12

Preview

As mentioned in the previous chapter, the power that MATLAB brings to dig-
ital image processing is an extensive set of functions for processing multidi-
mensional arrays of which images (two-dimensional numerical arrays) are a
special case. The Image Processing Toolbox (IPT) is a collection of functions
that extend the capability of the MATLAB numeric computing environment.
These functions, and the expressiveness of the MATLAB language, make
many image-processing operations easy to write in a compact, clear manner,
thus providing an ideal software prototyping environment for the solution of
image processing problems. In this chapter we introduce the basics of MAT-
LAB notation, discuss a number of fundamental IPT properties and functions,
and introduce programming concepts that further enhance the power of IPT.
Thus, the material in this chapter is the foundation for most of the material in
the remainder of the book.

m Digital Image Representation

An image may be defined as a two-dimensional function, f(x, y), where x and
y are spatial (plane) coordinates, and the amplitude of f at any pair of coordi-
nates (x, y) is called the intensity of the image at that point. The term gray level
is used often to refer to the intensity of monochrome images. Color images are
formed by a combination of individual 2-D images. For example, in the RGB
color system, a color image consists of three (red, green, and blue) individual
component images. For this reason, many of the techniques developed for
monochrome images can be extended to color images by processing the three
component images individually. Color image processing is treated in detail in
Chapter 6.



2.1 ® Digital Image Representation 13

An image may be continuous with respect to the x- and y-coordinates, and
also in amplitude. Converting such an image to digital form requires that the
coordinates, as well as the amplitude, be digitized. Digitizing the coordinate
values is called sampling; digitizing the amplitude values is called quantization.
Thus, when x, y, and the amplitude values of f are all finite, discrete quantities,
we call the image a digital image.

2.1.1 Coordinate Conventions

The result of sampling and quantization is a matrix of real numbers. We use
two principal ways in this book to represent digital images. Assume that an
image f(x,y) is sampled so that the resulting image has M rows and N
columns. We say that the image is of size M X N. The values of the coordi-
nates (x, y) are discrete quantities. For notational clarity and convenience, we
use integer values for these discrete coordinates. In many image processing
books, the image origin is defined to be at (x, y) = (0, 0). The next coordinate
values along the first row of the image are (x, y) = (0, 1). It is important to
keep in mind that the notation (0, 1) is used to signify the second sample along
the first row. It does not mean that these are the actual values of physical co-
ordinates when the image was sampled. Figure 2.1(a) shows this coordinate
convention. Note that x ranges fromOto M — 1,and y from0to N — 1, inin-
teger increments.

The coordinate convention used in the toolbox to denote arrays is different
from the preceding paragraph in two minor ways. First, instead of using (x, y),
the toolbox uses the notation (7, ¢) to indicate rows and columns. Note, how-
ever, that the order of coordinates is the same as the order discussed in the
previous paragraph, in the sense that the first element of a coordinate tuple,
(a, b), refers to a row and the second to a column. The other difference is that
the origin of the coordinate system is at (r, ¢) = (1, 1); thus, r ranges from 1 to
M, and c from 1 to N, in integer increments. This coordinate convention is
shown in Fig. 2.1(b).

01 2 N-1 1 23 N
y 1 ¢
14 o o o o o o o o o o 28 o o o o o o o o o
e e e s e e e e e 34 s e e o a4 e e s e
M-1 e o o o e o e e o o M e e o e e & o e e o
One pixel _/ One pixel e

L

FIGURE 2.1
Coordinate
conventions used
(a) in many image
processing books,
and (b) in the
Image Processing
Toolbox.




14  Chapter 2 ® Fundamentals

MATLAB and IPT
documentation use
both the terms matrix
and array, mostly in-
terchangeably. How-
ever, keep in mind
that a matrix is two
dimensional, whereas
’ an array can have
any finite dimension.

IPT documentation refers to the coordinates in Fig. 2.1(b) as pixel coordi-
nates. Less frequently, the toolbox also employs another coordinate conven-
tion called spatial coordinates, which uses x to refer to columns and y to refers
to rows. This is the opposite of our use of variables x and y. With very few ex-
ceptions, we do not use IPT’s spatial coordinate convention in this book, but
the reader will definitely encounter the terminology in IPT documentation.

2.1.2 Images as Matrices

The coordinate system in Fig. 2.1(a) and the preceding discussion lead to the
following representation for a digitized image function:

£(0,0) o, fIOLN-1)
Flxy) = f(lz’ 0) f(1£,1) f(l,l‘? - 1)
f(M-1,0) f(M-11) - f(M-1N-1)

The right side of this equation is a digital image by definition. Each element of
this array is called an image element, picture element, pixel, or pel. The terms
image and pixel are used throughout the rest of our discussions to denote a
digital image and its elements.

A digital image can be represented naturally as a MATLAB matrix:

f(1,1) f(1,2) - f(1,N)
f(2,1) f(2,2) - f(2,N)

f(M.,T) f(M., 2) - f(M.,N)

where f(1, 1) = f(0,0) (note the use of a monospace font to denote MAT-
LAB quantities). Clearly the two representations are identical, except for the
shift in origin. The notation f (p, q) denotes the element located in row p and
column q. For example, f (6, 2) is the element in the sixth row and second col-
umn of the matrix f. Typically we use the letters M and N, respectively, to de-
note the number of rows and columns in a matrix. A 1 x N matrix is called a
row vector, whereas an M x 1 matrix is called a column vector. A 1 x 1 matrix is
ascalar.

Matrices in MATLAB are stored in variables with names such as A, a, RGB,
real_array, and so on. Variables must begin with a letter and contain only
letters, numerals, and underscores. As noted in the previous paragraph, all
MATLAB quantities in this book are written using monospace characters. We
use conventional Roman, italic notation, such as f(x, y), for mathematical
expressions.

2.2 | Reading Images

Images are read into the MATLAB environment using function imread,
whose syntax is

imread('filename')



2.2 ® Reading Images 15

TIFF Tagged Image File Format Jtif, Jtiff
JPEG Joint Photographic Experts Group .jpg, . jpeg
GIF Graphics Interchange Format' .gif
BMP Windows Bitmap .bmp
PNG Portable Network Graphics .png
XWD X Window Dump . xwd

TGIF is supported by imread, but not by imwrite.

Here, filename is a string containing the complete name of the image file (in-
cluding any applicable extension). For example, the command line

>> f = imread('chestxray.jpg');

reads the JPEG (Table 2.1) image chestxray into image array f. Note the use
of single quotes (') to delimit the string filename. The semicolon at the end
of a command line is used by MATLAB for suppressing output. If a semicolon
is not included, MATLAB displays the results of the operation(s) specified in
that line. The prompt symbol (>>) designates the beginning of a command line,
as it appears in the MATLAB Command Window (see Fig. 1.1).

When, as in the preceding command line, no path information is included in
filename, imread reads the file from the current directory (see Section 1.7.1)
and, if that fails, it tries to find the file in the MATLAB search path (see
Section 1.7.1). The simplest way to read an image from a specified directory is
to include a full or relative path to that directory in filename. For example,

>> f = imread('D:\myimages\chestxray.jpg');
reads the image from a folder called myimages on the D: drive, whereas
>> f = imread('.\myimages\chestxray.jpg');

reads the image from the myimages subdirectory of the current working di-
rectory. The Current Directory Window on the MATLAB desktop toolbar
displays MATLAB’s current working directory and provides a simple, man-
ual way to change it. Table 2.1 lists some of the most popular image/graphics
formats supported by imread and imwrite (imwrite is discussed in
Section 2.4).

Function size gives the row and column dimensions of an image:

>> gize(f)
ans =
1024 1024

TABLE 2.1

Some of the
image/graphics
formats supported
by imread and
imwrite, starting
with MATLAB 6.5.
Earlier versions
support a subset of
these formats. See
online help for a
complete list of
supported formats.

In Windows, directo-
ries also are called
folders.




16  Chapter 2 ® Fundamentals

As in size, many
MATLAB and IPT
functions can return
more than one out-
put argument. Multi-
ple output
arguments must be
enclosed within
square brackets, [ 1.

This function is particularly useful in programming when used in the following
form to determine automatically the size of an image:

>> [M, N] = size(f);
This syntax returns the number of rows (M) and columns (N) in the image.

The whos function displays additional information about an array. For in-
stance, the statement

>> whos f
gives
Name Size Bytes Class
f 1024x1024 1048576 uint8 array

Grand total is 1048576 elements using 1048576 bytes

The uint8 entry shown refers to one of several MATLAB data classes dis-
cussed in Section 2.5. A semicolon at the end of a whos line has no effect, so
normally one is not used.

2.3 Displaying Images
Images are displayed on the MATLAB desktop using function imshow, which
has the basic syntax:

imshow(f, G)

where f is an image array, and G is the number of intensity levels used to dis-
play it. If G is omitted, it defaults to 256 levels. Using the syntax

imshow(f, [low high])

displays as black all values less than or equal to low, and as white all values
greater than or equal to high. The values in between are displayed as interme-
diate intensity values using the default number of levels. Finally, the syntax

imshow(f, [ 1)

sets variable low to the minimum value of array f and high to its maximum
value. This form of imshow is useful for displaying images that have a low dy-
namic range or that have positive and negative values.

Function pixval is used frequently to display the intensity values of indi-
vidual pixels interactively. This function displays a cursor overlaid on an
image. As the cursor is moved over the image with the mouse, the coordi-
nates of the cursor position and the corresponding intensity values are



2.3 @ Displaying Images 17

shown on a display that appears below the figure window. When working
with color images, the coordinates as well as the red, green, and blue compo-
nents are displayed. If the left button on the mouse is clicked and then held
pressed, pixval displays the Euclidean distance between the initial and cur-
rent cursor locations.

The syntax form of interest here is

pixval

which shows the cursor on the last image displayed. Clicking the X button on
the cursor window turns it off.

B (a) The following statements read from disk an image called rose_512.tif,
extract basic information about the image, and display it using imshow:

>> f = imread('rose_512.tif');

>> whos f
Name Size Bytes Class
f 512x512 262144 uint8 array

Grand total is 262144 elements using 262144 bytes

>> imshow(f)

A semicolon at the end of an imshow line has no effect, so normally one is
not used. Figure 2.2 shows what the output looks like on the screen. The figure
number appears on the top, left of the window. Note the various pull-down
menus and utility buttons. They are used for processes such as scaling, saving,
and exporting the contents of the display window. In particular, the Edit menu
has functions for editing and formatting results before they are printed or
saved to disk.

EXAMPLE 2.1:
Image reading
and displaying.

FIGURE 2.2
Screen capture
showing how an
image appears on
the MATLAB
desktop.
However, in most
of the examples
throughout this
book, only the
images
themselves are
shown. Note the
figure number on
the top, left part
of the window.




18  Chapter 2 @ Fundamentals

Function figure
creates a figure win-
dow. When used
without an argu-
ment, as shown here,
it simply creates a
new figure window.
Typing figure(n),
forces figure number
n to become visible.

FIGURE 2.3 (a) An
image, h, with low
dynamic range.

(b) Result of scaling
by using imshow
(h,[1).(Original
image courtesy of
Dr. David R.
Pickens, Dept.

of Radiology &
Radiological
Sciences, Vanderbilt
University Medical
Center.)

If another image, g, is displayed using imshow, MATLAB replaces the
image in the screen with the new image. To keep the first image and output a
second image, we use function figure as follows:

>> figure, imshow(g)
Using the statement
>> imshow(f), figure, imshow(g)

displays both images. Note that more than one command can be written on a
line, as long as different commands are properly delimited by commas or semi-
colons. As mentioned earlier, a semicolon is used whenever it is desired to sup-
press screen outputs from a command line.

(b) Suppose that we have just read an image h and find that using imshow(h)
produces the image in Fig. 2.3(a). It is clear that this image has a low dynamic
range, which can be remedied for display purposes by using the statement

>> imshow(h, [ 1)

Figure 2.3(b) shows the result. The improvement is apparent. H

| 2.4 | Writing Images
Images are written to disk using function imwrite, which has the following
basic syntax:

imwrite(f, 'filename')

With this syntax, the string contained in filename must include a recognized
file format extension (see Table 2.1). Alternatively, the desired format can be
specified explicitly with a third input argument. For example, the following
command writes f to a TIFF file named patient10_runi:

>> imwrite(f, 'patienti10_runt', 'tif')

or, alternatively,

>> imwrite(f, 'patient10_runi.tif')




2.4 ® Writing Images 19

If filename contains no path information, then imwrite saves the file in the
current working directory.

The imwrite function can have other parameters, depending on the file for-
mat selected. Most of the work in the following chapters deals either with
JPEG or TIFF images, so we focus attention here on these two formats.

A more general imwrite syntax applicable only to JPEG images is

imwrite(f, 'filename.jpg', 'quality', q)

where q is an integer between 0 and 100 (the lower the number the higher the
degradation due to JPEG compression).

8 Figure 2.4(a) shows an image, f, typical of sequences of images resulting
from a given chemical process. It is desired to transmit these images on a rou-
tine basis to a central site for visual and/or automated inspection. In order to
reduce storage and transmission time, it is important that the images be com-
pressed as much as possible while not degrading their visual appearance
beyond a reasonable level. In this case “reasonable” means no perceptible
false contouring. Figures 2.4(b) through (f) show the results obtained by writ-
ing image f to disk (in JPEG format), with q = 50, 25, 15, 5, and 0, respective-
ly. For example, for q = 25 the applicable syntax is

>> imwrite(f, 'bubbles25.jpg', 'quality', 25)

The image for q = 15 [Fig. 2.4(d)] has false contouring that is barely visible,
but this effect becomes quite pronounced for q = 5 and q = 0. Thus, an
acceptable solution with some margin for error is to compress the images with
q =25.In order to get an idea of the compression achieved and to obtain other
image file details, we can use function imfinfo, which has the syntax

imfinfo filename

where filename is the complete file name of the image stored in disk. For
example,

>> imfinfo bubbles25.jpg

outputs the following information (note that some fields contain no informa-
tion in this case):

Filename: "bubbles25.jpg’
FileModDate: '04-Jan-2003 12:31:26'
FileSize: 13849

Format: "jpg’
FormatVersion: v
Width: 714
Height: 682
BitDepth: 8
ColorType: ‘grayscale’
FormatSignature: t

Comment: {}

EXAMPLE 2.2:
Writing an image
and using
function imfinfo.




20  Chapter 2 ® Fundamentals

&b

gl

BE

FIGURE 2.4

(a) Original image.
(b) through

(f) Results of using
jpg quality values
q =50,25,15,5,
and 0, respectively.
False contouring
begins to be barely
noticeable for

q =15 [image (d)]
but is quite visible
for q =5 and

q=0.

See Example 2.11
for a function that
creates all the images
in Fig. 2.4 using a
simple for loop.

where FileSize is in bytes. The number of bytes in the original image is com-
puted simply by multiplying Width by Height by BitDepth and dividing the
result by 8. The result is 486948. Dividing this by FileSize gives the compres-
sion ratio: (486948/13849) = 35.16. This compression ratio was achieved
while maintaining image quality consistent with the requirements of the appli-



2.4 @ Writing Images 21

cation. In addition to the obvious advantages in storage space, this reduction
allows the transmission of approximately 35 times the amount of uncom-
pressed data per unit time.

The information fields displayed by imfinfo can be captured into a so-
called structure variable that can be used for subsequent computations. Using
the preceding image as an example, and assigning the name K to the structure
variable, we use the syntax

>> K = imfinfo('bubbles25.jpg');

to store into variable K all the information generated by command imfinfo.
The information generated by imfinfo is appended to the structure variable
by means of fields, separated from K by a dot. For example, the image height
and width are now stored in structure fields K.Height and K.Width.

As an illustration, consider the following use of structure variable K to com-
pute the compression ratio for bubbles25. jpg:

>> K = imfinfo('bubbles25.jpg’');

>> image_bytes = K.Width*K.Height*K.BitDepth/8;

>> compressed_bytes = K.FileSize;

>> compression_ratio = image_bytes/compressed_bytes

compression_ratio =
35.1612

Note that imfinfo was used in two different ways. The first was to type
imfinfo bubbles25. jpg at the prompt, which resulted in the information
being displayed on the screen. The second was to type K = imfinfo('bub-
bles25.jpg'), which resulted in the information generated by imfinfo
being stored in K. These two different ways of calling imfinfo are an example
of command-function duality, an important concept that is explained in more
detail in the MATLAB online documentation. 5

A more general imwrite syntax applicable only to tif images has the form

imwrite(g, 'filename.tif', ‘'compression',

'resolution',

'parameter’',
[colres rowres])

where 'parameter' can have one of the following principal values: 'none’
indicates no compression; 'packbits' indicates packbits compression (the
default for nonbinary images); and 'ccitt' indicates ccitt compression (the
default for binary images). The 1 X 2 array [colres rowres] contains two in-
tegers that give the column resolution and row resolution in dots-per-unit (the
default values are [72 72]). For example, if the image dimensions are in inches,
colres is the number of dots (pixels) per inch (dpi) in the vertical direction,
and similarly for rowres in the horizontal direction. Specifying the resolution
by a single scalar, res, is equivalent to writing [res res].

Structures are dis-
cussed in Sections
2.10.6and 11.1.1.

To learn more about
command function
duality, consult the
help page on this
topic. See Section
1.7.3 regarding help

pages.

If a statement does
not fit on one line,
use an ellipsis (three
periods), followed by
Return or Enter, to
indicate that the
statement continues
on the next line.
There are no spaces
between the periods.



22 Chapter 2 ® Fundamentals

EXAMPLE 2.3:
Using imwrite
parameters.

FIGURE 2.5
Effects of
changing the dpi
resolution while
keeping the
number of pixels
constant.

(a) A 450 x 450
image at 200 dpi
(size = 2.25 X
2.25 inches).

(b) The same
450 X 450 image,
but at 300 dpi
(size = 1.5 X
1.5 inches).
(Original image
courtesy of Lixi,
Inc.)

B Figure 2.5(a) is an 8-bit X-ray image of a circuit board generated during
quality inspection. It is in jpg format, at 200 dpi. The image is of size
450 X 450 pixels, so its dimensions are 2.25 X 2.25 inches. We want to store
this image in tif format, with no compression, under the name sf. In addition,
we want to reduce the size of the image to 1.5 X 1.5 inches while keeping the
pixel count at 450 X 450. The following statement yields the desired result:

>> imwrite(f, 'sf.tif', 'compression', 'none’, ‘resolution’ s
[300 300])

The values of the vector [colres rowres] were determined by multiplying
200 dpi by the ratio 2.25/1.5, which gives 300 dpi. Rather than do the compu-
tation manually, we could write

>> res = round(200*2.25/1.5);

>> imwrite(f, 'sf.tif', 'compression', 'none' ,'resolution’', res)
where function round rounds its argument to the nearest integer. It is impor-
tant to note that the number of pixels was not changed by these commands.
Only the scale of the image changed. The original 450 X 450 image at 200 dpi
is of size 2.25 X 2.25 inches. The new 300-dpi image is identical, except that its




2.5 & Data Classes

450 X 450 pixels are distributed over a 1.5 X 1.5-inch area. Processes such as
this are useful for controlling the size of an image in a printed document with-
out sacrificing resolution. -]

Often, it is necessary to export images to disk the way they appear on the
MATLAB desktop. This is especially true with plots, as shown in the next
chapter. The contents of a figure window can be exported to disk in two ways.
The first is to use the File pull-down menu in the figure window (see Fig. 2.2)
and then choose Export. With this option, the user can select a location, file
name, and format. More control over export parameters is obtained by using
the print command:

print —fno —dfileformat —rresno filename

where no refers to the figure number in the figure window of interest,
fileformat refers to one of the file formats in Table 2.1, resno is the resolu-
tion in dpi, and filename is the name we wish to assign the file. For example,
to export the contents of the figure window in Fig. 2.2 as a tif file at 300 dpi,
and under the name hi_res_rose, we would type

>> print —f1 —dtiff —r300 hi_res_rose

This command sends the file hi_res_rose.tif to the current directory.

If we simply type print at the prompt, MATLAB prints (to the default
printer) the contents of the last figure window displayed. It is possible also to
specify other options with print, such as a specific printing device.

FER Data Classes

Although we work with integer coordinates, the values of pixels themselves are
not restricted to be integers in MATLAB. Table 2.2 lists the various data classes'
supported by MATLAB and IPT for representing pixel values. The first eight
entries in the table are referred to as numeric data classes. The ninth entry is the
char class and, as shown, the last entry is referred to as the logical data class.

All numeric computations in MATLAB are done using double quantities,
so this is also a frequent data class encountered in image processing applica-
tions. Class uint8 also is encountered frequently, especially when reading
data from storage devices, as 8-bit images are the most common representa-
tions found in practice. These two data classes, class logical, and, to a lesser
degree, class uint16, constitute the primary data classes on which we focus in
this book. Many IPT functions, however, support all the data classes listed in
Table 2.2. Data class double requires 8 bytes to represent a number, uint8
and int8 require 1 byte each, uint16 and int16 require 2 bytes,and uint32,

TMATLAB documentation often uses the terms data class and data type interchangeably. In this book,
we reserve use of the term type for images, as discussed in Section 2.6.

23



24 Chapter 2 ® Fundamentals

TABLE 2.2

Data classes. The
first eight entries
are referred to as
numeric classes;
the ninth entry is
the character
class, and the last
entry is of class
logical.

double Double-precision, floating-point numbers in the approximate
range —10°% to 10%% (8 bytes per element).

uints Unsigned 8-bit integers in the range [0, 255] (1 byte per element).

uint16 Unsigned 16-bit integers in the range [0, 65535] (2 bytes per
element).

uint32 Unsigned 32-bit integers in the range [0, 4294967295] (4 bytes
per element).

int8 Signed 8-bit integers in the range [—128, 127] (1 byte per element).

int16 Signed 16-bit integers in the range [—32768, 32767] (2 bytes per
element).

int32 Signed 32-bit integers in the range [ 2147483648, 2147483647]
(4 bytes per element).

single Single-precision floating-point numbers with values in the
approximate range —10° to 10% (4 bytes per element).

char Characters (2 bytes per element).

logical Values are 0 or 1 (1 byte per element).

int32,and single,require 4 bytes each. The char data class holds characters
in Unicode representation. A character string is merely a 1 x n array of char-
acters. A logical array contains only the values 0 and 1, with each element
being stored in memory using one byte per element. Logical arrays are creat-
ed by using function logical (see Section 2.6.2) or by using relational opera-
tors (Section 2.10.2).

Image Types
The toolbox supports four types of images:

¢ Intensity images
* Binary images
¢ Indexed images
* RGB images

Most monochrome image processing operations are carried out using binary
or intensity images, so our initial focus is on these two image types. Indexed
and RGB color images are discussed in Chapter 6.

2.6.1 Intensity Images

An intensity image is a data matrix whose values have been scaled to represent
intensities. When the elements of an intensity image are of class uint8, or
class uint16, they have integer values in the range [0, 255] and [0, 65535], re-
spectively. If the image is of class double, the values are floating-point num-
bers. Values of scaled, class double intensity images are in the range [0, 1] by
convention.



2.7 & Converting between Data Classes and Image Types 25

2.6.2 Binary Images

Binary images have a very specific meaning in MATLAB. A binary image is
a logical array of Os and 1s. Thus, an array of Os and 1s whose values are of
data class, say, uint8, is not considered a binary image in MATLAB. A
numeric array is converted to binary using function logical. Thus,if Ais a
numeric array consisting of Os and 1s, we create a logical array B using the
statement

B = logical(A)

If A contains elements other than Os and 1s, use of the logical function con-
verts all nonzero quantities to logical 1s and all entries with value 0 to logical
0s. Using relational and logical operators (see Section 2.10.2) also creates logi-

cal arrays.
To test if an array is logical we use the islogical function:

islogical(C)

If C is a logical array, this function returns a 1. Otherwise it returns a 0. Logical
arrays can be converted to numeric arrays using the data class conversion
functions discussed in Section 2.7.1.

2.6.3 A Note on Terminology

Considerable care was taken in the previous two sections to clarify the use of
the terms data class and image type. In general, we refer to an image as being a
“data_class image_type image,” where data_class is one of the entries
from Table 2.2, and image_type is one of the image types defined at the begin-
ning of this section. Thus, an image is characterized by both a class and a type.
For instance, a statement discussing an “unit8 intensity image” is simply re-
ferring to an intensity image whose pixels are of data class unit8. Some func-
tions in the toolbox support all data classes, while others are very specific as to
what constitutes a valid class. For example, the pixels in a binary image can
only be of data class 1logical, as mentioned earlier.

%4 Converting between Data Classes and Image Types

Converting between data classes and image types is a frequent operation in
IPT applications. When converting between data classes, it is important to
keep in mind the value ranges for each data class detailed in Table 2.2.

2.7.1 Converting between Data Classes
Converting between data classes is straightforward. The general syntax is

B = data_class_name(A)

where data_class_name is one of the names in the first column of Table 2.2.
For example, suppose that A is an array of class uint8. A double-precision

q@ﬁgical
5

See Table 2.9 for a
list of other func-
tions based on the
is* syntax.



26  Chapter 2 ® Fundamentals

M-function change-
class, discussed in
Section 3.2.3, can be
used for changing an

input image to a spec-

ified class.

TABLE 2.3
Functions in IPT
for converting
between image
classes and types.
See Table 6.3 for
conversions that
apply specifically
to color images.

array, B, is generated by the command B = double(A). This conversion is used
routinely throughout the book because MATLAB expects operands in nu-
merical computations to be double-precision, floating-point numbers. If C is an
array of class double in which all values are in the range [0, 255] (but possibly
containing fractional values), it can be converted to an uint8 array with the
command D =uint8(C).

If an array of class double has any values outside the range [0,255] and it is
converted to class uint8 in the manner just described, MATLAB converts to
0 all values that are less than 0, and converts to 255 all values that are greater
than 255. Numbers in between are converted to integers by discarding their
fractional parts. Thus, proper scaling of a double array so that its elements are
in the range [0, 255] is necessary before converting it to uint8. As indicated in
Section 2.6.2, converting any of the numeric data classes to logical results in
an array with logical 1s in locations where the input array had nonzero values,
and logical Os in places where the input array contained Os.

2.1.2 Converting between Image Classes and Types

The toolbox provides specific functions (Table 2.3) that perform the scaling
necessary to convert between image classes and types. Function im2uint8 de-
tects the data class of the input and performs all the necessary scaling for the
toolbox to recognize the data as valid image data. For example, consider the
following 2 X 2 image f of class double, which could be the result of an inter-
mediate computation:

Performing the conversion

>> g = im2uint8(f)

yields the result
g =

0 128

191 255

im2uint8 uint8 logical,uint8,uint16,and double
im2uinti6 uint16 logical,uint8,uint16,and double
mat2gray double (in range [0,1])  double

im2double double logical,uint8,uint16, and double
im2bw logical uint8,uint16, and double




2.7 ® Converting between Data Classes and Image Types

from which we see that function im2uint8 sets to 0 all values in the input that
are less than 0, sets to 255 all values in the input that are greater than 1, and
multiplies all other values by 255. Rounding the results of the multiplication to
the nearest integer completes the conversion. Note that the rounding behavior
of im2uint8 is different from the data-class conversion function uint8 dis-
cussed in the previous section, which simply discards fractional parts.

Converting an arbitrary array of class double to an array of class double
scaled to the range [0, 1] can be accomplished by using function mat2gray
whose basic syntax is

g = mat2gray(A, [Amin, Amax])

where image g has values in the range 0 (black) to 1 (white). The specified pa-
rameters Amin and Amax are such that values less than Amin in A become 0 in g,
and values greater than Amax in A correspond to 1 in g. Writing

>> g = mat2gray(A);

sets the values of Amin and Amax to the actual minimum and maximum values in
A.The input is assumed to be of class double. The output also is of class double.

Function im2double converts an input to class double. If the input is of
class uint8, uint16, or logical, function im2double converts it to class
double with values in the range [0, 1]. If the input is already of class double,
im2double returns an array that is equal to the input. For example, if an array
of class double results from computations that yield values outside the range
[0,1], inputting this array into im2double will have no effect. As mentioned in
the preceding paragraph, a double array having arbitrary values can be con-
verted to a double array with values in the range [0, 1] by using function
mat2gray.

As an illustration, consider the class uint8 image®

>> h = uint8([25 50; 128 200]);
Performing the conversion

>> g = im2double(h);

yields the result

g =
0.0980 0.1961
0.4706 0.7843

from which we infer that the conversion when the input is of class uint8 is
done simply by dividing each value of the input array by 255. If the input is of
class uint16 the division is by 65535.

*Section 2.8.2 explains the use of square brackets and semicolons to specify a matrix.

27



28  Chapter 2 ® Fundamentals

EXAMPLE 2.4:
Converting
between image
classes and types.

Finally, we consider conversion between binary and intensity image types.
Function im2bw, which has the syntax

g = im2bw(f, T)

produces a binary image, g, from an intensity image, f, by thresholding. The
output binary image g has values of 0 for all pixels in the input image with
intensity values less than threshold T, and 1 for all other pixéls. The value
specified for T has to be in the range [0, 1], regardless of the class of the
input. The output binary image is automatically declared as a logical array
by im2bw. If we write g = im2bw (), IPT uses a default value of 0.5 for T. If
the input is an uint8 image, im2bw divides all its pixels by 255 and then ap-
plies either the default or a specified threshold. If the input is of class
uint16, the division is by 65535. If the input is a double image, im2bw ap-
plies either the default or a specified threshold directly. If the input is a
logical array, the output is identical to the input. A logical (binary) array
can be converted to a numerical array by using any of the four functions in
the first column of Table 2.3.

B (a) We wish to convert the following double image

> f = [12; 3 4]
f =

2
4

w =

to binary such that values 1 and 2 become 0 and the other two values become
1. First we convert it to the range [0, 1]:

>> g = mat2gray(f)
g =

0 0.3333
0.6667 1.0000

Then we convert it to binary using a threshold, say, of value 0.6:

>> gb = im2bw(g, 0.6)
gb =

0 0
1 1



2.7 & Converting between Data Classes and Image Types

As mentioned in Section 2.5, we can generate a binary array directly using re-
Jational operators (Section 2.10.2). Thus we get the same result by writing

>>gb=f >2
gb =

0
1 1

We could store in a variable (say, gbv) the fact that gb is a logical array by
using the islogical function, as follows:

>> gbv = islogical(gb)
gbv =
1

(b) Suppose now that we want to convert gb to a numerical array of Os and
1s of class double. This is done directly:

>> gbd = im2double(gb)
ghd =
0 0
1 1

If gb had been a numeric array of class uint8, applying im2double to it
would have resulted in an array with values

0 0
0.0039 0.0039

because im2double would have divided all the elements by 255. This did not
happen in the preceding conversion because im2double detected that the
input was a logical array, whose only possible values are 0 and 1. If the input
in fact had been an uint8 numeric array and we wanted to convert it to class
double while keeping the 0 and 1 values, we would have converted the array
by writing

>> gbd = double(gb)
ghd =
0 oOo
1 1

29



30 Chapter 2 ® Fundamentals

Using a single quote
without the period
computes the conju-
gate transpose. When
the data are real, both
transposes can be
used interchangeably.
See Table 2.4.

Finally, we point out that MATLAB supports nested statements, so we could have
started with image f and arrived at the same result by using the one-line statement

>> gbd = im2double(im2bw(mat2gray(f), 0.6));

or by using partial groupings of these functions. Of course, the entire process
could have been done in this case with a simpler command:

>> gbd = double(f > 2);

again demonstrating the compactness of the MATLAB language. E ]

Array Indexing

MATILAB supports a number of powerful indexing schemes that simplify
array manipulation and improve the efficiency of programs. In this section we
discuss and illustrate basic indexing in one and two dimensions (i.e., vectors
and matrices). More sophisticated techniques are introduced as needed in sub-
sequent discussions.

2.8.1 Vector Indexing

As discussed in Section 2.1.2, an array of dimension 1 X N is called a row vec-
tor. The elements of such a vector are accessed using one-dimensional index-
ing. Thus, v (1) is the first element of vector v, v(2) its second element, and so
forth. The elements of vectors in MATLAB are enclosed by square brackets
and are separated by spaces or by commas. For example,

>> v =1[138579]

vV =
1 3 5 7 9

>> v (2)

ans =

3

A row vector is converted to a column vector using the transpose operator (. "'):

>> w = v, '
w:

© N O W =



2.8 ® Array Indexing 31

To access blocks of elements, we use MATLAB’s colon notation. For exam-
ple, to access the first three elements of v we write

>> v(1:3)
ans =
1 3 5

Similarly, we can access the second through the fourth elements

>> v(2:4)
ans =
3 5 7

or all the elements from, say, the third through the last element:

>> v(3:end)

ans =
5 7 9

where end signifies the last element in the vector. If v is a vector, writing
>> v(:)

produces a column vector, whereas writing

>> v(1:end)

produces a row vector.
Indexing is not restricted to contiguous elements. For example,

>> v(1:2:end)
ans =
1 5 9

The notation 1:2:end says to start at 1, count up by 2 and stop when the count
reaches the last element. The steps can be negative:

>> v(end:-2:1)
ans =
9 5 1



32  Chopter 2 @ Fundamentals
Here, the index count started at the last element, decreased by 2, and stopped
when it reached the first element.
Function linspace, with syntax

x = linspace(a, b, n)

generates a row vector x of n elements linearly spaced between and including
a and b. We use this function in several places in later chapters.”

A vector can even be used as an index into another vector. For example, we
can pick the first, fourth, and fifth elements of v using the command

>> v([1 4 5])
ans =
1 7 9

As shown in the following section, the ability to use a vector as an index into
another vector also plays a key role in matrix indexing.

2.8.2 Matrix Indexing

Matrices can be represented conveniently in MATLAB as a sequence of row
vectors enclosed by square brackets and separated by semicolons. For exam-

ple, typing
>>A=1[123;456; 78 9]
displays the 3 X 3 matrix

A =

1 2 3

4 5 6

7 8 9
Note that the use of semicolons here is different from their use mentioned ear-
lier to suppress output or to write multiple commands in a single line.

We select elements in a matrix just as we did for vectors, but now we need

two indices: one to establish a row location and the other for the correspond-

ing column. For example, to extract the element in the second row, third col-
umn, we write

>> A(2, 3)
ans =
6



2.8 ® Array Indexing

The colon operator is used in matrix indexing to select a two-dimensional
block of elements out of a matrix. For example,

>> C3 = A(:, 3)
c3 =

3
6
9

Here, use of the colon by itself is analogous to writing A(1:3,3), which simply
picks the third column of the matrix. Similarly, we extract the second row as
follows:

>> R2 = A(2, :)
R2 =
4 5 6

The following statement extracts the top two rows:

>> T2 = A(1:2, 1:3)
T2 =

To create a matrix B equal to A but with its last column set to Os, we write

>> B = A;
>> B(:y, 3) =0
B =
1 2 0
4 5 0
7 8 0

Operations using end are carried out in a manner similar to the examples
given in the previous section for vector indexing. The following examples illus-
trate this.

>> A(end, end)
ans =
9

33



34  Chapter 2 ® Fundamentals

>> A(end, end — 2)

ans =

7
>> A(2:end, end:-2:1)
ans =

6 4

9 7

Using vectors to index into a matrix provides a powerful approach for ele-
ment selection. For example,

>> E = A([1 3], [2 3])

2 3
8 9

The notation A([a b],[c d]) picks out the elements in A with coordinates
(row a, column c), (row a, column d), (row b, column c), and (row b, column
d). Thus, when we let E=A([1 3], [2 3]) we are selecting the following ele-
ments in A: the element in row 1 column 2, the element in row 1 column 3, the
element in row 3 column 2, and the element in row 3 column 3.

More complex schemes can be implemented using matrix addressing. A
particularly useful addressing approach using matrices for indexing is of the
form A(D), where D is a logical array. For example, if

>> D = logical([1 0 0; 00 1; 0 0 0])

D =
1 0 0
0 0 1
0 0 0

then

>> A(D)

ans =

o —=

Finally, we point out that use of a single colon as an index into a matrix se-
lects all the elements of the array (on a column-by-column basis) and arranges
them in the form of a column vector. For example, with reference to matrix T2,



2.8 ® Array Indexing 35

>> v = T2(:)

V=

WA N DA =

This use of the colon is helpful when, for example, we want to find the sum of
all the elements of a matrix:

>> s = sum(A(:))

s =
45

In general, sum(v) adds the values of all the elements of input vector v. If
amatrix is input into sum [as in sum(A)], the output is a row vector containing
the sums of each individual column of the input array (this behavior is typical
of many MATLAB functions encountered in later chapters). By using a sin-
gle colon in the manner just illustrated, we are in reality implementing the
command

>> sum(sum(A));

because use of a single colon converts the matrix into a vector.

Using the colon notation is actually a form of linear indexing into a matrix
or higher-dimensional array. In fact, MATLAB stores each array as a column
of values regardless of the actual dimensions. This column consists of the array
columns, appended end to end. For example, matrix A is stored in MATLAB as

OCOOWOOUNN D=

Accessing A with a single subscript indexes directly into this column. For exam-
ple, A(3) accesses the third value in the column, the number 7; A(8) accesses
the eighth value, 6, and so on. When we use the column notation, we are simply



36  Chapter 2 ® Fundamentals

EXAMPLE 2.5:
Some simple
image operations
using array
indexing.

2E

&

as
FIGURE 2.6
Results obtained
using array
indexing.

(a) Original
image. (b) Image
flipped vertically.
(c) Cropped
image.

(d) Subsampled
image. (e) A
horizontal scan
line through the
middle of the
image in (a).

addressing all the elements, A(1:end). This type of indexing is a basic staple in
vectorizing loops for program optimization, as discussed in Section 2.10.4.

B The image in Fig. 2.6(a) is a 1024 X 1024 intensity image, , of class uints.
The image in Fig. 2.6(b) was flipped vertically using the statement

>> fp = f(end:=1:1, :);

The image shown in Fig. 2.6(c) is a section out of image (a), obtained using
the command

>> fc = f(257:768, 257:768);

Similarly, Fig. 2.6(d) shows a subsampled image obtained using the
statement

>> fs = f(1:2:end, 1:2:end);

300 T T T T T

250

200
150
100

50

s doinnn
200 400 600 800 1000

o



2.9 @ Some Important Standard Arrays

Finally, Fig. 2.6(¢) shows a horizontal scan line through the middle of
Fig. 2.6(a), obtained using the command

>> plot(f(512, 1))
The plot function is discussed in detail in Section 3.3.1. u

2.8.3 Selecting Array Dimensions
Operations of the form

operation(A, dim)

where operation denotes an applicable MATLAB operation, A is an array,
and dim is a scalar, are used frequently in this book. For example, suppose that
Ais an array of size M X N.The command

>> k = size(A, 1);

gives the size of A along its first dimension, which is defined by MATLAB as
the vertical dimension. That is, this command gives the number of rows in A.
Similarly, the second dimension of an array is in the horizontal direction, so
the statement size(A,2) gives the number of columns in A. A singleton di-
mension is any dimension, dim, for which size (A, dim) = 1. Using these con-
cepts, we could have written the last command in Example 2.5 as

>> plot(f(size(f, 1)/2, :))

MATLAB does not restrict the number of dimensions of an array, so being
able to extract the components of an array in any dimension is an important
feature. For the most part, we deal with 2-D arrays, but there are several in-
stances (as when working with color or multispectral images) when it is neces-
sary to be able to “stack” images along a third or higher dimension. We deal
with this in Chapters 6, 11, and 12. Function ndims, with syntax

d = ndims(A)

gives the number of dimensions of array A. Function ndims never returns a
value less than 2 because even scalars are considered two dimensional, in the
sense that they are arrays of size 1 X 1.

Some Important Standard Arrays

Often, it is useful to be able to generate simple image arrays to try out ideas
and to test the syntax of functions during development. In this section we in-
troduce seven array-generating functions that are used in later chapters. If
only one argument is included in any of the following functions, the result is a
square array.

37



38

Chapter 2 ® Fundamentals

zeros (M, N) generates an M x N matrix of Os of class double.

ones (M, N) generates an M x N matrix of 1s of class double.

true (M, N) generates an Mx N logical matrix of 1s.

false (M, N) generates an Mx N logical matrix of Os.

magic (M) generates an M x M “magic square.” This is a square array in

which the sum along any row, column, or main diagonal, is the same. Magic

squares are useful arrays for testing purposes because they are easy to

generate and their numbers are integers.

e rand(M, N) generates an M x N matrix whose entries are uniformly distrib-
uted random numbers in the interval [0, 1]. '

e randn(M, N) generates an M x N matrix whose numbers are normally dis-

tributed (i.e., Gaussian) random numbers with mean 0 and variance 1.

For example,

>> A = 5*ones(3, 3)

A =
5 5 5
5 5 5
5 5 5
>> magic(3)
ans =
8 1 6
3 5 7
4 9 2
>> B = rand(2, 4)
B =

0.2311 0.4860 0.7621 0.0185
0.6068 0.8913 0.4565 0.8214

ALY Introduction to M-Function Programming

One of the most powerful features of the Image Processing Toolbox is its
transparent access to the MATLAB programming environment. As will be-
come evident shortly, MATLAB function programming is flexible and partic-
ularly easy to learn.

2.10.1 M-Files

So-called M-files in MATLAB can be scripts that simply execute a series of
MATLAB statements, or they can be functions that can accept arguments and
can produce one or more outputs. The focus of this section in on M-file func-
tions. These functions extend the capabilities of both MATLAB and IPT to ad-
dress specific, user-defined applications.



2.10 ® Introduction to M-Function Programming 39

M-files are created using a text editor and are stored with a name of the
form filename.m, such as average.m and filter.m. The components of a
function M-file are

o The function definition line
o The H1 line

o Help text

o The function body

¢ Comments

The function definition line has the form
function [outputs] = name(inputs)

For example, a function to compute the sum and product (two different out-
puts) of two images would have the form

function [s, p] = sumprod(f, g)

where f, and g are the input images, s is the sum image, and p is the product
image. The name sumprod is arbitrarily defined, but the word function always
appears on the left, in the form shown. Note that the output arguments are en-
closed by square brackets and the inputs are enclosed by parentheses. If the
function has a single output argument, it is acceptable to list the argument with-
out brackets. If the function has no output, only the word function is used,
without brackets or equal sign. Function names must begin with a letter, and
the remaining characters can be any combination of letters, numbers, and un-
derscores. No spaces are allowed. MATLAB distinguishes function names up
to 63 characters long. Additional characters are ignored.
Functions can be called at the command prompt; for example,

>> [s, p] = sumprod(f, g);

or they can be used as elements of other functions, in which case they become
subfunctions. As noted in the previous paragraph, if the output has a single ar-
gument, it is acceptable to write it without the brackets, as in

>>y = sum(x);

The HI line is the first text line. It is a single comment line that follows the
function definition line. There can be no blank lines or leading spaces between
the H1 line and the function definition line. An example of an H1 line is

% SUMPROD Computes the sum and product of two images.

As indicated in Section 1.7.3, the H1 line is the first text that appears when a
user types

>> help function_name




40  Chapter 2 ® Fundamentals

at the MATLAB prompt. Also, as mentioned in that section, typing lookfor
keyword displays all the H1 lines containing the string keyword. This line pro-
vides important summary information about the M-file, so it should be as de-
scriptive as possible.

Help text is a text block that follows the H1 line, without any blank lines in
between the two. Help text is used to provide comments and online help for
the function. When a user types help function_name at the prompt, MAT-
LAB displays all comment lines that appear between the function definition
line and the first noncomment (executable or blank) line. The help system ig-
nores any comment lines that appear after the Help text block.

The function body contains all the MATLAB code that performs computa-
tions and assigns values to output arguments. Several examples of MATLAB
code are given later in this chapter.

All lines preceded by the symbol “%” that are not the H1 line or Help text are
considered function comment lines and are not considered part of the Help text
block. It is permissible to append comments to the end of a line of code.

M-files can be created and edited using any text editor and saved with the
extension .m in a specified directory, typically in the MATLAB search path.
Another way to create or edit an M-file is to use the edit function at the
prompt. For example,

>> edit sumprod

opens for editing the file sumprod.m if the file exists in a directory that is in the
MATLAB path or in the current directory. If the file cannot be found, MAT-
LAB gives the user the option to create it. As noted in Section 1.7.2, the
MATLAB editor window has numerous pull-down menus for tasks such as
saving, viewing, and debugging files. Because it performs some simple checks
and uses color to differentiate between various elements of code, this text edi-
tor is recommended as the tool of choice for writing and editing M-functions.

2.10.2 Operators
MATLAB operators are grouped into three main categories:

* Arithmetic operators that perform numeric computations
* Relational operators that compare operands quantitatively
¢ Logical operators that perform the functions AND, OR, and NOT

These are discussed in the remainder of this section.

Arithmetic Operators

MATLAB has two different types of arithmetic operations. Matrix arithmetic
operations are defined by the rules of linear algebra. Array arithmetic opera-
tions are carried out element by element and can be used with multidimen-
sional arrays. The period (dot) character (.) distinguishes array operations
from matrix operations. For example, A*B indicates matrix multiplication in the
traditional sense, whereas A. *B indicates array multiplication, in the sense that
the result is an array, the same size as A and B, in which each element is the




2.10 ® Introduction to M-Function Programming 41

roduct of corresponding elements of A and B. In other words,if C = A.*B,
then C(I, J) =A(I, J)*B(I, J).Because matrix and array operations are the
same for addition and subtraction, the character pairs .+ and .- are not used.

When writing an expression such as B = A, MATLAB makes a “note” that B
is equal to A, but does not actually copy the data into B unless the contents of
A change later in the program. This is an important point because using dif-
ferent variables to “store” the same information sometimes can enhance code
clarity and readability. Thus, the fact that MATLAB does not duplicate infor-
mation unless it is absolutely necessary is worth remembering when writing
MATLAB code. Table 2.4 lists the MATLAB arithmetic operators, where A

+ Array and matrix
addition

- Array and matrix
subtraction
* Array multiplication

* Matrix multiplication

./ Atrray right division

A Array left division

/ Matrix right division
\ Matrix left division
. Array power

" Matrix power

L Vector and matrix
transpose

' Vector and matrix
complex conjugate
transpose

+ Unary plus

- Unary minus

Colon

plus(A, B)
minus (A, B)
times (A, B)

mtimes (A, B)

rdivide (A, B)
1divide(A, B)

mrdivide (A, B)

mldivide(A, B)

power (A, B)

mpower (A, B)

transpose (A)

ctranspose(A)

uplus (A)
uminus (A)

a+b,A+B,ora+A.

a-b,A-B,A-a,

ora-A.

C=A.*B,C(I,J)

=A(I, J)*B(I, J).

A*B, standard matrix
multiplication, or a*A,
multiplication of a scalar
times all elements of A.
C=A./B,C(I,J)
=A(I,J)/B(I,J).
C=A.\B, C(I,J)

=B(I, J)/A(I,J).

A/B is roughly the same as
A*inv(B), depending

on computational accuracy.
A\B is roughly the same as
inv(A)*B, depending

on computational accuracy.
If c=A."B, then

C(I,J)=
A(I,J)"B(I,J).

See online help for a
discussion of this operator.
A.'.Standard vector and
matrix transpose.
A'.Standard vector and

matrix conjugate transpose.

When Aisreal A.' =A".
+A is the same as 0 + A.
—Ais the same as 0 — A
or —1*A,

Discussed in Section 2.8.

TABLE 2.4

Array and matrix
arithmetic
operators.
Computations
involving these
operators can be
implemented using
the operators
themselves, as in
A+ B, or using the
MATLAB
functions shown, as
in plus (A, B).The
examples shown
for arrays use
matrices to
simplify the
notation, but they
are easily
extendable to
higher dimensions.



42  Chapter 2 ® Fundamentals

TABLE 2.5

The image
arithmetic
functions
supported by IPT.

imadd Adds two images; or adds a constant to an image.
imsubtract Subtracts two images; or subtracts a constant from an image.
immultiply Multiplies two images, where the multiplication is

carried out between pairs of corresponding image elements;
or multiplies a constant times an image.

imdivide Divides two images, where the division is carried out
between pairs of corresponding image elements; or divides
an image by a constant.

imabsdiff Computes the absolute difference between two images.
imcomplement  Complements an image. See Section 3.2.1.
imlincomb Computes a linear combination of two or more images. See

Section 5.3.1 for an example.

and B are matrices or arrays and a and b are scalars. All operands can be real
or complex. The dot shown in the array operators is not necessary if the
operands are scalars. Keep in mind that images are 2-D arrays, which are
equivalent to matrices, so all the operators in the table are applicable to
images.

The toolbox supports the image arithmetic functions listed in Table 2.5. Al-
though these functions could be implemented using MATLAB arithmetic op-
erators directly, the advantage of using the IPT functions is that they support
the integer data classes whereas the equivalent MATLAB math operators re-
quire inputs of class double.

Example 2.6, to follow, uses functions max and min. The former function has
the syntax forms

max(A)

max(A, B)
max(A, [ 1, dim)
, Il = max(...)

C
C
C
[C

In the first form, if Ais a vector, max (A) returns its largest element; if A is a ma-
trix, then max (A) treats the columns of A as vectors and returns a row vector
containing the maximum element from each column. In the second form,
max (A, B) returns an array the same size as A and B with the largest elements
taken from A or B. In the third form, max (A, [ ], dim) returns the largest ele-
ments along the dimension of A specified by scalar dim. For example, max (A,
[ 1, 1) produces the maximum values along the first dimension (the rows) of
A.Finally, [C, I] = max(...) also finds the indices of the maximum values of
A, and returns them in output vector I. If there are several identical maximum
values, the index of the first one found is returned. The dots indicate the syntax



2.10 @ Introduction to M-Function Programming 43

used on the right of any of the previous three forms. Function min has the
same syntax forms just described.

@ Suppose that we want to write an M-function, call it fgprod, that multiplies EXAMPLE 2.6:
two input images and outputs the product of the images, the maximum and min-  Illustration of
jmum values of the product, and a normalized product image whose values are ~ 2rithmetic

in the range [0, 1]. Using the text editor we write the desired function as follows: ?55532(:;: n? :f and

min.
function [p, pmax, pmin, pn] = improd(f, g)
%IMPROD Computes the product of two images.
% [P, PMAX, PMIN, PN] = IMPROD(F, G)' outputs the element-by-
% element product of two input images, F and G, the product
% maximum and minimum values, and a normalized product array with
% values in the range [0, 1]. The input images must be of the same
% size. They can be of class uint8, unit16, or double. The outputs
% are of class double.

fd = double(f);
gd = double(g);

p = fd.*gd;

pmax = max(p(:));
= min(p(:));
pn = mat2gray(p);

°
=2
-
=

[

Note that the input images were converted to double using the function
double instead of im2double because, if the inputs were of type uints,
im2double would convert them to the range [0, 1]. Presumably, we want p to
contain the product of the original values. To obtain a normalized array, pn, in
the range [0, 1] we used function mat2gray. Note also the use of single-colon
indexing, as discussed in Section 2.8.

Suppose that f = [1 2;3 4] andg=[1 2; 2 1].Typing the preceding
function at the prompt results in the following output:

>> [p, pmax, pmin, pn] = improd(f, g)

In MATLAB documentation, it is customary to use uppercase characters in the H1 line and in Help text
when referring to function names and arguments. This is done to avoid confusion between program
names/variables and normal explanatory text.



44  Chapter 2 ® Fundamentals

EXAMPLE 2.7
Relational
operators.

TABLE 2.6
Relational
operators.

pn =
0 0.6000
1.0000 0.6000

Typing help improd at the prompt results in the following output:

>> help improd

IMPROD Computes the product of two images.
[P, PMAX, PMIN, PN] = IMPROD(F, G) outputs the element-by-
element product of two input images, F and G, the product
maximum and minimum values, and a normalized product array with
values in the range [0, 1]. The input images must be of the same
size. They can be of class uint8, unit16, or double. The outputs
are of class double. B

Relational Operators

MATLAB?’s relational operators are listed in Table 2.6. These operators com-
pare corresponding elements of arrays of equal dimensions, on an element-by-
element basis.

B Although the key use of relational operators is in flow control (e.g.,in if
statements), which is discussed in Section 2.10.3, we illustrate briefly how
these operators can be used directly on arrays. Consider the following se-
quence of inputs and outputs:

> A=1[123; 456; 7 8 9]

A =

1 2 3

4 5 6

7 8 9
>>B=1[024; 356; 34 9]
B =

0 2 4

3 5 6

3 4 9
> A == B

A

Less than

Less than or equal to
Greater than

Greater than or equal to
Equal to

Not equal to

0oV A
o Vo

1}
"




2.10 ® Introduction to M-Function Programming 45

ans =

[=NeNe)
pury
—_

Thus, we see that the operation A == B produces a logical array of the same di-
mensions as A and B, with 1s in locations where the corresponding elements of
A and B match, and Os elsewhere. As another illustration, the statement,

>> A >=B
ans =
1 1 0
1 1 1
1 1 1

produces a logical array with 1s where the elements of A are greater than or
equal to the corresponding elements of B and Os elsewhere. o

For vectors and rectangular arrays, both operands must have the same di-
mensions unless one operand is a scalar. In this case, MATLAB tests the scalar
against every element of the other operand, yielding a logical array of the
same size as the operand, with 1s in locations where the specified relation is
satisfied and Os elsewhere. If both operands are scalars, the result is a 1 if the
specified relation is satisfied and 0 otherwise.

Logical Operators and Functions

Table 2.7 lists MATLAB’s logical operators, and the following example illus-
trates some of their properties. Unlike most common interpretations of logical
operators, the operators in Table 2.7 can operate on both logical and numeric
data. MATLAB treats a logical 1 or nonzero numeric quantity as true, and a
logical 0 or numeric 0 as false in all logical tests. For instance, the AND of
two operands is 1 if both operands are logical 1s or nonzero numbers. The
AND operation is 0 if either of its operands is logically or numerically 0, or if
they both are logically or numerically 0.

TABLE 2.7
Logical operators.




46  Chapter 2 ® Fundamentals

EXAMPLE 2.8:
Logical operators.

EXAMPLE 2.9:
Logical functions.

TABLE 2.8
Logical functions.

B Consider the AND operation on the following numeric arrays:

> A =[120; 04 5];
> B =[1-23; 011];
>> A & B
ans =

1 1 0

0 1 1

We see that the AND operator produces a logical array that is of the same size
as the input arrays and has a 1 at locations where both operands are nonzero
and Os elsewhere. Note that all operations are done on pairs of corresponding
elements of the arrays, as before.

The OR operator works in a similar manner. An OR expression is true if ei-
ther operand is a logical 1 or nonzero numerical quantity, or if they both are
logical 1s or nonzero numbers; otherwise it is false. The NOT operator works
with a single input. Logically, if the operand is true, the NOT operator converts
it to false. When using NOT with numeric data, any nonzero operand becomes
0, and any zero operand becomes 1. =

MATLAB also supports the logical functions summarized in Table 2.8. The
all and any functions are particularly useful in programming.

B Consider the simple arraysA = [1 2 3;4 5 6] andB = [0 -1 1; 0 0 2].
Substituting these arrays into the functions in Table 2.8 yield the following results:

>> xor(A, B)

ans =

xor (exclusive OR) The xor function returns a 1 only if both operands are

logically different; otherwise xor returns a 0.
all The all function returns a 1 if all the elements in a

vector are nonzero; otherwise all returns a 0. This
function operates columnwise on matrices.

any The any function returns a 1 if any of the elements in a
vector is nonzero; otherwise any returns a 0. This
function operates columnwise on matrices.




2.10 ® Introduction to M-Function Programming 47

>> all(A)
ans =

1 1 1
>> any(A)
ans =

1 1 1
>> all(B)
ans =

o 0 1
>> any(B)
ans =

0o 1 1

Note how functions all and any operate on columns of A and B. For instance,
the first two elements of the vector produced by all(B) are 0 because each
of the first two columns of B contains at least one 0; the last element is 1 be-
cause all elements in the last column of B are nonzero. =

In addition to the functions listed in Table 2.8, MATLAB provides a
number of other functions that test for the existence of specific conditions
or values and return logical results. Some of these functions are listed in
Table 2.9. A few of them deal with terms and concepts discussed earlier in
this chapter (for example, see function islogical in Section 2.6.2); others
are used in subsequent discussions. Keep in mind that the functions listed in
Table 2.9 return a logical 1 when the condition being tested is true; other-
wise they return a logical 0. When the argument is an array, some of the
functions in Table 2.9 yield an array the same size as the argument contain-
ing logical 1s in the locations that satisfy the test performed by the function,
and logical Os elsewhere. For example, if A= [1 2; 3 1/0], the function
isfinite (A) returns the matrix [1 1; 1 0], where the 0 (false) entry indi-
cates that the last element of A is not finite.

Some Important Variables and Constants

The entries in Table 2.10 are used extensively in MATLAB programming. For
example, eps typically is added to denominators in expressions to prevent
overflow in the event that a denominator becomes zero.



48  Chapter 2 ® Fundamentals

TABLE 2.9

Some functions
that return a
logical 1 ora
logical 0
depending on
whether the value
or condition in
their arguments
are true or
false. See online
help for a
complete list.

TABLE 2.10
Some important
variables and
constants.

iscell(C) True if C is a cell array.

iscellstr(s) True if s is a cell array of strings.

ischar(s) True if s is a character string.

isempty (A) True if A is the empty array, [ ].

isequal(A, B) True if A and B have identical elements and dimensions.

isfield(S, 'name') Trueif 'name’ is a field of structure S.

isfinite(A) True in the locations of array A that are finite.

isinf(A) True in the locations of array A that are infinite.

isletter(A) True in the locations of A that are letters of the alphabet.

islogical(A) True if A is a logical array.

ismember (A, B) True in locations where elements of A are also in B.

isnan(A) True in the locations of A that are NaNs (see Table 2.10 for
a definition of NaN).

isnumeric(A) True if A is a numeric array.

isprime(A) True in locations of A that are prime numbers.

isreal(A) True if the elements of A have no imaginary parts.

isspace(A) True at locations where the elements of A are whitespace
characters.

issparse(A) True if A is a sparse matrix.

isstruct(S) True if S is a structure.

ans

eps

i(or j)
NaN or nan
pi
realmax
realmin

computer
version

Most recent answer (variable). If no output variable is assigned to
an expression, MATLAB automatically stores the result in ans.

Floating-point relative accuracy. This is the distance between 1.0 and
the next largest number representable using double-precision
floating point.

Imaginary unit,asin 1 + 21i.

Stands for Not-a-Number (e.g., 0/0).

3.14159265358979

The largest floating-point number that your computer can represent.

The smallest floating-point number that your computer can
represent.

Your computer type.
MATLAB version string.




2.10 ® Introduction to M-Function Programming 49

Number Representation

MATLAB uses conventional decimal notation, with an optional decimal point
and leading plus or minus sign, for numbers. Scientific notation uses the letter
e to specify a power-of-ten scale factor. Imaginary numbers use either i or j as
a suffix. Some examples of valid number representations are

3 -99 0.0001
9.6397238 1.60210e-20  6.02252e23
11 -3.14159] 3e5i

All numbers are stored internally using the long format specified by the Insti-
tute of Electrical and Electronics Engineers (IEEE) floating-point standard.
Floating-point numbers have a finite precision of roughly 16 significant deci-
mal digits and a finite range of approximately 1073% to 10%3%,

2.10.3 Flow Control

The ability to control the flow of operations based on a set of predefined con-
ditions is at the heart of all programming languages. In fact, conditional
branching was one of two key developments that led to the formulation of
general-purpose computers in the 1940s (the other development was the use
of memory to hold stored programs and data). MATLAB provides the eight
flow control statements summarized in Table 2.11. Keep in mind the observa-
tion made in the previous section that MATLAB treats a logical 1 or nonzero
number as true, and a logical or numeric 0 as false.

TABLE 2.11
Flow control
if if,together with else and elseif, executes a group of statements.
statements based on a specified logical condition.
for Executes a group of statements a fixed (specified) number of
times.
while Executes a group of statements an indefinite number of times,
based on a specified logical condition.
break Terminates execution of a for or while loop.
continue Passes control to the next iteration of a for or while loop,
skipping any remaining statements in the body of the loop.
switch switch, together with case and otherwise, executes different
groups of statements, depending on a specified value or
string.
return Causes execution to return to the invoking function.

try...catch Changes flow control if an error is detected during execution.




50  Chapter 2 ® Fundamentals

EXAMPLE 2.10:

Conditional
branching and
introduction of
functions error,
length, and
numel.

<

if, else, and elseif
Conditional statement if has the syntax

if expression
statements
end

The expression is evaluated and, if the evaluation yields true, MATLAB ex-
ecutes one or more commands, denoted here as statements, between the if
and end lines. If expression is false, MATLAB skips all the statements be-
tween the if and end lines and resumes execution at the line following the end
line. When nesting ifs, each if must be paired with a matching end.

The else and elseif statements further conditionalize the if statement.
The general syntax is

if expressioni
statements1
elseif expression2
statements2
else
statements3
end

If expressiontis true, statements? are executed and control is transferred
to the end statement. If expression? evaluates to false, then expression2
is evaluated. If this expression evaluates to true, then statements2 are exe-
cuted and control is transferred to the end statement. Otherwise (else)
statements3 are executed. Note that the else statement has no condition.
The else and elseif statements can appear by themselves after an if state-
ment; they do not need to appear in pairs, as shown in the preceding general
syntax. It is acceptable to have multiple elseif statements.

¥ Suppose that we want to write a function that computes the average inten-
sity of an image. As discussed earlier, a two-dimensional array f can be con-
verted to a column vector, v, by letting v = f(:). Therefore, we want our
function to be able to work with both vector and image inputs. The program
should produce an error if the input is not a one- or two-dimensional array.

function av = average(A)

%AVERAGE Computes the average value of an array.

% AV = AVERAGE(A) computes the average value of input
% array, A, which must be a 1-D or 2-D array.

% Check the validity of the input. (Keep in mind that
% a 1-D array is a special case of a 2-D array.)
if ndims(A) > 2
error('The dimensions of the input cannot exceed 2.')
end



2.10 ® Introduction to M-Function Programming

% compute the average %
av = sum(A(:))/length(A(:)); </ keRgth
Qr

Note that the input is converted to a 1-D array by using A(:). In general,
1ength(A) returns the size of the longest dimension of an array, A. In this ex-
ample, because A(:) is a vector, length (A) gives the number of elements of A.
This eliminates the need to test whether the input is a vector or a 2-D array.
Another way to obtain the number of elements in an array directly is to use
function numel, whose syntax is

n = numel(A)

Thus, if A is an image, numel (A) gives its number of pixels. Using this function,
the last executable line of the previous program becomes

av = sum(A(:))/numel(A);

Finally, note that the error function terminates execution of the program and
outputs the message contained within the parentheses (the quotes shown are
required). g

for

As indicated in Table 2.11, a for loop executes a group of statements a speci-
fied number of times. The syntax is

for index = start:increment:end
statements
end

It is possible to nest two or more for loops, as follows:

for index1 = starti1:incrementi:end
statements1
for index2 = start2:increment2:end
statements2
end
additional loop1 statements
end

For example, the following loop executes 11 times:

count = 0;
for k = 0:0.1:1

count = count + 1;
end

51



52 Chapter 2 ® Fundamentals

EXAMPLE 2.11:
Using a for loop
to write multiple
images to file.

See the help page for
sprintf for other

syntax forms applic-
able to this function.

If the loop increment is omitted, it is taken to be 1. Loop increments also can
be negative, as in k = 0:—1:-10. Note that no semicolon is necessary at the end
of a for line. MATLAB automatically suppresses printing the values of a loop
index. As discussed in detail in Section 2.10.4, considerable gains in program
execution speed can be achieved by replacing for loops with so-called
vectorized code whenever possible.

# Example 2.2 compared several images using different JPEG quality val-
ues. Here, we show how to write those files to disk using a for loop. Suppose
that we have an image, f, and we want to write it to a series of JPEG files with
quality factors ranging from 0 to 100 in increments of 5. Further, suppose that
we want to write the JPEG files with filenames of the form series_xxx. jpg,
where xxx is the quality factor. We can accomplish this using the following
for loop:

for g = 0:5:100
filename = sprintf('series_%3d.jpg', q);
imwrite(f, filename, 'quality', q);

end

Function sprintf, whose syntax in this case is
s = sprintf('charactersi%ndcharacters2', q)

writes formatted data as a string, s. In this syntax form, characters1 and
characters2 are character strings, and %nd denotes a decimal number (speci-
fied by q) with n digits. In this example, characters1 is series_, the value of
nis 3,characters2is . jpg, and q has the values specified in the loop. &

while

A while loop executes a group of statements for as long as the expression
controlling the loop is true. The syntax is

while expression
statements
end

As in the case of for,while loops can be nested:

while expressiont
statements1
while expression2
statements2
end
additional loopl1 statements
end



2.10 ® Introduction to M-Function Programming 53

For example, the following nested while loops terminate when both a and
p have been reduced to 0:

Note that to control the loops we used MATLAB’s convention of treating a
numerical value in a logical context as true when it is nonzero and as false
when it is 0. In other words,while a and while b evaluate to true as long as a
and b are nonzero.

As in the case of for loops, considerable gains in program execution speed
can be achieved by replacing while loops with vectorized code (Section
2.10.4) whenever possible.

break

As its name implies, break terminates the execution of a for or while loop.
When a break statement is encountered, execution continues with the next
statement outside the loop. In nested loops, break exits only from the inner-
most loop that contains it.

continue

The continue statement passes control to the next iteration of the for or
while loop in which it appears, skipping any remaining statements in the body
of the loop. In nested loops, continue passes control to the next iteration of
the loop enclosing it.

switch

This is the statement of choice for controlling the flow of an M-function based
on different types of inputs. The syntax is

switch switch_expression
case case_expression
statement(s)
case {case_expressioni, case_expression2,...}
Statement(s)
otherwise
Statement(s)
end



54  Chopter 2 @ Fundamentals

EXAMPLE 2.12:
Extracting a
subimage from a
given image.

The switch construct executes groups of statements based on the value of a
variable or expression. The keywords case and otherwise delineate the
groups. Only the first matching case is executed.! There must always be an
end to match the switch statement. The curly braces are used when multiple
expressions are included in the same case statement. As a simple example,
suppose that we have an M-function that accepts an image f and converts it to
a specified class, call it newclass. Only three image classes are acceptable for
the conversion: uint8, uint16, and double. The following code fragment per-
forms the desired conversion and outputs an error if the class of the input
image is not one of the acceptable classes:

switch newclass
case 'uint8'
g = im2uint8(f);
case 'uint16'
g = im2uinti16(f);
case 'double'’
g = im2double(f);
otherwise
error('Unknown or improper image class.')
end

The switch construct is used extensively throughout the book.

B In this example we write an M-function (based on for loops) to extract a
rectangular subimage from an image. Although, as shown in the next section,
we could do the extraction using a single MATLAB statement, we use the pre-
sent example later to compare the speed between loops and vectorized code.
The inputs to the function are an image, the size (number of rows and
columns) of the subimage we want to extract, and the coordinates of the top,
left corner of the subimage. Keep in mind that the image origin in MATLAB
is at (1, 1), as discussed in Section 2.1.1.

function s = subim(f, m, n, rx, cy)

%SUBIM Extracts a subimage, s, from a given image, f.
% The subimage is of size m-by-n, and the coordinates
% of its top, left corner are (rx, cy).

s = zeros(m, n);

rowhigh = rx + m - 1;

colhigh = cy + n — 1;

xcount = 0;

for r = rx:rowhigh
xcount = xcount + 1;
ycount 0;

tUnlike the C language switch construct, MATLAB’s switch does not “fall through.” That is, switch
executes only the first matching case; subsequent matching cases do not execute. Therefore, break state-
ments are not used.



2.10 = Introduction to M-Function Programming 55

for ¢ = cy:colhigh
ycount = ycount + 1;
s(xcount, ycount) = f(r, c);
end
end

In the following section we give a significantly more efficient implementation
of this code. As an exercise, the reader should implement the preceding pro-
gram using while instead of for loops. |

2.10.4 Code Optimization

As discussed in some detail in Section 1.3, MATLAB is a programming lan-
guage specifically designed for array operations. Taking advantage of this fact
whenever possible can result in significant increases in computational speed.
In this section we discuss two important approaches for MATLAB code opti-
mization: vectorizing loops and preallocating arrays.

Vectorizing Loops

Vectorizing simply means converting for and while loops to equivalent vec-
tor or matrix operations. As will become evident shortly, vectorization can re-
sult not only in significant gains in computational speed, but it also helps
improve code readability. Although multidimensional vectorization can be dif-
ficult to formulate at times, the forms of vectorization used in image process-
ing generally are straightforward.

We begin with a simple example. Suppose that we want to generate a 1-D
function of the form

f(x) = Asin(x/2m)

forx =0,1,2,...,M — 1. A for loop to implement this computation is

% Array indices in MATLAB cannot be 0.

for x H
f(x A*sin((x — 1)/(2*pi));

=1
):
end

However, this code can be made considerably more efficient by vectorizing it;
that is, by taking advantage of MATLAB indexing, as follows:

X
.f

o:M — 1;
A*sin(x/(2*pi));

non

As this simple example illustrates, 1-D indexing generally is a simple
process. When the functions to be evaluated have two variables, optimized
indexing is slightly more subtle. MATLAB provides a direct way to implement
2-D function evaluations via function meshgrid, which has the syntax

[C, R] = meshgrid(c, r)




56

Chapter 2 ® Fundamentals

This function transforms the domain specified by row vectors ¢ and r into ar-
rays C and R that can be used for the evaluation of functions of two variables
and 3-D surface plots (note that columns are listed first in both the input and
output of meshgrid).

The rows of output array C are copies of the vector ¢, and the columns of
the output array R are copies of the vector r. For example, suppose that we
want to form a 2-D function whose elements are the sum of the squares of the
values of coordinate variables x and y for x=0, 1, 2andy =0, 1.The vec-
tor r is formed from the row components of the coordinates:r=[0 1 2].Sim-
ilarly, ¢ is formed from the column component of the coordinates: ¢ = [0 1]
(keep in mind that both r and c are row vectors here). Substituting these two
vectors into meshgrid results in the following arrays:

>> [C, R]= meshgrid(c, r)

C =
0 1
0 1
0 1
R =
0 O
1 1
2 2

The function in which we are interested is implemented as
>> h = R."2 + C."2

which gives the following result:

h = N

1

2
5

A 2O

Note that the dimensions of h are length(r) x length(c). Also note, for ex-
ample, that h(1,1) =R(1,1)"2 + C(1,1)"2. Thus, MATLAB automatically
took care of indexing h. This is a potential source for confusion when Os are in-
volved in the coordinates because of the repeated warnings in this book and in
manuals that MATLAB arrays cannot have 0 indices. As this simple illustra-
tion shows, when forming h, MATLAB used the contents of R and C for com-
putations. The indices of h, R, and C, started at 1. The power of this indexing
scheme is demonstrated in the following example.



2.10 = Introduction to M-Function Programming 57

B In this example we write an M-function to compare the implementation of EXAMPLE 2.13:

the following two-dimensional image function using for loops and vectorization: ~ An illustration of
the computational

f(x, y) = Asin(ugx + vgy) advant.ages of
vectorization, and

forx=0,1,2,...,.M —1land y =0,1,2,..., N — 1. We also introduce the intruduction of

timing functions tic and toc. ﬁﬁcttimgt ic and
The function inputs are A, uy, v, M and N.The desired outputs are the im- -

ages generated by both methods (they should be identical), and the ratio of
the time it takes to implement the function with for loops to the time it takes
to implement it using vectorization. The solution is as follows:

function [rt, f, g] = twodsin(A, u0, vO, M, N)

%TWODSIN Compares for loops vs. vectorization.

% The comparison is based on implementing the function

% f(x, y) = Asin(uOx + vOy) for x = 0, 1, 2,..., M -1 and
% y=0,1, 2,..., N— 1. The inputs to the function are

% M and N and the constants in the function.

% First implement using for loops.

tic % Start timing.

for r = 1:M
uox = ud*(r — 1);
for ¢ = 1:N

voy = vO*(c — 1);
f(r, c) = A*sin(uOx + vOy);
end
end

t1 = toc; % End timing.

% Now implement using vectorization. Call the image g.
tic % Start timing.

0:M - 1;
0:N — 1;

R] = meshgrid(c, r);
A*sin(uO*R + v0*C);

r
c
[C,
g =
t2 = toc; % End timing.

% Compute the ratio of the two times.

rt = t1/(t2 + eps); % Use eps in case t2 is close to 0.
Running this function at the MATLAB prompt,

>> [rt, f, g] = twodsin(1, 1/(4*pi), 1/(4*pi), 512, 512);



58  Chapter 2 @ Fundamentals

FIGURE 2.7
Sinusoidal image
generated in

Example 2.13.

yielded the following value of rt:

>> rt
rt =
34.2520

We convert the image generated (f and g are identical) to viewable form using
function mat2gray:

>> g = mat2gray(g);

and display it using imshow,

>> imshow(g)

Figure 2.7 shows the result. B

The vectorized code in Example 2.13 runs on the order of 30 times faster
than the implementation based on for loops. This is a significant computation-
al advantage that becomes increasingly meaningful as relative execution times
become longer. For example, if M and N are large and the vectorized program
takes 2 minutes to run, it would take over 1 hour to accomplish the same task
using for loops. Numbers like these make it worthwhile to vectorize as much of
a program as possible, especially if routine use of the program in envisioned.

The preceding discussion on vectorization is focused on computations in-
volving the coordinates of an image. Often, we are interested in extracting and
processing regions of an image. Vectorization of programs for extracting such
regions is particularly simple if the region to be extracted is rectangular and
encompasses all pixels within the rectangle, which generally is the case in this
type of operation. The basic vectorized code to extract a region, s, of size mx n
and with its top left corner at coordinates (rx, cy) is as follows:

rowhigh = rx + m — 1;
colhigh = cy + n — 1;



2.10 ® Introduction to M-Function Programming 59

s = f(rx:rowhigh, cy:colhigh);

where f is the image from which the region is to be extracted. The for loops to
accomplish the same thing were already worked out in Example 2.12. Imple-
menting both methods and timing them as in Example 2.13 would show that
the vectorized code runs on the order of 1000 times faster in this case than the
code based on for loops.

Preallocating Arrays

Another simple way to improve code execution time is to preallocate the size

_ of the arrays used in a program. When working with numeric or logical arrays,
preallocation simply consists of creating arrays of Os with the proper dimen-
sion. For example, if we are working with two images, f and g, of size
1024 X 1024 pixels, preallocation consists of the statements

>> f = zeros(1024); g = zeros(1024);

Preallocation also helps reduce memory fragmentation when working with
large arrays. Memory can become fragmented due to dynamic memory alloca-
tion and deallocation. The net result is that there may be sufficient physical mem-
ory available during computation, but not enough contiguous memory to hold a
large variable. Preallocation helps prevent this by allowing MATLAB to reserve
sufficient memory for large data constructs at the beginning of a computation.

2.10.5 Interactive I/0

Often, it is desired to write interactive M-functions that display information
and instructions to users and accept inputs from the keyboard. In this section
we establish a foundation for writing such functions.

Function disp is used to display information on the screen. Its syntax is

disp(argument)

If argument is an array, disp displays its contents. If argument is a text string,
then disp displays the characters in the string. For example,

> A =[12; 3 4];

>> disp(A)
1 2
3 4
>> sc = 'Digital Image Processing.';

>> disp(sc)

Digital Image Processing.

>> disp('This is another way to display text.')
This is another way to display text.

See Appendix B for
details on construct-
ing graphical user
interfaces (GUIs).

P93
0

h



60  Chapter 2 ® Fundamentals

See Section 12.4 for
a detailed discussion
of string operations.

Note that only the contents of argument are displayed, without words like
ans =, which we are accustomed to seeing on the screen when the value of a
variable is displayed by omitting a semicolon at the end of a command line.

Function input is used for inputting data into an M-function. The basic
syntax is

t = input('message')

This function outputs the words contained in message and waits for an input
from the user, followed by a return, and stores the input in t. The input can be
a single number, a character string (enclosed by single quotes), a vector (en-
closed by square brackets and elements separated by spaces or commas), a
matrix (enclosed by square brackets and rows separated by semicolons), or
any other valid MATLAB data structure. The syntax
t = input('message', 's')

outputs the contents of message and accepts a character string whose ele-
ments can be separated by commas or spaces. This syntax is flexible because it
allows multiple individual inputs. If the entries are intended to be numbers, the
elements of the string (which are treated as characters) can be converted to
numbers of class double by using the function str2num, which has the syntax

n = str2num(t)
For example,

>> t = input('Enter your data: ',
Enter your data: 1, 2, 4

ISI)

t =
124
>> class(t)
ans =
char
>> size(t)
ans =
1 5
>> n = str2num(t)
n =



2.10 ® Introduction to M-Function Programming 61

>> size(n)

ans =
1 3

>> class(n)

ans =
double

Thus, we see that t is a 1 X 5 character array (the three numbers and the two
spaces) and nisal X 3 vector of numbers of class double.

If the entries are a mixture of characters and numbers, then we use one of
MATLAB’s string processing functions. Of particular interest in the present
discussion is function strread, which has the syntax

[a, b, ¢, ...] = strread(cstr, 'format', 'param', 'value')

This function reads data from the character string cstr, using a specified
format and param/value combinations. In this chapter the formats of interest
are %f and %q, to denote floating-point numbers and character strings, respec-
tively. For param we use delimiter to denote that the entities identified in
format will be delimited by a character specified in value (typically a comma
or space). For example, suppose that we have the string

> t = '12.6, x2y, z';

To read the elements of this input into three variables a, b, and c, we write

>> [a, b, ¢] = strread(t, '%f%q%q', 'delimiter', ',')
a =
12.6000
b =
lx2yl
C =
Izl

Output a is of class double; the quotes around outputs x2y and z indicate that
b and ¢ are cell arrays, which are discussed in the next section. We convert
them to character arrays simply by letting

>> d = char(b)
d =
X2y

%ead

See the help page for
strread for a list of
the numerous syntax
forms applicable to
this function.




62  Chapter 2 @ Fundamentals

ﬁ%@w

Function strcmp
(s1, s2) compares
two strings, s1 and
s2, and returns a
logical true (1) if
the strings are equal;
otherwise it returns a
logical false (0).

Cell arrays and
structures are dis-
cussed in detail in
Section 11.1.1.

and similarly for c. The number (and order) of elements in the format string
must match the number and type of expected output variables on the left. In
this case we expect three inputs: one floating-point number followed by two
character strings.

Function strcmp is used to compare strings. For example, suppose that we
have an M-function g = imnorm(f, param) that accepts an image, f, and a pa-
rameter param than can have one of two forms: 'norm1',and 'norm255'.In
the first instance, f is to be scaled to the range [0, 1]; in the second, it is to be
scaled to the range [0, 255]. The output should be of class double in both cases.
The following code fragment accomplishes the required normalization:

f = double(f);

f=1Ff —-min(f(:));

f=Ff./max(f(:));

if strcmp(param, 'normi’')
g=f;

elseif strcmp(param, 'norm255')
g = 255*f;

else

error('Unknown value of param.')
end

An error would occur if the value specified in param is not 'normt' or
'norm255'. Also, an error would be issued if other than all lowercase charac-
ters are used for either normalization factor. We can modify the function to ac-
cept either lower or uppercase characters by converting any input to
lowercase using function lower, as follows:

param = lower(param)

Similarly, if the code uses uppercase letters, we can convert any input character
string to uppercase using function upper:

param = upper(param)

2.10.6 A Brief Introduction to Cell Arrays and Structures

When dealing with mixed variables (e.g., characters and numbers), we can
make use of cell arrays. A cell array in MATLAB is a multidimensional array
whose elements are copies of other arrays. For example, the cell array

¢ = {'gauss', [1 0; 0 1], 3}



2.10 ® Introduction to M-Function Programming 63

contains three elements: a character string, a 2 X 2 matrix, and a scalar (note
the use of curly braces to enclose the arrays). To select the contents of a cell
array we enclose an integer address in curly braces. In this case, we obtain the
following results:

>> ¢c{1}
ans =

gauss
>> c{2}
ans =

1 0

0 1
>> c{3}
ans =

3

An important property of cell arrays is that they contain copies of the argu-
ments, not pointers to the arguments. For example, if we were working with
cell array

c = {A, B}

in which A and B are matrices, and these matrices changed sometime later in a
program, the contents of ¢ would not change.

Structures are similar to cell arrays, in the sense that they allow grouping of a
collection of dissimilar data into a single variable. However, unlike cell arrays
where cells are addressed by numbers, the elements of structures are addressed
by names called fields. Depending on the application, using fields adds clarity and
readability to an M-function. For instance, letting S denote the structure variable
and using the (arbitrary) field names char_string, matrix, and scalar, the
data in the preceding example could be organized as a structure by letting

S.char_string = 'gauss';
S.matrix = [1 0; 0 1];
S.scalar = 3;

Note the use of a dot to append the various fields to the structure variable.
Then, for example, typing S.matrix at the prompt, would produce

>> S.matrix
ans =

1 0
o]

'y



64

Chapter 2 ® Fundamentals

which agrees with the corresponding output for cell arrays. The clarity of using
S.matrix as opposed to c{2} is evident in this case. This type of readability
can be important if a function has numerous outputs that must be interpreted
by a user.

Summary

The material in this chapter is the foundation for the discussions that follow. At this
point, the reader should be able to retrieve an image from disk, process it via simple
manipulations, display the result, and save it to disk. It is important to note that the key
lesson from this chapter is how to combine MATLAB and IPT functions with pro-
gramming constructs to generate solutions that expand the capabilities of those func-
tions. In fact, this is the model of how material is presented in the following chapters. By
combining standard functions with new code, we show prototypic solutions to a broad
spectrum of problems of interest in digital image processing.



