(theta) s*sin(theta) O
—s*sin(theta) s*cos(theta) 0

0O o0 1];
>> tform = maketform('affine', T);
>> g = imtransform(f, tform);

Figures 5.14(a) and (b) show the original and transformed checkerboard images.
The preceding call to imtransform used the default interpolation method,



3.11 ® Geometric Transformations and Image Registration 189

FIGURE 5.14
Affine
transformations
of the
checkerboard
image.

(a) Original
image. (b) Linear
conformal
transformation
using the default
interpolation
(bilinear).

(c) Using nearest
neighbor
interpolation.

(d) Specifying an
alternate fill
value.

(e) Controlling
the output space
location so that
translation is
visible.




190 Chapter 5 & Image Restoration

'‘bilinear'. As mentioned earlier, we can select a different interpolation
method, such as nearest neighbor, by specifying it explicitly in the call to
imtransform:

>> g2 = imtransform(f, tform, 'nearest');

Figure 5.14(c) shows the result. Nearest neighbor interpolation is faster than
bilinear interpolation, and it may be more appropriate in some situations,
but it generally produces results inferior to those obtained with bilinear
interpolation.

Function imtransform has several additional optional parameters that are
useful at times. For example, passing it a FillValue parameter controls the
color imtransform uses for pixels outside the domain of the input image:

>> g3 = imtransform(f, tform, 'FillValue', 0.5);

In Fig. 5.14(d) the pixels outside the original image are mid-gray instead of black.

Other extra parameters can help resolve a common source of confusion re-
garding translating images using imtransform. For example, the following
commands perform a pure translation:

> T2 =[100; 010; 5050 1];
>> tform2 = maketform('affine', T2);
>> g4 = imtransform(f, tform2);

The result, however, would be identical to the original image in Fig. 5.14(a).
This effect is caused by default behavior of imtransform. Specifically,
imtransform determines the bounding box (see Section 11.4.1 for a definition
of the term bounding box) of the output image in the output coordinate sys-
tem, and by default it only performs inverse mapping over that bounding box.
This effectively undoes the translation. By specifying the parameters XData
and YData, we can tell imtransform exactly where in output space to com-
pute the result. XData is a two-element vector that specifies the location of the
left and right columns of the output image; YData is a two-element vector that
specifies the location of the top and bottom rows of the output image. The fol-
lowing command computes the output image in the region between
(x,y) = (1,1) and (x, y) = (400, 400).

>> g5 = imtransform(f, tform2,'XData', [1 400], 'YData', [1 400], ...
'FillvValue', 0.5);

Figure 5.14(e) shows the result.

Other settings of imtransform and related IPT functions provide addition-
al control over the result, particularly over how interpolation is performed.
Most of the relevant toolbox documentation is in the help pages for functions
imtransform and makeresampler. ]
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5.11.3 Image Registration

Image registration methods seek to align two images of the same scene. For ex-
ample, it may be of interest to align two or more images taken at roughly the
same time, but using different instruments, such as an MRI (magnetic reso-
nance imaging) scan and a PET (positron emission tomography) scan. Or, per-
haps the images were taken at different times using the same instrument, such
as satellite images of a given location taken several days, months, or even years
apart. In either case, combining the images or performing quantitative analysis
and comparisons requires compensating for geometric aberrations caused by
differences in camera angle, distance, and orientation; sensor resolution; shift
in subject position; and other factors.

The toolbox supports image registration based on the use of control points,
also known as tie points, which are a subset of pixels whose locations in the two
images are known or can be selected interactively. Figure 5.15 illustrates the idea
of control points using a test pattern and a version of the test pattern that has un-
dergone projective distortion. Once a sufficient number of control points have
been chosen, IPT function cp2tform can be used to fit a specified type of spatial
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FIGURE 5.15
Image registration
based on control
points.

(a) Original image
with control
points (the small
circles
superimposed on
the image).

(b) Geometrically
distorted image
with control
points.

(c) Corrected
image using a
projective
transformation
inferred from the
control points.
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TABLE 5.4
Transformation
types supported
by cp2tform and
maketform.

Affine

Box

Composite

Custom

Linear conformal

WM

Piecewise linear
Polynomial

Combination of scaling, rotation,
shearing, and translation. Straight
lines remain straight and parallel
lines remain parallel.

Independent scaling and translation
along each dimension; a subset
of affine.

A collection of spatial
transformations that are applied
sequentially.

User-defined spatial transform;
user provides functions that define
Tand T7L

Scaling (same in all dimensions),
rotation, and translation; a subset
of affine.

Local weighted mean; a locally-
varying spatial transformation.

Locally varying spatial transformation.

Input spatial coordinates are a

maketform
cp2tform

maketform

maketform

maketform

cp2tform

cp2tform

cp2tform
cp2tform

polynomial function of output
spatial coordinates.

maketform
cp2tform

As with the affine transformation,
straight lines remain straight,

but parallel lines converge toward
vanishing points.

Projective

transformation to the control points (using least squares techniques). The spatial
transformation types supported by cp2tform are listed in Table 5.4.

For example, let f denote the image in Fig. 5.15(a) and g the image in
Fig. 5.15(b). The control point coordinates in f are (83,81), (450, 56),
(43,293), (249,392), and (436, 442). The corresponding control point loca-
tions in g are (68, 66), (375, 47), (42, 286), (275,434), and (523, 532). Then
the commands needed to align image g to image f are as follows:

>> basepoints = [83 81; 450 56; 43 293; 249 392; 436 442];
>> inputpoints = [68 66; 375 47; 42 286; 275 434; 523 532];
>> tform = cp2tform(inputpoints, basepoints, 'projective');
>> gp = imtransform(g, tform, 'XData', [1 502], 'YData', [1 502]);

Figure 5.15(c) shows the transformed image.



The toolbox includes a graphical user interface designed for the interactive
selection of control points on a pair of images. Figure 5.16 shows a screen cap-
ture of this tool, which is invoked by the command cpselect.

Summary

The material in this chapter is a good overview of how MATLAB and IPT functions
can be used for image restoration, and how they can be used as the basis for generating
models that help explain the degradation to which an image has been subjected. The
capabilities of IPT for noise generation were enhanced significantly by the develop-
ment in this chapter of functions imnoise2 and imnoise3. Similarly, the spatial fil-
ters available in function spfilt, especially the nonlinear filters, are a significant
extension of IPT’s capabilities in this area. These functions are perfect examples of how
relatively simple it is to incorporate MATLAB and IPT functions into new code to cre-
ate applications that enhance the capabilities of an already large set of existing tools.
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FIGURE 5.16
Interactive tool
for choosing
control points.




