378

mentation

Preview

The material in the previous chapter began a transition from image processing
methods whose inputs and outputs are images to methods in which the inputs
are images, but the outputs are attributes extracted from those images. Seg-
mentation is another major step in that direction.

Segmentation subdivides an image into its constituent regions or objects.
The level to which the subdivision is carried depends on the problem being
solved. That is, segmentation should stop when the objects of interest in an ap-
plication have been isolated. For example, in the automated inspection of elec-
tronic assemblies, interest lies in analyzing images of the products with the
objective of determining the presence or absence of specific anomalies, such as
missing components or broken connection paths. There is no point in carrying
segmentation past the level of detail required to identify those elements.

Segmentation of nontrivial images is one of the most difficult tasks in image
processing. Segmentation accuracy determines the eventual success or failure of
computerized analysis procedures. For this reason, considerable care should be
taken to improve the probability of rugged segmentation. In some situations,
such as industrial inspection applications, at least some measure of control over
the environment is possible at times. In others, as in remote sensing, user control
over image acquisition is limited principally to the choice of imaging sensors.

Segmentation algorithms for monochrome images generally are based on
one of two basic properties of image intensity values: discontinuity and simi-
larity. In the first category, the approach is to partition an image based on
abrupt changes in intensity, such as edges in an image. The principal approach-
es in the second category are based on partitioning an image into regions that
are similar according to a set of predefined criteria.

In this chapter we discuss a number of approaches in the two categories just
mentioned as they apply to monochrome images (edge detection and segmen-

10.1 @ Point, Line, and Edge Detection 379

tation of color images are discussed in Section 6.6). We begin the development
with methods suitable for detecting intensity discontinuities such as points,
lines, and edges. Edge detection in particular has been a staple of segmentation
algorithms for many years. In addition to edge detection per se, we also discuss
detecting linear edge segments using methods based on the Hough transform.
The discussion of edge detection is followed by the introduction to threshold-
ing techniques. Thresholding also is a fundamental approach to segmentation
that enjoys a significant degree of popularity, especially in applications where
speed is an important factor. The discussion on thresholding is followed by the
development of region-oriented segmentation approaches. We conclude the
chapter with a discussion of a morphological approach to segmentation called
watershed segmentation. This approach is particularly attractive because it pro-
duces closed, well-defined regions, behaves in a global fashion, and provides a
framework in which a priori knowledge about the images in a particular appli-
cation can be utilized to improve segmentation results.

Ei%2 Point, Line, and Edge Detection

In this section we discuss techniques for detecting the three basic types of in-
tensity discontinuities in a digital image: points, lines, and edges. The most
common way to look for discontinuities is to run a mask through the image in
the manner described in Sections 3.4 and 3.5. For a 3 X 3 mask this procedure
involves computing the sum of products of the coefficients with the intensity
levels contained in the region encompassed by the mask. That is, the response,
R, of the mask at any point in the image is given by

R = w121 + Wy 2y + -0+ W29
9
= 2 W;z;
i=1

where z; is the intensity of the pixel associated with mask coefficient w;. As be-
fore, the response of the mask is defined with respect to its center.

10.1.1 Point Detection

The detection of isolated points embedded in areas of constant or nearly con-
stant intensity in an image is straightforward in principle. Using the mask
shown in Fig. 10.1, we say that an isolated point has been detected at the loca-
tion on which the mask is centered if

Rl =T

-1 -1 -1

FIGURE 10.1
A mask for point
detection.

380 Chapter 10 & Image Segmentation

EXAMPLE 10.1:

Point detection.

aE

FIGURE 10.2

(a) Gray-scale
image with a
nearly invisible
isolated black
point in the dark
gray area of the
northeast
quadrant.

(b) Image
showing the
detected point.
(The point was

enlarged to make
it easier to see.)

where T is a nonnegative threshold. Point detection is implemented in MAT-
LAB using function imfilter, with the mask in Fig. 10.1, or other similar
mask. The important requirements are that the strongest response of a mask
must be when the mask is centered on an isolated point, and that the response
be 0 in areas of constant intensity.

If T is given, the following command implements the point-detection ap-
proach just discussed:

>> g = abs(imfilter(double(f), w)) >= T;

where f is the input image, w is an appropriate point-detection mask [e.g., the
mask in Fig. 10.1], and g is the resulting image. Recall from the discussion in
Section 3.4.1 that imfilter converts its output to the class of the input, so we
use double(f) in the filtering operation to prevent premature truncation of
values if the input is of class uint8, and because the abs operation does not
accept integer data. The output image g is of class logical;its values are 0 and
1. If T is not given, its value often is chosen based on the filtered result, in
which case the previous command string is broken down into three basic steps:
(1) Compute the filtered image, abs (imfilter (double(f), w)), (2) find the
value for T using the data from the filtered image, and (3) compare the filtered
image against T. This approach is illustrated in the following example.

B Figure 10.2(a) shows an image with a nearly invisible black point in the
dark gray area of the northeast quadrant. Letting f denote this image, we find
the location of the point as follows:

>>w = [-1 -1 -1; -1 8 -1; -1 -1 —1];
>> g = abs(imfilter(double(f), w));
>> T = max(g(:));

>g=g>T;

>> imshow(g)

10.1 ® Point, Line, and Edge Detection ~ 381

By selecting T to be the maximum value in the filtered image, g, and then find-
ing all points in g such that g >= T, we identify the points that give the largest
response. The assumption is that all these points are isolated points embedded
in a constant or nearly constant background. Note that the test against T was
conducted using the >= operator for consistency in notation. Since T was se-
lected in this case to be the maximum value in g, clearly there can be no points
in g with values greater than T. As Fig. 10.2(b) shows, there was a single isolat-
ed point that satisfied the condition g >= T with T set to max(g(:)).]

Another approach to point detection is to find the points in all neighbor-
hoods of size m X n for which the difference of the maximum and minimum
pixels values exceeds a specified value of T. This approach can be implement-
ed using function ordfilt2 introduced in Section 3.5.2:

i

>> g = imsubtract(ordfilt2(f, m*n, ones(m, n)), ...
ordfilt2(f, 1, ones(m, n)));

> qg=9>T,;

It is easily verified that choosing T = max(g(:)) yields the same result as in
Fig. 10.2(b). The preceding formulation is more flexible than using the mask in
Fig. 10.1. For example, if we wanted to compute the difference between the
highest and the next highest pixel Valﬁe in a neighborhood, we would replace
the 1 on the far right of the preceding expression by m*n — 1. Other variations
of this basic theme are formulated in a similar manner.

18.1.2 Line Detection

The next level of complexity is line detection. Consider the masks in Fig. 10.3.
If the first mask were moved around an image, it would respond more strong-
ly to lines (one pixel thick) oriented horizontally. With a constant background,
the maximum response would result when the line passed through the middle
row of the mask. Similarly, the second mask in Fig. 10.3 responds best to lines
oriented at +45°; the third mask to vertical lines; and the fourth mask to lines
in the —45° direction. Note that the preferred direction of each mask is
weighted with a larger coefficient (i.e., 2) than other possible directions. The
coefficients of each mask sum to zero, indicating a zero response from the
mask in areas of constant intensity.

-1 -1 -1 -1 -1 2 -1 2 -1 2 -1 -1
2 2 2 -1 2 -1 -1 2 -1 -1 2 -1
-1 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2

Horizontal +45° Vertical —45°

<

FIGURE 10.3 Line
detector masks.

382 Chapter 10 ® Image Segmentation

Let Ry, R;, R3, and R, denote the responses of the masks in Fig. 10.3, from
left to right, where the R’s are given by the equation in the previous section.
Suppose that the four masks are run individually through an image. If, at a cer-
tain point in the image, |R;| > |R)|, for all j # i, that point is said to be more
likely associated with a line in the direction of mask i. For example, if at a point
in the image, |Ry| > |R;| for j = 2,3, 4, that particular point is said to be more
likely associated with a horizontal line. Alternatively, we may be interested in
detecting lines in a specified direction. In this case, we would use the mask as-
sociated with that direction and threshold its output, as in the equation in the
previous section. In other words, if we are interested in detecting all the lines
in an image in the direction defined by a given mask, we simply run the mask
through the image and threshold the absolute value of the result. The points
that are left are the strongest responses, which, for lines one pixel thick, corre-
spond closest to the direction defined by the mask. The following example il-
lustrates this procedure.

EXAMPLE 10.2: 8 Figure 10.4(a) shows a digitized (binary) portion of a wire-bond mask for
Detection of lines an electronic circuit. The image size is 486 X 486 pixels. Suppose that we are
$r'z sgg;:llﬁed interested in finding all the lines that are one pixel thick, oriented at —45°. For
: this purpose, we use the last mask in Fig. 10.3. Figures 10.4(b) through (f) were
generated using the following commands, where f is the image in Fig. 10.4(a):

>>w =02 -1 -1 ; -12-1; -1 -1 2];

>> g imfilter(double(f), w);

>> imshow(g, [1) % Fig. 10.4(b)

>> gtop = g(1:120, 1:120);

>> gtop = pixeldup(gtop, 4);

>> figure, imshow(gtop, []) % Fig. 10.4(c)
>> gbot = g(end-119:end, end-119:end);

>> gbot = pixeldup(gbot, 4);

>> figure, imshow(gbot, []) % Fig. 10.4(d)
>> g = abs(g);

>> figure, imshow(g, []) % Fig. 10.4(e)

>> T = max(g(:));

>> g =g >=T;

>> figure, imshow(g) % Fig. 10.4(f)

The shades darker than the gray background in Fig. 10.4(b) correspond to nega-
tive values. There are two main segments oriented in the —45° direction, one at
the top, left and one at the bottom, right [Figs. 10.4(c) and (d) show zoomed sec-
tions of these two areas). Note how much brighter the straight line segment in
Fig. 10.4(d) is than the segment in Fig. 10.4(c). The reason is that the component
in the bottom, right of Fig. 10.4(a) is one pixel thick, while the one at the top, left
is not. The mask response is stronger for the one-pixel-thick component.

Figure 10.4(e) shows the absolute value of Fig. 10.4(b). Since we are inter-
ested in the strongest response, we let T equal the maximum value in this
image. Figure 10.4(f) shows in white the points whose values satisfied the

10.1 ® Point, Line, and Edge Detection 383

&
Bx
FIGURE 10.4
(a) Image of a
wire-bond mask.
(b) Result of
processing with
the —45° detector
in Fig. 10.3.
(c) Zoomed view
of the top, left
region of (b).
(d) Zoomed view
of the bottom,
right section of
(b). (e) Absolute
value of (b).
(f) All points (in
white) whose
values satisfied
the condition
g >=T,where g is
the image in (e).
(The points in (f)
were enlarged
slightly to make
them easier to
see.)

384 Chapter 10 ® Image Segmentation

condition g >= T, where g is the image in Fig. 10.4(e). The isolated points in this
figure are points that also had similarly strong responses to the mask. In the
original image, these points and their immediate neighbors are oriented in
such a way that the mask produced a maximum response at those isolated lo-
cations. These isolated points can be detected using the mask in Fig. 10.1 and
then deleted, or they could be deleted using morphological operators, as dis-
cussed in the last chapter. ,]

10.1.3 Edge Detection Using Function edge

Although point and line detection certainly are important in any discussion on
image segmentation, edge detection is by far the most common approach for
detecting meaningful discontinuities in intensity values. Such discontinuities
are detected by using first- and second-order derivatives. The first-order deriv-
ative of choice in image processing is the gradient, defined in Section 6.6.1. We
repeat the pertinent equations here for convenience. The gradient of a 2-D
function, f(x, y), is defined as the vector

of
G, | _|ox
e M i
ay
The magnitude of this vector is
Vf = mag(Vf) = (G2 + G|
= [(affox)? + (af /ay)")"”*

To simplify computation, this quantity is approximated sometimes by omitting
the square-root operation,

Vf ~ Gi + G},
or by using absolute values,
Vf ~ |G + |G|

These approximations still behave as derivatives; that is, they are zero in areas of
constant intensity and their values are proportional to the degree of intensity
change in areas whose pixel values are variable. It is common practice to refer to
the magnitude of the gradient or its approximations simply as “the gradient.”

A fundamental property of the gradient vector is that it points in the direc-
tion of the maximum rate of change of f at coordinates (x, y). The angle at
which this maximum rate of change occurs is

G
a(x,y) = tan (Gx>

One of the key issues is how to estimate the derivatives G, and G, digitally. The
various approaches used by function edge are discussed later in this section.

10.1 & Point, Line, and Edge Detection

Second-order derivatives in image processing are generally computed using
the Laplacian introduced in Section 3.5.1. That is, the Laplacian of a 2-D func-
tion f(x, y) is formed from second-order derivatives, as follows:

_ P xy) | Pf(xy)
ax? 8y2

VEf(x,)

The Laplacian is seldom used by itself for edge detection because, as a second-
order derivative, it is unacceptably sensitive to noise, its magnitude produces
double edges, and it is unable to detect edge direction. However, as discussed
later in this section, the Laplacian can be a powerful complement when used in
combination with other edge-detection techniques. For example, although its
double edges make it unsuitably for edge detection directly, this property can
be used for edge location.

With the preceding discussion as background, the basic idea behind edge
detection is to find places in an image where the intensity changes rapidly,
using one of two general criteria:

1. Find places where the first derivative of the intensity is greater in magni-
tude than a specified threshold.

2. Find places where the second derivative of the intensity has a zero
crossing.

IPT’s function edge provides several derivative estimators based on the crite-
ria just discussed. For some of these estimators, it is possible to specify whether
the edge detector is sensitive to horizontal or vertical edges or to both. The
general syntax for this function is

[g, t] = edge(f, 'method', parameters)

where f is the input image, method is one of the approaches listed in
Table 10.1, and parameters are additional parameters explained in the fol-
lowing discussion. In the output, g is a logical array with 1s at the locations
where edge points were detected in T and Os elsewhere. Parameter t is option-
al; it gives the threshold used by edge to determine which gradient values are
strong enough to be called edge points.

Sobel Edge Detector

The Sobel edge detector uses the masks in Fig. 10.5(b) to approximate digital-
ly the first derivatives G, and G,. In other words, the gradient at the center
point in a neighborhood is computed as follows by the Sobel detector:

g=1[Gi+ Gl
= {[(z7 + 223 + 29) — (21 + 22, + z3)

+[(z3 + 226 + 29) — (21 + 224 + 27)]2}1/2

385

386 Chapter 10 & Image Segmentation

TABLE 10.1
Edge detectors
available in
function edge.

Sobel Finds edges using the Sobel approximation to

the derivatives shown in Fig. 10.5(b).

Prewitt Finds edges using the Prewitt approximation to
the derivatives shown in Fig. 10.5(c).

Roberts Finds edges using the Roberts approximation

to the derivatives shown in Fig. 10.5(d).
Laplacian of a Gaussian (LoG) Finds edges by looking for zero crossings after
filtering f(x, y) with a Gaussian filter.

Zero crossings Finds edges by looking for zero crossings after
filtering f(x, y) with a user-specified filter.
Canny Finds edges by looking for local maxima of the

gradient of f(x, y). The gradient is calculated
using the derivative of a Gaussian filter. The
method uses two thresholds to detect strong
and weak edges, and includes the weak edges
in the output only if they are connected to
strong edges. Therefore, this method is more

* likely to detect true weak edges.

Then, we say that a pixel at location (x, y) is an edge pixel if g = T at that lo-
cation, where T is a specified threshold.

From the discussion in Section 3.5.1, we know that Sobel edge detection can
be implemented by filtering an image, f, (using imfilter) with the left mask
in Fig. 10.5(b), filtering f again with the other mask, squaring the pixels values
of each filtered image, adding the two results, and computing their square root.
Similar comments apply to the second and third entries in Table 10.1. Function
edge simply packages the preceding operations into one function call and
adds other features, such as accepting a threshold value or determining a
threshold automatically. In addition, edge contains edge detection techniques
that are not implementable directly with imfilter.

The general calling syntax for the Sobel detector is

[g, t] = edge(f, 'sobel', T, dir)

where f is the input image, T is a specified threshold, and dir specifies the pre-
ferred direction of the edges detected: 'horizontal', 'vertical', or
'both' (the default). As noted earlier, g is a logical image containing 1s at
locations where edges were detected and Os elsewhere. Parameter t in the out-
put is optional. It is the threshold value used by edge. If T is specified, then t =
T. Otherwise, if T is not specified (or is empty, [1), edge sets t equal to a
threshold it determines automatically and then uses for edge detection. One of
the principal reason for including t in the output argument is to get an initial
value for the threshold. Function edge uses the Sobel detector as a default if
the syntax g = edge (f),or [g, t] = edge(f),is used.

10.1 & Point, Line, and Edge Detection = 387

21 2 23
24 Zs Zs
27 28 29
Image neighborhood
-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1
Sobel
Gi=(z7+2z3+2) — G,=(z3+2z + 20) —
(z1 + 225 + 23) (z1+ 224 + 29)
-1 -1 -1 -1 0 1
0 0 0 -1 0 1
1 1 1 —-1] 0 1
Prewitt
Gi=(z+tzm+tz)—- Gy=(3+z+z)—
(z1+ 22+ 273) (z1+ 24+ 27)
-1 0 0 -1
0 1 1 0
Roberts
G, =29~ 25 G, =2~ 2
Prewitt Edge Detector

The Prewitt edge detector uses the masks in Fig. 10.5(c) to approximate digi-
tally the first derivatives G, and G,. Its general calling syntax is

[g, t] = edge(f, 'prewitt', T, dir)

The parameters of this function are identical to the Sobel parameters. The
Prewitt detector is slightly simpler to implement computationally than the
Sobel detector, but it tends to produce somewhat noisier results. (It can be
shown that the coefficient with value 2 in the Sobel detector provides
smoothing.)

FIGURE 10.5
Some edge
detector masks
and the first-order
derivatives they
implement.

388

Chapter 10 @ Image Segmentation

Roberts Edge Detector

The Roberts edge detector uses the masks in Fig. 10.5(d) to approximate digi-
tally the first derivatives G, and G, . Its general calling syntax is

[g, t] = edge(f, 'roberts', T, dir)

The parameters of this function are identical to the Sobel parameters. The
Roberts detector is one of the oldest edge detectors in digital image process-
ing, and as Fig. 10.5(d) shows, it is also the simplest. This detector is used con-
siderably less than the others in Fig. 10.5 due in part to its limited functionality
(e.g., it is not symmetric and cannot be generalized to detect edges that are
multiples of 45°). However, it still is used frequently in hardware implementa-
tions where simplicity and speed are dominant factors.

Laplacian of a Gaussian (LoG) Detector

Consider the Gaussian function 2
h(r) = —e 2°
where r> = x? + y? and o is the standard deviation. This is a smoothing func-

tion which, if convolved with an image, will blur it. The degree of blurring is de-
termined by the value of o. The Laplacian of this function (the second
derivative with respect to r) is

2 _ 2| -
Vh(r) = —[’ = :le 22
g

For obvious reasons, this function is called the Laplacian of a Gaussian (LoG).
Because the second derivative is a linear operation, convolving (filtering) an
image with V2A(r) is the same as convolving the image with the smoothing
function first and then computing the Laplacian of the result. This is the key
concept underlying the LoG detector. We convolve' the image with V2A(r),
knowing that it has two effects: It smoothes the image (thus reducing noise),
and it computes the Laplacian, which yields a double-edge image. Locating
edges then consists of finding the zero crossings between the double edges.
The general calling syntax for the LoG detector is

[g, t] = edge(f, 'log', T, sigma)

where sigma is the standard deviation and the other parameters are as ex-
plained previously. The default value for sigma is 2. As before, edge ignores
any edges that are not stronger than T.If T is not provided, or it is empty, [],
edge chooses the value automatically. Setting T to 0 produces edges that are
closed contours, a familiar characteristic of the LoG method.

Zero-Crossings Detector

This detector is based on the same concept as the LoG method, but the convo-
lution is carried out using a specified filter function, H. The calling syntax is

[g, t] = edge(f, 'zerocross', T, H)

The other parameters are as explained for the LoG detector.

10.1 & Point, Line, and Edge Detection 389

Canny Edge Detector

The Canny detector (Canny [1986]) is the most powerful edge detector pro-
vided by function edge. The method can be summarized as follows:

1. The image is smoothed using a Gaussian filter with a specified standard
deviation, o, to reduce noise.

2. The local gradient, g(x,y) = [G% + Gﬁ]l/ > and edge direction,
a(x,y) = tan'l(Gy/Gx), are computed at each point. Any of the first
three techniques in Table 10.1 can be used to compute G, and G,. An edge
point is defined to be a point whose strength is locally maximum in the di-
rection of the gradient.

3. The edge points determined in (2) give rise to ridges in the gradient mag-
nitude image. The algorithm then tracks along the top of these ridges and
sets to zero all pixels that are not actually on the ridge top so as to give a
thin line in the output, a process known as nonmaximal suppression. The
ridge pixels are then thresholded using two thresholds, 71 and T2, with
T1 < T2.Ridge pixels with values greater than T2 are said to be "strong"
edge pixels. Ridge pixels with values between 71 and 72 are said to be
"weak" edge pixels.

4. Finally, the algorithm performs edge linking by incorporating the weak
pixels that are 8-connected to the strong pixels.

The syntax for the Canny edge detector is
[g, t] = edge(f, 'canny', T, sigma)

where T is a vector, T = [T1, T2], containing the two thresholds explained in
step 3 of the preceding procedure, and sigma is the standard deviation of the
smoothing filter. If t is included in the output argument, it is a two-element
vector containing the two threshold values used by the algorithm. The rest of
the syntax is as explained for the other methods, including the automatic com-
putation of thresholds if T is not supplied. The default value for sigmais 1.

B We can extract and display the vertical edges in the image, f, of Fig. 10.6(a)
using the commands

>> [gv, t] = edge(f, 'sobel', 'vertical');
>> imshow(gv)
>> t

t =
0.0516

As Fig. 10.6(b) shows, the predominant edges in the result are vertical (the
inclined edges have vertical and horizontal components, so they are detect-
ed as well). We can clean up the weaker edges somewhat by specifying a
higher threshold value. For example, Fig. 10.6(c) was generated using the
command

EXAMPLE 10.3:
Edge extraction
with the Sobel
detector.

390 Chapter 10

FIGURE 10.6

(a) Original
image. (b) Result
of function edge
using a vertical
Sobel mask with
the threshold
determined
automatically.

(c) Result using a
specified
threshold.

(d) Result of
determining both
vertical and
horizontal edges
with a specified
threshold.

(e) Result of
computing edges
at 45° with
imfilter using a
specified mask
and a specified
threshold. (f)
Result of
computing edges
at —45° with
imfilter using a
specified mask
and a specified
threshold.

Image Segmentation

10.1 # Point, Line, and Edge Detection

>> gv = edge(f, 'sobel', 0.15, 'vertical');

Using the same value of T in the command

>> gboth = edge(f, 'sobel', 0.15);

resulted in Fig. 10.6(d), which shows predominantly vertical and horizontal edges.

Function edge does not compute Sobel edges at +45°. To compute such
edges we need to specify the mask and use imfilter. For example, Fig. 10.6(e)
was generated using the commands

>> w45 = [-2 -1 0; -1 0 1; 0 1 2]
w45 =
-2 -1 0
-1 0 1
0 1 2
>> g45 = imfilter(double(f), w45, 'replicate');
>> T = 0.3*max(abs(g45(:)));

>> g45 g45 >=T;
>> figure, imshow(g45);

The strongest edge in Fig. 10.6(e) is the edge oriented at 45°. Similarly,
using the mask wm45 =[0 1 2; -1 0 1; —2 —1 0] with the same sequence
of commands resulted in the strong edges oriented at —45° shown in

Fig. 10.6(f).
Using the 'prewitt' and 'roberts' options in function edge follows the
same general procedure just illustrated for the Sobel edge detector. |

B In this example we compare the relative performance of the Sobel, LoG,
and Canny edge detectors. The objective is to produce a clean edge “map” by
extracting the principal edge features of the building image, f, in Fig. 10.6(a),
while reducing “irrelevant” detail, such as the fine texture in the brick walls
and tile roof. The principal edges of interest in this discussion are the building
corners, the windows, the light-brick structure framing the entrance, the en-
trance itself, the roofline, and the concrete band surrounding the building
about two-thirds of the distance above ground level.

The left column in Fig. 10.7 shows the edge images obtained using the de-
fault syntax for the ‘sobel', 'log',and 'canny' options:

>> [g_sobel_default, ts] = edge(f, 'sobel'); % Fig. 10.7(a)
>> [g_log_default, tlog] = edge(f, 'log'); % Fig. 10.7(c)
>> [g_canny_default, tc] = edge(f, 'canny'); % Fig. 10.7(e)

The values of the thresholds in the output argument resulting from the pre-
ceding computations were ts = 0.074, tlog = 0.0025, and tc = [0.019,
0.047].The defaults values of sigma for the 'log' and 'canny' options were
2.0 and 1.0, respectively. With the exception of the Sobel image, the default re-
sults were far from the objective of producing clean edge maps.

391

The value of T was
chosen experimen-
tally to show results
comparable with
Figs. 10(c) and
10(d).

EXAMPLE 10.4:
Comparison of
the Sobel, LoG,
and Canny edge
detectors.

392 Chapter 10 @ Image Segmentation

FIGURE 10.7 Left
column: Default
results for the
Sobel, LoG, and
Canny edge
detectors. Right
column: Results
obtained
interactively to
bring out the
principal features
in the original
image of

Fig. 10.6(a) while
reducing
irrelevant, fine
detail. The Canny
edge detector
produced the best
results by far.

10.2 ® Line Detection Using the Hough Transform 393

Starting with the default values, the parameters in each option were varied
interactively with the objective of bringing out the principal features men-
tioned earlier, while reducing irrelevant detail as much as possible. The results
in the right column of Fig. 10.7 were obtained with the following commands:

>> g_sobel best = edge(f, 'sobel', 0.05); % Fig. 10.7(b)
>> g_log_best = edge(f, 'log', 0.003, 2.25); % Fig. 10.7(d)
>> g_canny_best = edge(f, 'canny', [0.04 0.10], 1.5); % Fig. 10.7(f)

As Fig. 10.7(b) shows, the Sobel result actually deviated even further from the
objective when we tried to bring out the concrete band and left edge of the en-
trance way. The LoG result in Fig. 10.7(d) is somewhat better than the Sobel
result and much better than the LoG default, but it still could not bring out the
left edge of the main entrance nor the concrete band around the building. The
Canny result [Fig. 10.7(f)] is superior by far to the other two results. Note in
particular how the left edge of the entrance was clearly detected, as were the
concrete band and other details such as the complete roof ventilation grill
above the main entrance. In addition to detecting the desired features, the
Canny detector also produced the cleanest edge map. -

L1 Line Detection Using the Hough Transform

Ideally, the methods discussed in thé previous section should yield pixels
lying only on edges. In practice, the resulting pixels seldom characterize an
edge completely because of noise, breaks in the edge from nonuniform illu-
mination, and other effects that introduce spurious intensity discontinuities.
Thus edge-detection algorithms typically are followed by linking procedures
to assemble edge pixels into meaningful edges. One approach that can be
used to find and link line segments in an image is the Hough transform
(Hough [1962]).

Given a set of points in an image (typically a binary image), suppose that we
want to find subsets of these points that lie on straight lines. One possible so-
lution is to first find all lines determined by every pair of points and then find
all subsets of points that are close to particular lines. The problem with this
procedure is that it involves finding n(n — 1)/2 ~ n? lines and then perform-
ing n(n(n — 1))/2 ~ n® comparisons of every point to all lines. This approach
is computationally prohibitive in all but the most trivial applications.

With the Hough transform, on the other hand, we consider a point (x;, y;)
and all the lines that pass through it. Infinitely many lines pass through (x;, y;),
all of which satisfy the slope-intercept equation y; = ax; + b for some values
of a and b. Writing this equation as b = —x;a + y; and considering the ab-
plane (also called parameter space) yields the equation of a single line for a
fixed pair (x;, y;). Furthermore, a second point (x;, y;) also has a line in para-
meter space associated with it, and this line intersects the line associated with
(x;, ;) at (a', b"), where a’ is the slope and b’ the intercept of the line con-
taining both (x;, y;) and (x;, y;) in the xy-plane. In fact, all points contained on
this line have lines in parameter space that intersect at (a’, b"). Figure 10.8 il-
lustrates these concepts.

394 Chapter 10 @ Image Segmentation

FIGURE 10.8
(a) xy-plane.
(b) Parameter
space.

&

b=—xa+y;
(xi7 yl)

————————

(x'!y’) =
) b=-xa+y

X a

In principle, the parameter-space lines corresponding to all image points
(x;, ;) could be plotted, and then image lines could be identified by where
large numbers of parameter-space lines intersect. A practical difficulty with
this approach, however, is that a (the slope of the line) approaches infinity as
the line approaches the vertical direction. One way around this difficulty is to
use the normal representation of a line:

xcosf + ysinf = p

Figure 10.9(a) illustrates the geometric interpretation of the parameters p and
6. A horizontal line has 8 = 0°, with p being equal to the positive x-intercept.
Similarly, a vertical line has § = 90°, with p being equal to the positive y-
intercept, or § = —90°, with p being equal to the negative y intercept. Each si-
nusoidal curve in Figure 10.9(b) represents the family of lines that pass
through a particular point (x;, y;). The intersection point (p’, ") corresponds
to the line that passes through both (x;, ;) and (x;, y;).

y 0’ 0 Ormin 0 Omax g

2 x;cos6 +|y;sin = p Prmin
p

0

(C79)
(x ¥2) 4 /j . — Pmax
X;cosf + y;sinf = p
x p P

&

FIGURE 10.9 (a) (p,) parameterization of lines in the xy-plane. (b) Sinusoidal curves in the p6-plane; the

point of intersection, (p',6'), corresponds to the parameters of the line joining (x;,y) and (x;,y)

(c) Division of the p#-plane into accumulator cells.

10.2 ® Line Detection Using the Hough Transform 395

The computational attractiveness of the Hough transform arises from sub-
dividing the pf parameter space into so-called accumulator cells, as illustrated
in Figure 10.9(c), where (pmin, Pmax) and (Opin, Omax) are the expected ranges
of the parameter values. Usually, the maximum range of values is
—90° = 6 = 90° and —D = p = D, where D is the distance between corners
in the image. The cell at coordinates (i, j), with accumulator value A(i, j), cor-
responds to the square associated with parameter space coordinates (p;, ;).
Initially, these cells are set to zero. Then, for every nonbackground point
(xk, ¥¢) in the image plane, we let 6 equal each of the allowed subdivision val-
ues on the 6 axis and solve for the corresponding p using the equation
p = xpcos 0 + ygsin 6. The resulting p-values are then rounded off to the
nearest allowed cell value along the p-axis. The corresponding accumulator
cell is then incremented. At the end of this procedure, a value of Q in A(i, j),
means that Q points in the xy-plane lie on the line x cos §; + ysin 6; = p;.
The number of subdivisions in the pf-plane determines the accuracy of the co-
linearity of these points.

A function for computing the Hough transform is given next. This func-
tion makes use of sparse matrices, which are matrices that contain a small
number of nonzero elements. This characteristic provides advantages in
both matrix storage space and computation time. Given a matrix A, we con-
vert it to sparse matrix format by using function sparse, which has the
basic syntax

S = sparse(A)

For example,

>A=[0 0 0 5
0O 2 0 o0
1 3 0 o0
0O 0 4 01];
>> § = sparse(A)
S =
(3,1) 1
(2,2) 2
(3,2) 3
(4,3) 4
(1,4) 5

This output lists the nonzero elements of S, together with their row and col-
umn indices. The elements are sorted by columns.

A syntax used more frequently with function sparse consists of five
arguments:

S = gparse(r, ¢, s, m, n)

396 Chapter 10 ® Image Segmentation

Here, r and c are vectors of row and column indices, respectively, of the nonze-
ro elements of the matrix we wish to convert to sparse format. Parameter s is
a vector containing the values that correspond to the index pairs (r, ¢),and m
and n are the row and column dimensions for the resulting matrix. For in-
stance, the matrix S in the previous example can be generated directly using
the command

>> § = sparse([3 23 4 1], [12234], [12345], 4, 4);

There are a number of other syntax forms for function sparse, as detailed in
the help page for this function. .

Given a sparse matrix S generated by any of its applicable syntax forms, we
can obtain the full matrix back by using function full, whose syntax is

A = full(S)

To explore Hough transform-based line detection in MATLAB, we first
write a function, hough .m, that computes the Hough transform:

function [h, theta, rho] = hough(f, dtheta, drho)
%HOUGH Hough transform.

% [H, THETA, RHO] = HOUGH(F, DTHETA, DRHO) computes the Hough
% transform of the image F. DTHETA specifies the spacing (in
% degrees) of the Hough transform bins along the theta axis. DRHO
% specifies the spacing of the Hough transform bins along the rho
% axis. H is the Hough transform matrix. It is NRHO-by-NTHETA,
% where NRHO = 2*ceil(norm(size(F))/DRHO) — 1, and NTHETA =
% 2*ceil(90/DTHETA). Note that if 90/DTHETA is not an integer, the
% actual angle spacing will be 90 / ceil(90/DTHETA).
%
% THETA is an NTHETA-element vector containing the angle (in
% degrees) corresponding to each column of H. RHO is an
% NRHO-element vector containing the value of rho corresponding to
% each row of H.
%
% [H, THETA, RHO] = HOUGH(F) computes the Hough transform using
% DTHETA = 1 and DRHO = 1.
if nargin < 3

drho = 1;
end
if nargin < 2

dtheta = 1;
end
f = double(f);
[M,N] = size(f);
theta = linspace(—90, 0, ceil(90/dtheta) + 1);

theta = [theta —fliplr(theta(2:end — 1))];
ntheta = length(theta);

10.2 ® Line Detection Using the Hough Transform

D =sgrt((M—-1)"2 + (N - 1)"2);

g = ceil(D/drho);

nrho = 2*q — 1;

rho = linspace(—q*drho, q*drho, nrho);

[x, y, val] = find(f);
X=x=-1; y=y-1;

% Initialize output.

h = zeros(nrho, length(theta));

% To avoid excessive memory usage, process 1000 nonzero pixel
% values at a time.
for k = 1:ceil(length(val)/1000)

first = (k — 1)*1000 + 1;

last = min(first+999, length(x));

x_matrix = repmat(x(first:last), 1, ntheta);
y_matrix = repmat(y(first:last), 1, ntheta);
val_matrix = repmat(val(first:last), 1, ntheta);

theta_matrix = repmat(theta, size(x_matrix, 1), 1)*pi/180;

rho_matrix = x_matrix.*cos(theta_matrix) + ...
y_matrix.*sin(theta_matrix);
slope = (nrho — 1)/(rho(end) — rho(1));
rho_bin_index = round(slope*(rha_matrix — rho(1)) + 1);

theta_bin_index = repmat(1:ntheta, size(x_matrix, 1), 1);

% Take advantage of the fact that the SPARSE function, which

% constructs a sparse matrix, accumulates values when input

% indices are repeated. That's the behavior we want for the

% Hough transform. We want the output to be a full (nonsparse)

% matrix, however, so we call function FULL on the output of

% SPARSE.

h = h + full(sparse(rho_bin_index(:), theta_bin_index(:),
val_matrix(:), nrho, ntheta));

end J——

397

B In this example we illustrate the use of function hough on a simple binary EXAMPLE 10.5:
image. First we construct an image containing isolated foreground pixels in Illustration of the

several locations.

>> f = zeros(101, 101);
>> f(1, 1) =1; f@o01, 1)
>> f(101, 101) = 1; f(51, 51)

1; f(1, 101) = 1;
1;

Figure 10.10(a) shows our test image. Next we compute and display the Hough
transform.

>> H = hough(f);
>> imshow(H, [1)

Figure 10.10(b) shows the result, displayed with imshow in the familiar way.
However, it often is more useful to visualize Hough transforms in a larger plot,

Hough transform.

398 Chapter 10 ® Image Segmentation

FIGURE 10.10

(a) Binary image
with five dots
(four of the dots
are in the
corners).

(b) Hough
transform
displayed using
imshow.

(c) Alternative
Hough transform
display with axis
labeling. (The
dots in (a) were
enlarged to make
them easier to

10.2 & Line Detection Using the Hough Transform 399

with labeled axes. In the next code fragment we call hough with three output
arguments; the second two output arguments contain the 6 and p values corre-
sponding to each column and row, respectively, of the Hough transform ma-
trix. These vectors, theta and rho, can then be passed as additional input
arguments to imshow to control the horizontal and vertical axis labeling. We
also pass the 'notruesize' option to imshow. The axis function is used to
turn on axis labeling and to make the display fill the rectangular shape of the
figure. Finally the x1abel and ylabel functions (see Section 3.3.1) are used to
label the axes using a LaTeX-style notation for Greek letters.

>> [H, theta, rho] = hough(f);

>> imshow(theta, rho, H, [1, 'notruesize')
>> axis on, axis normal

>> xlabel('\theta'), ylabel('\rho')

Figure 10.10(c) shows the labeled result. The intersections of three sinusoidal
curves at +45° indicate that there are two sets of three collinear points in f.
The intersections of two sinusoidal curves at (6, p) = (=90, 0), (=90, —100),
(0,0), and (0, 100) indicate that there are four sets of collinear points that lie
along vertical and horizontal lines. B

10.2.1 Hough Transform Peak Detection

The first step in using the Hough transform for line detection and linking is
peak detection. Finding a meaningful set of distinct peaks in a Hough trans-
form can be challenging. Because of the quantization in space of the digital
image, the quantization in parameter space of the Hough transform, as well as
the fact that edges in typical images are not perfectly straight, Hough trans-
form peaks tend to lie in more than one Hough transform cell. One strategy to
overcome this problem is the following:

1. Find the Hough transform cell containing the highest value and record its
location.

2. Suppress (set to zero) Hough transform cells in the immediate neighbor-
hood of the maximum found in step 1.

3. Repeat until the desired number of peaks has been found, or until a spec-
ified threshold has been reached.

Function houghpeaks implements this strategy.

function [r, ¢, hnew] = houghpeaks(h, numpeaks, threshold, nhood) houghpeaks
%HOUGHPEAKS Detect peaks in Hough transform. e
% [R, C, HNEW] = HOUGHPEAKS(H, NUMPEAKS, THRESHOLD, NHOOD) detects

% peaks in the Hough transform matrix H. NUMPEAKS specifies the

% maximum number of peak locations to look for. Values of H below

% THRESHOLD will not be considered to be peaks. NHOOD is a

% two-element vector specifying the size of the suppression

% neighborhood. This is the neighborhood around each peak that is

400 Chapter 10 ® Image Segmentation

set to zero after the peak is identified. The elements of NHOOD
must be positive, odd integers. R and C are the row and column
coordinates of the identified peaks. HNEW is the Hough transform
with peak neighborhood suppressed.

If NHOOD is omitted, it defaults to the smalleét odd values >=
size(H)/50. If THRESHOLD is omitted, it defaults to
0.5*max(H(:)). If NUMPEAKS is omitted, it defaults to 1.

if nargin < 4
nhood = size(h)/50;
% Make sure the neighborhood size is odd.
nhood = max(2*ceil(nhood/2) + 1, 1);
end
if nargin < 3
threshold = 0.5 * max(h(:));
end
if nargin < 2
numpeaks
end

o® o° of of o of of of

1;

done = false;
hnew = h; r =1[]; ¢ =[1];
while ~done
[p, q] = find(hnew == max(hnew(:)));
p=p(1); q=4q(1);
if hnew(p, q) >= threshold
r(end + 1) = p; c(end + 1) = q;

% Suppress this maximum and its close neighbors.
p1 = p — (nhood(1) — 1)/2; p2 = p + (nhood(1) — 1)/2;
gl = q — (nhood(2) — 1)/2; 92 = q + (nhood(2) — 1)/2;
[pp, qq] = ndgrid(p1:p2, q1:92);

pp = pp(:); aq = qq(:);

% Throw away neighbor coordinates that are out of bounds in
% the rho direction.

badrho = find((pp < 1) | (pp > size(h, 1)));

pp(badrho) = [1; qq(badrho) = [];

% For coordinates that are out of bounds in the theta

% direction, we want to consider that H is antisymmetric
% along the rho axis for theta = +/— 90 degrees.
theta_too_low = find(qq < 1);

qq(theta_too_low) = size(h, 2) + gq(theta_too_low);
pp(theta_too_low) = size(h, 1) — pp(theta_too_low) + 1;
theta_too_high = find(qq > size(h, 2));
qq(theta_too_high) = qq(theta_too_high) — size(h, 2);
pp(theta_too_high) = size(h, 1) — pp(theta_too_high) + 1;

% Convert to linear indices to zero out all the values.
hnew(sub2ind(size(hnew), pp, 4q)) = 0;

10.2 ® Line Detection Using the Hough Transform 401

done = length(r) == numpeaks;
else
done = true;
end
end FE Y

Function houghpeaks is illustrated in Example 10.6.

10.2.2 Hough Transform Line Detection and Linking

Once a set of candidate peaks has been identified in the Hough transform, it
remains to be determined if there are line segments associated with those
peaks, as well as where they start and end. For each peak, the first step is to
find the location of all nonzero pixels in the image that contributed to that
peak. For this purpose, we write function houghpixels.

function [r, c¢] = houghpixels(f, theta, rho, rbin, cbin) houghpixels
%HOUGHPIXELS Compute image pixels belonging to Hough transform bin. g
[R, C] = HOUGHPIXELS(F, THETA, RHO, RBIN, CBIN) computes the

row-column indices (R, C) for nonzero pixels in image F that map

to a particular Hough transform bin, (RBIN, CBIN). RBIN and CBIN

are scalars indicating the row-column bin location in the Hough

transform matrix returned by function HOUGH. THETA and RHO are

the second and third output arguments from the HOUGH function.

[x, Yy, val] = find(f);
X=x-1;y=y-1;

theta_c = theta(cbin) * pi / 180;

rho_xy = x*cos(theta_c) + y*sin(theta_c);

nrho = length(rho);

slope = (nrho — 1)/(rho(end) — rho(1));
rho_bin_index = round(slope*(rho_xy — rho(1)) + 1);

o® o° o o° o° of

idx = find(rho_bin_index == rbin);

r = x(idx) + 1; ¢ = y(idx) + 1;)

The pixels associated with the locations found using houghpixels must be
grouped into line segments. Function houghlines uses the following strategy:

1. Rotate the pixel locations by 90° — 6 so that they lie approximately along
a vertical line.

2. Sort the pixel locations by their rotated x-values.

3. Use function diff to locate gaps. Ignore small gaps; this has the effect of
merging adjacent line segments that are separated by a small space.

4. Return information about line segments that are longer than some mini-
mum length threshold.

function lines = houghlines(f,theta,rho,rr,cc,fillgap,minlength) houghlines
%HOUGHLINES Extract line segments based on the Hough transform. L
% LINES = HOUGHLINES(F, THETA, RHO, RR, CC, FILLGAP, MINLENGTH)

402 Chapter 10 ® Image Segmentation

extracts line segments in the image F associated with particular
bins in a Hough transform. THETA and RHO are vectors returned by
function HOUGH. Vectors RR and CC specify the rows and columns
of the Hough transform bins to use in searching for line
segments. If HOUGHLINES finds two line segments associated with
the same Hough transform bin that are separated by less than
FILLGAP pixels, HOUGHLINES merges them into a single line
segment. FILLGAP defaults to 20 if omitted. Merged line

segments less than MINLENGTH pixels long are discarded.
MINLENGTH defaults to 40 if omitted.

LINES is a structure array whose length equals the number of
merged line segments found. Each element of the structure array
has these fields:

point1 End-point of the line segment; two-element vector
point2 End-point of the line segment; two-element vector
length Distance between point1 and point2

theta Angle (in degrees) of the Hough transform bin

rho Rho-axis position of the Hough transform bin

® o® o° o o° of O° O° P P O° O° o° O° O° of o° of o of

if nargin < 6
fillgap = 20;

end ;

if nargin < 7 .
minlength = 40;

end

numlines = 0; lines = struct;
for k = 1:length(rr)
rbin = rr(k); cbin = cc(k);

% Get all pixels associated with Hough transform cell.
[r, c] = houghpixels(f, theta, rho, rbin, cbin);
if isempty(r)
continue
end

% Rotate the pixel locations about (1,1) so that they lie
% approximately along a vertical line.

omega = (90 — theta(cbin)) * pi / 180;

T = [cos(omega) sin(omega); —sin(omega) cos(omega)l;

Xy = [r=-1¢c—-1] * T;

x = sort(xy(:,1));

% Find the gaps larger than the threshold.
diff_x = [diff(x); Inf];
idx = [0; find(diff_x > fillgap)];
for p = 1:length(idx) — 1

x1 = x(idx(p) + 1); x2 = x(idx(p + 1));

linelength = x2 — x1;

if linelength >= minlength

point1 = [x1 rho(rbin)]; point2 = [x2 rho(rbin)];

10.2 @ Line Detection Using the Hough Transform 403

% Rotate the end-point locations back to the original
% angle.

Tinv = inv(T);

point1 = point1 * Tinv; point2 = point2 * Tinv;

numlines = numlines + 1;

lines(numlines).point1 = point1 + 1;
lines(numlines).point2 = point2 + 1;
lines(numlines).length = linelength;

lines(numlines).theta = theta(cbin);
lines(numlines).rho = rho(rbin);
end
end

end P
¥ In this example we use functions hough, houghpeaks, and houghlines to
find a set of line segments in the binary image, f, in Fig. 10.7(f). First, we com-
pute and display the Hough transform, using a finer angular spacing than the
default (A® = 0.5 instead of 1.0).

>> [H, theta, rho] = hough(f, 0.5);
>> imshow(theta, rho, H, [], 'notruesize'), axis on, axis normal
>> xlabel('\theta'), ylabel('\rho!)

Next we use function houghpeaks to find five Hough transform peaks that are
likely to be significant.

>> [r, ¢] = houghpeaks(H, 5);

>> hold on
>> plot(theta(c), rho(r), 'linestyle', 'none',
‘marker', 's', ‘'color', 'w')

Figure 10.11(a) shows the Hough transform with the peak locations superim-
posed. Finally, we use function houghlines to find and link line segments, and

500

B = inv(A) com-
putes the inverse of
square matrix A.

EXAMPLE 10.6:
Using the Hough
transform for line
detection and
linking.

aw

FIGURE 10.11

(a) Hough
transform with
five peak
locations selected.
(b) Line segments
corresponding to
the Hough
transform peaks.

404 Chapter 10 ® Image Segmentation

FIGURE 10.12
Selecting a
threshold by
visually analyzing
a bimodal
histogram.

we superimpose the line segments on the original binary image using imshow,
hold on,and plot:

>> lines = houghlines(f, theta, rho, r, c)

>> figure, imshow(f), hold on

>> for k = 1:length(lines)

Xy = [lines(k).point1 ; lines(k).point2];

plot(xy(:,2), xy(:,1), 'LineWidth', 4, 'Color', [.6 .6 .6]);
end

Figure 10.11(b) shows the resulting image with the detected segments super-
imposed as thick, gray lines.]

m Thresholding

Because of its intuitive properties and simplicity of implementation, image
thresholding enjoys a central position in applications of image segmentation.
Simple thresholding was first introduced in Section 2.7.2, and we have used it in
various discussions in the preceding chapters. In this section, we discuss ways of
choosing the threshold value automatically, and we consider a method for vary-
ing the threshold according to the properties of local image neighborhoods.
Suppose that the intensity histogram shown in Fig. 10.12 corresponds to an
image, f(x, y), composed of light objects on a dark background, in such a way
that object and background pixels have intensity levels grouped into two dom-
inant modes. One obvious way to extract the objects from the background is to
select a threshold T that separates these modes. Then any point (x, y) for
which f(x,y) = T is called an object point; otherwise, the point is called a
background point. In other words, the thresholded image g(x, y) is defined as

1 i f(ry) =T
g(x’”_{o iff(x,y) <T

Pixels labeled 1 correspond to objects, whereas pixels labeled 0 correspond to the
background. When T is a constant, this approach is called global thresholding.

.l.ull’l h.. }..ll'ln

10.3 & Thresholding 405

Methods for choosing a global threshold are discussed in Section 10.3.1. In
Section 10.3.2 we discuss allowing the threshold to vary, which is called local
thresholding.

10.3.1 Global Thresholding

One way to choose a threshold is by visual inspection of the image histogram.
The histogram in Figure 10.12 clearly has two distinct modes; as a result, it is
easy to choose a threshold 7 that separates them. Another method of choosing
T is by trial and error, picking different thresholds until one is found that pro-
duces a good result as judged by the observer. This is particularly effective in
an interactive environment, such as one that allows the user to change the
threshold using a widget (graphical control) such as a slider and see the result
immediately.

For choosing a threshold automatically, Gonzalez and Woods [2002] de-
scribe the following iterative procedure:

1. Select an initial estimate for 7. (A suggested initial estimate is the mid-
point between the minimum and maximum intensity values in the image.)

2. Segment the image using 7. This will produce two groups of pixels: Gy,
consisting of all pixels with intensity values = T, and G,, consisting of pix-
els with values < T. ,

3. Compute the average intensity values u; and u, for the pixels in regions
G1 and G2 .

4. Compute a new threshold value:

1
T= 5(.“«1 + p2)
5. Repeat steps 2 through 4 until the difference in T in successive iterations
is smaller than a predefined parameter 7.

We show how to implement this procedure in MATLAB in Example 10.7.

The toolbox provides a function called graythresh that computes a thresh-
old using Otsu’s method (Otsu [1979]). To examine the formulation of this
histogram-based method, we start by treating the normalized histogram as a
discrete probability density function, as in

£ g=012,...,L—-1

where n is the total number of pixels in the image, n, is the number of pix-
els that have intensity level 7., and L is the total number of possible inten-
sity levels in the image. Now suppose that a threshold k is chosen such that
Cy is the set of pixels with levels [0, 1,..., k — 1] and C; is the set of pixels
with levels [k, k + 1,...,L — 1]. Otsu’s method chooses the threshold
value k that maximizes the between-class variance o%, which is defined as

0% = wo(io — pr)* + w1(uy — ur)’?

406 Chapter 10 ® Image Segmentation

EXAMPLE 10.7:
Computing global
thresholds.

a8

FIGURE 10.13
(a) Scanned text.
(b) Thresholded
text obtained
using function
graythresh.

where

k-1

Wy = Pq(rq)
g=0
L-1

W = pq(rq)
q=k
k-1

Mo = qpq(rq)/wo
q=0
L-1

M = qpq(rq)/wl
q=k
L-1

M = qpq(rq)
q=0

Function graythresh takes an image, computes its histogram, and then finds
the threshold value that maximizes o'%. The threshold is returned as a normal-
ized value between 0.0 and 1.0. The calling syntax for graythresh is

T = graythresh(f)

where f is the input image and T is the resulting threshold. To segment the
image we use T in function im2bw introduced in Section 2.7.2. Because the
threshold is normalized to the range [0, 1], it must be scaled to the proper
range before it is used. For example, if f is of class uint8, we multiply T by 255
before using it.

¥ In this example we illustrate the iterative procedure described previously
as well as Otsu’s method on the gray-scale image, f, of scanned text, shown in
Fig. 10.13(a). The iterative method can be implemented as follows:

>> T = 0.5*(double(min(f(:))) + double(max(f(:))));
>> done = false;
>> while ~done
g="f>T;
Tnext = 0.5*(mean(f(g)) + mean(f(~g)));
done = abs(T — Tnext) < 0.5;
T = Tnext;
end

For this particular image, the while loop executes four times and terminates

ponents or broken connection paths. There is no poi
tion past the level of detail required to identify those

Segmentation of nontrivial images is one of the mog
process cgmentation accu letermines the ev

of computerized analysis procedures. For this reason,
be taken to improve the probability of rugged segment

10.4 @ Region-Based Segmentation 407

with T equal to 101.47.
Next we compute a threshold using function graythresh:

>> T2 = graythresh(f)

T2 =

0.3961
>> T2 * 255
ans =

101

Thresholding using these two values produces images that are almost indistinguish-
able from each other. Figure 10.13(b) shows the image thresholded using T2. &

10.3.2 Local Thresholding

Global thresholding methods can fail when the background illumination is un-
even, as was illustrated in Figs. 9.26(a) and (b). A common practice in such sit-
uations is' to preprocess the image to compensate for the illumination
problems and then apply a global threshold to the preprocessed image. The
improved thresholding result shown in Fig. 9.26(e) was computed by applying
a morphological top-hat operator and then using graythresh on the result.
We can show that this process is equivalent to thresholding f(x, y) with a lo-
cally varying threshold function 7'(x, y):

1 i f(xy) = T(x,y)
8(x,y) = {o if f(x,y) <T(x,)

where

T(x,y) = fo(x,y) + T,

The image f,(x, y) is the morphological opening of f, and the constant T, is
the result of function graythresh applied to f,.

A%} Region-Based Segmentation

The objective of segmentation is to partition an image into regions. In
Sections 10.1 and 10.2 we approached this problem by finding boundaries be-
tween regions based on discontinuities in intensity levels, whereas in
Section 10.3 segmentation was accomplished via thresholds based on the dis-
tribution of pixel properties, such as intensity values. In this section we discuss
segmentation techniques that are based on finding the regions directly.

10.4.1 Basic Formulation
Let R represent the entire image region. We may view segmentation as a

process that partitions R into n subregions, Ry, R;, ..., R,, such that
n
@ UR =R
i=1

(b) R;is aconnected region,i = 1,2,...,n.

408 Chopter 10 ® Image Segmentation

In the context of the
discussion in Section
9.4, two disjoint re-
gions, R;and R, are
said to be adjacent if
their union forms a
connected
component.

(©) RRNR; = Qforalliandj,i # j.
(d) P(R;) = TRUEfori =1,2,...,n.
(e) P(R;UR;) = FALSE for any adjacent regions R;and R;.

Here, P(R;) is a logical predicate defined over the points in set R; and @ is the
null set.

Condition (a) indicates that the segmentation must be complete; that is,
every pixel must be in a region. The second condition requires that points in a
region be connected in some predefined sense (e.g., 4- or 8-connected). Condi-
tion (c) indicates that the regions must be disjoint. Condition (d) deals with
the properties that must be satisfied by the pixels in a segmented region—for
example P(R;) = TRUE if all pixels in R; have the same gray level. Finally,
condition (e) indicates that adjacent regions R; and R; are different in the
sense of predicate P.

10.4.2 Region Growing

As its name implies, region growing is a procedure that groups pixels or subre-
gions into larger regions based on predefined criteria for growth. The basic ap-
proach is to start with a set of “seed” points and from these grow regions by
appending to each seed those neighboring pixels that have predefined proper-
ties similar to the seed (such as specific ranges of gray level or color).

Selecting a set'of one or more starting points often can be based on the na-
ture of the problem, as shown later in Example 10.8. When a priori informa-
tion is not available, one procedure is to compute at every pixel the same set of
properties that ultimately will be used to assign pixels to regions during the
growing process. If the result of these computations shows clusters of values,
the pixels whose properties place them near the centroid of these clusters can
be used as seeds.

The selection of similarity criteria depends not only on the problem under
consideration, but also on the type of image data available. For example, the
analysis of land-use satellite imagery depends heavily on the use of color. This
problem would be significantly more difficult, or even impossible, to handle
without the inherent information available in color images. When the images
are monochrome, region analysis must be carried out with a set of descriptors
based on intensity levels (such as moments or texture) and spatial properties.
We discuss descriptors useful for region characterization in Chapter 11.

Descriptors alone can yield misleading results if connectivity (adjacency)
information is not used in the region-growing process. For example, visualize a
random arrangement of pixels with only three distinct intensity values. Group-
ing pixels with the same intensity level to form a “region” without paying at-
tention to connectivity would yield a segmentation result that is meaningless
in the context of this discussion. .

Another problem in region growing is the formulation of a stopping rule.
Basically, growing a region should stop when no more pixels satisfy the criteria
for inclusion in that region. Criteria such as intensity values, texture, and color,
are local in nature and do not take into account the “history” of region growth.
Additional criteria that increase the power of a region-growing algorithm

10.4 = Region-Based Segmentation

utilize the concept of size, likeness between a candidate pixel and the pixels
grown so far (such as a comparison of the intensity of a candidate and the av-
erage intensity of the grown region), and the shape of the region being grown.
The use of these types of descriptors is based on the assumption that a model
of expected results is at least partially available.

To illustrate the principles of how region segmentation can be handled in
MATLAB, we develop next an M-function, called regiongrow, to do basic re-
gion growing. The syntax for this function is

[g, NR, SI, TI] = regiongrow(f, S, T)

where f is an image to be segmented and parameter S can be an array (the
same size as f) or a scalar. If S is an array, it must contain 1s at all the coordi-
nates where seed points are located and Os elsewhere. Such an array can be de-
termined by inspection, or by an external seed-finding function. If S is a scalar,
it defines an intensity value such that all the points in f with that value become
seed points. Similarly, T can be an array (the same size as f) or a scalar. If T is
an array, it contains a threshold value for each location in f. If T is scalar, it de-
fines a global threshold. The threshold value(s) is (are) used to test if a pixel in
the image is sufficiently similar to the seed or seeds to which it is 8-connected.

For example, if $ = a and T = b, and we are comparing intensities, then a
pixel is said to be similar to a (in the sense of passing the threshold test) if the
absolute value of the difference between its intensity and a is less than or
equal to b. If, in addition, the pixel in question is 8-connected to one or more
seed values, then the pixel is considered a member of one or more regions.
Similar comments hold if S and T are arrays, the basic difference being that
comparisons are done with the appropriate locations defined in S and corre-
sponding values of T.

In the output, g is the segmented image, with the members of each region
being labeled with an integer value. Parameter NR is the number of different
regions. Parameter SI is an image containing the seed points, and parameter T1I
is an image containing the pixels that passed the threshold test before they
were processed for connectivity. Both SI and TI are of the same size as f.

The code for function regiongrow is as follows. Note the use of Chapter 9
function bwmorph to reduce to 1 the number of connected seed points in each
region in S (when S is an array) and function imreconstruct to find pixels
connected to each seed.

function [g, NR, SI, TI] = regiongrow(f, S, T)

%REGIONGROW Perform segmentation by region growing.

[G, NR, SI, TI] = REGIONGROW(F, SR, T). S can be an array (the
same size as F) with a 1 at the coordinates of every seed point
and Os elsewhere. S can also be a single seed value. Similarly,
T can be an array (the same size as F) containing a threshold
value for each pixel in F. T can also be a scalar, in which
case it becomes a global threshold.

0® o° o o o° o° o°

regiongrow
oot a—

409

410 Chapter 10 ® Image Segmentation

true is equivalent to
logical(1),and
false is equivalent
to logical(0).

EXAMPLE 10.8:
Application of
region growing to
weld porosity
detection.

On the output, G is the result of region growing, with each
region labeled by a different integer, NR is the number of
regions, SI is the final seed image used by the algorithm, and TI
is the image consisting of the pixels in F that satisfied the
threshold test.

f = double(f);
% If S is a scalar, obtain the seed image.
if numel(S) ==

o° d° of o° o°

SI = f == §;
S1 = S;
else

% S is an array. Eliminate duplicate, connected seed locations
% to reduce the number of loop executions in the following
% sections of code.
SI = bwmorph(S, 'shrink', Inf);
J = find(SI);
S1 = f(J); % Array of seed values.
end

TI = false(size(f));
for K = 1:1ength(S1)
seedvalue = S1(K);
S = abs(f — seedvalue) <= T;
TI =TI | S;
end
% Use function imreconstruct with SI as the marker image to
% obtain the regions corresponding to each seed in S. Function

% bwlabel assigns a different integer to each connected region.
[g, NR] = bwlabel(imreconstruct(SI, TI)); O

B Figure 10.14(a) shows an X-ray image of a weld (the horizontal dark re-
gion) containing several cracks and porosities (the bright, white streaks run-
ning horizontally through the middle of the image). We wish to use function
regiongrow to segment the regions corresponding to weld failures. These seg-
mented regions could be used for inspection, for inclusion in a database of his-
torical studies, for controlling an automated welding system, and for other
numerous applications.

The first order of business is to determine the initial seed points. In this ap-
plication, it is known that some pixels in areas of defective welds tend to have
the maximum allowable digital value (255 in this case). Based in this informa-
tion, we let S = 255. The next step is to choose a threshold or threshold array.
In this particular example we used T = 65. This number was based on analysis
of the histogram in Fig. 10.15 and represents the difference between 255 and
the location of the first major valley to the left, which is representative of the
highest intensity value in the dark weld region. As noted earlier, a pixel has to

10.4 ® Region-Based Segmentation

be 8-connected to at least one pixel in a region to be included in that region. If
a pixel is found to be connected to more than one region, the regions are auto-
matically merged by regiongrow.

Figure 10.14(b) shows the seed points (image SI). They are numerous in
this case because the seeds were specified simply as all points in the image
with a value of 255. Figure 10.14(c) is image TI. It shows all the points that
passed the threshold test; that is, the points with intensity z;, such that
|z; — S| = T. Figure 10.14(d) shows the result of extracting all the pixels in
Figure 10.14(c) that were connected to the seed points. This is the segmented
image, g. It is evident by comparing this image with the original that the region
growing procedure did indeed segment the defective welds with a reasonable
degree of accuracy.

Finally, we note by looking at the histogram in Fig. 10.15 that it would not
have been possible to obtain the same or equivalent solution by any of the
thresholding methods discussed in Section 10.3. The use of connectivity was a
fundamental requirement in this case.

411

@5

Ba

FIGURE 10.14
(a) Image
showing defective
welds. (b) Seed
points. (c) Binary
image showing all
the pixels (in
white) that passed
the threshold test.
(d) Result after
all the pixels in
(c) were analyzed
for 8-connectivity
to the seed points.
(Original image
courtesy of X-
TEK Systems,
Ltd.)

412

FIGURE 10.15
Histogram of
Fig. 10.14(a).

FIGURE 10.16

(a) Partitioned
image.

(b) Corresponding
quadtree.

Chapter 10 ® Image Segmentation

12000 T T T T T
10000 - .
8000 |- ’ .

6000

4000

2000

0 50 100 150

200

250

10.4.3 Region Splitting and Merging

The procedure just discussed grows regions from a set of seed points. An alterna-
tive is to subdivide an image initially into a set of arbitrary, disjointed regions and
then merge and/of split the regions in an attempt to satisfy the conditions stated
in Section 10.4.1. The basics of splitting and merging are discussed next.

Let R represent the entire image region and select a predicate P. One approach
for segmenting R is to subdivide it successively into smaller and smaller quadrant
regions so that, for any region R;, P(R;) = TRUE. We start with the entire re-
gion. If P(R) = FALSE, we divide the image into quadrants. If P is FALSE for
any quadrant, we subdivide that quadrant into subquadrants, and so on. This par-
ticular splitting technique has a convenient representation in the form of a so-
called quadtree; that is, a tree in which each node has exactly four descendants, as
illustrated in Fig. 10.16 (the subimages corresponding to the nodes of a quadtree
sometimes are called quadregions or quadimages). Note that the root of the tree
corresponds to the entire image and that each node corresponds to the subdivision
of a node into four descendant nodes. In this case, only R, was subdivided further.

If only splitting is used, the final partition normally contains adjacent regions
with identical properties. This drawback can be remedied by allowing merging, as

R, R,

Rs

104 ® Region-Based Segmentation 413

well as splitting. Satisfying the constraints of Section 10.4.1 requires merging only
adjacent regions whose combined pixels satisfy the predicate P. That is, two adja-
cent regions R; and R are merged only if P(R; U R;) = TRUE.

The preceding discussion may be summarized by the following procedure
in which, at any step,

1. Split into four disjoint quadrants any region R; for which P(R;) = FALSE.

2. When no further splitting is possible, merge any adjacent regions R; and
Ry for which P(R;U R;) = TRUE.

3. Stop when no further merging is possible.

Numerous variations of the preceding basic theme are possible. For exam-
ple, a significant simplification results if we allow merging of any two adjacent
regions R; and R; if each one satisfies the predicate individually. This results in
a much simpler (and faster) algorithm because testing of the predicate is limit-
ed to individual quadregions. As Example 10.9 shows, this simplification is still
capable of yielding good segmentation results in practice. Using this approach
in step 2 of the procedure, all quadregions that satisfy the predicate are filled
with 1s and their connectivity can be easily examined using, for example, func-
tion imreconstruct. This function, in effect, accomplishes the desired merg-
ing of adjacent quadregions. The quadregions that do not satisfy the predicate
are filled with Os to create a segmented image.

The function in IPT for implementing quadtree decomposition is qtdecomp.
The syntax of interest in this section is

S = qtdecomp(f, @split_test, parameters)

where f is the input image and S is a sparse matrix containing the quadtree
structure. If S(k, m) is nonzero, then (k, m) is the upper-left corner of a block in
the decomposition and the size of the block is S(k, m). Function split_test
(see function splitmerge below for an example) is used to determine whether
a region is to be split or not, and parameters are any additional parameters
(separated by commas) required by sp1lit_test.The mechanics of this are sim-
ilar to those discussed in Section 3.4.2 for function coltfilt.

To get the actual quadregion pixel values in a quadtree decomposition we
use function qtgetblk, with syntax

[vals, r, c] = qtgetblk(f, S, m)

where vals is an array containing the values of the blocks of size m x m in the
quadtree decomposition of f, and S is the sparse matrix returned by
gtdecomp. Parameters r and ¢ are vectors containing the row and column co-
ordinates of the upper-left corners of the blocks.

We illustrate the use of function gqtdecomp by writing a basic split-and-
merge M-function that uses the simplification discussed earlier, in which two
regions are merged if each satisfies the predicate individually. The function,
which we call splitmerge, has the following calling syntax:

g = splitmerge(f, mindim, @predicate)

&%%ée comp
SN

Other forms of
qtdecomp are dis-
cussed in

Section 11.2.2.

414 Chapter 10 ® Image Segmentation

splitmerge
B s

where f is the input image and g is the output image in which each connected
region is labeled with a different integer. Parameter mindim defines the size of
the smallest block allowed in the decomposition; this parameter has to be a
positive integer power of 2.

Function predicate is a user-defined function that must be included in the
MATLAB path. Its syntax is

flag = predicate(region)

This function must be written so that it returns true (a logical 1) if the pixels
in region satisfy the predicate defined by the code in the function; otherwise,
the value of flag must be false (a logical 0). Example 10.9 illustrates the use
of this function.

Function splitmerge has a simple structure. First, the image is partitioned
using function gtdecomp. Function split_test uses predicate to determine
if a region should be split or not. Because when a region is split into four it is
not known which (if any) of the resulting four regions will pass the predicate
test individually, it is necessary to examine the regions after the fact to see
which regions in the partitioned image pass the test. Function predicate is
used for this purpose also. Any quadregion that passes the test is filled with 1s.
Any that does not is filled with 0s. A marker array is created by selecting one
element of each région that is filled with 1s. This array is used in conjunction
with the partitioned image to determine region connectivity (adjacency); func-
tion imreconstruct is used for this purpose.

The code for function splitmerge follows. The simple predicate function
shown in the comments section of the code is used in Example 10.9. Note that
the size of the input image is brought up to a square whose dimensions are the
minimum integer power of 2 that encompasses the image. This is a require-
ment of function qtdecomp to guarantee that splits down to size 1 are possible.

function g = splitmerge(f, mindim, fun)

%SPLITMERGE Segment an image using a split-and-merge algorithm.

G = SPLITMERGE(F, MINDIM, @PREDICATE) segments image F by using a
split-and-merge approach based on quadtree decomposition. MINDIM
(a positive integer power of 2) specifies the minimum dimension
of the quadtree regions (subimages) allowed. If necessary, the
program pads the input image with zeros to the nearest square
size that is an integer power of 2. This guarantees that the
algorithm used in the quadtree decomposition will be able to
split the image down to blocks of size 1-by-1. The result is
cropped back to the original size of the input image. In the
output, G, each connected region is labeled with a different
integer.

Note that in the function call we use @PREDICATE for the value of
fun. PREDICATE is a function in the MATLAB path, provided by the
user. Its syntax is

o° o o° o° o° O° O I° I° O° O° O° O° o° o° o°

;
i
fx
§
t

104 ® Region-Based Segmentation

FLAG = PREDICATE(REGION) which must return TRUE if the pixels
in REGION satisfy the predicate defined by the code in the
function; otherwise, the value of FLAG must be FALSE.

%

%

%

%

% The following simple example of function PREDICATE is used in
% Example 10.9 of the book. It sets FLAG to TRUE if the

% intensities of the pixels in REGION have a standard deviation
% that exceeds 10, and their mean intensity is between 0 and 125.
% Otherwise FLAG is set to false.
%

%

%

%

%

%

%

Q

function flag = predicate(region)

sd = std2(region);

m = mean2(region);

flag = (sd > 10) & (m > 0) & (m < 125);

Pad image with zeros to guarantee that function gtdecomp will
split regions down to size 1-by-1.
= 2"nextpow2(max(size(f)));

[M, N] = size(f);

f = padarray(f, [@ — M, Q — N], 'post');

% Perform splitting first.
S = gtdecomp(f, @split_test, mindim, fun);

% Now merge by looking at each quadregion and setting all its
% elements to 1 if the block satisfies the predicate.

% Get the size of the largest block. Use full because S is sparse.
Lmax = full(max(S(:)));
% Set the output image initially to all zeros. The MARKER array is
% used later to establish connectivity.
g = zeros(size(f));
MARKER = zeros(size(f));
% Begin the merging stage.
for K = 1:Lmax
[vals, r, c] = qtgetblk(f, S, K);
if ~isempty(vals)
% Check the predicate for each of the regions
% of size K-by-K with coordinates given by vectors
% r and c.
for I = 1:1length(r)
xlow = r(I); ylow = c(I);
xhigh = xlow + K — 1; yhigh = ylow + K — 1;

region = f(xlow:xhigh, ylow:yhigh); A
flag = feval(fun, region); < feval

if flag

g(xlow:xhigh, ylow:yhigh) = 1; feval (fun,

415

MARKER (xlow, ylow) = 1; param) evaluates
end function fun with
end parameter param.

end

See the help page for
feval for other syn-

end tax forms applicable

to this function.

416 Chapter 10 ® Image Segmentation

EXAMPLE 10.9:
Image
segmentation
using region
splitting and
merging.

% Finally, obtain each connected region and label it with a
% different integer value using function bwlabel.
g = bwlabel(imreconstruct (MARKER, g));

% Crop and exit
g = g(1:M, 1:N);

function v = split_test(B, mindim, fun)

% THIS FUNCTION IS PART OF FUNCTION SPLIT-MERGE. IT DETERMINES
% WHETHER QUADREGIONS ARE SPLIT. The function returns in v

% logical 1s (TRUE) for the blocks that should be split and

% logical Os (FALSE) for those that should not.

% Quadregion B, passed by qtdecomp, is the current decomposition of
% the image into k blocks of size m-by-m.

% k is the number of regions in B at this point in the procedure.
= size(B, 3);

Perform the split test on each block. If the predicate function
(fun) returns TRUE, the region is split, so we set the appropriate
element of v to TRUE. Else, the appropriate element of v is set to
FALSE.
v(1:k) = false;
for I = 1:k
quadregion = B(:, :, I);
if size(quadregion, 1) <= mindim
v(I) = false;
continue
end
flag = feval(fun, quadregion);
if flag
v(I) = true;
end
end S

o® o o o X

& Figure 10.17(a) shows an X-ray band image of the Cygnus Loop. The image
is of size 256 X 256 pixels. The objective of this example is to segment out of
the image the “ring” of less dense matter surrounding the dense center. The re-
gion of interest has some obvious characteristics that should help in its seg-
mentation. First, we note that the data has a random nature to it, indicating
that its standard deviation should be greater than the standard deviation of
the background (which is 0) and of the large central region. Similarly, the
mean value (average intensity) of a region containing data from the outer ring
should be greater than the mean of the background (which is 0) and less than
the mean of the large, lighter central region. Thus, we should be able to seg-
ment the region of interest by using these two parameters. In fact, the predi-
cate function shown as an example in the documentation of function
splitmerge contains this knowledge about the problem. The parameters were
determined by computing the mean and standard deviation of various regions
in Fig. 10.17(a). ‘ :

10.5 ® Segmentation Using the Watershed Transform 417

FIGURE 10.17 Image segmentation by a split-and-merge procedure. (a) Original image. (b) through (f)
results of segmentation using function splitmerge with values of mindim equal to 32, 16, 8, 4, and 2,
respectively. (Original image courtesy of NASA.)

Figures 10.17(b) through (f) show the results of segmenting Fig. 10.17(a)
using function splitmerge with mindim values of 32, 16, 8, 4, and 2, respec-
tively. All images show segmentation results with levels of detail that are in-
versely proportional to the value of mindim.

All results in Fig. 10.17 are reasonable segmentations. If one of these images
were to be used as a mask to extract the region of interest out of the original
image, then the result in Fig. 10.17(d) would be the best choice because it is the
solid region with the most detail. An important aspect of the method just illus-
trated is its ability to “capture” in function predicate information about a
problem domain that can help in segmentation. =

m Segmentation Using the Watershed Transform

In geography, a watershed is the ridge that divides areas drained by different river
systems. A catchment basin is the geographical area draining into a river or reser-
voir. The watershed transform applies these ideas to gray-scale image processing
in a way that can be used to solve a variety of image segmentation problems.

418

FIGURE 10.18

(a) Gray-scale
image of dark blobs.
(b) Image viewed as
a surface, with
labeled watershed
ridge line and
catchment basins.

s

FIGURE 10.19
(a) Small binary
image.

(b) Distance
transform.

Chapter 10 @ Image Segmentation

Watershed ridge line

Catchment basins

Understanding the watershed transform requires that we think of a gray-
scale image as a topological surface, where the values of f(x, y) are interpret-
ed as heights. We can, for example, visualize the simple image in Fig. 10.18(a)
as the three-dimensional surface in Fig. 10.18(b). If we imagine rain falling on
this surface, it is clear that water would collect in the two areas labeled as
catchment basins. Rain falling exactly on the labeled watershed ridge line
would be equally likely to collect in either of the two catchment basins. The
watershed transform finds the catchment basins and ridge lines in a gray-scale
image. In terms of solving image segmentation problems, the key concept is to
change the starting image into another image whose catchment basins are the
objects or regions we want to identify.

Methods for computing the watershed transform are discussed in detail in
Gonzalez and Woods [2002] and in Soille [2003]. In particular, the algorithm
used in IPT is adapted from Vincent and Soille [1991].

10.5.1 Watershed Segmentation Using the Distance Transform

A tool commonly used in conjunction with the watershed transform for seg-
mentation is the distance transform. The distance transform of a binary image
is a relatively simple concept: It is the distance from every pixel to the nearest
nonzero-valued pixel. Figure 10.19 illustrates the distance transform. Figure
10.19(a) shows a small binary image matrix. Figure 10.19(b) shows the corre-
sponding distance transform. Note that 1-valued pixels have a distance trans-
form value of 0. The distance transform can be computed using IPT function
bwdist, whose calling syntax is

D = bwdist(f)

1 1 0 0 O 0.00 0.00 1.00 2.00 3.00
1 1 0 0 0 0.00 0.00 1.00 2.00 3.00
0 0 0 0 O 1.00 1.00 1.41 2.00 2.24
60 o 0o 0 O 1.41 1.00 1.00 1.00 1.41
o 1 1 1 0 1.00 0.00 0.00 0.00 1.00

10.5 & Segmentation Using the Watershed Transform 419

B In this example we show how the distance transform can be used with IPT’s
watershed transform to segment circular blobs, some of which are touching
each other. Specifically, we want to segment the preprocessed dowel image, f,
shown in Figure 9.29(b). First, we convert the image to binary using im2bw and
graythresh, as described in Section 10.3.1.

>>'g = im2bw(f, graythresh(f));

Figure 10.20(a) shows the result. The next steps are to complement the image,
compute its distance transform, and then compute the watershed transform of

FIGURE 10.20

(a) Binary image.
(b) Complement
of image in (a).
(c) Distance
transform.

(d) Watershed
ridge lines of the
negative of the
distance
transform.

(e) Watershed
ridge lines
superimposed in
black over
original binary
image. Some
oversegmentation
is evident.

EXAMPLE 10.10:
Segmenting a
binary image
using the distance
and watershed
transforms.

420 Chapter 10 ® Image Segmentation

EXAMPLE 10.11:
Segmenting a
gray-scale image
using gradients
and the watershed
transform.

the negative of the distance transform, using function watershed. The calling
syntax for this function is

L = watershed(f)

where L is a label matrix, as defined and discussed in Section 9.4. Positive inte-
gers in L correspond to catchment basins, and zero values indicate watershed
ridge pixels.

>> gc = ~g;

>> D = bwdist(gc);
>> L = watershed(-D);
> w =L == 0;

Figures 10.20(b) and (c) show the complemented image and its distance trans-
form. Since 0-valued pixels of L are watershed ndge pixels, the last line of the

‘preceding code computes a binary image, w, that shows only these pixels. This

watershed ridge image is shown in Fig. 10.20(d). Finally, a logical AND of the
original binary image and the complement of w serves to complete the seg-
mentation, as shown in Fig. 10.20(e).

>> g2 =‘g & ~w;

Note that some objects in Fig. 10.20(e) were split improperly. This is called
oversegmentation and is a common problem with watershed-based segmenta-
tion methods. The next two sections discuss different techniques for overcom-
ing this difficulty. ’ |

10.5.2 Watershed Segmentation Using Gradients

The gradient magnitude is used often to preprocess a gray-scale image prior to
using the watershed transform for segmentation. The gradient magnitude
image has high pixel values along object edges, and low pixel values every-
where else. Ideally, then, the watershed transform would result in watershed
ridge lines along object edges. The next example illustrates this concept.

B Figure 10.21(a) shows an image, f, containing several dark blobs. We start
by computing its gradient magnitude, using either the linear filtering methods
described in Section 10.1, or using a morphological gradient as described in
Section 9.6.1.

>> h = fspecial('sobel');

>> fd = double(f);

>> g = sqrt(imfilter(fd, h, 'replicate') .~ 2 + ...
imfilter(fd, h', 'replicate') .” 2);

Figure 10.21(b) shows the gradient magnitude image, g. Next we compute the
watershed transform of the gradient and find the watershed ridge lines.

>> L = watershed(g);
>> wr = L == 0;

10.5 ® Segmentation Using the Watershed Transform 421

]

EE

FIGURE 10.21

(a) Gray-scale
image of small
blobs. (b) Gradient
magnitude image.
(c) Watershed
transform of (b),
showing severe
oversegmentation.
(d) Watershed
transform of the
smoothed gradient
image; some
oversegmentation
is still evident.
(Original image
courtesy of Dr. S.
Beucher,
CMM/Ecole de
Mines de Paris.)

PR i A

S

K]

i

ST
el

b L N
OGP R

L L R e

k .

L HEY

As Fig. 10.21(c) shows, this is not a good segmentation result; there are too
many watershed ridge lines that do not correspond to the objects in which we
are interested. This is another example of oversegmentation. One approach to
this problem is to smooth the gradient image before computing its watershed
transform. Here we use a close-opening, as described in Chapter 9.

>> g2 = imclose(imopen(g, ones(3,3)), ones(3,3));
>> L2 = watershed(g2);

>> wr2 = L2 == 0;

>> f2 = f;

>> f2(wr2) = 255;

The last two lines in the preceding code superimpose the watershed ridgelines
in wr as white lines in the original image. Figure 10.21(d) shows the superim-
posed result. Although improvement over Fig. 10.21(c) was achieved, there are
still some extraneous ridge lines, and it can be difficult to determine which
catchment basins are actually associated with the objects of interest. The next
section describes further refinements of watershed-based segmentation that
deal with these difficulties. ®

422 Chapter 10 ® Image Segmentation

EXAMPLE 10.12:
Tllustration of
marker-controlled
watershed
segmentation.

10.5.3 Marker-Controlled Watershed Segmentation

Direct application of the watershed transform to a gradient image usually
leads to oversegmentation due to noise and other local irregularities of the
gradient. The resulting problems can be serious enough to render the result
virtually useless. In the context of the present discussion, this means a large
number of segmented regions. A practical solution to this problem is to limit
the number of allowable regions by incorporating a preprocessing stage de-
signed to bring additional knowledge into the segmentation procedure.

An approach used to control oversegmentation is based on the concept of
markers. A marker is a connected component belonging to an image. We would
like to have a set of internal markers, which are inside each of the objects of in-
terest, as well as a set of external markers, which are contained within the back-
ground. These markers are then used to modify the gradient image using a
procedure described in Example 10.12. Various methods have been used for
computing internal and external markers, many of which involve the linear fil-
tering, nonlinear filtering, and morphological processing described in previous
chapters. Which method we choose for a particular application is highly depen-
dent on the specific nature of the images associated with that application.

B This example applies marker-controlled watershed segmentation to the
electrophoresis gel image in Figure 10.22(a). We start by considering the re-
sults obtained from computing the watershed transform of the gradient image,
without any other processing.

>> h = fspecial('sobel');

>> fd = double(f);

>> g = sqrt(imfilter(fd, h, 'replicate') .~ 2 + ...
imfilter(fd, h', 'replicate') .” 2);

>> L = watershed(g);

>> wr = L == 0;

We can see in Fig. 10.22(b) that the result is severely oversegmented, due in
part to the large number of regional minima. IPT function imregionalmin
computes the location of all regional minima in an image. Its calling syntax is

rm = imregionalmin(f)

where f is a gray-scale image and rm is a binary image whose foreground pix-
els mark the locations of regional minima. We can use imregionalmin on the
gradient image to see why the watershed function produces so many small
catchment basins:

>> rm = imregionalmin (9);
Most of the regional minima locations shown in Fig. 10.22(c) are very shal-

low and represent detail that is irrelevant to our segmentation problem. To
eliminate these extraneous minima we use IPT function imextendedmin,

10.5 @ Segmentation Using the Watershed Transform 423

RS s 4
o

FIGURE 10.22 (a) Gel image. (b) Oversegmentation resulting from applying the watershed transform to the
gradient magnitude image. (c) Regional minima of gradient magnitude. (d) Internal markers. (e) External
markers. (f) Modified gradient magnitude. (g) Segmentation result. (Original image courtesy of Dr. S.
Beucher, CMM/Ecole des Mines de Paris.)

424 Chapter 10 8 Image Segmentation

which computes the set of “low spots” in the image that are deeper (by a cer-
tain height threshold) than their immediate surroundings. (See Soille [2003]
for a detailed explanation of the extended minima transform and related oper-
ations.) The calling syntax for this function is

e

Sendednin im = imextendedmin(f, h)

where f is a gray-scale image, h is the height threshold, and imis a binary image
whose foreground pixels mark the locations of the deep regional minima. Here
we use function imextendedmin to obtain our set of internal markers:

>> im = imextendedmin(f, 2);
>> fim = f;
>> fim(im) = 175;

The last two lines superimpose the extended minima locations as gray blobs
on the original image, as shown in Fig. 10.22(d). We see that the resulting blobs
do a reasonably good job of “marking” the objects we want to segment.

Next we must find external markers, or pixels that we are confident belong
to the background. The approach we follow here is to mark the background by
finding pixels that are exactly midway between the internal markers. Surpris-
ingly, we do this by solving another watershed problem; specifically, we com-
pute the watershed transform of the distance transform of the internal marker
image, im:

>> Lim = watershed(bwdist(im));
>> em = Lim == 0;

Figure 10.22(e) shows the resulting watershed ridge lines in the binary image
em. Since these ridgelines are midway in between the dark blobs marked by im,
they should serve well as our external markers.

Given both internal and external markers, we use them now to modify the
gradient image using a procedure called minima imposition. The minima im-
position technique (see Soille [2003] for details) modifies a gray-scale image
so that regional minima occur only in marked locations. Other pixel values are
“pushed up” as necessary to remove all other regional minima. IPT function
imimposemin implements this technique. Its calling syntax is

mp = imimposemin(f, mask)

where f is a gray-scale image and mask is a binary image whose foreground
pixels mark the desired locations of regional minima in the output image, mp.
We modify the gradient image by imposing regional minima at the locations of
both the internal and the external markers:

>> g2 = imimposemin(g, im | em);

Figure 10.22(f) shows the result. We are finally ready to compute the water-
shed transform of the marker-modified gradient image and look at the result-
ing watershed ridgelines:

>> L2 = watershed(g2);
>> f2 = f;
>> f2(L2 == 0) = 255;

The last two lines superimpose the watershed ridge lines on the original image.
The result, a much-improved segmentation, is shown in Fig. 10.22(g). H

Marker selection can range from the simple procedures just described to
considerably more complex methods involving size, shape, location, relative
distances, texture content, and so on (see Chapter 11 regarding descriptors).
The point is that using markers brings a priori knowledge to bear on the seg-
mentation problem. Humans often aid segmentation and higher-level tasks in
everyday vision by using a priori knowledge, one of the most familiar being the
use of context. Thus, the fact that segmentation by watersheds offers a frame-
work that can make effective use of this type of knowledge is a significant ad-
vantage of this method.

Summary

Image segmentation is an essential preliminary step in most automatic pictorial pat-
tern-recognition and scene analysis problems. As indicated by the range of examples
presented in this chapter, the choice of one segmentation technique over another is dic-
tated mostly by the particular characteristics of the problem being considered. The
methods discussed in this chapter, although far from exhaustive, are representative of
techniques used commonly in practice.

Summary 425

