484

Preview

We conclude the book with a discussion and development of several M-functions
for région and/or boundary recognition, which in this chapter we call objects or
patterns. Approaches to computerized pattern recognition may be divided into
two principal areas: decision-theoretic and structural. The first category deals
with patterns described using quantitative descriptors, such as length, area, tex-
ture, and many of the other descriptors discussed in Chapter 11. The second cate-
gory deals with patterns best represented by symbolic information, such as
strings, and described by the properties and relationships between those symbols,
as explained in Section 12.4. Central to the theme of recognition is the concept of
“learning” from sample patterns. Learning techniques for both decision-theoretic
and structural approaches are implemented and illustrated in the material that
follows.

Background

A pattern is an arrangement of descriptors, such as those discussed in
Chapter 11.The name feature is used often in the pattern recognition literature
to denote a descriptor. A pattern class is a family of patterns that share a set of
common properties. Pattern classes are denoted w;, w,, ..., wy, Where W is
the number of classes. Pattern recognition by machine involves techniques for
assigning patterns to their respective classes—automatically and with as little
human intervention as possible.

The two principal pattern arrangements used in practice are vectors (for
quantitative descriptions) and strings (for structural descriptions). Pattern
vectors are represented by bold lowercase letters, such as x, y, and z, and have
the n X 1 vector form :

12.2 ® Computing Distance Measures in MATLAB 485

where each component, x;, represents the ith descriptor and # is the total num-
ber of such descriptors associated with the pattern. Sometimes it is necessary
in computations to use row vectors of dimension 1 X n, obtained simply by
forming the transpose, x, of the preceding column vector.

The nature of the components of a pattern vector x depends on the ap-
proach used to describe the physical pattern itself. For example, consider the
problem of automatically classifying alphanumeric characters. Descriptors
suitable for a decision-theoretic approach might include measures such 2-D
moment invariants or a set of Fourier coefficients describing the outer bound-
ary of the characters.

In some applications, pattern characteristics are best described by structur-
al relationships. For example, fingerprint recognition is based on the interrela-
tionships of print features called minutiae. Together with their relative sizes
and locations, these features are primitive components that describe finger-
print ridge properties, such as abrupt endings, branching, merging, and discon-
nected segments. Recognition problems of this type, in which not only
quantitative measures about each feature but also the spatial relationships be-
tween the features determine class membership, generally are best solved by
structural approaches.

The material in the following sections is representative of techniques for
implementing pattern recognition solutions in MATLAB. A basic concept in
recognition, especially in decision-theoretic applications, is the idea of pattern
matching based on measures of distance between pattern vectors. Therefore,
we begin the discussion with various approaches for the efficient computation
of distance measures in MATLAB.

Computing Distance Measures in MATLAB

The material in this section deals with vectorizing distance computations that
otherwise would involve for or while loops. Some of the vectorized expres-
sions presented here are considerably more subtle than most of the examples
in the previous chapters, so the reader is encouraged to study them in detail.
The following formulations are based on a summary of similar expressions
compiled by Acklam [2002].

The Euclidean distance between two n-dimensional (row or column) vec-
tors x and y is defined as the scalar

dixy) =Ix =yl =ly —xl = [(x1 = »)* + - + (%2 = 3a

This expression is simply the norm of the difference between the two vectors,
so we compute it using MATLAB’s function norm:

)22

d = norm(x — y)

486

Chapter 12 ® Object Recognition

where x and y are vectors corresponding to x and y in the preceding equation
for d(x, y). Often, it is necessary to compute a set of Euclidean distances be-
tween a vector y and each member of a vector population consisting of p, n-
dimensional vectors arranged as the rows of a p X n matrix X. For the
dimensions to line up properly, y has to be of dimension 1 X n. Then the dis-
tance between y and each element of X is contained in the p X 1 vector

d = sqrt(sum(abs(X — repmat(y, p, 1))."2, 2))

where d(i) is the Euclidean distance between y and the ith row of X [i.e.,
X(i, :)]. Note the use of function repmat to duplicate row vector y p times
and thus form a p X » matrix to match the dimensions of X. The last 2 on the
right of the preceding line of code indicates that sum is to operate along di-
mension 2; that is, to sum the elements along the horizontal dimension.

Suppose next that we have two vector populations X, of dimension p X n,
and Y, of dimension g X ». The matrix containing the distances between rows
of these two populations can be obtained using the expression

D = sqrt(sum(abs(repmat(permute(X, [1 3 2]), [1 g 1]) ...
— repmat(permute(Y, [3 1 2]), [p 1 1]))."2, 3))

where D(1i,j) is the Euclidean distance between the ith and jth rows of the
populations; thatfis, the distance between X(i,:) and Y(j,:).
The syntax for function permute in the preceding expression is

B = permute(A, order)

This function reorders the dimensions of A according to the elements of the vector
order (the elements of this vector must be unique). For example, if A is a 2-D
array, the statement B = permute(A,[2 1]) simply interchanges the rows and
columns of A, which is equivalent to letting B equal the transpose of A. If the length
of vector order is greater than the number of dimensions of A, MATLAB
processes the components of the vector from left to right, until all elements are
used. In the preceding expression for D, permute (X, [1 3 2]) creates arrays in
the third dimension, each being a column (dimension 1) of X. Since there are n
columns in X, z such arrays are created, with each array being of dimension p X 1.
Therefore, the command permute (X, [1 3 2]) creates an array of dimension
p X 1 X n. Similarly, the command permute (Y, [3 1 2]) creates an array of di-
mension 1 X g X n. Finally, the command repmat (permute (X, [1 3 2]), [1 q
1]) duplicates g times each of the n columns produced by the permute function,
thus creating an array of dimension p X g X n. Similar comments hold for the
other command involving Y. Basically, the preceding expression for D is simply a
vectorization of the expressions that would be written using for or while loops.

In addition to the expressions just discussed, we use in this chapter a dis-
tance measure from a vector y to the mean my, of a vector population, weight-
ed inversely by the covariance matrix, Cy, of the population. This metric,
called the Mahalanobis distance, is defined as

d(y’ mx) = (y - mx)TC;l(y - mx)

12.2 ® Computing Distance Measures in MATLAB 487

The inverse matrix operation is the most time-consuming computational task
required to implement the Mahalanobis distance. This operation can be opti-
mized significantly by using MATLAB’s matrix right division operator (/) in-
troduced in Table 2.4 (see also the margin note in the following page).
Expressions for m, and C, are given in Section 11.5.

Let X denote a population of p, n-dimensional vectors, and let Y denote
a population of g, n-dimensional vectors, such that the vectors in both X and
Y are the rows of these arrays. The objective of the following M-function is
to compute the Mahalanobis distance between every vector in Y and the
mean, my:

function d = mahalanobis(varargin) mahalanobis
%MAHALANOBIS Computes the Mahalanobis distance. e A
D = MAHALANOBIS(Y, X) computes the Mahalanobis distance between

each vector in Y to the mean (centroid) of the vectors in X, and

outputs the result in vector D, whose length is size(Y, 1). The

vectors in X and Y are assumed to be organized as rows. The

input data can be real of complex. The outputs are real

quantities.

D = MAHALANOBIS(Y, CX, MX) computes the Mahalanobis distance
between each vector in Y and the given mean vector, MX. The
results are output in vector D, whose length is size(Y, 1). The
vectors in Y are assumed to be organized as the rows of this
array. The input data can be real or complex. The outputs are
real quantities. In addition to the mean vector MX, the

_ covariance matrix CX of a population of vectors X also must be
provided. Use function COVMATRIX (Section 11.5) to compute MX and
CX.

% Reference: Acklam, P. J. [2002]. "MATLAB Array Manipulation Tips
% and Tricks." Available at

% home.online.no/~pjacklam/matlab/doc/mtt/index.html

% or at

% www.prenhall.com/gonzalezwoodseddins

0® o° o P o° o° o° I° O° J° O° O° I° O° O° of

param = varargin; % Keep in mind that param is a cell array.
Y = param{1};
ny = size(Y, 1); % Number of vectors in Y.

if length(param) ==
X = param{2};
% Compute the mean vector and covariance matrix of the vectors
% in X.
[Cx, mx] = covmatrix(X);
elseif length(param) == 3 % Cov. matrix and mean vector provided.

Cx = param{2};
mx = param{3};
else

error('Wrong number of inputs.')
end

488

With A a square ma-
trix, the MATLAB
matrix operation
A/B is a more accu-
rate (and generally
faster) implementa-
tion of the operation
B*inv (A). Similar-
ly, A\B is a preferred
implementation of
the operation
inv(A)*B. See
Table 2.4.

Chapter 12 ® Object Recognition

mx = mx(:)"'; % Make sure that mx is a row vector.

% Subtract the mean vector from each vector in Y.
Yc =Y — mx(ones(ny, 1), :);

% Compute the Mahalanobis distances.
d = real(sum(Yc/Cx.*conj(Yc), 2)); B

The call to real in the last line of code is to remove “numeric noise,” as we
did in Chapter 4 after filtering an image. If the data are known to always be
real, the code can be simplified by removing functions real and conj.

12.3] Recognition Based on Decision-Theoretic Methods

Decision-theoretic approaches to recognition are based on the use of decision
(also called discriminant) functions. Let X = (xq, %,,..., x,)7 represent an
n-dimensional pattern vector, as discussed in Section 12.1. For W pattern class-
es, wy, Wy, ..., Wy, the basic problem in decision-theoretic pattern recognition
is to find W decision functions d;(x), d»(xX), ..., dw(x) with the property that if
a pattern x belongs to class w;, then

di(x) > dj(x)

In other words, an unknown pattern x is said to belong to the ith pattern class
if, upon substitution of x into all decision functions, d;(x) yields the largest nu-
merical value. Ties are resolved arbitrarily.

The decision boundary separating class o; from w; is given by values of x for
which d;(x) = d;(x) or, equivalently, by values of x for which

di(x) — d;(x) =0

Common practice is to express the decision boundary between two classes by
the single function d;;(x) = d;(x) — dj(x) = 0.Thus d;(x) > 0 for patterns of
class o; and d;j(x) < O for patterns of class w;.

As will become clear in the following sections, finding decision functions
entails estimating parameters from patterns that are representative of the
classes of interest. Patterns used for parameter estimation are called training
patterns, or training sets. Sets of patterns of known classes that are not used for
training but are used instead to test the performance of a particular recogni-
tion approach are referred to as test or independent patterns or sets. The prin-
cipal objective of Sections 12.3.2°and 12.3.4 is to develop various approaches
for finding decision functions via the use of parameter estimation from train-
ing sets. Section 12.3.3 deals with matching by correlation, an approach that
could be expressed in the form of decision functions but is traditionally pre-
sented in the form of direct image matching instead.

i=1,2... W;j#i

12.3.1 Forming Pattern Vectors

As noted at the beginning of this chapter, pattern vectors can be formed from
quantitative descriptors, such as those discussed in Chapter 11 for regions
and/or boundaries. For example, suppose that we describe a boundary by using

12.3 @ Recognition Based on Decision-Theoretic Methods

Fourier descriptors. The value of the ith descriptor becomes the value of x;,
the ith component of a pattern vector. In addition, we could append other
components to pattern vectors. For instance, we could incorporate six addi-
tional components to the Fourier-descriptor by appending to each vector the
six measures of texture in Table 11.2.

Another approach used quite frequently when dealing with (registered)
multispectral images is to stack the images and then form vectors from corre-
sponding pixels in the images, as illustrated in Fig. 11.24. The images are
stacked by using function cat:

S = cat(3, f1, f2, ..., fn)

where S is the stack and f1, f2, ..., fn are the images from which the stack is
formed. The vectors then are generated by using function imstack2vectors
discussed in Section 11.5. See Example 12.2 for an illustration.

12.3.2 Pattern Matching Using Minimum-Distance Classifiers

Suppose that each pattern class, w;, is characterized by a mean vector m;. That
is, we use the mean vector of each population of training vectors as being rep-
resentative of that class of vectors:

——Ex o j=1L2,..., W

] Xew;

where N, is the number of training pattern vectors from class w; and the sum-
mation is taken over these vectors. As before, W is the number of pattern class-
es. One way to determine the class membership of an unknown pattern vector
X is to assign it to the class of its closest prototype. Using the Euclidean dis-
tance as a measure of closeness (i.e., similarity) reduces the problem to com-
puting the distance measures:

Di(x)=[x-—mj j=1,2,...,W

We then assign x to class w; if D;(x) is the smallest distance. That is, the small-
est distance implies the best match in this formulation.

Suppose that all the mean vectors are organized as rows of a matrix M.
Then computing the distances from an arbitrary pattern x to all the mean vec-
tors is accomplished by using the expression discussed in Section 12.2:

d = sqrt(sum(abs(M — repmat(x, W, 1))."2, 2))

Because all distances are positive, this statement can be simplified by ignoring
the sqrt operation. The minimum of d determines the class membership of
pattern vector x:

>> class = find(d == min(d));

In other words, if the minimum of d is in its kth position (i.e., x belongs to the
kth pattern class), then scalar class will equal k. If more than one minimum

489

490

Chapter 12 ® Object Recognition

exists, class would equal a vector, with each of its elements pointing to a dif-
ferent location of the minimum.

If, instead of a single pattern, we have a set of patterns arranged as the rows
of a matrix, X, then we use an expression similar to the longer expression in
Section 12.2 to obtain a matrix D, whose element D(I, J) is the Euclidean dis-
tance between the ith pattern vector in X and the jth mean vector in M. Thus, to
find the class membership of, say, the ith pattern in X, we find the column loca-
tion in row 1 of D that yields the smallest value. Multiple minima yield multiple
values, as in the single-vector case discussed in the last paragraph.

It is not difficult to show that selecting the smallest distance is equivalent to
evaluating the functions

1
=<7 .
dj(x)—xm]-——im]rmj i=12,...,W
and assigning x to class w; if d;(x) yields the largest numerical value. This for-
mulation agrees with the concept of a decision function defined earlier.
The decision boundary between classes w; and w; for a minimum distance

classifier is
dij(x) =d(x) — dj(x)

: 1
=x"(m; — m;) - E(mi - m;)’(m; + m;) =0
The surface given by this equation is the perpendicular bisector of the line seg-
ment joining m; and m;. For n = 2, the perpendicular bisector is a line, for

j
n = 3itis a plane, and for n > 3 itis called a hyperplane.

12.3.3 Matching by Correlation

Correlation is quite simple in principle. Given an image f(x, y), the correla-
tion problem is to find all places in the image that match a given subimage
(also called a mask or template) w(x, y). Typically, w(x, y) is much smaller
than f(x, y). One approach for finding matches is to treat w(x, y) as a spatial
filter and compute the sum of products (or a normalized version of it) for each
location of w in f, in exactly the same manner explained in Section 3.4.1. Then
the best match (matches) of w(x, y) in f(x, y) is (are) the location(s) of the
maximum value(s) in the resulting correlation image. Unless w(x, y) is small,
the approach just described generally becomes computationally intensive. For
this reason, practical implementations of spatial correlation typically rely on
hardware-oriented solutions.

For prototyping, an alternative approach is to implement correlation in the
frequency domain, making use of the correlation theorem, which, like the con-
volution theorem -discussed in Chapter 4, relates spatial correlation to the
product of the image transforms. Letting “ o ” denote correlation and “*” the
complex conjugate, the correlation theorem states that

f(x,y) e w(x, y) & F(u, v)H*(u, v)

12.3 ® Recognition Based on Decision-Theoretic Methods 491

In other words, spatial correlation can be obtained as the inverse Fourier
transform of the product of the transform of one function times the conjugate
of the transform of the other. Conversely, it follows that

f(x, y)w*(x, y) & F(u,v) > H(u, v)

This second aspect of the correlation theorem is included for completeness. It
is not used in this chapter.

Implementation of the first correlation result in the form of an M-function
is straightforward, as the following code shows.

function g = dftcorr(f, w)
%DFTCORR 2-D correlation in the frequency domain.

% G = DFTCORR(F, W) performs the correlation of a mask, W, with

% image F. The output, G, is the correlation image, of class

% double. The output is of the same size as F. When, as is

% generally true in practice, the mask image is much smaller than
% G, wraparound error is negligible if W is padded to size(F).

[M, N] = size(f);

f = fft2(f);

w = conj(fft2(w, M, N));

g = real(ifft2(w.*f)); "

B Figure 12.1(a) shows an image of Hurricane Andrew, in which the eye of
the storm is clearly visible. As an example of correlation, we wish to find the
location of the best match in (a) of the eye image in Fig. 12.1(b). The image is
of size 912 X 912 pixels; the mask is of size 32 X 32 pixels. Figure 12.1(c) is the
result of the following commands:

>> g = dftcorr(f, w);
>> gs = gscale(g);
>> imshow(gs)

The blurring evident in the correlation image of Fig. 12.1(c) should not be a
surprise because the image in 12.1(b) has two dominant, nearly constant re-
gions, and thus behaves similarly to a lowpass filter.

The feature of interest is the location of the best match, which, for correla-
tion, implies finding the location(s) of the highest value in the correlation
image:

>> [I, J] = find(g == max(g(:)))
I =

554

203

In this case the highest value is unique. As explained in Section 3.4.1, the coor-
dinates of the correlation image correspond to displacements of the template,
so coordinates [I, J] correspond to the location of the bottom, left corner of

dftcorr
e em—

EXAMPLE 12.1:
Using correlation
for image
matching.

492 Chapter 12 ® Object Recognition

e

)

FIGURE 12.1

(a) Multispectral
image of .
Hurricane
Andrew.

(b) Template.

(c) Correlation of
image and
template.

(d) Location of
the best match.
(Original image
courtesy of
NOAA))

See Fig. 3.14 for an
explanation of the
mechanics of
correlation.

the template. If the template were so located on top of the image, we would
find that the template aligns quite closely with the eye of the hurricane at
those coordinates. Another approach for finding the locations of the matches
is to threshold the correlation image near its maximum, or threshold its scaled
version, gs, whose highest value is known to be 255. For example, the image in
Fig. 12.1(d) was obtained using the command

>> imshow(gs > 254)

Aligning the bottom, left corner of the template with the small white dot in
Fig. 12.1(d) again reveals that the best match is near the eye of the
hurricane. |
12.3.4 Optimum Statistical Classifiers

The well-known Bayes classifier for a 0-1 loss function (Gonzalez and Woods
[2002]) has decision functions of the form

di(x) = p(x/wj)P(w;) j=1,2,..., W

12.3 ® Recognition Based on Decision-Theoretic Methods

where p(x/w;) is the probability density function (PDF) of the pattern vectors
of class w; and P(w;) is the probability (a scalar) that class w; occurs. As be-
fore, glven an unknown pattern vector, the process is to compute a total of W
decision functions and then assign the pattern to the class whose decision
function yielded the largest numerical value. Ties are resolved arbitrarily.

The case when the probability density functions are (or are assumed to be)
Gaussian is of particular practical interest. The n-dimensional Gaussian PDF
has the form

1 3 lx-m) T (x-m)]
p(x/w)) = —— 5 e 2 T
] (27T)n/2|Cj|l/2

where C; and m; are the covariance matrix and mean vector of the pattern

population of class w;, and IC | is the determinant of C; jo

Because the loganthm isa monotomcally increasing function, choosing the
largest d;(x) to classify patterns is equivalent to choosing the largest In [d;(x)],
so we can use instead decision functions of the form

di(x) = In[p(x/w;)P(w;)]
=In p(x/w]-) + In P(wj)

where the logarithm is guaranteed to be real because p(x/w;) and P(w;) are non-
negative. Substituting the expression for the Gaussian PDF gives the equation

di(x) = In P(w;) - —ln 27 — —ln[C | - (x -m)’Cil(x — m;)]

The term (n/2) In 27 is the same positive constant for all classes, so it can be
deleted, yielding the decision functions

di(x) = In P(w;) — 1n|C | = =[(x = m)TC;}(x — m))]

for j = 1,2,...,W. The term inside the brackets is recognized as the Maha-
lanobis distance discussed in Section 12.2, for which we have a vectorized imple-
mentation. We also have an efficient method for computing the mean and
covariance matrix from Section 11.5, so implementing the Bayes classifier for the
multivariate Gaussian case is straightforward, as the following function shows.

function d = bayesgauss(X, CA, MA, P)

%BAYESGAUSS Bayes classifier for Gaussian patterns.

D = BAYESGAUSS(X, CA, MA, P) computes the Bayes decision
functions of the patterns in the rows of array X using the
covariance matrices and and mean vectors provided in the arrays
CA and MA. CA is an array of size n-by-n-by-W, where n is the
dimensionality of the patterns and W is the number of

classes. Array MA is of dimension n-by-W (i.e., the columns of MA
are the individual mean vectors). The location of the covariance
matrices and the mean vectors in their respective arrays must
correspond. There must be a covariance matrix and a mean vector

0® o° d° o° P J° o° o° of

bayesgauss

493

494

eye(n) returns the n
X N identity matrix;
eye(m, n) or
eye([m n]) returns
anm X nmatrix
with 1s along the di-
agonal and 0s else-
where. The syntax
eye(size(A))
gives the same result
as the previous for-
mat, withm and n
being the number of
rows and columns in
A, respectively.

Chapter 12 ® Object Recognition

for each pattern class, even if some of the covariance matrices
and/or mean vectors are equal. X is an array of size K-by-n,
where K is the total number of patterns to be classified (i.e.,
the pattern vectors are rows of X). P is a 1-by-W array,
containing the probabilities of occurrence of each class. If

P is not included in the argument list, the classes are assumed
to be equally likely.

The output, D, is a column vector of length K. Its Ith element is
the class number assigned to the Ith vector in X during Bayes
classification.

d=1[1; % Initialize d.
error(nargchk(3, 4, nargin)) % Verify correct no. of inputs.
n = size(CA, 1); % Dimension of patterns.

o® o° o of P P o of oO° o° of°

% Protect against the possibility that the class number is
% included as an (n+1)th element of the vectors.
X = double(X(:, 1:n));
W = size(CA, 3); % Number of pattern classes.
K = size(X, 1); % Number of patterns to classify.
if nargin ==

P(1:W) = 1/W; % Classes assumed equally likely.
else

if sum(P) ~="1

error('Elements of P must sum to 1.');

end
end
% Compute the determinants.
for J = 1:W

DM(J) = det(CA(:, :, J));
end

% Compute inverses, using right division (IM/CA), where IM =
% eye(size(CA, 1)) is the n-by-n identity matrix. Reuse CA to
% conserve memory.
IM = eye(size(CA,1));
for Jd = 1:W
CA(:, :, J) = IM/CA(:, :, J);
end
% Evaluate the decision functions. The sum terms are the

% Mahalanobis distances discussed in Section 12.2.
MA = MA'; % Organize the mean vectors as rows.

for I = 1:K
for J = 1:W

m = MA(J, :);

Y = X — m(ones(size(X, 1), 1), :);

if PJ) == 0
D(I, J) = -Inf;

else
D(I, J) = log(P(J)) — 0.5*log(DM(J)) ...

— 0.5*sum(Y(I, :)*(CA(:, i, J)*Y(I, :)'));

12.3 @ Recognition Based on Decision-Theoretic Methods 495

end
end
end

% Find the maximum in each row of D. These maxima
% give the class of each pattern:
for I = 1:K
J = find(D(I, :) == max(D(I, :)));
d(I,) =J(:);
end
% When there are multiple maxima the decision is
% arbitrary. Pick the first one.
d=d(:, 1); -

B Bayes recognition is used frequently for automatically classifying regionsin EXAMPLE 12.2:
multispectral imagery. Figure 12.2 shows the first four images from Fig. 11.25 Bayes
(three visual bands and one infrared band). As a simple illustration, we apply disis!ﬁcamnl of
the Bayes classification approach to three types (classes) of regions in these g;t;mpema
images: water, urban, and vegetation. The pattern vectors in this example are
formed by the method discussed in Sections 11.5 and 12.3.1, in which corre-
sponding pixels in the images are organized as vectors. We are dealing with
four images, so the pattern vectors are four dimensional.

To obtain the mean vectors and covariance matrices, we need samples rep-
resentative of each pattern class. A simmple way to obtain such samples interac-
tively is to use function roipoly (see Section 5.2.4) with the statement

>> B = roipoly(f);

where f is any of the multispectral images and B is a binary mask image. With
this format, image B is generated interactively on the screen. Figure 12.2(e)
shows a composite of three mask images, B1, B2, and B3, generated using this
method. The numbers 1,2, and 3 identify regions containing samples represen-
tative of water, urban development, and vegetation, respectively.

Next we obtain the vectors corresponding to each region. The four images
already are registered spatially, so they simply are concatenated along the
third dimension to obtain an image stack:

>> stack = cat(3, f1, f2, 3, f4);

where f1 thorough f4 are the four images in Figs. 12.2(a) through (d). Any
point, when viewed through these four images, corresponds to a four-
dimensional pattern vector (see Fig. 11.24). We are interested in the vectors
contained in the three regions shown in Fig. 12.2(e), which we obtain by using
function imstack2vectors discussed in Section 11.5:

>> [X, R] = imstack2vectors(stack, B);

where X is an array whose rows are the vectors, and R is an array whose rows
are the locations (2-D region coordinates) corresponding to the vectors in X.

496 Chapter 12 ® Object Recognition

&

FIGURE 12.2
Bayes
classification of
multispectral
data.

(a)—(c) Images in
the blue, green,
and red visible
wavelengths.

(d) Infrared
image. (e) Mask
showing sample
regions of water
(1), urban
development (2),
and vegetation
(3). (f) Results of
classification. The
black dots denote
points classified
incorrectly. The
other (white)
points in the
regions were
classified
correctly.
(Original images
courtesy of
NASA.)

12.3 ® Recognition Based on Decision-Theoretic Methods

Using imstack2vectors with the three masks B1, B2, and B3 yielded three
vector sets, X1, X2, and X3, and three sets of coordinates, R1, R2, and R3. Then
three subsets Y1,Y2, and Y3 were extracted from the X’s to use as training sam-
ples to estimate the covariance matrices and mean vectors. The Y’s were gen-
erated by skipping every other row of X1, X2, and X3. The covariance matrix
and mean vector of the vectors in Y1 were obtained with the command

>> [C1, m1] = covmatrix(Y1);

and similarly for the other two classes. Then we formed arrays CA and MA for
use in bayesgauss as follows:

>> CA
>> MA

cat(3, C1, C2, C3);
cat(2, m1, m2, m3);

The performance of the classifier with the training patterns was determined by
classifying the training sets:

>> dY1 = bayesgauss(Y1, CA, MA);

and similarly for the other two classes. The number of misclassified patterns of
class 1 was obtained by writing

>> IY1 = find(dYl ~= 1);

Finding the class into which the patterns were misclassified is straightforward.
For instance, length(find(dY1 == 2)) gives the number of patterns from
class 1 that were misclassified into class 2. The other pattern sets were handled
in a similar manner.

Table 12.1 summarizes the recognition results obtained with the training
and independent pattern sets. The percentage of training and independent pat-
terns recognized correctly was about the same with both sets, indicating stabil-
ity in the parameter estimates. The largest error in both cases was with
patterns from the urban area. This is not unexpected, as vegetation is present
there also (note that no patterns in the urban or vegetation areas were mis-
classified as water). Figure 12.2(f) shows as black dots the points that were
misclassified and as white dots the points that were classified correctly in each
region. No black dots are readily visible in region 1 because the 7 misclassified
points are very close to, or on, the boundary of the white region.

Additional work would be required to design an operable recognition sys-
tem for multispectral classification. However, the important point of this ex-
ample is the ease with which such a system could be prototyped using
MATLAB and IPT functions, complemented by some of the functions devel-
oped thus far in the book. |

497

498 Chapter 12 ® Object Recognition

TABLE 12.1 Bayes classification of multispectral image data.

1 484 482 2 0 99.6 1 483 478 3 2 98.9
2 933 0 85 48 94.9 2 932 0 80 52 94.4
3 483 0 19 464 96.1 3 482 0 16 466 96.7

12.3.5 Adaptive Learning Systems

The approaches discussed in Sections 12.3.1 and 12.3.3 are based on the use of
sample patterns to estimate the statistical parameters of each pattern class.
The minimum-distance classifier is specified completely by the mean vector of
each class. Similarly, the Bayes classifier for Gaussian populations is specified
completely by the mean vector and covariance matrix of each class of patterns.

In these two approaches, training is a simple matter. The training patterns of
each class are used to compute the parameters of the decision function corre-
sponding to that class. After the parameters in question have been estimated,
the structure of the classifier is fixed, and its eventual performance will depend
on how well the actual pattern populations satisfy the underlying statistical as-
sumptions made in the derivation of the classification method being used.

As long as the pattern classes are characterized, at least approximately, by
Gaussian probability density functions, the methods just discussed can be
quite effective. However, when this assumption is not valid, designing a statis-
tical classifier becomes a much more difficult task because estimating multi-
variate probability density functions is not a trivial endeavor. In practice, such
decision-theoretic problems are best handled by methods that yield the re-
quired decision functions directly via training. Then making assumptions re-
garding the underlying probability density functions or other probabilistic
information about the pattern classes under consideration is unnecessary.

The principal approach in use today for this type of classification is based on
neural networks (Gonzalez and Woods [2002]). The scope of implementing neur-
al networks suitable for image-processing applications is not beyond the capabil-
ities of the functions available to us in MATLAB and IPT. However, this effort
would be unwarranted in the present context because a comprehensive neural-
networks toolbox has been available from The MathWorks for several years.

m Structural Recognition

Structural recognition techniques are based generally on representing objects of
interest as strings, trees, or graphs and then defining descriptors and recognition
rules based on those representations. The key difference between decision-
theoretic and structural methods is that the former uses quantitative descriptors
expressed in the form of numeric vectors. Structural techniques, on the other
hand, deal principally with symbolic information. For instance, suppose that ob-

124 & Structural Recognition

ject boundaries in a given application are represented by minimum-perimeter
polygons. A decision-theoretic approach might be based on forming vectors
whose elements are the numeric values of the interior angles of the polygons,
while a structural approach might be based on defining symbols for ranges of
angle values and then forming a string of such symbols to describe the patterns.

Strings are by far the most common representation used in structural recogni-
tion, so we focus on this approach in this section. As will become evident shortly,
MATLAB has an extensive set of functions specialized for string manipulation.

12.4.1 Working with Strings in MATLAB

In MATLAB, a string is a one-dimensional array whose components are the nu-
meric codes for the characters in the string. The characters displayed depend on
the character set used in encoding a given font. The length of a string is the num-
ber of characters in the string, including spaces. It is obtained using the familiar
function length. A string is defined by enclosing its characters in single quotes (a
textual quote within a string is indicated by two quotes).

Table 12.2 lists the principal MATLAB functions that deal with strings.
Considering first the general category, function blanks has the syntax:

s = blanks(n)

It generates a string consisting of n blanks. Function cellstr creates a cell
array of strings from a character array. One of the principal advantages of stor-
ing strings in cell arrays is that it eliminates the need to pad strings with blanks
to create character arrays with rows of equal length (e.g., to perform string
comparisons). The syntax

28
¢ = cellstr(S) Ggeflstr
' v d
places the rows of the character array S into separate cells of ¢. Function char 4
is used to convert back to a string matrix. For example, consider the string 7 /\hxég

matrix 2

> S = [' abc'; 'defg'; 'hi '] % Note the blanks.

S =
abc
defg
hi

Typing whos S at the prompt displays the following information:

>> whos S -
Name Size Bytes Class
S 3x4 24 char array

Some of the string functions discussed in this section were introduced in earlier chapters.

499

500 Chapter 12 @ Object Recognition

TABLE 12.2
MATLAB’s
string-
manipulation
functions.

General

String tests

String operations

String to number
conversion

Base number
conversion

blanks

cellstr

char
deblank
eval
iscellstr
ischar
isletter
isspace
lower
regexp
regexpi
regexprep
strcat
strcmp
strcmpi
strfind
strjust
strmatch
strncmp
strncmpi
strread

strrep
strtok
strvcat
upper
double
int2str
mat2str

num2str
sprintf
str2double
str2num
sscanf
base2dec
bin2dec
dec2base
dec2bin
dec2hex
hex2dec
hex2num

String of blanks.

Create cell array of strings from character
array. Use function char to convert back to a
character string.

Create character array (string).

Remove trailing blanks.

Execute string with MATLAB expression.
True for cell array of strings.

True for character array.

True for letters of the alphabet.

True for whitespace characters.

Convert string to lowercase.

Match regular expression.

Match regular expression, ignoring case.
Replace string using regular expression.
Concatenate strings.

Compare strings (see Section 2.10.5).
Compare strings, ignoring case.

Find one string within another.

Justify string.

Find matches for string.

Compare first n characters of strings.
Compare first n characters, ignoring case.
Read formatted data from a string. See
Section 2.10.5 for a detailed explanation.
Replace a string within another.

Find token in string.

Concatenate strings vertically.

Convert string to uppercase.

Convert string to numeric codes.

Convert integer to string.

Convert matrix to a string suitable for
processing with the eval function.
Convert number to string.

Write formatted data to string.

Convert string to double-precision value.
Convert string to number (see Section 2.10.5).
Read string under format control.
Convert base B string to decimal integer.
Convert binary string to decimal integer.
Convert decimal integer to base B string.
Convert decimal integer to binary string.
Convert decimal integer to hexadecimal string.
Convert hexadecimal string to decimal integer.
Convert IEEE hexadecimal to double-
precision number.

124 ® Structural Recognition 501

Note in the first command line that two of the three strings in S have trailing
blanks because all rows in a string matrix must have the same number of char-
acters. Note also that no quotes enclose the strings in the output because S is a
character array. The following command returns a 3 X 1 cell array:

>> ¢ = cellstr(S)

c =
' abc'
'defg'
lhil
>> whos ¢
Name Size Bytes Class
c 3x1 294 cell array

where, for example,c (1) = ' abc'. Note that quotes appear around the strings
in the output, and that the strings have no trailing blanks. To convert back to a
string matrix we let

Z = char(c)
z:
abc
defg
hi

Function eval evaluates a string that contains a MATLAB expression. The
call eval(expression) executes expression, a string containing any valid
MATLAB expression. For example, if t is the character string t = '3°2", typ-
ing eval(t) returnsa 9.

The next category of functions deals with string tests. A 1 is returned if the
funtion is true; otherwise the value returned is 0. Thus, in the preceding exam-
ple, iscellstr(c) would return a 1 and iscellstr(S) would return a 0.
Similar comments apply to the other functions in this category.

String operations are next. Functions lower (and upper) are self explana-
tory. They are discussed in Section 2.10.5. The next three functions deal with
regular expressions,! which are sets of symbols and syntactic elements used
commonly to match patterns of text. A simple example of the power of regular
expressions is the use of the familiar wildcard symbol “ * ” in a file search. For
instance, a search for image*.m in a typical search command window would re-
turn all the M-files that begin with the word “image.” Another example of the
use of regular expressions is in a search-and-replace function that searches for
an instance of a given text string and replaces it with another. Regular expres-
sions are formed using metacharacters, some of which are listed in Table 12.3.

TRegular expressions can be traced to the work of American mathematician Stephen Kleene, who devel-
oped regular expressions as a notation for describing what he called “the algebra of regular sets.”

502 Chapter 12 ® Object Recognition

TABLE 12.3
Some of the
metacharacters
used in regular
expressions for
matching. See the
regular
expressions
help page for a
complete list.

Matches any one character.

[ab...] Matches any one of the characters, (a, b, .. .), contained within
the brackets.

[~ab...] Matches any character except those contained within the
brackets.

? Matches any character zero or one times.

* Matches the preceding element zero or more times.

+ Matches the preceding element one or more times.

{num} Matches the preceding element num times.

{min, max} Matches the preceding element at least min times, but not

more than max times.
| Matches either the expression preceding or following the

metacharacter |.
~chars Matches when a string begins with chars.
chars$ Matches when a string ends with chars.
\<chars Matches when a word begins with chars.
chars\> Matches when a word ends with chars.
\<word\> Exact word match.

In the context of this discussion, a “word” is a substring within a string, preced-
ed by a space or the beginning of the string, and ending with a space or the end
of the string. Several examples are given in the following paragraph.

Function regexp matches a regular expression. Using the basic syntax

idx = regexp(str, expr)

returns a row vector, idx, containing the indices (locations) of the substrings
in str that match the regular expression string, expr. For example, suppose
that expr = 'b.*a'. Then the expression idx = regexp(str, expr) would
mean find matches in string str for any b that is followed by any character (as
specified by the metacharacter “.”) any number of times, including zero times
(as specified by *), followed by an a. The indices of any locations in str meet-
ing these conditions are stored in vector idx. If no such locations are found,
then idx is returned as the empty matrix.

A few more examples of regular expressions for expr should clarify these
concepts. The regular expression 'b. + a' would be as in the preceding exam-
ple, except that “any number of times, including zero times” would be replaced
by “one or more times.” The expression 'b [0—9] ' means any b followed by
any number from 0 to 9; the expression 'b [0-9]*' means any b followed by
any number from 0 to 9 any number of times; and 'b [0-9] +' means b fol-
lowed by any number from 0 to 9 one or more times. For example, if str =
'b0123c¢234bcd ', the preceding three instances of expr would give the fol-
lowing results: idx = 1; idx = [1 10];and idx =1.

As an example of the use of regular expressions for recognizing object char-
acteristics, suppose that the boundary of an object has been coded with a four-
directional Freeman chain code [see Fig. 11.1(a)], stored in string str, so that

124 ® Structural Recognition

>> str
str =
000300333222221111

Suppose also that we are interested in finding the locations in the string where
the direction of travel turns from east (0) to south (3), and stays there for at
least two increments, but no more than six increments. This is a “downward
step” feature in the object, larger than a single transition, which may be due to
noise. We can express these requirements in terms of the following regular ex-
pression:

>> expr = '0[3]{2, 6}';
Then

>> idx = regexp(str, expr)
idx =
6

The value of idx identifies the point in this case where a 0 is followed by three
3s. More complex expressions are formed in a similar manner.

Function regexpi behaves in the manner just described for regexp, except
that it ignores character (upper and lower) case. Function regexprep, with
syntax

s = regexprep(str, expr, replace)

replaces with string replace all occurrences of the regular expression expr in
string, str. The new string is returned. If no matches are found regexprep re-
turns str, unchanged.

Function strcat has the syntax

C = strcat(st1, S2, S3, ...)

This function concatenates (horizontally) corresponding rows of the character
arrays S1, S2, 83, and so on. All input arrays must have the same number of
rows (or any can be a single string). When the inputs are all character arrays,
the output is also a character array. If any of the inputs is a cell array of
strings, strcat returns a cell array of strings formed by concatenating corre-
sponding elements of S1, S2, S3, and so on. The inputs must all have the same
size (or any can be a scalar). Any of the inputs can also be character arrays.
Trailing spaces in character array inputs are ignored and do not appear in the
output. This is not true for inputs that are cell arrays of strings. To preserve
trailing spaces the familiar concatenation syntax based on square brackets,
[S1 S2 S3...],should be used. For example,

503

504 Chapter 12 @ Object Recognition

>> a = 'hello ' % Note the trailing blank space.
>> b = 'goodbye'
>> strcat(a, b)
ans =
hellogoodbye
[a b]
ans =
hello goodbye

Function strvcat, with syntax

S = strvcat(t1, t2, t3, ...)

forms the character array S containing the text strings (or string matrices)
t1,t2,t3, ... as rows. Blanks are appended to each string as necessary to
form a valid matrix. Empty arguments are ignored. For example, using the
strings a and b in the previous example,

>> strvcat(a, b)
ans =

hello
goodbye

Function strcmp, with syntax

k = strcemp(stri1, str2)

compares the two strings in the argument and returns 1 (true) if the strings
are identical. Otherwise it returns a 0 (false). A more general syntax is

K = strcmp(S, T)

where either S or T is a cell array of strings, and K is an array (of the same size
as S and T) containing 1s for the elements of S and T that match, and Os for the
ones that do not. S and T must be of the same size (or one can be a scalar cell).
Either one can also be a character array with the proper number of rows.
Function strcmpi performs the same operation as strcmp, but it ignores char-
acter case.

Function strncmp, with syntax

k = strncmp('strt1', 'str2', n)

returns a logical true (1) if the first n characters of the strings str1 and str2
are the same, and returns a logical false (0) otherwise. Arguments str1 and
str2 can be cell arrays of strings also. The syntax

R = strncmp(S, T, n)

124 ® Structural Recognition

where S and T can be cell arrays of strings, returns an array R the same size as
S and T containing 1 for those elements of S and T that match (up to n charac-
ters), and O otherwise. S and T must be the same size (or one can be a scalar
cell). Either one can also be a character array with the correct number of rows.
The command strncmp is case sensitive. Any leading and trailing blanks in ei-
ther of the strings are included in the comparison. Function strncmpi per-
forms the same operation as strncmp, but ignores character case.
Function strfind, with syntax

I = strfind(str, pattern)

searches string str for occurrences of a shorter string, pattern, returning the
starting index of each such occurrence in the double array, I. If pattern is not
found in str, or if pattern is longer than str, then strfind returns the
empty array, [].

Function strjust has the syntax

Q = strjust(A, direction)

where A is a character array, and direction can have the justification values
‘right', 'left',and 'center'.The default justification is ' right'.The out-
put array contains the same strings as A, but justified in the direction specified.
Note that justification of a string implies the existence of leading and/or trail-
ing blank characters to provide space for the specified operation. For instance,
letting the symbol “CJ” represents a blank character, the string 'CJ0 abc' with
two leading blank characters does not change under 'right' justification; be-
comes 'abc0J" with 'left' justification; and becomes the string 'CabcO"
with 'center' justification. Clearly, these operations have no effect on a
string that does not contain any leading or trailing blanks.
Function strmatch, with syntax

m = strmatch('str', STRS)
looks through the rows of the character array or cell array of strings, STRS, to
find strings that begin with string str, returning the matching row indices. The
alternate syntax

m = strmatch('str', STRS, 'exact')

returns only the indices of the strings in STRS matching str exactly. For exam-
ple, the statement

>> m = strmatch('max', strvcat('max', 'minimax', 'maximum'));

returnsm= [1; 3] because rows 1 and 3 of the array formed by strvcat begin
with '‘max'. On the other hand, the statement

505

506 Chapter 12 ® Object Recognition

>> m = strmatch('max', strvcat('max', 'minimax', 'maximum'), ‘exact');

returns m = 1, because only row 1 matches 'max ' exactly.
Function strrep, with syntax

r = strrep('strt1', 'str2', 'str3')

replaces all occurrences of the string str2 within string str1 with the string
str3. If any of stri, str2, or str3 is a cell array of strings, this function re-
turns a cell array the same size as str1, str2, and str3, obtained by perform-
ing a strrep using corresponding elements of the inputs. The inputs must all
be of the same size (or any can be a scalar cell). Any one of the strings can also
be a character array with the correct number of rows. For example,

>> s = 'Image processing and restoration.';
>> str = strrep(s, 'processing', 'enhancement')
str =

Image enhancement and restoration.
Function strtok, with syntax
t = strtok('str', delim)

returns the first token in the text string str, that is, the first set of characters
before a delimiter in delim is encountered. Parameter delim is a vector con-
taining delimiters (e.g., blanks, other characters, strings). For example,

>> str = 'An image is an ordered set of pixels';
>> delim = ['x'];
>> t = strtok(str, delim)

t =
An

Note that function strtok terminates after the first delimiter is encountered.
(i.e.,a blank character in the example just given). If we change delimto delim
= ['x"'], then the output becomes

>> t = strtok(str, delim)
t =
An image is an ordered set of pi

The next set of functions in Table 12.2 deals with conversions between
strings and numbers. Function int2str, with syntax

str = int2str(N)

124 @ Structural Recognition 507

converts an integer to a string with integer format. The input N can be a single
integer or a vector or matrix of integers. Noninteger inputs are rounded before
conversion. For example, int2str (2 + 3) is the string '5'. For matrix or vec-
tor inputs, int2str returns a string matrix:

>> str = int2str(eye(3))

ans =
1 0 O
o 1 0
o o0 1
>> class(str)

ans =

char
Function mat2str, with syntax

str = mat2str(A)

converts matrix A into a string, suitable for input to the eval function, using
full precision. Using the syntax

str = mat2str(A, n)
converts matrix A using n digits of precision. For example, consider the matrix

>> A= [12;3 4]
A =

2
4

W =

The statement
>> b = mat2str(A)
produces

b =
[1 2;3 4]

where b is a string of 9 characters, including the square brackets, spaces, and a
semicolon. The command

>> eval(mat2str(A))

reproduces A. The other functions in this category have similar interpretations.

508 Chapter 12 ® Object Recognition

The last category in Table 12.2 deals with base number conversions. For ex-
ample, function dec2base, with syntax

str = dec2base(d, base)

converts the decimal integer d to the specified base, where d must be a non-
negative integer smaller than 2°52, and base must be an integer between 2
and 36.The returned argument str is a string. For example, the following com-
mand converts 234, to base 2 and returns the result as a string:

>> str = dec2base(23, 2)
str =
10111
>> class(str)
ans =
char

Using the syntax
str = dec2base(d, base, n)

produces a representation with at least n digits.

12.4.2 String Matching

In addition to the string matching and comparing functions in Table 12.2, it is
often useful to have available measures of similarity that behave much like the
distance measures discussed in Section 12.2. We illustrate this approach using
a measure defined as follows.

Suppose that two region boundaries, a and b, are coded into strings
aia,...a,, and bib,...b,, respectively. Let a denote the number of matches
between these two strings, where a match is said to occur in the kth position if
a; = by. The number of symbols that do not match is

B = max(|al,[b]) - «

where |arg| is the length (number of symbols) of the string in the argument. It
can be shown that 8 = 0 if and only if a and b are identical strings.
A simple measure of similarity between a and b is the ratio

4] a

B~ max(lal,[b]) - «

R =

This measure, proposed by Sze and Yang [1981], is infinite for a perfect
match and 0 when none of the corresponding symbols in a and b match (a is
0 in this case). ‘

124 & Structural Recognition 509

Because matching is performed between corresponding symbols, it is re-
quired that all strings be “registered” in some position-independent manner in
order for this method to make sense. One way to register two strings is to shift
one string with respect to the other until a maximum value of R is obtained.
This and other similar matching strategies can be developed using some of the
string operations detailed in Table 12.2. Typically, a more efficient approach is
to define the same starting point for all strings based on normalizing the
boundaries with respect to size and orientation before their string representa-
tion is extracted. This approach is illustrated in Example 12.3.

The following M-function computes the preceding measure of similarity for
two character strings.

function R = strsimilarity(a, b) strsimilarity
%STRSIMILARITY Computes a similarity measure between two strings. -
R = STRSIMILARITY(A, B) computes the similarity measure, R,

defined in Section 12.4.2 for strings A and B. The strings do not

have to be of the same length, but if one is shorter than other,

then it is assumed that the shorter string has been padded with

leading blanks so that it is brought into the necessary

registration prior to using this function. Only one of the

strings can have blanks, and these must be leading and/or

trailing blanks. Blanks are not counted when computing the length

of the strings for use in the -similarity measure.

of of o° of of of of of of

% Verify that a and b are character strings.
if ~ischar(a) | ~ischar(b)
error('Inputs must be character strings.')

end

% Find any blank spaces.
I =find(a =="'");

J = find(b == "' ');

LI = length(I); LJ = length(J);
ifLI~=0&LWJ~=0

error('Only one of the strings can contain blanks.')
end

% Pad the end of the appropriate string. It is assumed
% that they are registered in terms of their beginning
% positions.

a=a(:); b=>b(:);

La = length(a); Lb = length(b);

ifLI==0&LJ==0

if La > Lb

b = [b; blanks(La — Lb)'];
else

a = [a; blanks(Lb — La)'];
end

elseif isempty(I)
Lb = length(b) — length(J);
b = [b; blanks(La — Lb — LJ)'];

510 Chapter 12 ® Object Recognition

EXAMPLE 12.3:
Object
recognition based
on string
matching.

randvertex
gy e——

polyangles

The x and y inputs
to function
polyangles are
vectors containing
the x- and y-
coordinates of the
vertices of a poly-
gon, ordered in the
clockwise direction.
The output is a vec-
tor containing the
corresponding interi-
or angles, in degrees.

else

La = length(a) — length(I);

a = [a; blanks(Lb — La — LI)'];
end
% Compute the similarity measure.
I = find(a == b);
alpha = length(I);
den = max(La, Lb) — alpha;

if den ==
R = Inf;
else
R = alpha/den;
end P

B Figures 12.3(a) and (d) show silhouettes of two samples of container bot-
tles whose principal shape difference is the curvature of their sides. For pur-
poses of differentiation, objects with the curvature characteristics of
Fig. 12.3(a) are said to be from class 1. Objects with straight sides are said to be
from class 2. The images are of size 372 X 288 pixels.

To illustrate the effectiveness of measure R for differentiating between ob-
jects of classes 1 and 2, the boundaries of the objects were approximated by
minimum-perimeter polygons using function minperpoly (see Section 11.2.2)
with a cell size of 8. Figures 12.3(b) and (e) show the results. Then noise was
added to the coordinates of each vertex of the polygons using function
randvertex (the listing is included in Appendix C), which has the syntax

[xn, yn] = randvertex(x, y, npix)

where x and y are column vectors containing the coordinates of the vertices of
a polygon, xn and yn are the corresponding noisy coordinates, and npix is the
maximum number of pixels by which a coordinate is allowed to be displaced in
either direction. Five sets of noisy vertices were generated for each class using
npix = 5. Figures 12.3(c) and (f) show typical results.

Strings of symbols were generated for each class by coding the interior angles
of the polygons using function polyangles (see Appendix C for the code listing):

>> angles = polyangles(x, Vy);

Then a string, s, was generated from a given angles array by quantizing the
angles into 45° increments, using the statement

>> s = floor(angles/45) + 1;

This yielded a string whose elements were numbers between 1 and 8, with 1
designating the range 0° = 0 < 45°, 2 designating the range 45° = 0 < 90°,
and so forth, where 6 denotes an interior angle.

Because the first vertex in the output of minperpoly is always the top, left
vertex of the boundary of the input, B, the first element of string s corresponds

124 ® Structural Recognition

EEE
FIGURE 12.3 (a) An object. (b) Its minimum perimeter polygon obtained using function minperpoly with a
cell size of 8. (¢) A typical noisy boundary. (d)—(f) The same sequence for another object.

511

to the interior angle of that vertex. This automatically registers the strings (if
the objects are not rotated) because they all start at the top, left vertex in all
images. The direction of the vertices output by minperpoly is clockwise, so the
elements of s also are in that direction. Finally, each s was converted from a
string of integers to a character string using the command

>> s = int2str(s);
In this example the objects are of comparable size and they are all vertical,

so normalization of neither size nor orientation was required. If the objects
had been of arbitrary size and orientation, we could have aligned them along

512

TABLE 12.4
Values of
similarity measure,
R,between the
strings of class 1.
(All values shown
are X10.)

TABLE 12.5
Values of
similarity measure,
R, between the
strings of class 2.
(All values shown
are X10.)

TABLE 12.6
Values of
similarity measure,
R, between the
strings of classes 1
and 2. (All values
shown are X10.)

Chapter 12 ® Object Recognition

their principal directions by using the eigenvector transformation discussed at
the end of Section 11.5. Then we could have used the bounding box in
Section 11.4.1 to obtain the object dimensions for normalization purposes.

First, function strsimilarity was used to measure the similarity of all
strings of class 1 between themselves. For instance, to compute the similarity
between the first and second strings of class 1 we used the command

>> R = strsimilarity(s11, si12);

where the first subscript indicates class and the second a string number with-
in that class. The results obtained using five typical strings are summarized in
Table 12.4, where Inf indicates infinity (i.e., a perfect match, as discussed
earlier). Table 12.5 shows the same type of computation involving five
strings of class 2 against themselves. Table 12.6 shows values of the similarity
measure between the strings of class 1 and class 2. Note that the values in
this table are significantly lower than the entries in the two preceding tables,
indicating that the R measure achieved a high degree of discrimination be-
tween the two classes of objects. In other words, measuring the similarity of
strings against members of their own class showed significantly larger values
of R, indicating a closer match than when strings were compared to members
of the opposite class. =

Summary

Starting with Chapter 9, our treatment of digital image processing began a transition
from processes whose outputs are images to processes whose outputs are attributes
about those images. Although the material in the present chapter is introductory in na-
ture, the topics covered are fundamental to understanding the state of the art in object
recognition. As mentioned in Section 1.2 at the onset of our journey, recognition of in-
dividual objects is a logical place at which to conclude this book.

Having finished study of the material in the preceding twelve chapters, the reader is
now in the position of being able to master the fundamentals of how to prototype soft-
ware solutions of image-processing problems using MATLAB and Image Processing
Toolbox functions. What is even more important, the background and numerous new
functions developed in the book constitute a basic blueprint on how to extend the
power of MATLAB and IPT. Given the task-specific nature of most imaging problems,
a clear understanding of this material enhances significantly the chances of arriving at
successful solutions in a broad spectrum of image processing application areas.

@ Summary 513

