108

Domain

Preview

For the most part, this chapter parallels the filtering topics discussed in Chapter 3,
but with all filtering carried out in the frequency domain via the Fourier trans-
form. In addition to being a cornerstone of linear filtering, the Fourier transform
offers considerable flexibility in the design and implementation of filtering solu-
tions in areas such as image enhancement, image restoration, image data com-
pression, and a host of other applications of practical interest. In this chapter, the
focus is on the foundation of how to perform frequency domain filtering in MAT-
LAB. As in Chapter 3, we illustrate filtering in the frequency domain with exam-
ples of image enhancement, including lowpass filtering, basic highpass filtering,
and high-frequency emphasis filtering. We also show briefly how spatial and fre-
quency domain processing can be used in combination to yield results that are su-
perior to using either type of processing alone. The concepts and techniques
developed in the following sections are quite general, as is amply illustrated by
other applications of this material in Chapters 5, 8, and 11.

The 2-D Discrete Fourier Transform

Let f(x,y),forx =0,1,2,...,.M —1andy =0,1,2,..., N — 1, denote an
M X N image. The 2-D, discrete Fourier transform (DFT) of f, denoted by
F(u,v), is given by the equation

M-1N-1

F(u, ,v) — 2 2 f(JC, y)e—ﬂr(ux/M+vy/N)
x=0 y=0
foru=20,1,2,...,. M —1land v=0,1,2,..., N — 1. We could expand the
exponential into sines and cosines with the variables u and v determining their
frequencies (x and y are summed out). The frequency domain is simply the

4.1 # The 2-D Discrete Fourier Transform

coordinate system spanned by F(u, v) with u and v as (frequency) variables.
This is analogous to the spatial domain studied in the previous chapter, which
is the coordinate system spanned by f(x, y), with x and y as (spatial) variables.
The M X N rectangular region defined by u =0,1,2,...,M —1 and
v»=0,1,2,..., N — 1is often referred to as the frequency rectangle. Clearly,
the frequency rectangle is of the same size as the input image.

The inverse, discrete Fourier transform is given by

M-1N-1

f(x)’) 1 2 E F(u v)eJZW(ux/M+vy/N)
u=0 v=

forx=20,1,2,....M —landy =0,1,2,..., N — 1. Thus, given F(u, v), we
can obtain f(x, y) back by means of the inverse DFT. The values of F(u, v) in this
equation sometimes are referred to as the Fourier coefficients of the expansion.

In some formulations of the DFT, the 1/MN term is placed in front of the
transform and in others it is used in front of the inverse. To be consistent with
MATLAB’s implementation of the Fourier transform, we assume throughout
the book that the term is in front of the inverse, as shown in the preceding
equation. Because array indices in MATLAB start at 1, rather than 0, F (1, 1)
and f(1, 1) in MATLAB correspond to the mathematical quantities F(0, 0)
and f(0, 0) in the transform and its inverse.

The value of the transform at the origin of the frequency domain [i.e.,
F(0,0)] is called the dc component of the Fourier transform. This terminology
is from electrical engineering, where “dc” signifies direct current (current of
zero frequency). It is not difficult to show that (0, 0) is equal to MN times the
average value of f(x, y).

Evenif f(x, y) isreal, its transform in general is complex. The principal method
of visually analyzing a transform is to compute its spectrum [i.e., the magnitude of
F(u,v)] and display it as an image. Letting R(u, v) and I(u, v) represent the real
and imaginary components of F(u, v), the Fourier spectrum is defined as

IF(U, ’U)l = [Rz(u, v) + Iz(u,'v)]l/z

The phase angle of the transform is defined as

o(u,v) = tan‘l[%}

The preceding two functions can be used to represent F(u, v) in the familiar
polar representation of a complex quantity:
F(u,v) = |F(u,v)|e7#®?)
The power spectrum is defined as the square of the magnitude:
P(u,v) = |F(u,v)]?
= R¥(u,v) + I*(u,v)

For purposes of visualization it typically is immaterial whether we view
|F(u, v)| or P(u,).

109

110 Chapter 4 ® Frequency Domain Processing

FIGURE 4.1

(a) Fourier
spectrum showing
back-to-back half
periods in the
interval

[o,M - 1].

(b) Centered
spectrum in the
same interval,
obtained by
multiplying f(x)
by (—1)* prior to
computing the
Fourier
transform.

If f(x,y) is real, its Fourier transform is conjugate symmetric about the
origin; that is,

F(u,v) = F'(-u, —v)
which implies that the Fourier spectrum also is symmetric about the origin:
|F(u,)| = [F(—u, —v)|
It can be shown by direct substitution into the equation for F(u, v) that
F(u,v) = F(u + M,v) = F(u,v+ N) = Flu + M,v + N)

In other words, the DFT is infinitely periodic in both the u and v directions,
with the periodicity determined by M and N. Periodicity is also a property of
the inverse DFT:

fx,y)=f(x+M,y)=f(x,y + N) = f(x + M,y + N)

That is, an image obtained by taking the inverse Fourier transform is also infi-
nitely periodic. This is a frequent source of confusion because it is not at all in-
tuitive that images resulting from taking the inverse Fourier transform should
turn out to be periodic. It helps to remember that this is simply a mathematical
property of the DFT and its inverse. Keep in mind also that DFT implementa-
tions compute only one period, so we work with arrays of size M X N.

The periodicity issue becomes important when we consider how DFT data re-
late to the periods of the transform. For instance, Fig. 4.1(a) shows the spectrum
of a one-dimensional transform, F(u). In this case, the periodicity expression be-
comes F(u) = F(u + M), from which it follows that |F(u)| = |F(u + M)|;
also, because of symmetry, |F(u)| = |F(—u)|. The periodicity property indicates
that F(u) has a period of length M, and the symmetry property indicates that the
magnitude of the transform is centered on the origin, as Fig. 4.1(a) shows. This fig-
ure and the preceding comments demonstrate that the magnitudes of the trans-

IF ()l
-MR M2 - 1—/ LM/2 w1 M
One period (M samples)
IF ()l

p— M2 \——M -1
F—— One period (M samples) —-I

4.1 ® The 2-D Discrete Fourier Transform 111

form values from M/2 to M — 1 are repetitions of the values in the half period to
the left of the origin. Because the 1-D DFT is implemented for only M points
(i.e., for values of u in the interval [0, M — 1]), it follows that computing the 1-D
transform yields two back-to-back half periods in this interval. We are interested
in obtaining one full, properly ordered period in the interval [0, M — 1].Itis not
difficult to show (Gonzalez and Woods [2002]) that the desired period is obtained
by multiplying f(x) by (—1)* prior to computing the transform. Basically, what
this does is move the origin of the transform to the point u = M/2, as Fig. 4.1(b)
shows. Now, the value of the spectrum at u = 0 in Fig. 4.1(b) corresponds to
|F(—~M/2)| in Fig. 41(a). Similarly, the values at |F(M/2)| and |[F(M - 1)| in
Fig. 4.1(b) correspond to |F(0)| and |[F(M/2 — 1)|in Fig.4.1(a).

A similar situation exists with two-dimensional functions. Computing the 2-D
DFT now yields transform points in the rectangular interval shown in Fig. 4.2(a),
where the shaded area indicates values of F(u, v) obtained by implementing the
2-D Fourier transform equation defined at the beginning of this section. The
dashed rectangles are periodic repetitions, as in Fig. 4.1(a). The shaded region
shows that the values of F(u, v) now encompass four back-to-back quarter peri-
ods that meet at the point shown in Fig. 4.2(a). Visual analysis of the spectrum is
simplified by moving the values at the origin of the transform to the center of the
frequency rectangle. This can be accomplished by multiplying f(x, y) by (=1)**”
prior to computing the 2-D Fourier transform. The periods then would align as
shown in Fig. 4.2(b). As in the previous discussion for 1-D functions, the value of
the spectrum at (M/2, N/2) in Fig. 42(b) is the same as its value at (0, 0) in
Fig. 4.2(a), and the value at (0, 0) in Fig. 42(b) is the same as the value at
(=M/2,—N/2) in Fig. 4.2(a). Similarly, the value at (M —1,N — 1) in
Fig. 4.2(b) is the same as the value at (M/2 — 1, N/2 — 1) in Fig. 42(a).

I

I
N2-1! N-1

\l

|
| |
| |
| |
|
0 |

e e e
|
|
|
1

- |
. [| = Periods of the 2-D DFT.

! = M X N data array resulting from
the computation of F(u, v).

FIGURE 4.2 (a) M X N Fourier spectrum (shaded), showing four back-to-back quarter
periods contained in the spectrum data. (b) Spectrum obtained by multiplying f(x, y) by
(—1)**7 prior to computing the Fourier transform. Only one period is shown shaded because
this is the data that would be obtained by an implementation of the equation for F(u, v) .

112 Chapter 4 ® Frequency Domain Processing

The preceding discussion for centering the transform by multiplying f(x, y)
by (—1)**” is an important concept that is included here for completeness.
When working in MATLAB, the approach is to compute the transform without
multiplication by (—1)**” and then to rearrange the data afterwards using func-
tion fftshift. This function and its use are discussed in the following section.

EEE Computing and Visualizing the 2-D DFT in MATLAB

The DFT and its inverse are obtained in practice using a fast Fourier trans-
form (FFT) algorithm. The FFT of an M X N image array f is obtained in the
toolbox with function fft2, which has the simple syntax:

F = fft2(f)

This function returns a Fourier transform that is also of size M X N, with the
data arranged in the form shown in Fig. 4.2(a); that is, with the origin of
the data at the top left, and with four quarter periods meeting at the center
of the frequency rectangle.

As explained in Section 4.3.1, it is necessary to pad the input image with zeros
when the Fourier transform is used for filtering, In this case, the syntax becomes

F = fft2(f, P, Q)
With this syntax, fft2 pads the input with the required number of zeros so
that the resulting function is of size P X Q.

The Fourier spectrum is obtained by using function abs:

S = abs(F)

which computes the magnitude (square root of the sum of the squares of the
real and imaginary parts) of each element of the array.

Visual analysis of the spectrum by displaying it as an image is an important
aspect of working in the frequency domain. As an illustration, consider the
simple image, f, in Fig. 4.3(a). We compute its Fourier transform and display
the spectrum using the following sequence of steps:

>> F = fft2(f);
>> § abs(F);
>> imshow(S, [1)

Figure 4.3(b) shows the result. The four bright spots in the corners of the
image are due to the periodicity property mentioned in the previous section.

IPT function fftshift can be used to move the origin of the transform to
the center of the frequency rectangle. The syntax is

Fc = fftshift(F)

4.2 m Computing and Visualizing the 2-D DFT in MATLAB 113

where F is the transform computed using fft2 and Fc is the centered trans-
form. Function fftshift operates by swapping quadrants of F. For example, if
a=[12; 3 4],fftshift(a) = [4 3; 2 1].When applied to a transform
after it has been computed, the net result of using fftshift is the same as if
the input image had been multiplied by (—1)**” prior to computing the trans-
form. Note, however, that the two processes are not interchangeable. That is,
letting I[+] denote the Fourier transform of the argument, we have that
S[(=1)**f(x, y)] is equal to fftshift(fft2(f)), but this quantity is not
equal to fft2(fftshift(f)).
In the present example, typing

>> Fc = fftshift(F);
>> imshow(abs(Fc), [1)

yielded the image in Fig. 4.3(c). The result of centering is evident in this
image.

FIGURE 4.3

(a) A simple image.
(b) Fourier
spectrum.

(c) Centered
spectrum.

(d) Spectrum
visually enhanced
by a log
transformation.

114 Chapter 4 ® Frequency Domain Processing

B = floor(A)
rounds each element
of A to the nearest
integer less than or
equal to its value.
Function ceil
rounds to the nearest
integer greater than
or equal to the value
of each element of A.

Although the shift was accomplished as expected, the dynamic range of the
values in this spectrum is so large (0 to 204000) compared to the 8 bits of the
display that the bright values in the center dominate the result. As discussed in
Section 3.2.2, this difficulty is handled via a log transformation. Thus, the
commands :

>> 82 = log(1 + abs(Fc));
>> imshow(S2, [1)

resulted in Fig. 4.3(d). The increase in visual detail is evident in this image.
Function ifftshift reverses the centering. Its syntax is

F = ifftshift(Fc)

This function can be used also to convert a function that is initially centered on
a rectangle to a function whose center is at the top, left corner of the rectangle.
We make use of this property in Section 4.4.

While on the subject of centering, keep in mind that the center of the fre-
quency rectangle is at (M/2, N/2) if the variables u and v run from0Oto M — 1
and N — 1, respectively. For example, the center of an 8 X 8 frequency square
is at point (4,4), which is the 5th point along each axis, counting up from (0, 0).
If, as in MATLAB, the variables run from 1 to M and 1 to N, respectively, then
the center of the square is at [(M/2) + 1, (N/2) + 1]. In the case of our
8 X 8 example, the center would be at point (5, 5), counting up from (1, 1).
Obviously, the two centers are the same point, but this can be a source of con-
fusion when deciding how to specify the location of DFT centers in MATLAB
computations.

If M and N are odd, the center for MATLAB computations is obtained by
rounding M/2 and N/2 down to the closest integer. The rest of the analysis is
as in the previous paragraph. For example, the center of a 7 X 7 region is at
(3,3) if we count up from (0, 0) and at (4, 4) if we count up from (1,1). In ei-
ther case, the center is the fourth point from the origin. If only one of the di-
mensions is odd, the center along that dimension is similarly obtained by
rounding down in the manner just explained. Using MATLAB’s function
floor, and keeping in mind that the origin is at (1, 1), the center of the fre-
quency rectangle for MATLAB computations is at

[floor(M/2) + 1, floor(N/2) + 1]
The center given by this expression is valid both for odd and even values of M
amll?i]r\lréllly, we point out that the inverse Fourier transform is computed using
function ifft2, which has the basic syntax
f = ifft2(F)

where F is the Fourier transform and f is the resulting image. If the input used
to compute F is real, the inverse in theory should be real. In practice, however,

4.3 m Filtering in the Frequency Domain 115

the output of ifft2 often has very small imaginary components resulting
from round-off errors that are characteristic of floating point computations.
Thus, it is good practice to extract the real part of the result after computing
the inverse to obtain an image consisting only of real values. The two opera-
tions can be combined:

>» f = real (ifft2(F));

As in the forward case, this function has the alternate format ifft2(F, P, Q),
which pads F with zeros so that its size is P X Q before computing the inverse.
~ This option is not used in the book.

EER Filtering in the Frequency Domain

Filtering in the frequency domain is quite simple conceptually. In this section
we give a brief overview of the concepts involved in frequency domain filter-
ing and its implementation in MATLAB.

4.3.1 Fundamental Concepts

The foundation for linear filtering in both the spatial and frequency domains is
the convolution theorem, which may be written as’

f(x,y) * h(h, y) & H(u, v)F(u,v)
and, conversely,
f(x, y)h(h, y) & H(u,v) * G(u, v)

Here, the symbol “+” indicates convolution of the two functions, and the ex-
pressions on the sides of the double arrow constitute a Fourier transform pair.
For example, the first expression indicates that convolution of two spatial
functions can be obtained by computing the inverse Fourier transform of the
product of the Fourier transforms of the two functions. Conversely, the for-
ward Fourier transform of the convolution of two spatial functions gives the
product of the transforms of the two functions. Similar comments apply to the
second expression.

In terms of filtering, we are interested in the first of the two previous ex-
pressions. Filtering in the spatial domain consists of convolving an image
f(x, y) with a filter mask, h(x, y). Linear spatial convolution is precisely as ex-
plained in Section 3.4.1. According to the convolution theorem, we can obtain
the same result in the frequency domain by multiplying F(u, v) by H(u, v),
the Fourier transform of the spatial filter. It is customary to refer to H(u, v) as
the filter transfer function.

Basically, the idea in frequency domain filtering is to select a filter transfer
function that modifies F(u, v) in a specified manner. For example, the filter in

"For digital images, these expressions are strictly valid only when f(x, y) and h(x, y) have been proper-
ly padded with zeros, as discussed later in this section.

real(arg) and
imag(arg) extract
the real and imagi-
nary parts of arg,
respectively.

116 Chapter 4 @ Frequency Domain Processing

FIGURE 4.4
Transfer functions
of (a) a centered
lowpass filter, and
(b) the format
used for DFT
filtering. Note
that these are
frequency domain
filters.

Fig. 4.4(a) has a transfer function that, when multiplied by a centered F(u, v),
attenuates the high-frequency components of F(u, v), while leaving the low
frequencies relatively unchanged. Filters with this characteristic are called
lowpass filters. As discussed in Section 4.5.2, the net result of lowpass filtering
is image blurring (smoothing). Figure 4.4(b) shows the same filter after it was
processed with fftshift. This is the filter format used most frequently in the
book when dealing with frequency domain filtering in which the Fourier trans-
form of the input is not centered.

Based on the convolution theorem, we know that to obtain the correspond-
ing filtered image in the spatial domain we simply compute the inverse Fourier
transform of the product H(u, v)F(u, v). It is important to keep in mind that
the process just described is identical to what we would obtain by using convo-
lution in the spatial domain, as long as the filter mask, A(x, y), is the inverse
Fourier transform of H(u, v). In practice, spatial convolution generally is sim-
plified by using small masks that attempt to capture the salient features of
their frequency domain counterparts.

As noted in Section 4.1, images and their transforms are automatically
considered periodic if we elect to work with DFTs to implement filtering. It is
not difficult to visualize that convolving periodic functions can cause interfer-
ence between adjacent periods if the periods are close with respect to the du-
ration of the nonzero parts of the functions. This interference, called
wraparound error, can be avoided by padding the functions with zeros, in the
following manner.

Assume that functions f(x, y) and h(x, y) are of size A X Band C X D,
respectively. We form two extended (padded) functions, both of size P X Q by
appending zeros to f and g. It can be shown that wraparound error is avoided
by choosing

P=A+C-1
and
O=B+D-1

Most of the work in this chapter deals with functions of the same size, M X N,
in which case we use the following padding values: P = 2M — 1 and
Q=2N -1.

4.3 = Filtering in the Frequency Domain 117

The following function, called paddedsize, computes the minimum even'
yalues of P and Q required to satisfy the preceding equations. It also has an
option to pad the inputs to form square images of size equal to the nearest in-
teger power of 2. Execution time of FFT algorithms depends roughly on the
aumber of prime factors in P and Q. These algorithms generally are faster
when P and Q are powers of 2 than when P and Q are prime. In practice, it is
advisable to work with square images and filters so that filtering is the same in
poth directions. Function paddedsize provides the flexibility to do this via the
choice of the input parameters.

In function paddedsize, the vectors AB, CD, and PQ have elements [A B],
[C D],and [P Q], respectively, where these quantities are as defined above.

function PQ = paddedsize(AB, CD, PARAM)

%PADDEDSIZE Computes padded sizes useful for FFT-based filtering.
PQ = PADDEDSIZE(AB), where AB is a two-element size vector,
computes the two-element size vector PQ = 2*AB.

PQ = PADDEDSIZE(AB, 'PWR2') computes the vector PQ such that
PQ(1) = PQ(2) = 2"nextpow2(2*m), where m is MAX(AB).

PQ = PADDEDSIZE(AB, CD), where AB and CD are two-element size
vectors, computes the two-element size vector PQ. The elements
of PQ are the smallest even integers greater than or equal to
AB + CD - 1.

PQ = PADDEDSIZE(AB, CD, 'PWR2') computes the vector PQ such that
PQ(1) = PQ(2) = 2"nextpow2(2*m), where m is MAX([AB CD]).

o o O° O° P Of P I o of P o of

if nargin ==
PQ = 2*AB;
elseif nargin == 2 & ~ischar(CD)
PQ = AB +CD-1;
PQ = 2 * ceil(PQ / 2);
elseif nargin ==
m = max(AB); % Maximum dimension.

% Find power-of-2 at least twice m.
P = 2*nextpow2(2*m);
PQ = [P, P];
elseif nargin ==
m = max([AB CD]); % Maximum dimension.
P = 2"nextpow2(2*m);

PQ = [P, P];
else -
error('Wrong number of inputs.')
end —]

't is customary to work with arrays of even dimensions to speed-up FFT computations.

paddedsize

p = nextpow2(n)
returns the smallest
integer power of 2
that is greater than or
equal to the absolute
value of n.

118 Chapter 4 @ Frequency Domain Processing

With PQ thus computed using function paddedsize, we use the following
syntax for fft2 to compute the FFT using zero padding:

F = £ft2(f, PA(1), PQ(2))

This syntax simply appends enough zeros to f such that the resulting image is
of size PQ(1) xPQ(2), and then computes the FFT as previously described.
Note that when using padding the filter function in the frequency domain must
be of size PQ(1) x PQ(2) also.

EXAMPLE 4.1: B The image, f, in Fig. 4.5(a) is used in this example to illustrate the differ-
Effects of filtering ence between filtering with and without padding. In the following discussion
with and without e yee function 1pfilter to generate a Gaussian lowpass filters [similar to
padding. Fig. 4.4(b)] with a specified value of sigma (sig). This function is discussed in
detail in Section 4.5.2, but the syntax is straightforward, so we use it here and
defer further explanation of 1pfilter to that section.
The following commands perform filtering without padding:

>> [M, N] = size(f);
>> F = fft2(f);
>> sig = 10;

>> H = lpfilter('gaussian', M, N, sig);
>> G = H.*F;
>> g = real(ifft2(G));

>> imshow(g, [1)

Figure 4.5(b) shows image g. As expected, the image is blurred, but note
that the vertical edges are not. The reason can be explained with the aid of
Fig. 4.6(a), which shows graphically the implied periodicity in DFT computa-

ﬂ g “
FIGURE 4.5 (a) A simple image of size 256 X 256. (b) Image lowpass-filtered in the frequency domain with-
out padding. (c) Image lowpass-filtered in the frequency domain with padding. Compare the light portion of
the vertical edges in (b) and (c).

4.3 ® Filtering in the Frequency Domain 119

: 8

B
FIGURE 4.6
(a) Implied,
infinite periodic
sequence of the
image in
Fig. 4.3(a). The
dashed region
represents the
e data processed by
fft2. (b) The
same periodic
sequence after
padding with Os.
The thin white
lines in both
images are shown
for convenience
in viewing; they
are not part
of the data.

tions. The thin white lines between the images are included for convenience in
viewing. They are not part of the data. The dashed lines are used to designate
(arbitrarily) the M X N image processed by fft2. Imagine convolving a blur-
ring filter with this infinite periodic sequence. It is clear that when the filter is
passing through the top of the dashed image it will encompass part of the
image itself and also the bottom part of the periodic component right above it.
Thus, when a light and a dark region reside under the filter, the result will be
a mid-gray, blurred output. This is precisely what the top of the image in

120 Chapter 4 ® Frequency Domain Processing

FIGURE 4.7 Full
padded image
resulting from
ifft2 after
filtering. This
image is of size

512 X 512 pixels.

Fig. 4.5(b) shows. On the other hand, when the filter is on the light sides of the
dashed image, it will encounter an identical region on the periodic component.
Since the average of a constant region is the same constant, there is no blur-
ring in this part of the result. Other parts of the image in Fig. 4.5(b) are ex-
plained in a similar manner.

Consider now filtering with padding:

>> PQ = paddedsize(size(f));

>> Fp = fft2(f, PQ(1), PQ(2)); % Compute the FFT with padding.
>> Hp = 1lpfilter('gaussian', PQ(1), PQ(2), 2*sig);

>> Gp = Hp.*Fp;

>> gp = real(ifft2(Gp));

>> gpc = gp(1:size(f,1), 1:size(f,2));
>> imshow(gp, [1)

where we used 2*sig because the filter size is now twice the size of the filter
used without padding.

Figure 4.7 shows the full, padded result, gp. The final result in Fig. 4.5(c) was
obtained by cropping Fig. 4.7 to the original image size (see the next-to-last
command above). This result can be explained with the aid of Fig. 4.6(b),
which shows the dashed image padded with zeros as it would be set up inter-
nally in fft2(f, PQ(1), PQ(2)) prior to computing the transform. The im-
plied periodicity is as explained earlier. The image now has a uniform black
border all around it, so convolving a smoothing filter with this infinite se-
quence would show a gray blur in the light edges of the images. A similar result
would be obtained by performing the following spatial filtering,

>> h = fspecial('gaussian', 15, 7);
>> gs = imfilter(f, h);

4.3 & Filtering in the Frequency Domain 121

Recall from Section 3.4.1 that this call to function imfilter pads the border
of the image with Os by default. m

4.3.2 Basic Steps in DFT Filtering

The discussion in the previous section can be summarized in the following
step-by-step procedure involving MATLAB functions, where f is the image to
be filtered, g is the result, and it is assumed that the filter function H (u, v) is of
the same size as the padded image:

1. Obtain the padding parameters using function paddedsize:
PQ = paddedsize(size(f));

2. Obtain the Fourier transform with padding:
F = fft2(f, PQ(1), PQ(2));

3. Generate a filter function, H, of size PQ(1) x PQ(2) using any of the
methods discussed in the remainder of this chapter. The filter must be in
the format shown in Fig. 4.4(b). If it is centered instead, as in Fig. 4.4(a),
letH = fftshift(H) before using the filter.

4. Multiply the transform by the filter:
G = H.*F;

5. Obtain the real part of the inverse FFT of G:
g = real(ifft2(G));

6. Crop the top, left rectangle to the original size:
g = g(1:size(f, 1), 1:size(f, 2));

This filtering procedure is summarized in Fig. 4.8. The preprocessing stage
might encompass procedures such as determining image size, obtaining the
padding parameters, and generating a filter. Postprocessing entails computing
the real part of the result, cropping the image, and converting it to class.uint8
or uint16 for storage.

Frequency domain filtering operations

Fouri Filter Inverse
ourier ; L—D .
transform function Fourier
H(u,v) ' transform
F(u,v H(u,v)F(u,v
Pre- (@.2) (. 0)F(,) Post-
processing g processing
f(x,y) g(x,y)
Input Filtered

image image

FIGURE 4.8
Basic steps for
filtering in the
frequency
domain.

122 Chapter 4 ® Frequency Domain Processing

dftfilt
Ry

The filter function H (u, v) in Fig. 4.8 multiplies both the real and imaginary
parts of F(u, v). If H(u, v) is real, then the phase of the result is not changed, a
fact that can be seen in the phase equation (Section 4.1) by noting that, if the mul-
tipliers of the real and imaginary parts are equal, they cancel out, leaving the
phase angle unchanged. Filters that operate in this manner are called zero-phase-
shift filters. These are the only types of linear filters considered in this chapter.

It is well known from linear system theory that, under certain mild condi-
tions, inputting an impulse into a linear system completely characterizes the
system. When working with finite, discrete data as we do in this book, the re-
sponse of a linear system, including the response to an impulse, also is finite. If
the linear system is just a spatial filter, then we can completely determine the
filter simply by observing its response to an impulse. A filter determined in this
manner is called a finite-impulse-response (FIR) filter. All the linear spatial fil-
ters in this book are FIR filters.

4.3.3 An M-function for Filtering in the Frequency Domain

The sequence of filtering steps described in the previous section is used
throughout this chapter and parts of the next, so it will be convenient to have
available an M-function that accepts as inputs an image and a filter function,
handles all the filtering details, and outputs the filtered, cropped image. The
following function does this.

function g = dftfilt(f, H)

%DFTFILT Performs frequency domain filtering.

% G = DFTFILT(F, H) filters F in the frequency domain using the
filter transfer function H. The output, G, is the filtered
image, which has the same size as F. DFTFILT automatically pads
F to be the same size as H. Function PADDEDSIZE can be used
to determine an appropriate size for H.

%

%

%

%

%

% DFTFILT assumes that F is real and that H is a real, uncentered,
% circularly-symmetric filter function.
%

F

%

g

%

g

Obtain the FFT of the padded input.
= fft2(f, size(H, 1), size(H, 2));
Perform filtering.

= real (ifft2(H.*F));

Crop to original size.
= g(1:size(f, 1), 1:size(f, 2)); -

Techniques for generating frequency-domain filters are discussed in the fol-
lowing three sections.

4.4 | Obtaining Frequency Domain Filters from Spatial Filters

In general, filtering in the spatial domain is more efficient computationally
than frequency domain filtering when the filters are small. The definition of
small is a complex question whose answer depends on such factors as the

4.4 @ Obtaining Frequency Domain Filters from Spatial Filters 123

machine and algorithms used and on issues such the sizes of buffers, how well
complex data are handled, and a host of other factors beyond the scope of this
discussion. A comparison by Brigham [1988] using 1-D functions shows that
filtering using an FFT algorithm can be faster than a spatial implementation
when the functions have on the order of 32 points, so the numbers in question
are not large. Thus, it is useful to know how to convert a spatial filter into an
equivalent frequency domain filter in order to obtain meaningful comparisons
between the two approaches.

One obvious approach for generating a frequency domain filter, H, that
corresponds to a given spatial filter, h, is to let H = fft2(h, PQ(1), PQ(2)),
where the values of vector PQ depend on the size of the image we want to fil-
ter, as discussed in the last section. However, we are interested in this section
on two major topics: (1) how to convert spatial filters into equivalent fre-
quency domain filters; and (2) how to compare the results between spatial
domain filtering using function imfilter, and frequency domain filtering
using the techniques discussed in the previous section. Because, as explained
in detail in Section 3.4.1, imfilter uses correlation and the origin of the fil-
ter is considered at its center, a certain amount of data preprocessing is re-
quired to make the two approaches equivalent. The toolbox provides a
function, freqz2, that does precisely this and outputs the corresponding fil-
ter in the frequency domain.

Function freqz2 computes the frequency response of FIR filters, which, as
mentioned at the end of Section 4.3.2, are the only linear filters considered in
this book. The result is the desired filter in the frequency domain. The syntax
of interest in the present discussion is

H = freqz2(h, R, C)

where h is a 2-D spatial filter and H is the corresponding 2-D frequency do-
main filter. Here, R is the number of rows, and C the number of columns that
we wish filter H to have. Generally,we letR = PQ(1) and C = PQ(2), as ex-
plained in Section 4.3.1. If freqz2 is written without an output argument, the
absolute value of H is displayed on the MATLAB desktop as a 3-D perspec-
tive plot. The mechanics involved in using function freqz2 are easily ex-
plained by an example.

B Consider the image, f, of size 600 X 600 pixels shown in Fig. 4.9(a). In
what follows, we generate the frequency domain filter, H, corresponding to
the Sobel spatial filter that enhances vertical edges (see Table 3.4). We then
compare the result of filtering f in the spatial domain with the Sobel mask
- (using imfilter) against the result obtained by performing the equivalent
- process in the frequency domain. In practice, filtering with a small filter like
a Sobel mask would be implemented directly in the spatial domain, as men-
~ tioned earlier. However, we selected this filter for demonstration purposes
because its coefficients are simple and because the results of filtering are in-
tuitive and straightforward to compare. Larger spatial filters are handled in
_exactly the same manner.

EXAMPLE 4.2
A comparison of
filtering in the
spatial and
frequency
domains.

124 Chapter 4 ® Frequency Domain Processing

FIGURE 4.9

(a) A gray-scale
image. (b) Its
Fourier spectrum.

Figure 4.9(b) is an image of the Fourier spectrum of f, obtained as follows:

>> F = fft2(f);
>> § = fftshift(log(1 + abs(F)));
>> § = gscale(S);

>> imshow(S)

Next, we generate the spatial filter using function fspecial:

h = fspecial('sobel')'
h =

1 0o -1

2 0 -2

1 0o -

To view a plot of the corresponding frequency domain filter we type
>> freqz2(h)

Figure 4.10(a) shows the result, with the axes suppressed (techniques for ob-
taining perspective plots are discussed in Section 4.5.3). The filter itself was ob-
tained using the commands:

>> PQ = paddedsize(size(f));
>> H = freqz2(h, PQ(1), PQ(2));
>> H1 = ifftshift(H);

where, as noted earlier, ifftshift is needed to rearrange the data so that the
origin is at the top, left of the frequency rectangle. Figure 4.10(b) shows a plot
of abs(H1). Figures 4.10(c) and (d) show the absolute values of H and H1 in
image form, displayed with the commands

4.4 m Obtaining Frequency Domain Filters from Spatial Filters 125
an

i
7 it]
5N / /Il,'"”” FIGURE 4.10
/) A 2N :
[TR S (a) Absolute
IS il G \ SN
G0N DO THRGGOREA 5N
ONY ; i A /,/l;/I/,;l;,'o:o,o,o:‘\);,;,g;;\;\\\ RN value of the
AN il I SN R fr
N\ N s N R
/) DRSNS MO AT
| e S) domin filter
e [NN) corresponding to
W RO FRRR , o :
« e Ut { avertical Sobel
/m///y,”,”””wllljyﬂlfgﬂ;,%;:&&&ﬁm Uil & \\&\Q\\\\\\\\\\\\’{{/ mask. (b) The
! \\\\“““ 3
////l////},///;,'g;:;;f"“ R I same filter after

< processing with
function
fftshift. Figures
(c) and (d) are the
filters in (a) and
(b) shown as

images.
>> imshow(abs(H), [1)
>> figure, imshow(abs(H1), [1)
Next, we generate the filtered images. In the spatial domain we use We use double (f)
here so that

imfilter will pro-

>> gs = imfilter(double(f), h); duce an output of
class double, as ex-

. . : : ; _ plained in Section
which pads the border of the image with Os by default. The filtered image ob 341 The double

tained by frequency domain processing is given by format is required
for some of the oper-

ations that follow.

of = dftfilt(f, H1);
Figures 4.11(a) and (b) show the result of the commands:

>> imshow(gs, [1)
>> figure, imshow(gf, [1)

The gray tonality in the images is due to the fact that both gs and gf have neg-
ative values, which causes the average value of the images to be increased by
the scaled imshow command. As discussed in Sections 6.6.1 and 10.1.3, the

126 ‘Cllapler 4 ® Frequency Domain Processing

FIGURE 4.11

(a) Result of
filtering

Fig. 4.9(a) in the
spatial domain
with a vertical
Sobel mask.

(b) Result
obtained in the
frequency domain
using the filter
shown in

Fig. 4.10(b).
Figures (c) and
(d) are the
absolute values of
(a) and (b),
respectively.

Sobel mask, h, generated above is used to detect vertical edges in an image
using the absolute value of the response. Thus, it is more relevant to show the
absolute values of the images just computed. Figures 4.11(c) and (d) show
the images obtained using the commands

>> figure, imshow(abs(gs), [1)
>> figure, imshow(abs(gf), [])

The edges can be seen more clearly by creating a thresholded binary
image:

>> figure, imshow(abs(gs) > 0.2*abs(max(gs(:))))
>> figure, imshow(abs(gf) > 0.2*abs(max(gf(:))))
where the 0.2 multiplier was selected (arbitrarily) to show only the edges with
strength greater than 20% of the maximum values of gs and gf. Figures 4.12(a)

and (b) show the results.

4.5 ® Generating Filters Directly in the Frequency Domain 127

The images obtained using spatial and frequency domain filtering are for all
practical purposes identical, a fact that we confirm by computing their difference:

>> d = abs(gs — gf);
The maximum and minimum differences are

>> max(d(:))
ans =

5.4015e-012
>> min(d(:))

ans =
0

The approach just explained can be used to implement in the frequency do-
main the spatial filtering approach discussed in Sections 3.4.1 and 3.5.1, as well
as any other FIR spatial filter of arbitrary size. =

EER Generating Filters Directly in the Frequency Domain

In this section, we illustrate how to implement filter functions directly in the
frequency domain. We focus on circularly symmetric filters that are specified
as various functions of distance from the origin of the transform. The M-
functions developed to implement these filters are a foundation that is easily
extendable to other functions within the same framework. We begin by imple-
" menting several well-known smoothing (lowpass) filters. Then, we show how
to use several of MATLAB’s wireframe and surface plotting capabilities that
aid in filter visualization. We conclude the section with a brief discussion of
sharpening (highpass) filters.

FIGURE 4.12
Thresholded
versions of
Figs.4.11(c) and
(d), respectively, to
show the principal
edges-more clearly.

128 Chapter 4 ® Frequency Domain Processing

dftuv

Function find is
discussed in Section
5.2.2.

EXAMPLE 4.3
Using function
dftuv.

4.5.1 Creating Meshgrid Arrays for Use in Implementing Filters
in the Frequency Domain

Central to the M-functions in the following discussion is the need to compute
distance functions from any point to a specified point in the frequency rectangle.
Because FFT computations in MATLAB assume that the origin of the trans-
form is at the top, left of the frequency rectangle, our distance computations are
with respect to that point. The data can be rearranged for visualjzation purposes
(so that the value at the origin is translated to the center of the frequency rec-
tangle) by using function fftshift. ,

The following M-function, which we call dftuv, provides the necessary
meshgrid array for use in distance computations and other similar applica-
tions. (See Section 2.10.4 for an explanation of function meshgrid used in the
following code.). The meshgrid arrays generated by dftuv are in the order re-
quired for processing with fft2 or ifft2, so no rearranging of the data is
required.

function [U, V] = dftuv(M, N)
%DFTUV Computes meshgrid frequency matrices.

% [U, V] = DFTUV(M, N) computes meshgrid frequency matrices U and
% V. U and V are useful for computing frequency-domain filter

% functions that can be used with DFTFILT. U and V are both

% M-by-N.

% Set up range of variables.

u=0:(M-1);

v=0:(N=-1);

% Compute the indices for use in meshgrid.
idx = find(u > M/2);
u(idx) = u(idx) — M;
idy = find(v > N/2);
v(idy) = v(idy) - N;

% Compute the meshgrid arrays.
[V, U] = meshgrid(v, u); —]

B As an illustration, the following commands compute the distance squared
from every point in a rectangle of size 8 X 5 to the origin of the rectangle:

>> [U, V] = dftuv(8, 5);
> D =U."2 + V."2
D =

—
- R OOOOHLP 20O
—
o
—
w
—
w
—
o

4.5 ® Generating Filters Directly in the Frequency Domain 129

Note that the distance is O at the top, left, and the larger distances are in the
center of the frequency rectangle, following the basic format explained in
Fig. 4.2(a). We can use function fftshift to obtain the distances with respect
to the center of the frequency rectangle,

>> fftshift(D)

ans =
20 17 16 17 20
13 10 9 10 13
8 5 4 5 8
5 2 1 2 5
4 1 0 1 4
5 2 1 2 5
8 5 4 5 8
13 10 9 10 13

The distance is now 0 at coordinates (5, 3), and the array is symmetric about
this point.]

4.5.2 Lowpass Frequency Domain Filters
An ideal lowpass filter (ILPF) has the transfer function

_)1 ifD(u,v) = D,
H(“’”)"{o if D(u, v) > Dy

where D is a specified nonnegative number and D(u, v) is the distance from
point (u, v) to the center of the filter. The locus of points for which D(u, v) = D,
is a circle. Keeping in mind that filter H multiplies the Fourier transform of an
image, we see that an ideal filter “cuts off” (multiplies by 0) all components of F
outside the circle and leaves unchanged (multiplies by 1) all components on, or
inside, the circle. Although this filter is not realizable in analog form using elec-
tronic components, it certainly can be simulated in a computer using the preced-
ing transfer function. The properties of ideal filters often are useful in explaining
phenomena such as wraparound error.

A Butterworth lowpass filter (BLPF) of order n, with a cutoff frequency at a
~ distance D, from the origin, has the transfer function

1
1 + [D(u, v)/ D"

H(u,v) =

Unlike the ILPF, the BLPF transfer function does not have a sharp disconti-
nuity at Dy. For filters with smooth transfer functions, it is customary to define
a cutoff frequency locus at points for which H (u, v) is down to a specified frac-
tion of its maximum value. In the preceding equation, H(u, v) = 0.5 (down
50% from its maximum value of 1) when D(u, v) = Dj.

The transfer function of a Gaussian lowpass filter (GLPF) is given by

H(u, ’U) — e—DZ(u,v)/Zcr2

130 Chapter 4 ® Frequency Domain Processing

EXAMPLE 4.4:

Lowpeass filtering.

FIGURE 4.13

Lowpass filtering.

(a) Original
image.

(b) Gaussian
lowpass filter
shown as an
image.

" (c) Spectrum of
(a). (d) Processed
image.

where o is the standard deviation. By letting o = Dy, we obtain the following
expression in terms of the cutoff parameter Dy: »

H(u, 'v) = e_Dz(“,”)/zl)(z)‘

When D(u,v) = D, the filter is down to 0.607 of its maximum value of 1.

B As an illustration, we apply a Gaussian lowpass filter to the<500 X 500-pixel
image, f,in Fig. 4.13(a). We use a value of Dy equal to 5% of the padded image
width. With reference to the filtering steps discussed in Section 4.3.2 we have

>>
>>
>>
>>
>>
>>

PQ

= paddedsize(size(f));

[U, V] = dftuv(PQ(1), PQ(2));
DO = 0.05*PQ(2);

E
H

g

£ft2(f, PQ(1), PQ(2));
exp(=(U."2 + V."2)/(2*(D0*2)));
dftfilt(f, H);

nouwon

4.5 ® Generating Filters Directly in the Frequency Domain 131
We can view the filter as an image [Fig. 4.13(b)] by typing
>> figure, imshow(fftshift(H), [1)
similarly, the spectrum can be displayed as an image [Fig. 4.13(c)] by typing
>> figure, imshow(log(1 + abs(fftshift(F))), [1)
Finally, Fig. 4.13(d) shows the output image, displayed using the command
>> figure, imshow(g, [1)
As expected, this image is a blurred version of the original.]

The following function generates the transfer functions of all the lowpass
filters discussed in this section.

function [H, D] = lpfilter(type, M, N, DO, n) lpfilter
%LPFILTER Computes frequency domain lowpass filters. b

H = LPFILTER(TYPE, M, N, DO, n) creates the transfer function of
a lowpass filter, H, of the specified TYPE and size (M-by-N). To
view the filter as an image or mesh plot, it should be centered
using H = fftshift(H).
valid values for TYPE, DO, and n are:
'ideal’ Ideal lowpass filter with cutoff frequency DO. n need
not be supplied. DO must be positive.
'btw' Butterworth lowpass filter of order n, and cutoff
DO. The default value for n is 1.0. DO must be
positive.

'gaussian' Gaussian lowpass filter with cutoff (standard
deviation) DO. n need not be supplied. DO must be
positive.

o P o° o° O° I° O° O° I Of O° O O° O° P of of

% Use function dftuv to set up the meshgrid arrays needed for
% computing the required distances.
[U, V] = dftuv(M, N);

% Compute the distances D(U, V).
"D =sgrt(U.”2 + V."2);

% Begin filter computations.
switch type
case 'ideal'
H = double(D <= DO);
case 'btw'
if nargin ==
n=1;

132 Chapter 4 m Frequency Domain Processing

end
H=1./(1 + (D./D0)."(2*n));
case 'gaussian’
H = exp(—(D.*2)./(2*(D0"2)));
otherwise
error('Unknown filter type.')
end -

Function lpfilter is used again in Section 4.6 as the basis for generating
highpass filters.

4.5.3 Wireframe and Surface Plotting

Plots of functions of one variable were introduced in Section 3.3.1. In the fol-
lowing discussion we introduce 3-D wireframe and surface plots, which are
useful for visualizing the transfer functions of 2-D filters. The easiest way to
draw a wireframe plot of a given 2-D function, H, is to use function mesh, which
has the basic syntax

mesh (H)

This function draws a wireframe for x = 1:M and y = 1:N, where [M, N] =
size(H). Wireframe plots typically are unacceptably dense if M and N are
large, in which case we plot every kth point using the syntax

mesh(H(1:k:end, 1:k:end))
As a rule of thumb, 40 to 60 subdivisions along each axis usually provide a
good balance between resolution and appearance.

MATLAB plots mesh figures in color, by default. The command

colormap([0 O 0])

sets the wireframe to black (we discuss function colormap in Chapter 6).
MATLAB also superimposes a grid and axes on a mesh plot. These can be
turned off using the commands

grid off
axis off

They can be turned back on by replacing of f with on in these two statements.
Finally, the viewing point (location of the observer) is controlled by function
view, which has the syntax

view(az, el)

As Fig. 4.14 shows, az and el represent azimuth and elevation angles (in de-
grees), respectively. The arrows indicate positive direction. The default values

4.5 ® Generating Filters Directly in the Frequency Domain 133

z FIGURE 4.14
Geometry for
function view.

Viewpoint

Center of
plot box

-y

are az =-37.5 and el = 30, which place the viewer in the quadrant defined by
the —x and —y axes, and looking into the quadrant defined by the positive x
and y axes in Fig. 4.14.

To determine the current viewing geometry, we type

>> [az, el] = view;
To set the viewpoint to the default values, we type
>> view(3)

The viewpoint can be modified interactively by clicking on the Rotate 3D
button in the figure window’s toolbar and then clicking and dragging in the fig-
ure window.

As discussed in Chapter 6, it is possible to specify the viewer location in
Cartesian coordinates, (x, y, z), which is ideal when working with RGB data.
However, for general plot-viewing purposes, the method just discussed in-
volves only two parameters and is more intuitive.

B Consider a Gaussian lowpass filter similar to the one used in Example 4.4: EXAMPLE 4.5:
Wireframe
>> H = fftshift(lpfilter('gaussian', 500, 500, 50)); plotting.

Figure 4.15(a) shows the wireframe plot produced by the commands

>> mesh(H(1:10:500, 1:10:500))
>> axis([0 50 0 50 0 1])

where the axis command is as described in Section 3.3.1, except that it con-
tains a third range for the z axis.

134

FIGURE 4.15

(a) A plot
obtained using
function mesh.
(b) Axes and grid
removed. (c) A
different
perspective view
obtained using
function view.
(d) Another view
obtained using

the same function.

Chapter 4 @ Frequency Domain Processing

As noted earlier in this section, the wireframe is in color by default, transi-
tioning from blue at the base to red at the top. We convert the plot lines to
black and eliminate the axes and grid by typing

>> colormap([0 O 0])
>> axis off
>> grid off

Figure 4.15(b) shows the result. Figure 4.15(c) shows the result of the
command

>> view(—25, 30)

which moved the observer slightly to the right, while leaving the elevation con-
stant. Finally, Fig. 4.15(d) shows the result of leaving the azimuth at —25 and
setting the elevation to 0:

>> view(—25, 0)

This example shows the significant plotting power of the simple function mesh. B

Sometimes it is desirable to plot a function as a surface instead of as a wire-
frame. Function surf does this. Its basic syntax is

surf(H)

4.5 ® Generating Filters Directly in the Frequency Domain 135

This function produces a plot identical to mesh, with the exception that the
quadrilaterals in the mesh are filled with colors (this is called faceted shading).
To convert the colors to gray, we use the command

colormap(gray)

The axis, grid, and view functions work in the same way as described ear-
jier for mesh. For example, Fig. 4.16(a) is the result of the following sequence
of commands:

>> H = fftshift(lpfilter('gaussian', 500, 500, 50));
>> surf(H(1:10:500, 1:10:500))

>> axis([0 50 0 50 0 1])

>> colormap(gray)

>> grid off; axis off

The faceted shading can be smoothed and the mesh lines eliminated by in-
terpolation using the command

shading interp

Typing this command at the prompt produced Fig. 4.16(b).

When the objective is to plot an analytic function of two variables, we use
meshgrid to generate the coordinate values and from these we generate the
discrete (sampled) matrix to use in mesh or surf. For example, to plot
the function

f(x,y) = xe7)

from —2 to 2 in increments of 0.1 for both x and y, we write

>> [Y, X] = meshgrid(—-2:0.1:2, -2:0.1:2);
>> Z = X.*exp(—X."2 - Y."2);

and then use mesh(Z) or surf(Z) as before. Recall from the discussion in
Section 2.10.4 that that columns (Y) are listed first and rows (X) second in
function meshgrid.

adyng interp

FIGURE 4.16

(a) Plot obtained
using function
surf. (b) Result
of using the
command
shading interp.

136 Chapter 4 ® Frequency Domain Processing

hpfilter
R ————

EXAMPLE 4.6:
Highpass filters.

EXR Sharpening Frequency Domain Filters

Just as lowpass filtering blurs an image, the opposite process, highpass filtering,
sharpens the image by attenuating the low frequencies and leaving the high
frequencies of the Fourier transform relatively unchanged. In this section we
consider several approaches to highpass filtering.

4.6.1 Basic Highpass Filtering

Given the transfer function Hi,(u, v) of a lowpass filter, we obtain the transfer

function of the corresponding highpass filter by using the simple relation
th(u, 'l)) =1- Hlp(u, ’U).

Thus, function 1pfilter developed in the previous section can be used as the
basis for a highpass filter generator, as follows:

function H = hpfilter(type, M, N, DO, n)
%HPFILTER Computes frequency domain highpass filters.

'gaussian' Gaussian highpass filter with cutoff (standard
deviation) DO. n need not be supplied. DO must be
positive.

% H = HPFILTER(TYPE, M, N, DO, n) creates the transfer function of
% a highpass filter, H, of the specified TYPE and size (M by-N).
% Valid values for TYPE DO, and n are:

%

% ‘'ideal' Ideal highpass filter with cutoff frequency DO. n
% need not be supplied. DO must be positive.

%

% 'btw' Butterworth highpass filter of order n, and cutoff
% DO. The default value for n is 1.0. DO must be

% positive.

%

%

%

%

% The transfer function Hhp of a highpass filter is 1 — Hlp,

% where Hlp is the transfer function of the corresponding lowpass
% filter. Thus, we can use function lpfilter to generate highpass
% filters.

if nargin ==
n =1; % Default value of n.
end

% Generate highpass filter.
Hlp = 1pfilter(type, M, N, DO, n);
H =1 — Hlp;)

8 Figure 4.17 shows plots and images of ideal, Butterworth, and Gaussian
highpass filters. The plot in Fig. 4.17(a) was generated using the commands

>> H = fftshift(hpfilter('ideal', 500, 500, 50));
>> mesh(H(1:10:500, 1:10:500));
>> axis ([0 50 0 50 0 1])

4.6 m Sharpening Frequency Domain Filters 137

XS
\
RS

“;,"o.o,o,;o;;c;;
% l,'ll
SN

0
L
\g’lg

BE®
BEE
FIGURE 4.17 Top row: Perspective plots of ideal, Butterworth, and Gaussian highpass filters. Bottom row:
Corresponding images.

>>
>>
>>

colormap ([0 0 0])
axis off
grid off

The corresponding image in Fig. 4.17(d) was generated using the command

>>

figure, imshow(H, [1)

where the thin black border is superimposed on the image to delineate its
boundary. Similar commands yielded the rest of Fig. 4.17 (the Butterworth fil-
ter is of order 2). ®

M Figure 4.18(a) is the same test pattern, f, shown in Fig. 4.13(a).
Figure 4.18(b), obtained using the following commands, shows the result of ap-
plying a Gaussian highpass filter to f:

>>
>>
>>
>>
>>

PQ = paddedsize(size(f));
DO = 0.05*PQ(1);
H = hpfilter('gaussian', PQ(1), PQ(2), DO);

g = dftfilt(f, H);
figure, imshow(g, [])

EXAMPLE 4.7:
Highpass filtering.

138 Chapter 4 ® Frequency Domain Processing

BE
FIGURE 4.18

(a) Original image.

(b) Result of
Gaussian highpass
filtering.

EXAMPLE 4.8
Combining high-
frequency
emphasis and
histogram
equalization.

As Fig. 4.18(b) shows, edges and other sharp intensity transitions in the image
were enhanced. However, because the average value of an image is given by
F(0,0), and the highpass filters discussed thus far zero-out the origin of the
Fourier transform, the image has lost most of the background tonality present
in the original. This problem is addressed in the following section. =

4.6.2 High-Frequency Emphasis Filtering

As mentioned in Example 4.7, highpass filters zero out the dc term, thus re-
ducing the average value of an image to 0. An approach to compensate for this
is to add an offset to a highpass filter. When an offset is combined with multi-
plying the filter by a constant greater than 1, the approach is called high-
frequency emphasis filtering because the constant multiplier highlights the
high frequencies. The multiplier increases the amplitude of the low frequen-
cies also, but the low-frequency effects on enhancement are less than those
due to high frequencies, as long as the offset is small compared to the multipli-
er. High-frequency emphasis has the transfer function

the(u, 'U) =a+t thp(u’ ’U)

where a is the offset, b is the multiplier, and Hy,(u, v) is the transfer function
of a highpass filter.

B Figure 4.19(a) shows a chest X-ray image, f. X-ray imagers cannot be fo-
cused in the same manner as optical lenses, so the resulting images generally
tend to be slightly blurred. The objective of this example is to sharpen
Fig. 4.19(a). Because the gray levels in this particular image are biased toward
the dark end of the gray scale, we also take this opportunity to give an exam-
ple of how spatial domain processing can be used to complement frequency
domain filtering.

4.6 ® Sharpening Frequency Domain Filters 139

Figure 4.19(b) shows the result of filtering Fig. 4.19(a) with a Butterworth

highpass filter of order 2, and a value of Dy equal to 5% of the vertical dimen-
sion of the padded image. Highpass filtering is not overly sensitive to the value
of Dy, as long as the radius of the filter is not so small that frequencies near the
origin of the transform are passed. As expected, the filtered result is rather fea-
tureless, but it shows faintly the principal edges in the image. The advantage of
high-emphasis filtering (with a = 0.5 and b = 2.0 in this case) is shown in the
image of Fig. 4.19(c), in which the gray-level tonality due to the low-frequency
components was retained. The following sequence of commands was used to
generate the processed images in Fig. 4.19, where f denotes the input image
[the last command generated Fig. 4.19(d)]:

o>

>>
>>
>>
>>
>>
>>
>>
>>

PQ

DO

HBW
H =
gbw
gbw
ghf
ghf
ghe

munnwnunmoun

paddedsize(size(f));
0.05*PQ(1);

hpfilter('btw', PQ(1), PQ(2), DO, 2);
.5 + 2*HBW;

dftfilt(f, HBW);

gscale(gbw);

dftfilt(f, H);

gscale(ghf);

histeq(ghf, 256);

As indicated in Section 3.3.2, an image characterized by gray levels in a nar-

row range of the gray scale is an ideal candidate for histogram equalization. As
Fig. 4.19(d) shows, this indeed was an appropriate method to further enhance

FIGURE 4.19 High-

. frequency

empbhasis filtering,
(a) Original image.
(b) Highpass
ﬂteM£_zeSMt.

(c) High-frequency
emphasis result.
(d) Image (c) after
histogram
equalization.
(Original image
courtesy of Dr.
Thomas R. Gest,
Division of
Anatomical
Sciences,
University of
Michigan Medical
School.)

140 Chapter 4 ® Frequency Domain Processing

the image in this example. Note the clarity of the bone structure and other de-
tails that simply are not visible in any of the other three images. The final en-
hanced image appears a little noisy, but this is typical of X-ray images when
their gray scale is expanded. The result obtained using a combination of high-
frequency emphasis and histogram equalization is superior to the result that
would be obtained by using either method alone. |

Summary

In addition to the image enhancement applications that we used as illustrations in this
and the preceding chapter, the concepts and techniques developed in these two chap-
ters provide the basis for other areas of image processing addressed in subsequent dis-
cussions in the book. Intensity transformations are used frequently for intensity scaling,
and spatial filtering is used extensively for image restoration in the next chapter, for
color processing in Chapter 6, for image segmentation in Chapter 10, and for extracting
descriptors from an image in Chapter 11. The Fourier techniques developed in this
chapter are used extensively in the next chapter for image restoration, in Chapter 8 for
image compression, and in Chapter 11 for image description.

