426

Preview

After an image has been segmented into regions by methods such as those dis-
cussed in Chapter 10, the next step usually is to represent and describe the ag-
gregate of segmented, “raw” pixels in a form suitable for further computer
processing. Representing a region involves two basic choices: (1) We can rep-
resent the region in terms of its external characteristics (its boundary), or (2)
we can represent it in terms of its internal characteristics (the pixels compris-
ing the region). Choosing a representation scheme, however, is only part of the
task of making the data useful to a computer. The next task is to describe the
region based on the chosen representation. For example, a region may be
represented by its boundary, and the boundary may be described by features
such as its length and the number of concavities it contains.

An external representation is selected when interest is on shape character-
istics. An internal representation is selected when the principal focus is on re-
gional properties, such as color and texture. Both types of representations
sometimes are used in the same application to solve a problem. In either case,
the features selected as descriptors should be as insensitive as possible to vari-
ations in region size, translation, and rotation. For the most part, the descrip-
tors discussed in this chapter satisfy one or more of these properties.

Background

A region is a connected component, and the boundary (also called the border or
contour) of a region is the set of pixels in the region that have one or more neigh-
bors that are not in the region. Points not on a boundary or region are called
background points. Initially we are interested only in binary images, so region or
boundary points are represented by 1s and background points by 0s. Later in this
chapter we allow pixels to have gray-scale or multispectral values. ’

1.1 ® Background 427

From the definition given in the previous paragraph, it follows that a
boundary is a connected set of points. The points on a boundary are said to be
ordered if they form a clockwise or counterclockwise sequence. A boundary is
said to be minimally connected if each of its points has exactly two 1-valued
neighbors that are not 4-adjacent. An interior point is defined as a point any-
where in a region, except on its boundary.

The material in this chapter differs significantly from the discussions thus
far in the sense that we have to be able to handle a mixture of different types
of data such as boundaries, regions, topological data, and so forth. Thus, before
proceeding, we pause briefly to introduce some basic MATLAB and IPT con-
cepts and functions for use later in the chapter.

1L1.1 Cell Arrays and Structures

We begin with a discussion of MATLAB’s cell arrays and structures, which
were introduced briefly in Section 2.10.6.

Cell Arrays

Cell arrays provide a way to combine a mixed set of objects (e.g., numbers,
characters, matrices, other cell arrays) under one variable name. For example,
suppose that we are working with (1) an uint8 image, f, of size 512 X 512; (2)
a sequence of 2-D coordinates in the form of rows of a 188 X 2 array, b; and
(3) a cell array containing two character names, char_array = {'area',
‘centroid'}. These three dissimilar entities can be organized into a single
variable, C, using cell arrays:

C = {f, b, char_array}

where the curly braces designate the contents of the cell array. Typing C at the
prompt would output the following results:

>> C

C =
[512x512 uint8] [188x2 double] {1x2 cell}

In other words, the outputs are not the values of the various variables, but a
description of some of their properties instead. To address the complete con-
tents of an element of the cell, we enclose the numerical location of that ele-
ment in curly braces. For instance, to see the contents of char_array we

type

>> {3}
ans =
'area' 'centroid'

or we can use function celldisp:

428 Chapter 11 ® Representation and Description

@%&disp

See the cellfun
help page for a list of
valid entries for
fname.

>> celldisp(C{3})
ans{1} =

area
ans{2} =

centroid

Using parentheses instead of curly braces on an element of C gives a descrip-
tion of the variable, as above:

>> C(3)
ans =
{1x2 cell}

We can work with specified contents of a cell array by transferring them to a
numeric or other pertinent from of array. For instance, to extract f from C we use

>> f = C{1};
Function size gives the size of a cell array:

>> gize(C)
ans =
1 3

Function cellfun, with syntax

D = cellfun('fname', C)
applies the function fname to the elements of cell array C and returns the re-
sults in the double array D. Each element of D contains the value returned by
fname for the corresponding element in C. The output array D is the same size

as the cell array C. For example,

>> D = cellfun('length', C)

D =

512 188 2

In other words, length (f) =512,1ength(b) = 188 and length(char_array) = 2.
Recall from Section 2.10.3 that 1ength(A) gives the size of the longest dimension
of a multidimensional array A.

Finally, keep in mind the comment made in Section 2.10.6 that cell arrays
contain copies of the arguments, not pointers to those arguments. Thus, if any
of the arguments of C in the preceding example were to change after C was cre-
ated, that change would not be reflected in C. ’

1.1 & Background 429

B Suppose that we want to write a function that outputs the average intensity EXAMPLE 11.1:
of an image, its dimensions, the average intensity of its rows, and the average A simple
intensity of its columns. We can do it in the “standard” way by writing a func- ilustration of cell
tion of the form arrays.

function [AI, dim, AIrows, AIcols] = image_stats(f)
dim = size(f);

Al = mean2(f);

AlIrows = mean(f, 2);

AIcols = mean(f, 1);

where f is the input image and the output variables correspond to the quanti-
ties just mentioned. Using cells arrays, we would write

function G = image_stats(f)

G{1} = size(f);
G{2} = mean2(f);
G{3} = mean(f, 2);
G{4} = mean(f, 1);

Writing G(1) = {size(f)}, and similarly for the other terms, also is accept-
able. Cell arrays can be multidimensional. For instance, the previous function
could be written also as

function H = image_stats2(f)

H(1, 1) = {size(f)};
H(1, 2) = {mean2(f)};
H(2, 1) = {mean(f, 2)};
H(2, 2) = {mean(f, 1)};

Or, we could have used H{1,1} = size(f), and so on for the other variables.
Additional dimensions are handled in a similar manner.

Suppose that f is of size 512 X 512. Typing G and H at the prompt would
give

>> G = image_stats(f)
>> H = image_stats2(f);
>> G
G =
[1x2 double] [1] [512x1 double] [1x512 double]
>> H
H =
[1x2 double] [1]

[512x1 double] [1x512 double]

If we want to work with any of the variables contained in G, we extract it by ad-
dressing a specific element of the cell array, as before. For instance, if we want
to work with the size of f, we write

430 Chapter 11 3 Representation and Description

EXAMPLE 11.2:
A simple
illustration of
structures.

>> v = G{1}
or
>> v = H{1,1}

where visa 1l X 2 vector. Note that we did not use the familiar command [M,
N] = G{1} to obtain the size of the image. This would cause an error because
only functions can produce multiple outputs. To obtain M and N we would use
M= v(1)andN = v(2). -

The economy of notation evident in the preceding example becomes even
more obvious when the number of outputs is large. One drawback is the loss of
clarity in the use of numerical addressing, as opposed to assigning names to
the outputs. Using structures helps in this regard.

Structures

Structures are similar to cell arrays in the sense that they allow grouping of a
collection of dissimilar data into a single variable. However, unlike cell arrays,
where cells are addressed by numbers, the elements of structures are ad-
dressed by names called fields.

& Continuing with the theme of Example 11.1 will clarify these concepts.
Using structures, we write

function s = image_stats(f)
s.dim = size(f);

s.AI = mean2(f);

s.Alrows = mean(f, 2);
s.AlIcols mean(f, 1);

where s is a structure. The fields of the structure in this case are AI (a
scalar), dim (a 1 X 2 vector), AIrows (an M X 1 vector), and Alcols (a
1 X N vector), where M and N are the number of rows and columns of the
image. Note the use of a dot to separate the structure from its various fields.
The field names are arbitrary, but they must begin with a nonnumeric
character.

Using the same image as in Example 11.1 and typing s and size(s) at the
prompt gives the following output:

>> § =
s =

dim: [512 512]
AI: 1

Alrows: [512x1 double]

AlIcols: [1x512 double]

1.1 m Background 431

>> size(s)
ans =
1 1

Note that s itself is a scalar, with four fields associated with it in this case.

We see in this example that the logic of the code is the same as before, but
the organization of the output data is much clearer. As in the case of cell ar-
rays, the advantage of using structures would become even more evident if we
were dealing with a larger number of outputs.]

The preceding illustration used a single structure. If, instead of one image,
we had Q images organized in the form of an M X N X Q array, the function
would become

function s = image_stats(f)

K = size(f);

for k = 1:K(3)
s(k).dim = size(f(:,
s(k).AI = mean2(f(:,
s(k).AlIrows = mean(f(:
s(k).AIcols = mean(f(:

end

In other words, structures themselves can be indexed. Although, like cell ar-
rays, structures can have any number of dimensions, their most common form
is a vector, as in the preceding function.

Extracting data from a field requires that the dimensions of both s and the
field be kept in mind. For example, the following statement extracts all the val-
ues of AIrows and stores them in v:

for k = 1:1length(s)
v(:, k) = s(k).AlIrows;
end

Note that the colon is in the first dimension of v and that k is in the second because
sis of dimension 1 X Q and AIrows is of dimension M X Q.Thus,because k goes
from 1 to Q, v is of dimension M X Q. Had we been interested in extracting the
values of AIcols instead, we would have used v (k, :) in the loop.

Square brackets can be used to extract the information into a vector or ma-
trix if the field of a structure contains scalars. For example, suppose that
D.Area contains the area of each of 20 regions in an image. Writing

>> w = [D.Area]l;

creates a 1 X 20 vector w in which each elements is the area of one of the
regions. '

432 Chapter 11 @ Representation and Description

See Section 5.2.2 for
a discussion of func-
tion find and

Section 9.4 for a dis-
cussion of bwlabel.

As with cell arrays, when a value is assigned to a structure field, MATLAB
makes a copy of that value in the structure. If the original value is changed at a
later time, the change is not reflected in the structure.

11.1.2 Some Additional MATLAB and IPT Functions Used in This
Chapter

Function imfill was mentioned briefly in Table 9.3 and in Section 9.5.2. This
function performs differently for binary and intensity image inputs, so, to help
clarify the notation in this section, we let fB and fI represent binary and in-
tensity images, respectively. If the output is a binary image, we denote it by gB;
otherwise we denote simply as g. The syntax

gB = imfill(fB, locations, conn)

performs a flood-fill operation on background pixels (i.e., it changes back-
ground pixels to 1) of the input binary image fB, starting from the points spec-
ified in locations. This parameter can be an n X 1 vector (n is the number of
locations), in which case it contains the linear indices (see Section 2.8.2) of the
starting coordinate locations. Parameter locations can also be an n X 2 ma-
trix, in which each row contains the 2-D coordinates of one of the starting lo-
cations in fB. Parameter conn specifies the connectivity to be used on the
background pixels: 4 (the default), or 8. If both location and conn are omit-
ted from the input argument, the command gB = imfi.11(fB) displays the bi-
nary image, B, on the screen and lets the user select the starting locations
using the mouse. Click the left mouse button to add points. Press BackSpace or
Delete to remove the previously selected point. A shift-click, right-click, or
double-click selects a final point and then starts the fill operation. Pressing
Return finishes the selection without adding a point.
Using the syntax

gB = imfill(fB, conn, 'holes')

fills holes in the input binary image. A hole is a set of background pixels that
cannot be reached by filling the background from the edge of the image. As
before, conn specifies connectivity: 4 (the default) or 8.

The syntax

g = imfill(fI, conn, 'holes’')

fills holes in an input intensity image, fI. In this case, a hole is an area of dark
pixels surrounded by lighter pixels. Parameter conn is as before.

Function find can be used in conjunction with bwlabel to return vectors of
coordinates for the pixels that make up a specific object. For example, if [gB,
num] = bwlabel(fB) yields more than one connected region (i.e., num > 1), we
obtain the coordinates of, say, the second region using

[r, c] = find(g == 2)

11.1 ® Background 433

The 2-D coordinates of regions or boundaries are organized in this chapter
in the form of np X 2 arrays, where each row is an (x, y) coordinate pair, and
np is the number of points in the region or boundary. In some cases it is neces-
sary to sort these arrays. Function sortrows can be used for this purpose:

Z = sortrows(S) %&rows

This function sorts the rows of S in ascending order. Argument S must be either
a matrix or a column vector. In this chapter, sortrows is used only with np X 2
arrays. If several rows have identical first coordinates, they are sorted in ascend-
ing order of the second coordinate. If we want to sort the rows of S and also
eliminate duplicate rows, we use function unique, which has the syntax

[z, m, n] = unique(S, 'rows')

where z is the sorted array with no duplicate rows, and m and n are such that "
z=8(m, :)andS=2z(n, :).Forexample,ifS=[12; 6 5; 1 2; 4 3],then
z=[12;4 3;6 5],m=[3; 4; 2],andn=[1; 3; 1; 2].Note that z is
arranged in ascending order and that m indicates which rows of the original
array were kept.

Frequently, it is necessary to shift the rows of an array up, down, or sideways
a specified number of positions. For this we use function circshift:

z = circshift(S, [ud 1r])

where ud is the number of elements by which S is shifted up or down. If ud is
positive, the shift is down; otherwise it is up. Similarly, if 1r is positive, the array
is shifted to the right 1r elements; otherwise it is shifted to the left. If only up
and down shifting is needed, we can use a simpler syntax

Z = circshift (S, ud)

If S is an image, circshift is really nothing more than the familiar scrolling
(up and down) or panning (right and left), with the image wrapping around.

11.1.3 Some Basic Utility M-Functions

Tasks such as converting between regions and boundaries, ordering boundary
points in a contiguous chain of coordinates, and subsampling a boundary to
simplify its representation and description are typical of the processes that are
employed routinely in this chapter. The following utility M-functions are used
for these purposes. To avoid a loss of focus on the main topic of this chapter,
we discuss only the syntax of these functions. The documented code for each
non-MATLAB function is included in Appendix C. As noted earlier, bound-
aries are represented as np X 2 arrays in which each row represents a 2-D pair
of coordinates. Many of these functions automatically convert 2 X np coordi-
nate arrays to arrays of size np X 2.

434 Chapter 11 @ Representation and Description

boundaries
R ——

See Section 2.10.2
for an explanation of
this use of function
max.

bound2eight
[

bound2four
R ————"

Function
B = boundaries(f, conn, dir)

traces the exterior boundaries of the objects in f, which is assumed to be a bi-
nary image with Os as the background. Parameter conn specifies the desired
connectivity of the output boundaries; its values can be 4 or 8 (the default).
Parameter dir specifies the direction in which the boundaries are traced,; its
values can be 'cw' (the default) or 'ccw', indicating a clockwise or counter-
clockwise direction. Thus, if 8-connectivity and a 'cw' direction are accept-
able, we can use the simpler syntax

B = boundaries(f)

Output B in both syntaxes is a cell array whose elements are the coordinates of
the boundaries found. The first and last points in the boundaries returned by
function boundaries are the same. This produces a closed boundary.

As an example to fix ideas, suppose that we want to find the boundary of
the object with the longest boundary in image f (for simplicity we assume that
the longest boundary is unique). We do this with the following sequence of
commands:

>> B = boundaries(f);

>>d cellfun('length', B);
>> [max_d, k] = max(d);

>> v = B{k(1)};

Vector v contains the coordinates of the longest boundary in the input image,
and k is the corresponding region number; array Vv is of size np x 2. The last state-
ment simply selects the first boundary of maximum length if there is more than
one such boundary. As noted in the previous paragraph, the first and last points
of every boundary computed using function boundaries are the same, so row
v(1, :)isthesame asrowv(end, :).

Function bound2eight with syntax

b8 = bound2eight(b)

removes from b pixels that are necessary for 4-connectedness but not neces-
sary for 8-connectedness, leaving a boundary whose pixels are only
8-connected. Input b must be an np X 2 matrix, each row of which contains
the (x, y) coordinates of a boundary pixel. It is required that b be a closed,
connected set of pixels ordered sequentially in the clockwise or counter-
clockwise direction. The same conditions apply to function bound2four:

b4 = bound2four(b)

1.1 @ Background 435

This function inserts new boundary pixels wherever there is a diagonal con-

nection, thus producing an output boundary in which pixels are only 4-

connected. Code listings for both functions can be found in Appendix C.
Function

g = bound2im(b, M, N, x0, y0)

generates a binary image, g, of size M X N, with 1s for boundary points and a
background of Os. Parameters x0 and y0 determine the location of the mini-
mum x- and y-coordinates of b in the image. Boundary b must be an np x 2
(or 2 X hp) array of coordinates, where, as mentioned earlier, np is the num-
ber of points. If x0 and y0 are omitted, the boundary is centered approximate-
ly in the M X N array. If, in addition, M and N are omitted, the vertical and
horizontal dimensions of the image are equal to the height and width of
boundary b. If function boundaries finds multiple boundaries, we can get all
the coordinates for use in function bound2im by concatenating the various el-
ements of cell array B:

b = cat(1, B{:})

where the 1 indicates concatenation along the first (vertical) dimension of the
array.
Function

[s, su] = bsubsamp(b, gridsep)

subsamples a (single) boundary b onto a grid whose lines are separated by
gridsep pixels. The output s is a boundary with fewer points than b, the num-
ber of such points being determined by the value of gridsep, and su is the set
of boundary points scaled so that transitions in their coordinates are unity.
This is useful for coding the boundary using chain codes, as discussed in
Section 11.1.2. It is required that the points in b be ordered in a clockwise or
counterclockwise direction.

When a boundary is subsampled using bsubsamp, its points cease to be con-
nected. They can be reconnected by using

z = connectpoly(s(:, 1), s(:, 2))

where the rows of s are the coordinates of a subsampled boundary. It is re-
quired that the points in s be ordered, either in a clockwise or counterclock-
wise direction. The rows of output z are the coordinates of a connected
boundary formed by connecting the points in s with the shortest possible
path consisting of 4- or 8-connected straight segments. This function is useful
for producing a polygonal, fully connected boundary that is generally
smoother (and simpler) than the original boundary, b, from which s was ob-
tained. Function connectpoly also is quite useful when working with func-
tions that generate only the vertices of a polygon, such as minperpoly,
discussed in Section 11.2.3.

bound2im
B e———

See Section 6.1.1 for
an explanation of the
cat operator. See
also Example 11.13.

bsubsamp
g ——

connectpoly
B ——

436 Chapter 11 ® Representation and Description

intline is an un-
documented IPT
utility function. Its
code is included in
Appendix C.

an

FIGURE 11.1

(a) Direction
numbers for

(a) a 4-directional
chain code, and

(b) an 8-directional
chain code.

Computing the integer coordinates of a straight line joining two points is a
basic tool when working with boundaries (for example, function connectpoly
requires a subfunction that does this). IPT function intline is well suited for
this purpose. Its syntax is

[x, y] = intline(x1, x2, y1, y2)

where (x1, y1) and (x2, y2) are the integer coordinates of the two points to
be connected. The outputs x and y are column vectors containing the integer
x- and y-coordinates of the straight line joining the two points.

%74 Representation

As noted at the beginning of this chapter, the segmentation techniques dis-
cussed in Chapter 10 yield raw data in the form of pixels along a boundary or
pixels contained in a region. Although these data sometimes are used directly
to obtain descriptors (as in determining the texture of a region), standard
practice is to use schemes that compact the data into representations that are
considerably more useful in the computation of descriptors. In this section we
discuss the implementation of various representation approaches.

11.2.1 Chain Codes

Chain codes are used to represent a boundary by a connected sequence of
straight-line segments of specified length and direction. Typically, this repre-
sentation is based on 4- or 8-connectivity of the segments. The direction of
each segment is coded by using a numbering scheme such as the ones shown in
Figs. 11.1(a) and (b). Chain codes based on this scheme are referred to as
Freeman chain codes.

The chain code of a boundary depends on the starting point. However, the
code can be normalized with respect to the starting point by treating it as a cir-
cular sequence of direction numbers and redefining the starting point so that the
resulting sequence of numbers forms an integer of minimum magnitude. We can
normalize for rotation [in increments of 90° or 45°, as shown in Figs. 11.1(a) and
(b)] by using the first difference of the chain code instead of the code itself. This
difference is obtained by counting the number of direction changes (in a coun-

11.2 @ Representation 437

terclockwise direction in Fig. 11.1) that separate two adjacent elements of the
code. For instance, the first difference of the 4-direction chain code 10103322 is
3133030. If we elect to treat the code as a circular sequence, then the first ele-
ment of the difference is computed by using the transition between the last
and first components of the chain. Here, the result is 33133030. Normalization
with respect to arbitrary rotational angles is achieved by orienting the bound-
ary with respect to some dominant feature, such as its major axis, as discussed
in Section 11.3.2.
Function fchcode, with syntax

¢ = fchcode(b, conn, dir)

computes the Freeman chain code of an np X 2 set of ordered boundary
points stored in array b. The output ¢ is a structure with the following fields,
where the numbers inside the parentheses indicate array size:

c.fcc = Freeman chain code (1 X np)
c.diff = First difference of code c.fcc (1 X np)
c.mm = Integer of minimum magnitude (1 X np)
c.diffmm = First difference of code c.mm (1 X np)
c.x0y0 = Coordinates where the code starts (1 X 2)

Parameter conn specifies the connectivity of the code; its value can be 4 or 8
(the default). A value of 4 is valid only when the boundary contains no diago-
nal transitions.

Parameter dir specifies the direction of the output code: If ' same' is spec-
ified, the code is in the same direction as the points in b. Using 'reverse'
causes the code to be in the opposite direction. The default is 'same'. Thus,
writing ¢ = fchcode (b, conn) uses the default direction, and ¢ = fchcode (b)
uses the default connectivity and direction.

& Figure 11.2(a) shows an image, f, of a circular stroke embedded in specular
noise. The objective of this example is to obtain the chain code and first differ-
ence of the object’s boundary. It is obvious by looking at Fig. 11.2(a) that the
noise fragments attached to the object would result in a very irregular bound-
ary, not truly descriptive of the general shape of the object. Smoothing is a rou-
tine process when working with noisy boundaries. Figure 11.2(b) shows the
result, g,of using a 9 X 9 averaging mask:

>> h
>> g

fspecial('average', 9);
imfilter(f, h, 'replicate');

The binary image in Fig. 11.2(c) was then obtained by thresholding:
>> g = im2bw(g, 0.5);

The boundary of this image was computed using function boundaries dis-
cussed in the previous section:

fchcode
TR —e——

EXAMPLE 11.3:
Freeman chain
code and some of
its variations.

438 Chapter 11 % Representation and Description
>> B = boundaries(g);

Asin the illustration in Section 11.1.3, we are interested in the longest boundary:

>> d = cellfun('length', B);
>> [max_d, k] = max(d);
>> b = B{1};

The boundary image in Fig. 11.2(d) was generated using the commands:

>> [M N] = size(g);
>> g = bound2im(b, M, N, min(b(:, 1)), min(b(:, 2)));

Obtaining the chain code of b directly would result in a long sequence with
small variations that are not necessarily representative of the general shape of
the image. Thus, as is typical in chain-code processing, we subsample the
boundary using function bsubsamp discussed in the previous section:

>> [s, su] = bsubsamp(b, 50);

FIGURE 11.2 (a) Noisy image. (b) Image smoothed with a 9 X 9 averaging mask. (c) Thresholded image.
(d) Boundary of binary image. (¢) Subsampled boundary. (f) Connected points from (e).

11.2 # Representation

Here, we used a grid separation equal to approximately 10% the width of the
image, which in this case was of size 570 X 570 pixels. The resulting points can
be displayed as an image [Fig. 11.2(e)]:

>> g2 = bound2im(s, M, N, min(s(:, 1)), min(s(:, 2)));
or as a connected sequence [Fig. 11.2(f)] by using the commands

>> ¢cn
>> g2

connectpoly(s(:, 1), s(:, 2));
bound2im(cn, M, N, min(cn(:, 1)), min(cn(:, 2)));

The advantage of using this representation, as opposed to Fig. 11.2(d), for
chain-coding purposes is evident by comparing this figure with Fig. 11.2(f). The
chain code is obtained from the scaled sequence su:

>> ¢ = fchcode(su);
This command resulted in the following outputs:

>> ¢.x0y0
ans =

7 3
>> ¢.fce

ans =
220220200006066666666444444242202

>> c.mm

ans =
00006066666666444444242222202202
>> c.diff

ans =

06206260006260000000600000626000
>> c.diffmm

ans =
000626000000060000062600006206°26

By examining c¢.fcc , Fig. 11.2(f), and c.x0y0 we see that the code starts on
the left of the figure and proceeds in the clockwise direction, which is the same
direction as the coordinates of the boundary. |

11.2.2 Polygonal Approximations Using Minimum-Perimeter
Polygons
A digital boundary can be approximated with arbitrary accuracy by a polygon.

For a closed curve, the approximation is exact when the number of segments in
the polygon is equal to the number of points in the boundary, so that each pair

439

440 Chapter 11 & Representation and Description

-4

FIGURE 11.3

(a) Object
boundary
enclosed by cells.
(b) Minimum-
perimeter
polygon.

of adjacent points defines an edge of the polygon. In practice, the goal of a
polygonal approximation is to use the fewest vertices possible to capture the
“essence” of the boundary shape.

A particularly attractive approach to polygonal approximation is to find the
minimum-perimeter polygon (MPP) of a region or boundary. The theoretical
underpinnings and an algorithm for finding MPPs are discussed in the classic
paper by Sklansky et al. [1972] (see also Kim and Sklansky [1982]). In this sec-
tion we present the fundamentals of the algorithm and give an M-function im-
plementation of the procedure. The method is restricted to simple polygons
(i-e., polygons with no self-intersections). Also, regions with peninsular protru-
sions that are one pixel thick are excluded. Such protrusions can be extracted
using morphological methods and then reappended after the polygonal ap-
proximation has been computed.

Foundation

We begin with a simple example to fix ideas. Suppose that we enclose a bound-
ary by a set of concatenated cells, as shown in Fig. 11.3(a). It helps to visualize
this enclosure as two walls corresponding to the outside and inside boundaries
of the strip of cells and think of the object boundary as a rubber band con-
tained within the two walls. If the rubber band is allowed to shrink, it takes the
shape shown in Fig. 11.3(b), producing a polygon of minimum perimeter that
fits the geometry established by the cell strip.

Sklansky’s approach uses a so-called cellular complex or cellular mosaic,
which, for our purposes, is the set of square cells used to enclose a boundary, as in
Fig. 11.3(a). Figure 11.4(a) shows the region (shaded) enclosed by the cellular
complex. Note that the boundary of this region forms a 4-connected path. As we
traverse this path in a clockwise direction, we assign a black dot (+) to the convex
corners (those with interior angles equal to 90°) and a white dot (°) to the con-
cave corners (those with interior angles equal to 270°). As Fig. 11.4(b) shows, the
black dots are placed on the convex corners themselves. The white dots are
placed diagonally opposite their corresponding concave corners. This corre-
sponds to the cellular complex and vertex definitions of the algorithm.

ﬁ \ 7[-\ - .

N

[T TT1

11.2 ® Representation 441

Ld

FIGURE 11.4 (a) Region
enclosed by the inner wall
of the cellular complex in
Fig. 11.3(a).

(b) Convex (+) and
concave (°) corner
markers for the boundary
of the region in (a). Note
that concave markers are
placed diagonally opposite
their corresponding
corners.

The following properties are basic in formulating an approach for finding
MPPs:

1. The MPP corresponding to a simply connected cellular complex is not
self-intersecting. Let P denote this MPP.

2. Every convex vertex of P coincides with a « (but not every - is a vertex
of P).

3. Every concave vertex of P coincides with a o (but not every ° is a vertex
of P).

4. If a - in fact is part of P, but it is not a convex vertex of P, then it lies on the
edge of P.

In our discussion, a vertex of a polygon is defined to be convex if its interior
angle is in the range 0° < 6 < 180°; otherwise the vertex is concave. As in the
previous paragraph, convexity is measured with respect to the interior region
as we travel in a clockwise direction.

An Algorithm for Finding MPPs

Properties 1 through 4 are the basis for finding the vertices of an MPP. There are
various ways to do this (e.g., see Sklansky et al. [1972], and Kim and Sklansky
[1982]). The approach we follow here is designed to take advantage of two basic
IPT/MATLAB functions. The first is qtdecomp, which performs quadtree de-
compositions that lead to the cellular wall enclosing the data of interest. The sec-
ond is function inpolygon, used to determine which points lie outside, on, or
inside the boundary of a polygon defined by a given set of vertices.

It will be helpful to develop the procedure for finding MPPs in the context
of an illustration. We use Figs. 11.3 and 11.4 again for this purpose. An ap-
proach for finding the 4-connected boundary of the shaded inner region in
Fig. 11.4(a) is discussed later in this section. After the boundary has been ob-
tained, the next step is to find its corners, which we do by obtaining its Free-
man chain code. Changes in code direction indicate a corner in the boundary.
By analyzing direction changes as we travel in a clockwise direction through
the boundary, it becomes a fairly easy task to determine and mark the convex
and concave corners, as in Fig. 11.4(b). The specific approach for obtaining the

The condition 6 = 0°
is not allowed, and
6 = 180° is treated
as a special case.

442

Chapter 11 ® Representation and Description

markers is documented in M-function minperpoly discussed later in this sec-
tion. The corners determined in this manner are as in Fig. 11.4(b), which we
show again in Fig. 11.5(a). The shaded region and background grid are includ-
ed for easy reference. The boundary of the shaded region is not shown to avoid
confusion with the polygonal boundaries shown throughout Fig. 11.5.

Next, we form an initial polygon using only the initial convex vertices (the black
dots), as Fig. 11.5(b) shows. We know from property 2 that the set of MPP convex
vertices is a subset of this initial set of convex vertices. We see that all the concave
vertices (white dots) lying outside the initial polygon do not form concavities in
the polygon. For those particular vertices to become convex at a later stage in the
algorithm, the polygon would have to pass through them. But, we know that they
can never become convex because all possible convex vertices are accounted for
at this point (it is possible that their angle could become 180° later, but that would
have no effect on the shape of the polygon). Thus, the white dots outside the initial
polygon can be eliminated from further analysis, as Fig. 11.5(c) shows.

The concave vertices (white dots) inside the polygon are associated with
concavities in the boundary that were ignored in the first pass. Thus, these ver-
tices must be incorporated into the polygon, as shown in Fig. 11.5(d). At this
point generally there are vertices that are black dots but that have ceased to be
convex in the new polygon [see the black dots marked with arrows in
Fig. 11.5(d)]. There are two possible reasons for this. The first reason may be
that these vertices are part of the starting polygon in Fig. 11.5(b), which in-
cludes all convex (black) vertices. The second reason could be that they have
become convex as a result of our having incorporated additional (white) ver-
tices into the polygon as in Fig. 11.5(d). Therefore, all black dots in the polygon
must be tested to see if any of the vertex angles at those points now exceed
180°. All those that do are deleted. The procedure in then repeated.

Figure 11.5(e) shows only one new black vertex that has become concave
during the second pass through the data. The procedure terminates when no
further vertex changes take place, at which time all vertices with angles of 180°
are deleted because they are on an edge, and thus do not affect the shape of
the final polygon. The boundary in Fig. 11.5(f) is the MPP for our example.
This polygon is the same as the polygon in Fig. 11.3(b). Finally, Fig. 11.4(g)
shows the original cellular complex superimposed on the MPP.

The preceding discussion is summarized in the following steps for finding
the MPP of a region:

1. Obtain the cellular complex (the approach is discussed later in this section).

2. Obtain the region internal to the cellular complex.

3. Use function boundaries to obtain the boundary of the region in step 2 as
a 4-connected, clockwise sequence of coordinates.

4. Obtain the Freeman chain code of this 4-connected sequence using func-
tion fchcode.

5. Obtain the convex (black dots) and concave (white dots) vertices from the
chain code.

6. Form an initial polygon using the black dots as vertices, and delete from
further analysis any white dots that are outside this polygon (white dots
on the polygon boundary are kept).

11.2 ® Representation 443

| 1

I I I |
| T T |

I |
™~
1T 1T 1

T T 11T

1T T T T

I T

| [
1

T T T 11

T 11T
[

1T 17T

|
|

B

FIGURE 11.5 (a) Convex (black) and concave (white) vertices of the boundary in Fig. 11.4(a). (b) Initial
polygon joining all convex vertices. (c) Result after deleting concave vertices outside of the polygon.
(d) Result of incorporating the remaining concave vertices into the polygon (the arrows indicate black
vertices that have become concave and will be deleted). (e) Result of deleting concave black vertices (the
arrow indicates a black vertex that now has become concave). (f) Final result showing the MPP. (g) MPP
with boundary cells superimposed. :

444 Chapter 11 @ Representation and Description

EXAMPLE 11.4:
Obtaining the
cellular wall of
the boundary of a
region.

7. Form a polygon with the remaining black and white dots as vertices.

8. Delete all black dots that are concave vertices.

9. Repeat steps 7 and 8 until all changes cease, at which time all vertices with
angles of 180° are deleted. The remaining dots are the vertices of the MPP,

Some of the M-Functions Used in Implementing the MPP Algorithm

We use function gtdecomp introduced in Section 10.4.2 as the first step in ob-
taining the cellular complex enclosing a boundary. As usual, we consider the
region, B, in question to be composed of 1s and the background of Os. The
gtdecomp syntax applicable to our work here is

Q = qtdecomp(B, threshold, [mindim maxdim])

where Q is a sparse matrix containing the quadtree structure. If Q(k, m) is
nonzero, then (k, m) is the upper-left corner of a block in the decomposition
and the size of the block is Q(k, m).

A block is split if the maximum value of the block elements minus the mini-
mum value of the block elements is greater than threshold. The value of this
parameter is specified between 0 and 1, regardless of the class of the input
image. Using the preceding syntax, function qtdecomp will not produce blocks
smaller than mindim or larger than maxdim. Blocks larger than maxdim are split
even if they do not meet the threshold condition. The ratio maxdim/mindim
must be a power of 2.

If only one of the two values is specified (without the brackets), the func-
tion assumes that it is mindim. This is the formulation we use in this section.
Image B must be of size K x K, such that the ratio of K/mindim is an integer
power of 2. Clearly, the smallest possible value of K is the largest dimension of
B.The size requirements generally are met by padding B with zeros with option
‘post' in function padarray. For example, suppose that B is of size 640 X 480
pixels, and we specify mindim = 3. Parameter K has to satisfy the conditions
K>=max(size(B)) and K/mindim = 2"p, or K=mindim= (2"p). Solving for p
gives p = 8, in which case K = 768.

To get the block values in a quadtree decomposition we use function
gtgetblk, discussed in Section 10.4.2:

[vals, r, c] = qtgetblk(B, Q, mindim)

where vals is an array containing the values of the mindim x mindim blocks in
the quadtree decomposition of B, and Q is the sparse matrix returned by
gtdecomp. Parameters r and ¢ are vectors containing the row and column co-
ordinates of the upper-left corners of the blocks.

8 To see how steps 1 through 4 of the MPP algorithm are implemented, con-
sider the image in Fig. 11.6(a), and suppose that we specify mindim = 2. We
show individual pixels as small squares to facilitate explanation of function
gtdecomp. The image is of size 32 X 32, and it is easily verified that no addi-

11.2 & Representation 445

PHAHH EEEEERERN! ﬁﬁ

€£a

Er

FIGURE 11.6

(a) Original
image, where the
small squares
denote individual
pixels. (b) 4-
connected
boundary.

(c) Quadtree
decomposition
using blocks of
minimum size 2
pixels on the side.
(d) Result of
filling with 1s all
blocks of size

2 X 2 that
contained at least
one element
valued 1. This is
the cellular
complex.

(e) Inner region
of (d).

(f) 4-connected
boundary points
obtained using
function
boundaries.The
chain code was
obtained using
function fchcode.

]
TTTTTT

tional padding is required for the specified value of mindim. The 4-connected
boundary of the region is obtained using the following command (the margin
note in the next page explains why 8 is used in the function call):

>> B = bwperim(B, 8);

446

The syntax for
bwperimis

g =

bwperim(f, conn)
where conn identi-
fies the desired con-
nectivity: 4 (the
default) or 8. The
connectivity is with
respect to the back-
ground pixels. Thus,
to obtain 4-connect-
ed object boundaries
we specify 8 for
conn. Conversely, 8-
connected bound-
aries result from
specifying a value of
4 for conn. Output g
is a binary image
containing the
boundaries of the
objects in f. This
function is discussed
in detail in Section
113.1.

Chapter 11 ® Representation and Description

Figure 11.6(b) shows the result. Note that B is still an image, which now con-
tains only a 4-connected boundary (keep in mind that the small squares are in-
dividual pixels).

Figure 11.6(c) shows the quadtree decomposition of B, obtained using the
command

>> Q = qtdecomp(B, 0, 2);

where 0 was used for the threshold so that blocks were split down to the mini-
mum 2 X 2 size, regardless of the mixture of 1s and Os they contained (each
such block is capable of containing between zero and four pixels). Note that
there are numerous blocks of size greater than 2 X 2, but they are all
homogeneous.

Next we used gtgetblk (B, Q, 2) to extract the values and top-left corner
coordinates of all the blocks of size 2 X 2. Then all the blocks that contained
at least one pixel valued 1 were filled with 1s. This result, which we denote by
BF, is shown in Fig. 11.6(d). The dark cells in this image constitute the cellular
complex. In other words, these cells enclose the boundary in Fig. 11.6(b).

The region bounded by the cellular complex in Fig. 11.6(d) was obtained
using the command
>> R = imfill(BF, ‘'holes') & ~BF;

Figure 11.6(e) shows the result. We are interested in the 4-connected boundary
of this region, which we obtain using the commands

>> b = boundaries(b, 4,
>> b = b{1};

ow');

Figure 11.6(f) shows the result. The Freeman chain code shown in this figure
was obtained using function fchcode. This completes steps 1 through 4 of the
MPP algorithm. =

Function inpolygon is used in function minperpoly (discussed in the next
section) to determine whether a point is outside, on the boundary, or inside a
polygon; the syntax is

IN = inpolygon(X, Y, Xxv, yv)
where X and Y are vectors containing the x- and y-coordinates of the points to
be tested, and xv and yv are vectors containing the the x- and y-coordinates of
the polygon vertices, arranged in a clockwise or counterclockwise sequence.
Array IN is a vector whose length is equal to the number of points being test-

ed. Its values are 1 for points inside or on the boundary of the polygon, and 0
for points outside the boundary.

11.2 ® Representation 447

An M-Function for Computing MPPs

Steps 1 through 9 of the MPP algorithm are implemented in function
minperpoly, whose listing is included in Appendix C. The syntax is

[Xx, y] = minperpoly(B, cellsize)

where B is an input binary image containing a single region or boundary, and
cellsize is the size of the square cells in the cellular complex used to enclose
the boundary. Column vectors x and y contain the x- and y-coordinates of the
MPP vertices.

B Figure 11.7(a) shows an image, B, of a maple leaf, and Fig. 11.7(b) is the
boundary obtained using the commands

>> b = boundaries(B, 4, 'cw');
>> b = b{1};

>> [M, N] = size(B);
>> xmin = min(b(:, 1
>> ymin = min(b(:, 2
>> bim = bound2im(b, M, N, xmin, ymin);
>> imshow(bim)

));
));

This is the reference boundary against which various MMPs are compared in
this example. Figure 11.7(c) is the result of using the commands

>> [x, y] = minperpoly(B, 2);

>> b2 = connectpoly(x, Y);

>> B2 = bound2im(b2, M, N, xmin, ymin);
>> imshow(B2)

Similarly, Figs. 11.7(d) through (f) show the MPPs obtained using square cells of
sizes 3,4, and 8. The thin stem is lost with cells larger than 2 X 2 due to a loss of
resolution. The second major shape characteristic of the leaf is its set of three
main lobes. These are preserved reasonably well even for cells of size §, as
Fig. 11.7(f) shows. Further increases in the size of the cells to 10 and even to 16
still preserve this feature, as Figs. 11.8(a) and (b) show. However, as shown in
Figs. 11.8(c) and (d), values of 20 and higher cause this characteristic to be lost.

The arrows in Figs. 11.7(c) and (e) point to nodes formed by self-intersecting
lines. These nodes can arise if the size of the indentation in the boundary with re-
spect to the cell size is such that when the concave vertices are created, their po-
sitions “cross” each other, altering the clockwise sequence of the vertices. One
approach for solving this problem is to delete one of the vertices. The other is
to increase or decrease the cell size. For example, Fig. 11.7(d), which corre-
sponds to a cell size of 3, does not have the problem exhibited by the Vertlces
generated with cells of sizes 2 and 4.

minperpoly

EXAMPLE 11.5:
Using function
minperpoly.

448 Chapter 11 ® Representation and Description

FIGURE 11.7

(a) Original
image.

(b) 4-connected
boundary.

(c) MPP obtained
using square
bounding cells of
size 2. (d) through
(f) MPPs obtained
using square cells
of sizes 3,4, and 8§,
respectively.

11.2 & Representation 449

MPPs obtained
with even larger
bounding square
cells of sizes

(a) 10, (b) 16, (c)
20, and (d) 32.

11.2.3 Signatures

A signature is a 1-D functional representation of a boundary and may be gen-
erated in various ways. One of the simplest is to plot the distance from an inte-
rior point (e.g., the centroid) to the boundary as a function of angle, as
illustrated in Fig. 11.9. Regardless of how a signature is generated, however,
the basic idea is to reduce the boundary representation to a 1-D function,
which presumably is easier to describe than the original 2-D boundary. Keep
in mind that it makes sense to consider using signatures only when it can be
guaranteed that the vector extending from its origin to the boundary intersects
the boundary only once, thus yielding a single-valued function of increasing
angle. This excludes boundaries with self-intersections, and it also typically ex-
cludes boundaries with deep, narrow concavities or thin, long protrusions.
Signatures generated by the approach just described are invariant to transla-
tion, but they do depend on rotation and scaling. Normalization with respect to

450

EE
FIGURE 11.9

(a) and (b)
Circular and
square objects.
(c) and (d)
Corresponding
distance versus
angle signatures.

signature
SRRy e e—

Chapter 11 ® Representation and Description

)

<A —> —A~—>|
r(8) r(6)
VIA
A A
IR RN N SRS N N R S N S N TR N B |
T @ 3w w7 Sr 3w Im 2w T oz 3w w 5m 3w Jm 2w
4 2 4 4 2 ¢ 2 4 ¢ 2
6]

rotation can be achieved by finding a way to select the same starting point to
generate the signature, regardless of the shape’s orientation. One way to do so
is to select the starting point as the point farthest from the origin of the vector
(see Section 11.3.1), if this point happens to be unique and independent of ro-
tational aberrations for each shape of interest.

Another way is to select a point on the major eigen axis (see Section 11.5).
This method requires more computation but is more rugged because the di-
rection of the eigen axes is determined by using all contour points. Yet anoth-
er way is to obtain the chain code of the boundary and then use the approach
discussed in Section 11.1.2, assuming that the rotation can be approximated by

- the discrete angles in the code directions defined in Fig. 11.1.

Based on the assumptions of uniformity in scaling with respect to both axes,
and that sampling is taken at equal intervals of 6, changes in size of a shape re-
sultin changes in the amplitude values of the corresponding signature. One way
to normalize for this dependence is to scale all functions so that they always
span the same range of values, say, [0, 1]. The main advantage of this method is
simplicity, but it has the potentially serious disadvantage that scaling of the en-
tire function is based on only two values: the minimum and maximum. If the
shapes are noisy, this can be a source of error from object to object. A more
rugged approach is to divide each sample by the variance of the signature, as-
suming that the variance is not zero—as in the case of Fig. 11.9(a)—or so small
that it creates computational difficulties. Use of the variance yields a variable
scaling factor that is inversely proportional to changes in size and works much
as automatic gain control does. Whatever the method used, keep in mind that
the basic idea is to remove dependency on size while preserving the fundamen-
tal shape of the waveforms.

Function signature,included in Appendix C, finds the signature of a given

boundary. Its syntax is
[st, angle, x0, y0] = signature(b, x0, yO0)

where b is an np X 2 array containing the xy-coordinates of a boundary or-
dered in a clockwise or counterclockwise direction. The amplitude of the

11.2 8 Representation

\THETA

signature as a function of increasing angle is output in st. Coordinates (x0,
y0) in the input are the coordinates of the origin of the vector extending to the
boundary. If these coordinates are not included in the argument, the function
uses the coordinates of the centroid of the boundary by default. In either case,
the values of (x0, y0) used by the function are included in the output. The
size of arrays st and angle is 360 X 1, indicating a resolution of one degree.
The input must be a one-pixel-thick boundary obtained, for example, using
function boundaries (see Section 11:1.3). As before, we assume that a bound-
ary is a closed curve.

Function signature utilizes MATLAB’s function cart2pol to convert
Cartesian to polar coordinates. The syntax is

[THETA, RHO] = cart2pol(X, Y)

where X and Y are vectors containing the coordinates of the Cartesian points. The
vectors THETA and RHO contain the corresponding angle and length of the polar co-
ordinates. If X and Y are row vectors, so are THETA and RHO, and similarly in the
case of columns. Figure 11.10 shows the convention used by MATLAB for coordi-
nate conversions. Note that the MATLAB coordinates (X, Y) in this situation are
related to our image coordinates (x, y) as X = yandY = —x [see Fig. 2.1(a)].
Function pol2cart is used for converting back to Cartesian coordinates:

[X, Y] = pol2cart(THETA, RHO)

& Figures 11.11(a) and (b) show the boundaries, bs and bt, of an irregular
square and triangle, respectively, embedded in arrays of size 674 X 674 pixels.
Figure 11.11(c) shows the signature of the square, obtained using the commands
>> [st, angle, x0, yO0] =
>> plot(angle, st)

signature(bs);

The values of x0 and y0 obtained in the preceding command were [342, 326].
A similar pair of commands yielded the plot in Fig. 11.11(d), whose centroid is

451

FIGURE 11.10
Axis convention
used by
MATLAB for
performing
conversions
between polar
and Cartesian
coordinates, and
vice versa.

w ¥\
A

EXAMPLE 11.6:
Signatures.

452 Chapter 11 ® Representation and Description

@8
wd

FIGURE 11.11

(a) and (b)
Boundaries of an
irregular square
and triangle.

(c) and (d)
Corresponding

signatures.

400 T T T 400 T T T
350 - -
350 - -
300 - -
250 - -
300 - N
200 1
250 L L : 150 L . L
0 100 200 300 400 0 100 200 300 400

located at [416, 335]. Note that simply counting the number of prominent
peaks in the two signatures is sufficient to differentiate between the two
boundaries. £

11.2.4 Boundary Segments

Decomposing a boundary into segments often is useful. Decomposition re-
duces the boundary’s complexity and thus simplifies the description process.
This approach is particularly attractive when the boundary contains one or
more significant concavities that carry shape information. In this case use of
the convex hull of the region enclosed by the boundary is a powerful tool for
robust decomposition of the boundary.

The convex hull H of an arbitrary set S is the smallest convex set containing
S. The set difference H — S is called the convex deficiency, D, of the set S. To
see how these concepts might be used to partition a boundary into meaningful
segments, consider Fig. 11.12(a), which shows an object (set S) and its convex
deficiency (shaded regions). The region boundary can be partitioned by fol-
lowing the contour of § and marking the points at which a transition is made
into or out of a component of the convex deficiency. Figure 11.12(b) shows the
result in this case. In principle, this scheme is independent of region size and

11.2 ® Representation 453

orientation. In practice, this type of processing is preceded typically by aggres-
sive image smoothing to reduce the number of “insignificant” concavities. The
MATLAB tools necessary to implement boundary decomposition in the man-
ner just described are contained in function regionprops, which is discussed
in Section 11.4.1.

11.2.5 Skeletons

An important approach for representing the structural shape of a plane region
is to reduce it to a graph. This reduction may be accomplished by obtaining the
skeleton of the region via a thinning (also called skeletonizing) algorithm.

The skeleton of a region may be defined via the medial axis transformation
(MAT). The MAT of aregion R with'border b is as follows. For each point p in
R, we find its closest neighbor in b. If p has more than one such neighbor, it is
said to belong to the medial axis (skeleton) of R.

Although the MAT of a region is an intuitive concept, direct implementa-
tion of this definition is expensive computationally, as it involves calculating
the distance from every interior point to every point on the boundary of a re-
gion. Numerous algorithms have been proposed for improving computational
efficiency while at the same time attempting to approximate the medial axis
representation of a region.

As noted in Section 9.3.4, IPT generates the skeleton of all regions con-
tained in a binary image B via function bwmorph, using the following syntax:

S = bwmorph(B, 'skel', Inf)

This function removes pixels on the boundaries of objects but does not allow
objects to break apart. The pixels remaining make up the image skeleton. This
option preserves the Euler number (defined in Table 11.1).

Figure 11.13(a) shows an image, f, representative of what a human chro-
mosome looks like after it has been segmented out of an electron microscope
image with magnification on the order of 30,000X. The objective of this exam-
ple is to compute the skeleton of the chromosome.

Clearly, the first step in the process must be to isolate the chromosome from
the background of irrelevant detail. One approach is to smooth the image and
then threshold it. Figure 11.13(b) shows the result of smoothing f with a
25 X 25 Gaussian spatial mask with sig = 15:

&b

FIGURE 11.12
(a) A region S
and its convex
deficiency
(shaded).

(b) Partitioned
boundary.

EXAMPLE 11.7:
Computing the
skeleton of a
region.

454 Chapter 11 ® Representation and Description

FIGURE 11.13 (a) Segmented human chromosome. (b) Image smoothed using a 25 X 25 Gaussian
averaging mask with sig = 15. (c) Thresholded image. (d) Skeleton. (e) Skeleton after 8 applications of
spur removal. (f) Result of 7 additional applications of spur removal.

>> f = im2double(f);

>> h = fspecial('gaussian', 25, 15);
>> g = imfilter(f, h, 'replicate');
>> imshow(g) % Fig. 11.13(b)

Next, we threshold the smoothed image:

>> g = im2bw(g, 1.5*graythresh(g));
>> figure, imshow(g) % Fig. 11.13(c)

where the automatically determined threshold, graythresh(g), was multi-
plied by 1.5 to increase by 50% the amount of thresholding. The reasoning for

11.3 ® Boundary Descriptors 455

this is that increasing the threshold value increases the amount of data re-
moved from the boundary, thus achieving additional smoothing. The skeleton
of Fig. 11.13(d) was obtained using the command

>> s = bwmorph(g, 'skel', Inf); % Fig. 11.13(d)

The spurs in the skeleton were reduced using the command
>> s1 = bwmorph(s, 'spur', 8); % Fig. 11.13(e)

where we repeated the operation 8 times, which in this case is equal to the ap-
proximately one-half the value of sig in the smoothing filter. Several small
spurs still remain in the skeleton. However, applying the previous function an
additional 7 times (to complete the value of sig) yielded the result in
Fig. 11.13(f), which is a reasonable skeleton representation of the input. As a
rule of thumb, the value of sig of a Gaussian smoothing mask is a good guide-
line for the selection of the number of times a spur removal algorithm
is applied.

£} Boundary Descriptors

In this section we discuss a number of descriptors that are useful when work-
ing with region boundaries. As will become evident shortly, many of these de-
scriptors can be used for boundaries and/or regions, and the grouping of these
descriptors in IPT does not make a distinction regarding their applicability.
Therefore, some of the concepts introduced here are mentioned again in
Section 11.4 when we discuss regional descriptors.

11.3.1 Some Simple Descriptors

The length of a boundary is one of its simplest descriptors. The length of a 4-
connected boundary is simply the number of pixels in the boundary, minus 1. If
the boundary is 8-connected, we count vertical and horizontal transitions as 1,
and diagonal transitions as V2.

We extract the boundary of objects contained in image f using function
bwperim, introduced in Section 11.2.2:

g = bwperim(f, conn)

where g is a binary image containing the boundaries of the objects in f. For
2-D connectivity, which is our focus, conn can have the values 4 or 8, depend-
ing on whether 4- or 8-connectivity (the default) is desired (see the margin
note in Example 11.4 concerning the interpretation of these connectivity val-
ues). The objects in f can have any pixel values consistent with the image class,
but all background pixels have to be 0. By definition, the perimeter pixels are
nonzero and are connected to at least one other nonzero pixel.

Connectivity can be defined in a more general way in IPT by usinga 3 X 3
matrix of Os and 1s for conn. The 1-valued elements define neighborhood

456 Chapter 11 @ Representation and Description

diameter
B e——

locations relative to the center element of conn. For example, conn = ones (3)
defines 8-connectivity. Array conn must be symmetric about its center ele-
ment. The input image can be of any class. The output image containing the
boundary of each object in the input is of class logical.

The diameter of a boundary is defined as the Euclidean distance between
the two farthest points on the boundary. These points are not always unique, as
in a circle or square, but generally the assumption is that if the diameter is to
be a useful descriptor, it is best applied to boundaries with a single pair of far-
thest points.’ The line segment connecting these points is called the major axis
of the boundary. The minor axis of a boundary is defined as the line perpen-
dicular to the major axis and of such length that a box passing through the
outer four points of intersection of the boundary with the two axes complete-
ly encloses the boundary. This box is called the basic rectangle, and the ratio of
the major to the minor axis is called the eccentricity of the boundary.

Function diameter (see Appendix C for a listing) computes the diameter,
major axis, minor axis, and basic rectangle of a boundary or region. Its syntax is

s = diameter(L)

where L is a label matrix (Section 9.4) and s is a structure with the following
fields:

s.Diameter A scalar, the maximum distance between any two pixels
in the corresponding region.
s.MajorAxis A 2 X 2 matrix. The rows contain the row and column

coordinates for the endpoints of the major axis of the
corresponding region.

s.MinorAxis A 2 X 2 matrix. The rows contain the row and column
coordinates for the endpoints of the minor axis of the
corresponding region.

s.BasicRectangle A 4 X 2 matrix. Each row contains the row and column
coordinates of a corner of the basic rectangle.

i1.3.2 Shape Numbers

The shape number of a boundary, generally based on 4-directional Freeman
chain codes, is defined as the first difference of smallest magnitude (Bribiesca
and Guzman [1980], Bribiesca [1981]). The order of a shape number is defined
at the number of digits in its representation. Thus, the shape number of a
boundary is given by parameter ¢.diffmm in function fchcode discussed in
Section 11.2.1, and the order of the shape number is computed as
length(c.diffmm).

As noted in Section 11.2.1, 4-directional Freeman chain codes can be made
insensitive to the starting point by using the integer of minimum magnitude,
and made insensitive to rotations that are multiples of 90° by using the first

"When more than one pair of farthest points exist, they should be near each other and be dominant fac-
tors in determining boundary shape.)

11.3 ® Boundary Descriptors 457

J G
& o

Chain code: 000030032232221211
Difference: 300031033013003130
Shape no.: 000310330130031303

difference of the code. Thus, shape numbers are insensitive to the starting
point and to rotations that are multiples of 90°. An approach used frequently
to normalize for arbitrary rotations is to align one of the coordinate axes with
the major axis and then extract the 4-code based on the rotated figure. The
procedure is illustrated in Fig. 11.14.

The tools required to implement an M-function that calculates shape num-
bers have been developed already. They consist of function boundaries to ex-
tract the boundary, function diameter to find the major axis, function
bsubsamp to reduce the resolution of the sampling grid, and function fchcode
to extract the shape number. Keep in mind when using function boundaries
to extract 4-connected boundaries that the input image must be labeled using
bwlabel with 4-connectivity specified. As indicated in Fig. 11.14, compensa-
tion for rotation is based on aligning one of the coordinate axes with the major
axis. The x-axis can be aligned with the major axis of a region or boundary by
using function x2majoraxis. The syntax of this function follows; the code is
included in Appendix C:

[B, theta] = x2majoraxis(A, B)

Here, A = s.MajorAxis from function diameter, and B is an input (binary)
image or boundary list. (As before, we assume that a boundary is a connected,
closed curve.) On the output, B has the same form as the input (i.e., a binary
image or a coordinate sequence. Because of possible round-off error, rotations
can result in a disconnected boundary sequence, so postprocessing to relink
the points (using, for example, bwmorph) may be required.

@r

od

FIGURE 11.14
Steps in the
generation of a
shape number.

x2majoraxis
Ry emeee—

458

FIGURE 11.15

A digital
boundary and its
representation as
a complex
sequence. The
points (xo, yp)
and (x, y;) are
(arbitrarily) the
first two points in
the sequence.

Chapter 11 @ Representation and Description

11.3.3 Fourier Descriptors

Figure 11.15 shows a K-point digital boundary in the xy-plane. Starting at an arbi-
trary point (xo, yp), coordinate pairs (xo, o), (X1, y1), (¥2, ¥2), - -» (¥x -1, Yk -1)
are encountered in traversing the boundary, say, in the counterclockwise direction.
These coordinates can be expressed in the form x(k) = x; and y(k) = y,. With
this notation, the boundary itself can be represented as the sequence of coordi-
nates s(k) = [x(k), y(k)], for k = 0,1,2,..., K — 1. Moreover, each coordi-
nate pair can be treated as a complex number so that

s(k) = x(k) + jy(k)

From Section 4.1, the discrete Fourier transform (DFT) of s(k) is
K-1 ‘
a(u) = D s(k)e2mkiK
k=0
for u=0,1,2,..., K — 1. The complex coefficients a(u) are called the
Fourier descriptors of the boundary. The inverse Fourier transform of these co-
efficients restores s(k). That is,

1 K-
S(k — —E Z ej27ruk/K

for k =0,1,2,..., K — 1. Suppose, however, that instead of all the Fourier
coefficients, only the first P coefficients are used. This is equivalent to setting
a(u) = 0 for u > P — 1 in the preceding equation for a(u). The result is the
following approximation to s(k):

P-1

% E a(u)ej217uk/K
u=0

s(k) =
for k =0,1,2,...,K — 1. Although only P terms are used to obtain each
component of §(k), k still ranges from 0 to K — 1. That is, the same number of
points exists in the approximate boundary, but not as many terms are used in
the reconstruction of each point. Recall from Chapter 4 that high-frequency
components account for fine detail, and low-frequency components determine
global shape. Thus, loss of detail in the boundary increases as P decreases.

7y

Imaginary axis

Xo X1 .
Real axis

11.3 & Boundary Descriptors 459

The following function, frdescp, computes the Fourier descriptors of a
boundary, s. Similarly, given a set of Fourier descriptors, function ifrdescp
computes the inverse using a specified number of descriptor, to yield a closed
spatial curve. The documentation section of each function explains its syntax.

function z = frdescp(s) frdescp
%FRDESCP Computes Fourier descriptors. R ——
Z = FRDESCP(S) computes the Fourier descriptors of S, which is an

np-by-2 sequence of image coordinates describing a boundary.

Due to symmetry considerations when working with inverse Fourier
descriptors based on fewer than np terms, the number of

points in § when computing the descriptors must be even. If the
number of points is odd, FRDESCP duplicates the end point and
adds it at the end of the sequence. If a different treatment is
desired, the sequence must be processed externally so that it has
an even number of points.

o o° o° o o° of of O° O° oOF of of

See function IFRDESCP for computing the inverse descriptors.

% Preliminaries
[np, nc] = size(s);
if nc ~= 2

error('S must be of size np-by-2.');
end
if np/2 ~= round(np/2);

s(end + 1, :) = s(end, :);

np =np + 1;
end
% Create an alternating sequence of 1s and —1s for use in centering
% the transform.
X =0:(np —-1);
m=((-1) . x)';
% Multiply the input sequence by alternating 1s and —1s to
% center the transform.
S
S
%
S
%
z

(15 1) =m .*s(:, 1);
(1, 2) =m .* s(:, 2);
Convert coordinates to complex numbers.

=8(:, 1) + i*s(:, 2);

Compute the descriptors.

= fft(s); e BRI

Function ifrdescp is as follows:

function s = ifrdescp(z, nd) ifrdescp
%IFRDESCP Computes inverse Fourier descriptors. T
% I = IFRDESCP(Z, ND) computes the inverse Fourier descriptors of
- % of Z, which is a sequence of Fourier descriptor obtained, for

% example, by using function FRDESCP. ND is the number of

% descriptors used to computing the inverse; ND must be an even

460

EXAMPLE 11.8:
Fourier
descriptors.

ak

FIGURE 11.16
(a) Binary image.
(b) Boundary
extracted using
function
boundaries.The
boundary has
1090 points.

Chapter 11 # Representation and Description

integer no greater than length(Z). If ND is omitted, it defaults
to length(Z). The output, S, is an ND-by-2 matrix containing the
coordinates of a closed boundary.

o® of o°

% Preliminaries.

np = length(z);

% Check inputs.

if nargin == 1 | nd > np
nd = np;

end

Create an alternating sequence of 1s and —1s for use in centering
the transform.

= 0:(np — 1)

= ((=1) " x)";

Use only nd descriptors in the inverse. Since the
descriptors are centered, (np — nd)/2 terms from each end of
the sequence are set to 0.

d = round((np — nd)/2); % Round in case nd is odd.

z(1:d) = 0;

z(np —d + 1:np) = 0;

% Compute the inverse and convert back to coordinates.

zz = ifft(z);

s(:, 1) = real(zz);

s(:, 2) = imag(zz);

% Multiply by alternating 1 and —1s to undo the earlier

% centering.

s(:y, 1) = m.*s(:, 1);

S(:y, 2) = m.*s(:, 2);

3 X o° o°

o® o° o°

ERR—

Figure 11.16(a) shows a binary image, f, similar to the one in Fig. 11.13(c),
but obtained using a Gaussian mask of size 15 X 15 with sigma 9, and
thresholded at 0.7. The purpose was to generate an image that was not overly

11.3 & Boundary Descriptors

smooth in order to illustrate the effect that reducing the number of descriptors
has on the shape of a boundary. The image in Fig. 11.16(b) was generated using
the commands

>> b boundaries(f);
>> b = b{1};
>> bim = bound2im(b, 344, 270);

where the dimensions shown are the dimensions of f. Figure 11.16(b) shows
image bim. The boundary shown has 1090 points. Next, we computed the
Fourier descriptors,

>> z = frdescp(b);

and obtained the inverse using approximately 50% of the possible 1090
descriptors:

>> 7546 = ifrdescp(z, 546);
>> z546im = bound2im(z546, 344, 270);

Image z546im [Fig. 11.17(a)] shows close correspondence with the orig-
inal boundary in Fig. 11.16(b). Some subtle details, like a 1-pixel bay in the
bottom-facing cusp in the original boundary, were lost, but, for all practical
purposes, the two boundaries are identical. Figures 11.17(b) through (f)
show the results obtained using 110, 56, 28, 14, and 8 descriptors, which are
approximately 10%, 5%, 2.5%, 1.25% and 0.7%, of the possible 1090 de-
scriptors. The result obtained using 110 descriptors [Fig. 11.17(c)] shows
slight further smoothing of the boundary, but, again, the general shape is
quite close to the original. Figure 11.17(e) shows that even the result with
14 descriptors, a mere 1.25% of the total, retained the principal features of
the boundary. Figure 11.17(f) shows distortion that is unacceptable be-
cause the main feature of the boundary (the four long protrusions) was
lost. Further reduction to 4 and 2 descriptors would result in an ellipse and,
finally, a circle.

Some of the boundaries in Fig. 11.17 have one-pixel gaps due to round off in
pixel values. These small gaps, common with Fourier descriptors, can be re-
paired with function bwmorph using the 'bridge' option. -

As mentioned earlier, descriptors should be as insensitive as possible to
translation, rotation, and scale changes. In cases where results depend on the
order in which points are processed, an additional constraint is that descriptors
should be insensitive to starting point. Fourier descriptors are not directly in-
sensitive to these geometric changes, but the changes in these parameters can
be related to simple transformations on the descriptors (see Gonzalez and
Woods [2002]).

461

462 Chapter 11 ® Representation and Description

%3
&
-

FIGURE 11.17 (a)—(f) Boundary reconstructed using 546, 110, 56, 28, 14, and 8 Fourier descriptors out of a
possible 1090 descriptors.

11.3.4 Statistical Moments

The shape of 1-D boundary representations (e.g., boundary segments and signa-
ture waveforms) can be described quantitatively by using statistical moments,
such as the mean, variance, and higher-order moments. Consider Fig. 11.18(a),
which shows a boundary segment, and Fig. 11.18(b), which shows the segment
represented as a 1-D function, g(r), of an arbitrary variable r. This function was
obtained by connecting the two end points of the segment to form a “major” axis
and then using function x2majoraxis discussed in Section 11.3.2 to align the
major axis with the x-axis.

One approach for describing the shape of g(r) is to normalize it to unit area and
treat it as a histogram. In other words, g(r;) is treated as the probability of value 7;
occurring. In this case, r is considered a random variable and the moments are

11.4 @ Regional Descriptors 463

g(r

i,

K-1
Mn = 2 (r; = m)"g(r;)

i=

where
K-1
m= ;} rig(r;)

In this notation, K is the number of points on the boundary, and u,(r) is di-
rectly related to the shape of g(r). For example, the second moment u,(r)
measures the spread of the curve about the mean value of r and the third mo-
ment, u3(r), measures its symmetry with reference to the mean. Statistical mo-
ments are computed with function statmoments, discussed in Section 5.2.4.

What we have accomplished is to reduce the description task to 1-D func-
tions. Although moments are a popular approach, they are not the only de-
scriptors that could be used for this purpose. For instance, another method
involves computing the 1-D discrete Fourier transform, obtaining its spectrum,
and using the first g components of the spectrum to describe g(r). The advan-
tage of moments over other techniques is that implementation of moments is
straightforward, and moments also carry a “physical” interpretation of bound-
ary shape. The insensitivity of this approach to rotation is clear from Fig. 11.18.
Size normalization, if desired, can be achieved by scaling the range of values of
gandr.

Regional Descriptors

In this section we discuss a number of IPT functions for region processing and
introduce several additional functions for computing texture, moment invari-
ants, and several other regional descriptors. Keep in mind that function
bwmorph discussed in Section 9.3.4 is used frequently for the type of process-
ing we outline in this section. Function roipoly (Section 5.2.4) also is used
frequently in this context.

11.4.1 Function regionprops

Function regionprops is IPT’s principal tool for computing region descrip-
tors. This function has the syntax

D = regionprops(L, properties)

FIGURE 11.18

(a) Boundary
segment.

(b) Representation
as a 1-D function.

(X‘}‘ :

/e‘g%onpr'ops
gl

o

464 Chapter 11 ® Representation and Description

EXAMPLE 11.9:
Using function
regionprops.

where L is a label matrix and D is a structure array of length max(L(:)).The
fields of the structure denote different measurements for each region, as spec-
ified by properties. Argument properties can be a comma-separated list of
strings, a cell array containing strings, the single string 'all’, or the string
‘basic'.Table 11.1 lists the set of valid property strings. If properties is the
string 'all', then all the descriptors in Table 11.1 are computed. If
properties is not specified or if it is the string 'basic', then the descriptors
computed are 'Area’', 'Centroid', and 'BoundingBox'. Keep in mind (as
discussed in Section 2.1.1) that IPT uses x and y to indicate horizontal and ver-
tical coordinates, respectively, with the origin being located in the top, left. Co-
ordinates x and y increase to the right and downward from the origin,
respectively. For the purposes of our discussion, on pixels are valued 1 while
off pixels are valued 0.

& As a simple illustration, suppose that we want to obtain the area and the
bounding box for each region in an image B. We write

>> B
>> D

bwlabel(B); % Convert B to a label matrix.
regionprops(B, 'area', 'boundingbox');

it n

To extract the areas and number of regions we write

>> w = [D.Areal;
>> NR = length(w);

where the elements of vector w are the areas of the regions and NR is the num-
ber of regions. Similarly, we can obtain a single matrix whose rows are the
bounding boxes of each region using the statement

V = cat(1, D.BoundingBox);

This array is of dimension NR X 4. The cat operator is explained in
Section 6.1.1. -

11.4.2 Texture

An important approach for describing a region is to quantify its texture con-
tent. In this section we illustrate the use of two new functions for computing
texture based on statistical and spectral measures.

Statistical Approaches

A frequently used approach for texture analysis is based on statistical proper-
ties of the intensity histogram. One class of such measures is based on statisti-
cal moments. As discussed in Section 5.2.4, the expression for the nth moment
about the mean is given by

L-1

pn = 2 (2 — m)"p(z;)

i=0

TABLE 11.1

'Area’
‘BoundingBox'

'Centroid'’
'ConvexArea'
'ConvexHull'

'ConvexImage'

'"Eccentricity’

'EquivDiameter’
'EulerNumber'
'Extent’

'"Extrema’

'FilledArea’
'FilledImage'

'Image'

'MajorAxislLength'

'MinorAxisLength'

'‘Orientation’

'PixellList'
'Solidity’

Regional descriptors computed by function regionprops.

The number of pixels in a region.

1 X 4 vector defining the smallest rectangle containing a region. BoundingBox is
defined by [ul_corner width], where ul_cornerisin the form [x y] and
specifies the upper-left corner of the bounding box, and width is in the form
[x_width y_width] and specifies the width of the bounding box along each
dimension. Note that the BoundingBox is aligned with the coordinate axes and, in
that sense, is a special case of the basic rectangle discussed in Section 11.3.1.

1 X 2 vector; the center of mass of the region. The first element of Centroid is
the horizontal coordinate (or x-coordinate) of the center of mass, and the second
element is the vertical coordinate (or y-coordinate).

Scalar; the number of pixels in ‘'ConvexImage'.

p X 2 matrix; the smallest convex polygon that can contain the region. Each row of
the matrix contains the x- and y-coordinates of one of the p vertices of the polygon.
Binary image; the convex hull, with all pixels within the hull filled in (i.e., set to
on). (For pixels that the boundary of the hull passes through, regionprops uses
the same logic as roipoly to determine whether the pixel is inside or outside the
hull.) The image is the size of the bounding box of the region.

Scalar; the eccentricity of the ellipse that has the same second moments as the
region. The eccentricity is the ratio of the distance between the foci of the ellipse
and its major axis length. The value is between 0 and 1, with 0 and 1 being
degenerate cases (an ellipse whose eccentricity is 0 is a circle, while an ellipse with
an eccentricity of 1 is a line segment).

Scalar; the diameter of a circle with the same area as the region. Computed as
sqrt(4*Area/pi).

Scalar; equal to the number of objects in the region minus the number of holes in
those objects.

Scalar; the proportion of the pixels in the bounding box that are also in the
region. Computed as Area divided by the area of the bounding box.

8 X 2 matrix; the extremal points in the region. Each row of the matrix contains
the x- and y-coordinates of one of the points. The format of the vector is [top-
left, top-right, right-top, right-bottom, bottom-right, bottom-
left, left-bottom, left-top].

The number of on pixels in FilledImage.

Binary image of the same size as the bounding box of the region. The on pixels
correspond to the region, with all holes filled.

Binary image of the same size as the bounding box of the region; the on pixels
correspond to the region, and all other pixels are off.

The length (in pixels) of the major axis' of the ellipse that has the same second
moments as the region.

The length (in pixels) of the minor axis' of the ellipse that has the same second
moments as the region.

The angle (in degrees) between the x-axis and the major axis' of the ellipse that
has the same second moments as the region.

A matrix whose rows are the [x, y] coordinates of the actual pixels in the region.
Scalar; the proportion of the pixels in the convex hull that are also in the region.
Computed as Area/ConvexArea.

T Note that the use of major and minor axis in this context is different from the major and minor axes of the basic rectangle dis-

cussed in Section 11.3.1. For a discussion of moments of an ellipse, see Haralick and Shapiro [1992].

465

466 Chapter 11 & Representation and Description

TABLE 11.2
Some descriptors
of texture based
on the intensity
histogram of a
region.

L-1
Mean m = E z;p(z;) A measure of average intensity.

i=0
Standard deviation o = Vu,(z) = Vo? A measure of average contrast.
Smoothness R=1-1/(1+¢% Measures the relative smoothness of

the intensity in a region. R is 0 for a
region of constant intensity and
approaches 1 for regions with large
excursions in the values of its
intensity levels. In practice, the
variance used in this measure is
normalized to the range [0, 1] by
dividing it by (L — 1)

Third moment u3 = , (z; — m)®p(z;) Measures the skewness of a histogram.
4 This measure is 0 for symmetric
histograms, positive by histograms
skewed to the right (about the mean)
and negative for histograms skewed to
the left. Values of this measure are
brought into a range of values
comparable to the other five measures
by dividing u5 by (L — 1)? also, which
is the same divisor we used to
normalize the variance.

L-1
Uniformity U= pXz) Measures uniformity. This measure is
1=0 maximum when all gray levels are
equal (maximally uniform) and
decreases from there.
L-1
Entropy e=— E p(z;) log, p(z;) A measure of randomness.
i=0

where z; is a random variable indicating intensity, p(z) is the histogram of the
intensity levels in a region, L is the number of possible intensity levels, and
L-1

m= 3 zp(z)
=0

is the mean (average) intensity. These moments can be computed with func-
tion statmoments discussed in Section 5.2.4. Table 11.2 lists some common de-
scriptors based on statistical moments and also on uniformity and entropy.
Keep in mind that the second moment, u,(z), is the variance, 0.

Writing an M-function to compute the texture measures in Table 11.3 is
straightforward. Function statxture, written for this purpose, is included in
Appendix C. The syntax of this function is

11.4 ® Regional Descriptors 467

R

Smooth 87.02 11.17 0.002 —0.01

Coarse 119.93 73.89 0.078 2.074
Periodic 98.48 33.50 0.017 0.557

t = statxture(f, scale)

where f is an input image (or subimage) and t is a 6-element row vector whose
components are the descriptors in Table 11.2, arranged in the same order. Para-
meter scale also is a 6-element row vector, whose components multiply the cor-
responding elements of t for scaling purposes. If omitted, scale defaults to all 1s.

The three regions outlined by the white boxes in Fig. 11.19 represent, from
left to right, examples of smooth, coarse and periodic texture. The histograms
of these regions, obtained using function imhist, are shown in Fig. 11.20. The
entries in Table 11.3 were obtained by applying function statxture to each
of the subimages in Fig. 11.19. These results are in general agreement with the
texture content of the respective subimages. For example, the entropy of the
coarse region [Fig. 11.19(b)] is higher than the others because the values of
the pixels in that region are more random than the values in the other

TABLE 11.3
Texture measures
for the regions
shown in

Fig. 11.19.

statxture
e

EXAMPLE 11.10:
Statistical texture
measures.

ane

FIGURE 11.19 The subimages shown represent, from left to right, smooth, coarse, and periodic texture.
These are optical microscope images of a superconductor, human cholesterol, and a microprocessor.

(Original images courtesy of Dr. Michael W. Davidson, Florida State University.)

468 Chapter 11 ® Representation and Description

1800 T T T T 350 T T T T n 1000 T T —
1600 - . L 900 (- -
1400 |- 4 20 800 7
1200 4 »or 700 - 7
1000 - 4 200- or i}
800 |- 1 150 + 400 - 4
600 - 1 10k 300 1
400 - - 200 a
200 — 50 100 - |
0 I | | 1 | | | | | 1 | 1

0 00 50 100 150 200 250 O0 50 100 150 200 250

A =

0 50 100 150 200 2
BE
FIGURE 11.20 Histograms corresponding to the subimages in Fig. 11.19.

regions. This also is true for the contrast and for the average intensity in this
case. On the other hand, this region is the least smooth and the least uniform,
as revealed by the values of R and the uniformity measure. The histogram of
the coarse region also shows the greatest lack of symmetry with respect to the
location of the mean value, as is evident in Fig. 11.20(b), and also by the
largest value of the third moment shown in Table 11.3. |

Spectral Measures of Texture

Spectral measures of texture are based on the Fourier spectrum, which is ideally
suited for describing the directionality of periodic or almost periodic 2-D patterns
in an image. These global texture patterns, easily distinguishable as concentrations
of high-energy bursts in the spectrum, generally are quite difficult to detect with
spatial methods because of the local nature of these techniques. Thus spectral tex-
ture is useful for discriminating between periodic and nonperiodic texture pat-
terns, and, further, for quantifying differences between periodic patterns.

Interpretation of spectrum features is simplified by expressing the spec-
trum in polar coordinates to yield a function S(r, 8), where S is the spectrum
function and r and 6 are the variables in this coordinate system. For each di-
rection 6, S(r, 6) may be considered a 1-D function, Sy(r). Similarly, for each
frequency r, S,(0) is a 1-D function. Analyzing Sy(r) for a fixed value of 6
yields the behavior of the spectrum (such as the presence of peaks) along a ra-
dial direction from the origin, whereas analyzing S,() for a fixed value of r
yields the behavior along a circle centered on the origin.

A global description is obtained by integrating (summing for discrete vari-
ables) these functions:

S(r) = 3 84(r)
§=0
and
R,
$(0) = ;Sr(o)

where Ry is the radius of a circle centered at the origin.

11.4 & Regional Descriptors 469

The results of these two equations constitute a pair of values [S(r), S(9)] for
each pair of coordinates (r,). By varying these coordinates we can generate
two 1-D functions, S(r) and S(8), that constitute a spectral-energy description
of texture for an entire image or region under consideration. Furthermore, de-
scriptors of these functions themselves can be computed in order to character-
ize their behavior quantitatively. Descriptors typically used for this purpose are
the location of the highest value, the mean and variance of both the amplitude
and axial variations, and the distance between the mean and the highest value
of the function.

Function specxture (see Appendix C for a listing) can be used to compute
the two preceding texture measures. The syntax is

[srad, sang, S] = specxture(f)

where srad is S(r), sang is §(6), and § is the spectrum image (displayed using
the log, as explained in Chapter 4).

B8 Figure 11.21(a) shows an image with randomly distributed objects and
Fig. 11.22(b) shows an image containing the same objects, but arranged peri-
odically. The corresponding Fourier spectra, computed using function
specxture, are shown in Figs. 11.21(c) and (d). The periodic bursts of ener-
gy extending quadrilaterally in two dimensions in the Fourier spectra are
due to the periodic texture of the coarse background material on which the
matches rest. The other components of the spectra in Fig. 11.21(c) are clear-
ly caused by the random orientation of the strong edges in Fig. 11.21(a). By
contrast, the main energy in Fig. 11.21(d) not associated with the background
is along the horizontal axis, corresponding to the strong vertical edges in
Fig. 11.21(b).

Figures 11.22(a) and (b) are plots of S(r) and S(8) for the random matches,
and similarly in (c) and (d) for the ordered matches, all computed with function
specxture. The plots were obtained with the commands plot(srad) and
plot(sang).The axes in Figs. 11.22(a) and (c) were scaled using

>> axis([horzmin horzmax vertmin vertmax])

discussed in Section 3.3.1, with the maximum and minimum values obtained
from Fig. 11.22(a).

The plot of S(r) corresponding to the randomly-arranged matches shows
no strong periodic components (i.e., there are no peaks in the spectrum be-
sides the peak at the origin, which is the DC component). On the other hand,
the plot of S(r) corresponding to the ordered matches shows a strong peak
near r = 15 and a smaller one near r = 25. Similarly, the random nature of the
energy bursts in Fig. 11.21(c) is quite apparent in the plot of S(8) in
Fig. 11.22(b). By contrast, the plot in Fig. 11.22(d) shows strong energy compo-
nents in the region near the origin and at 90° and 180°. This is consistent with
the energy distribution in Fig. 11.21(d).

specxtur‘e
TRy ———

EXAMPLE 11.11:
Computing
spectral texture.

470 Chapter 11 ® Representation and Description

&8
Ea

FIGURE 11.21
(a) and (b)
Images of
unordered and
ordered objects.
(c) and (d)
Corresponding
spectra.

11.4.3 Moment Invariants
The 2-D moment of order (p + q) of a digital image f(x, y) is defined as

Mpq = E > xPyif(x, y)
x

for p,q = 0,1,2,..., where the summations are over the values of the spatial
coordinates x and y spanning the image. The corresponding central moment is
defined as

Mpg = Ex: ; (x =X)P(y = ¥)if(x,y)

where

11.4 & Regional Descriptors 471

x 10 an
2 T T T T T ﬁ&
1:2 I 4 FIGURE 11.22
14} - Plots of (a) S(r)
12 i and (b) S(6) for
1 B Fhe random
08 B image. (c) and (d)
’ are plots of S(r)
061 } and S(8) for the
04F ordered image.
02+ e
0 L L 1 1 4 | il 1 L | 1 1 1
0 50 100 150 200 25 300 0 20 40 60 80 100 120 140 160 180
x 108 X 10’
2 T T T T 8 T T T I T T I T
18 7
16 -
141 -
12 1
1 - —
08F n
06} =
0.4]
0.2 b
0 L L 1 1 M 35 [| 1 | | i I
0 50 100 150 200 25 300 0 20 40 60 80 100 120 140 160 180

The normalized central moment of order (p + q) is defined as

n _ Hea
pq ﬂgo

for p,g =0,1,2,..., where

ptgqg
=—+4
04 > 1

forp+q¢q=23,....
A set of seven 2-D moment invariants that are insensitive to translation, scale
change, mirroring, and rotation can be derived from these equations. They are

1 = M0 t Moz

b2 = (Mo — moz)* + 4y

¢35 = (M0 = 3m2)* + (Bma — mo3)?

b4 = (M0 + M2)* + (M1 + Mp3)?

és = (M0 = 3m12) (30 + M12)[(30 + M12)?
=3(my1 + m03)*] + (3ma1 ~ Mo3) (M1 + Mos)
[3(m30 + M12)* = (M1 + M3)?]

b6 = (mo — M02)[(M0 + M2)* — (M2 + M03)?]
+ 4n11(m30 + M12) (M1 + Mo3)

472

invmoments
e ————

EXAMPLE 11.12:

Moment
invariants.

B = fliplr(A)
returns A with the
columns flipped
about the vertical
axis, and

B = flipud(A)
returns A with the
rows flipped about
the horizontal axis.

E 1r
Cflipud
A

5 y;%/“\t

!

ate

Chapter 11 = Representation and Description

®7 = (3m1 — mo3) (30 + Mm2)[(M0 + M12)?
= 3(ma + m03)?] + (312 — M30) (M1 + Mo3)
[3(m30 + M12)* — (21 + M03)?]

An M-function for computing the moment invariants, which we call
invmoments,is a direct implementation of these seven equations. The syntax is
as follows (see Appendix C for the code listing):

phi = invmoments(f)

where f is the input image and phi is a seven-element row vector containing
the moment invariants just defined.

8 The image in Fig. 11.23(a) was obtained from an original of size 400 X 400
pixels by using the command

>> fp = padarray(f, [84 84], 'both');

Zero padding was used to make all displayed images consistent with the image
occupying the largest area (568 X 568 pixels) which, as discussed below, is the
image rotated by 45°. The padding is for display purposes only, and was not
used in any moment computations. The half-size and corresponding padded
images were obtained using the commands

>> fhs = f(1:2:end, 1:2:end);
>> fhsp = padarray(fhs, [184 184], 'both');
The mirrored image was obtained using MATLAB function fliplr:

>> fm = fliplr(f);
>> fmp = padarray(fm, [84 84], 'both');
To rotate an image we use function imrotate:

g = imrotate(f, angle, method, 'crop')
which rotates f by angle degrees in the counterclockwise direction. Parame-
ter method can be one of the following:

‘nearest’' uses nearest neighbor interpolation;
‘bilinear' uses bilinear interpolation (typically a good choice); and
'bicubic' uses bicubic interpolation.

The image size is increased automatically by padding to fit the rotation. If
‘crop' is included in the argument, the central part of the rotated image is
cropped to the same size as the original. The default is to specify angle only, in
which case 'nearest ' interpolation is used and no cropping takes place.

11.4 & Regional Descriptors 473

&
Be
&

FIGURE 11.23

(a) Original,
padded image.
(b) Half size
image.

(c) Mirrored
image. (d) Image
rotated by 2°.

(e) Image rotated
45°.The zero
padding in (a)
through (d) was
done to make the
images consistent
in size with (e) for
viewing purposes
only.

474 Chapter 11 @ Representation and Description

TABLE 11.4

The seven moment
invariants of the
images in

Figs. 11.23(a)
through (e). Note
the use of the
magnitude of the
log in the first
column.

b1 6.600 6.600 6.600 6.600 6.600
b, 16.410 16.408 16.410 16.410 16.410
b3 23.972 23.958 23.972 23.978 23.973
by 23.888 23.882 23.888 23.888 23.888
s 49.200 49.258 49.200 49.200 49.198
b 32.102 32.094 32.102 32.102 32.102
&7 47.953 47.933 47.850 47.953 47.954

The rotated images for our example were generated as follows:

>> fr2 = imrotate(f, 2, 'bilinear');
>> fr2p = padarray(fr2, [76 76], 'both');
>> fr45 imrotate(f, 45, 'bilinear');

Note that no padding was required in the last image because it is the largest
image in the set. The Os in both rotated images were generated by IPT in the
process of rotation.

The seven moment invariants of the five images just discussed were gener-
ated using the commands

>> phiorig = gbs(log(invmoments(f)));
>> phihalf abs(log(invmoments(fhs))
>> phimirror = abs(log(invmoments(fm)
>> phirot2 = abs(log(invmoments(fr2))
>> phirot45 = abs(log(invmoments(fr45

)5
))s
);
)));

Note that the absolute value of the 1og was used instead of the moment in-
variant values themselves. Use of the 1og reduces dynamic range, and the ab-
solute value avoids having to deal with the complex numbers that result when
computing the log of negative moment invariants. Because interest generally
lies on the invariance of the moments, and not on their sign, use of the absolute
value is common practice.

The seven moments of the original, half-size, mirrored, and rotated images
are summarized in Table 11.4. Note how close the numbers are, indicating a
high degree of invariance to the changes just mentioned. Results like these are
the reason why moment invariants have been a basic staple in image descrip-
tion for more than four decades.]

Using Principal Components for Description

Suppose that we have n registered images, “stacked” in the arrangement
shown in Fig. 11.24. There are n pixels for any given pair of coordinates (i, j),
one pixel at that location for each image. These pixels may be arranged in the
form of a column vector

X1
X2

11.5 ® Using Principal Components for Description

eccece
sscee

X1 Image n

X=

n-dimensional Jén Image 2

column vector

Image 1

If the images are of size M X N, there will be total of MN such n-dimensional
vectors comprising all pixels in the n images.

The mean vector, my, of a vector population can be approximated by the
sample average:

1 K
K 2

with K = MN. Similarly, the n X n covariance matrix, C,, of the population
can be approximated by

K
E mx) mx)T
where K — 1 instead of K is used to obtain an unbiased estimate of C, from
the samples. Because C, is real and symmetric, finding a set of 7 orthonormal
eigenvectors always is possible.

The principal components transform (also called the Hotelling transform) is
given by

y = A(x - m,)

It is not difficult to show that the elements of vector y are uncorrelated. Thus,
the covariance matrix Cy is diagonal. The rows of matrix A are the normalized
eigenvectors of C,. Because C, is real and symmetric, these vectors form an
orthonormal set, and it follows that the elements along the main diagonal of
C, are the eigenvalues of C,. The main diagonal element in the ith row of Cy
is the variance of vector element y;.

Because the rows of A are orthonormal, its inverse equals its transpose.
Thus, we can recover the x’s by performing the inverse transformation

x=ATy+mx

The importance of the principal components transform becomes evident when
only g eigenvectors are used, in which case A becomes a g X »n matrix, A,.
Now the reconstruction is an approximation:

x—ATy+mx

475

FIGURE 11.24
Forming a vector
from
corresponding
pixels in a stack of
images of the
same size.

476 Chapter 11 ® Representation and Description

The mean square error between the exact and approximate reconstruction of
the x’s is given by the expression

n q
ems = 2N~ 2 A
j=1 j=1
n

f=§+1 "
The first line of this equation indicates that the error is zero if ¢ = n (that is, if all
the eigenvectors are used in the inverse transformation). This equation also
shows that the error can be minimized by selecting for A, the g eigenvectors as-
sociated with the largest eigenvalues. Thus, the principal components transform is
optimal in the sense that it minimizes the mean square error between the vectors
x and their approximations X. The transform owes its name to using the eigen-
vectors corresponding to the largest (principal) eigenvalues of the covariance
matrix. The example given later in this section further clarifies this concept.

A set of n registered images (each of size M X N) is converted to a stack of
the form shown in Fig. 11.24 by using the command:

>> § = cat(3, f1, f2,..., fn);

This image stack ‘array, which is of size¢ M X N X n, is converted to an array
whose rows are n-dimensional vectors by using function imstack2vectors (see

! Appendix C for the code), which has the syntax
imstack2vectors [X, R] = imstack2vectors(S, MASK)
R e———

where S is the image stack and X is the array of vectors extracted from S using
the approach shown in Fig. 11.24. Input MASK is an M X N logical or numeric
image with nonzero elements in the locations where elements of S are to be
used in forming X and Os in locations to be ignored. For example, if we wanted
to use only vectors in the right, upper quadrant of the images in the stack, then
MASK would contain 1s in that quadrant and Os elsewhere. If MASK is not in-
cluded in the argument, then all image locations are used in forming X. Finally,
parameter R is an array whose rows are the 2-D coordinates corresponding to
the location of the vectors used to form X. We show how to use MASK in Exam-
ple 12.2. In the present discussion we use the default.

The following M-function, covmatrix, computes the mean vector and co-
variance matrix of the vectors in X.

covmatrix function [C, m] = covmatrix(X)
s %COVMATRIX Computes the covariance matrix of a vector population.
% [C, M] = COVMATRIX(X) computes the covariance matrix C and the
% mean vector M of a vector population organized as the rows of
% matrix X. C is of size N-by-N and M is of size N-by-1, where N is
% the dimension of the vectors (the number of columns of X).

[K, n] = size(X);
X = double(X);

11.5 ® Using Principal Components for Description

if n == 1 % Handle special case.

C = 0;
m=X;
else

% Compute an unbiased estimate of m.

m = sum(X, 1)/K;

% Subtract the mean from each row of X.

X=X -m(ones(K, 1), :);

% Compute an unbiased estimate of C. Note that the product is
% X'*X because the vectors are rows of X.

C= (X"*X)/(K-1);

m=m'; % Convert to a column vector.

end

RS

The following function implements the concepts developed in this section.

Note the use of structures to simplify the output arguments.

function P = princomp(X, q)

%PRINCOMP Obtain principal-component vectors and related quantities.
P = PRINCOMP(X, Q) Computes the principal-component vectors of
the vector population contained in the rows of X, a matrix of
size K-by-n where K is the number of vectors and n is their
dimensionality. Q, with values in the range [0, n], is the number
of eigenvectors used in constructing the principal-components
transformation matrix. P is a structure with the following

0® o° o° O° O° I O P J° Of O° S° O° O° Of Of S° O° O° Of Of O° oOf o°

[Ky, n] = size(X);
X = double(X);

fields:

P.Y

P.A

P.X

K-by-Q matrix whose columns are the principal-
component vectors.

Q-by-n principal components transformation matrix
whose rows are the Q eigenvectors of Cx corresponding
to the Q largest eigenvalues.

K-by-n matrix whose rows are the vectors reconstructed
from the principal-component vectors. P.X and P.Y are
identical if Q = n.

The mean square error incurred in using only the Q
eigenvectors corresponding to the largest

eigenvalues. P.ems is 0 if Q = n.

The n-by-n covariance matrix of the population in X.
The n-by-1 mean vector of the population in X.

The Q-by-Q covariance matrix of the population in

Y. The main diagonal contains the eigenvalues (in
descending order) corresponding to the Q eigenvectors.

% Obtain the mean vector and covariance matrix of the vectors in X.
[P.Cx, P.mx] = covmatrix(X);
P.mx = P.mx'; % Convert mean vector to a row vector.

% Obtain the eigenvectors and corresponding eigenvalues of Cx. The
% eigenvectors are the columns of n-by-n matrix V. D is an n-by-n

princomp

477

478 Chapter 11 ® Representation and Description

[V, D] = eig(A)
returns the eigenvec-
tors of A as the
columns of matrix V,
and the correspond-
ing eigenvalues
along the main diag-
onal of diagonal ma-
trix D.

EXAMPLE 11.13:
Principal
components.

% diagonal matrix whose elements along the main diagonal are the

% eigenvalues corresponding to the eigenvectors in V, so that X*V =
% D*V.

[V, D] = eig(P.Cx);

% Sort the eigenvalues in decreasing order. Rearrange the
% eigenvectors to match.

d = diag(D);

[d, idx] = sort(d);

d = flipud(d);

idx = flipud(idx);

= diag(d);

= V(:, idx);

Now form the q rows of A from first g columns of V.
A=V(:, 1g) '

% Compute the principal component vectors.

Mx = repmat(P.mx, K, 1); % M-by-n matrix. Each row = P.mx.
P.Y = P.A*(X — Mx)'; % q-by-K matrix.

% Obtain the reconstructed vectors.

P.X = (P.A'"*P.Y)"' + Mx;

% Convert P.Y to K-by-q array and P.mx to n-by-1 vector.
P.Y = P.Y';

P.mx = P.mx"';

O o°

% The mean square error is given by the sum of all the

% eigenvalues minus the sum of the q largest eigenvalues.
d = diag(D);

P.ems = sum(d(q + 1:end));

% Covariance matrix of the Y's:
P.Cy = P.A*P.Cx*P.A"; N

B Figure 11.25 shows six satellite images of size 512 X 512, corresponding to
six spectral bands: visible blue (450-520 nm), visible green (520-600 nm), visi-
ble red (630-690 nm), near infrared (760-900 nm), middle infrared (1550-
1750 nm), and thermal infrared (10,400-12,500 nm). The objective of this ex-
ample is to illustrate the use of function princomp for principal-components
work. The first step is to organize the elements of the six images in a stack of
size 512 X 512 X 6, as discussed earlier:

>> § = cat(3, ft1, f2, f3, f4, f5, 6);

where the f’s correspond to the six multispectral images just discussed. Then
we organize the stack into array X:

>> [X, R] = imstack2vectors(S);

Next, we obtain the six principal-component images by using g = 6 in func-
tion princomp:

>> P = princomp(X, 6);

11.5 & Using Principal Components for Description 479

FIGURE 11.25
Six multispectral
images in the

(a) visible blue,
(b) visible green,
(c) visible red,
(d) near infrared,
(e) middle
infrared, and

(f) thermal
infrared bands.
(Images courtesy
of NASA.)

The first component image is generated and displayed with the commands

>> g1 P.Y(:, 1);
>> g1 reshape(gtl, 512, 512);
>> imshow(gl, [1)

480

Chapter 11 ® Representation and Description

The other five images are obtained and displayed in the same manner. The
eigenvalues are along the main diagonal of P.Cy, so we use

>> d = diag(P.Cy);

where d is a 6-dimensional column vector because we used g = 6 in the function.

Figure 11.26 shows the six principal-component images just computed. The
most obvious feature is that a significant portion of the contrast detail is con-
tained in the first two images, and it decreases rapidly from there. The reason
is easily explained by looking at the eigenvalues. As Table 11.5 shows, the first
two eigenvalues are quite large in comparison with the others. Because the
eigenvalues are the variances of the elements of the y vectors, and variance is
a measure of contrast, it is not unexpected that the images corresponding to
the dominant eigenvalues would exhibit significantly higher contrast.

Suppose that we use a smaller value of g,say q = 2.Then reconstruction is
based only on two principal component images. Using

>> P = princomp(X, 2);
and statements of the form

>> h1
>> hi

P.X(:, 1);
reshape(h1, 512, 512);

for each image resulted in the reconstructed images in Fig. 11.27. Visually,
these images are quite close to the originals in Fig. 11.25. In fact, even the dif-
ference images show little degradation. For instance, to compare the original
and reconstructed band 1 images, we write

>> D1 double(f1) — double(ht);
>> D1 gscale(D1);
>> imshow(D1)

Figure 11.28(a) shows the result. The low contrast in this image is an indica-
tion that little visual data was lost when only two principal component images
were used to reconstruct the original image. Figure 11.28(b) shows the differ-
ence of the band 6 images. The difference here is more pronounced because
the original band 6 image is actually blurry. But the two principal-component
images used in the reconstruction are sharp, and they have the strongest influ-
ence on the reconstruction. The mean square error incurred in using only two
principal component images is given by

P.ems
ans =
1.7311e+003

which is the sum of the four smaller eigenvalues in Table 11.5. =

11.5 @ Using Principal Components for Description 48
2D
Bz

FIGURE 11.26
Principal-
component
images
corresponding to
the images in
Fig. 11.25.

TABLE 11.
Eigenvalues of
P.Cywhenq = 6.

482 Chapter 11 ® Representation and Description

BE
e
BE
FIGURE 11.27
Multispectral
images
reconstructed
using only the two
principal-
component
images with the
largest variance.
Compare with the
originals in

Fig. 11.25.

% Summary 483

FIGURE 11.28

(a) Difference
between

Figs. 11.27(a) and
11.25(a).

(b) Difference
between

Figs. 11.27(f) and
11.25(f). Both
images are scaled
to the full [0,255]
8-bit intensity
scale.

Before leaving this section we point out that function princomp can be used to
align objects (regions or boundaries) with the eigenvectors of the objects. The co-
ordinates of the objects are arranged as the columns of X, and we use q = 2. The
transformed data, aligned with the eigenvectors, is contained in P.Y. This is a
rugged alignment procedure that uses all coordinates to compute the transfor-
mation matrix and aligns the data in the direction of its principal spread.

Summary

The representation of objects or regions that have been segmented out of an image is
an early step in the preparation of image data for subsequent use in automation. For
example, descriptors such as the ones just covered constitute the input to the object
recognition algorithms developed in the next chapter. The M-functions developed in
the preceding sections of this chapter are a significant extension to the power of stan-
dard IPT functions for image representation and description. It is undoubtedly clear by
now that the choice of one type of descriptor over another is dictated to a large degree
by the problem at hand. This is one of the principal reasons why the solution of image
processing problems is aided significantly by having a flexible prototyping environ-
ment in which existing functions can be integrated with new code to gain flexibility and
reduce development time. The material in this chapter is a good example of how to con-
struct the Pasis for such an environment.

