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Preview

This appendix contains a listing of all the M-functions that are not listed earli-
er in the book. The functions are organized alphabetically. The first two lines of
each function are typed in bold letters as a visual cue to facilitate finding the
function and reading its summary description.

A

function f = adpmedian(g, Smax)

%ADPMEDIAN Perform adaptive median filtering.

F = ADPMEDIAN(G, SMAX) performs adaptive median filtering of
image G. The median filter starts at size 3-by-3 and iterates up
to size SMAX-by-SMAX. SMAX must be an odd integer greater than 1.

% SMAX must be an odd, positive integer greater than 1.

if (Smax <= 1) | (Smax/2 == round(Smax/2)) | (Smax ~= round(Smax))
error('SMAX must be an odd integer > 1.')

end

[M, NI = size(g);

o® o° o°

% Initial setup.

=0

f(:) = 0;

alreadyProcessed = false(size(g));

—+

% Begin filtering.

for k = 3:2:Smax
zmin = ordfilt2(g, 1, ones(k, k), 'symmetric');
zmax = ordfilt2(g, k * k, ones(k, k), 'symmetric');
zmed = medfilt2(g, [k k], 'symmetric');
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processUsinglLevelB = (zmed > zmin) & (zmax > zmed) & ...
~alreadyProcessed;

zB = (g > zmin) & (zmax > g);

outputZxy = processUsinglLevelB & zB;

outputZmed = processUsinglLevelB & ~zB;

f(outputZxy) = g(outputzxy);

f(outputZmed) = zmed(outputZmed);

alreadyProcessed = alreadyProcessed | processUsinglLevelB;
if all(alreadyProcessed(:))
break;
end
end

% Output zmed for any remaining unprocessed pixels. Note that this
% zmed was computed using a window of size Smax-by-Smax, which is
% the final value of k in the loop.

f(~alreadyProcessed) = zmed(~alreadyProcessed);

function rc_new = bound2eight(rc)

%BOUND2EIGHT Convert 4-connected. boundary to 8-connected boundary.
RC_NEW = BOUND2EIGHT(RC) converts a four-connected boundary to an
eight-connected boundary. RC is a P-by-2 matrix, each row of
which contains the row and column coordinates of a boundary
pixel. RC must be a closed boundary; in other words, the last
row of RC must equal the first row of RC. BOUND2EIGHT removes
boundary pixels that are necessary for four-connectedness but not
necessary for eight-connectedness. RC_NEW is a Q-by-2 matrix,
where Q <= P.

o o° o° o° o° P o° o°

if ~isempty(rc) & ~isequal(rc(1, :), rc(end, :))
error('Expected input boundary to be closed.');
end

if size(rc, 1) <=3
% Degenerate case.
rc_new = rc;
return;

end

% Remove last row, which equals the first row.
rc_new = rc(t:end — 1, :);

Remove the middle pixel in four-connected right-angle turns. We
can do this in a vectorized fashion, but we can't do it all at
once. Similar to the way the 'thin' algorithm works in bwmorph,
we'll remove first the middle pixels in four-connected turns where
the row and column are both even; then the middle pixels in all
the remaining four-connected turns where the row is even and the
column is odd; then again where the row is odd and the column is
even; and finally where both the row and column are odd.

d® o° ° I o° O° o° o°
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remove_locations = compute_remove_locations(rc_new);

field1 = remove_locations & (rem(rc_new(:, 1), 2) ==0) & ...
(rem(rc_new(:, 2), 2) == 0);

rc_new(fieldt, :) = [];

remove_locations = compute_remove_locations(rc_new);

field2 = remove_locations & (rem(rc_new(:, 1), 2) ==0) & ...
(rem(rc_new(:, 2), 2) == 1);

rc_new(field2, :) = [];

remove_locations = compute_remove_locations(rc_new);

field3 = remove_locations & (rem(rc_new(:, 1), 2) == 1) & ..
(rem(rc_new(:, 2), 2) == 0);

rc_new(field3, :) = [];

remove_locations = compute_remove_locations(rc_new);

field4 = remove_locations & (rem(rc_new(:, 1), 2) ==1) & ...
(rem(rc_new(:, 2), 2) == 1);

rc_new(field4, :) = [];

% Make the output boundary closed again.
rc_new = [rc_new; rc_new(1, :)];

function remove = compute_remove_locations(rc)

% Circular diff.
d = [rc(2:end, :); rc(1, :)] - rc;

% Dot product of each row of d with the subsequent row of d,
% performed in circular fashion.

d1 = [d(2:end, :); d(1, :)];

dotprod = sum(d .* di, 2);

% Locations of N, S, E, and W transitions followed by
% a right-angle turn.
remove = ~all(d, 2) & (dotprod == 0);

% But we really want to remove the middle pixel of the turn.
remove = [remove(end, :); remove(l:end — 1, :)];

if ~any(remove)
done = 1;
else
idx = find(remove);
re(idx(1), ) = [1;
end

function rc_new = bound2four(rc)

%BOUND2FOUR Convert 8-connected boundary to 4-connected boundary.
RC_NEW = BOUND2FOUR(RC) converts an eight-connected boundary to a
four-connected boundary. RC is a P-by-2 matrix, each row of
which contains the row and column coordinates of a boundary
pixel. BOUND2FOUR inserts new boundary pixels wherever there is
a diagonal connection.

o of o° o° o°

if size(rc, 1) > 1
% Phase 1: remove diagonal turns, one at a time until they are all gone.
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done = 0;
rct = [rc(end — 1, :); rcl;
while ~done

d = diff(rct, 1);
diagonal_locations = all(d, 2);
double_diagonals = diagonal locations(t:end — 1) & ...
(diff(diagonal_locations, 1) == 0);
double_diagonal idx = find(double_diagonals);
turns = any(d(double_diagonal_idx, :) ~= ...
d(double_diagonal idx + 1, :), 2);
turns_idx = double_diagonal idx(turns);
if isempty(turns_idx)
done = 1;
else
first_turn = turns_idx(1);
rcl(first_turn + 1, :) = (rci(first_turn, :) + ...
rci(first_turn + 2, 1)) / 2;
if first_turn ==
rci(end, :) = rci(2, :);
end
end
end
rcl = rc1(2:end, :);
end
% Phase 2: insert extra pixels where there are diagonal connections.
rowdiff = diff(rci(:, 1));
coldiff = diff(rci(:, 2));
diagonal_locations = rowdiff & coldiff;
num_old_pixels = size(rct, 1);
num_new_pixels = num_old_pixels + sum(diagonal_locations);
rc_new = zeros(num_new_pixels, 2);

% Insert the original values into the proper locations in the new RC
% matrix.

idx = (1:num_old_pixels)' + [0; cumsum(diagonal_locations)];
rc_new(idx, :) = rct;

% Compute the new pixels to be inserted.

new_pixel offsets = [0 1; =1 0; 1 0; 0 —1];

offset_codes = 2 * (1 — (coldiff(diagonal_locations) + 1)/2) + ...
(2 — (rowdiff(diagonal_locations) + 1)/2);

new_pixels = rci(diagonal_locations, :) + ...
new_pixel offsets(offset_codes, :);

% Where do the new pixels go?
insertion_locations = zeros(num_new_pixels, 1);
insertion_locations(idx) = 1;
insertion_locations = ~insertion_locations;

% Insert the new pixels.
rc_new(insertion_locations, :) = new_pixels;
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function B = bound2im(b, M, N, x0, yO)

%BOUND2IM Converts a boundary to an image.

B = BOUND2IM(b) converts b, an np-by-2 or 2-by-np array
representing the integer coordinates of a boundary, into a binary
image with 1s in the locations defined by the coordinates in b
and 0s elsewhere.

B = BOUND2IM(b, M, N) places the boundary approximately centered
in an M-by-N image. If any part of the boundary is outside the
M-by-N rectangle, an error is issued.

B = BOUND2IM(b, M, N, X0, YO) places the boundary in an image of
size M-by-N, with the topmost boundary point located at X0 and
the leftmost point located at Y0. If the shifted boundary is
outside the M-by-N rectangle, an error is issued. X0 and X0 must
be positive integers.

3 o o ° o ° ° I° I° O° O° P o° o

[np, nc] = size(b);

if np < nc
b=0>b'"; % To convert to size np-by-2.
[np, nc] = size(b);

end

o°

Make sure the coordinates are integers.
round(b(:, 1));
round(b(:, 2));

Set up the default size parameters.
= X — min(x) + 1;

y —min(y) + 1;

false(max(x), max(y));

max(x) — min(x) + 1;

max(y) — min(y) + 1;

< X
nwon

o®

OO o< X
{L I [ | B I}

if nargin == 1
% Use the preceding default values.
elseif nargin ==
ifC>M | D>N
error('The boundary is outside the M-by-N region.')
end
% The image size will be M-by-N. Set up the parameters for this.
B = false(M, N);
% Distribute extra rows approx. even between top and bottom.
NR = round((M — C)/2);
NC = round((N — D)/2); % The same for columns.
X = X + NR; % Offset the boundary to new position.
y =y + NC;
elseif nargin == 5
if x0 <0 | y0o <0
error('x0 and y0 must be positive integers.')

end
X = x + round(x0) — 1;
y =y + round(y0) - 1;
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ifC>M | D>N
error('The shifted boundary is outside the M-by-N region.')
end
B = false(M, N);
else
error('Incorrect number of inputs.')
end

B(sub2ind(size(B), x, y)) = true;

function B = boundaries(BW, conn, dir)

%BOUNDARIES Trace object boundaries.

B = BOUNDARIES(BW) traces the exterior boundaries of objects in
the binary image BW. B is a P-by-1 cell array, where P is the
number of objects in the image. Each cell contains a Q-by-2
matrix, each row of which contains the row and column coordinates
of a boundary pixel. Q is the number of boundary pixels for the
corresponding object. Object boundaries are traced in the
clockwise direction.

B = BOUNDARIES(BW, CONN) specifies the connectivity to use when
tracing boundaries. CONN may be either 8 or 4. The default
value for CONN is 8.

B = BOUNDARIES(BW, CONN, DIR) specifies the direction used for
tracing boundaries. DIR should be either 'cw' (trace boundaries
clockwise) or 'cow' (trace boundaries counterclockwise). If DIR
is omitted BOUNDARIES traces in the clockwise direction.

I 0° o° o° d° O° O° I I° O O° O O° O° O° o°

if nargin < 3
dir = 'cw';

end

if nargin < 2
conn = 8;

end

L = bwlabel(BW, conn);

% The number of objects is the maximum value of L. Initialize the
% cell array B so that each cell initially contains a 0-by-2 matrix.
numObjects = max(L(:));

if numObjects > 0

B = {zeros(0, 2)};
B = repmat(B, numObjects, 1);
else
B={};
end
% Pad label matrix with zeros. This lets us write the
% boundary-following loop without worrying about going off the edge
% of the image.

Lp = padarray(L, [1 1], 0, 'both');
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% Compute the linear indexing offsets to take us from a pixel to its
% neighbors.
M = size(Lp, 1);
if conn == 8
% Order is N NE E SE S SW W NW.
offsets = [-1, M =1, M, M+ 1, 1, M+ 1, M, -M-1];
else
% Order is N E S W.
offsets = [-1, M, 1, -M];
end
% next_search_direction_lut is a lookup table. Given the direction

% from pixel k to pixel k+1, what is the direction to start with when
% examining the neighborhood of pixel k+1?

if conn ==

next_search_direction_lut = [8 8 2 2 4 4 6 6];
else

next_search_direction_lut = [4 1 2 3];
end

% next_direction_lut is a lookup table. Given that we just looked at
% neighbor in a given direction, which neighbor do we look at next?
if conn == 8
next_direction_lut
else .
next_direction_lut
end

0]

[23456781];

[2341];

% Values used for marking the starting and boundary pixels.
START -1;
BOUNDARY = -2;

% Initialize scratch space in which to record the boundary pixels as
% well as follow the boundary.
scratch = zeros(100, 1);

% Find candidate starting locations for boundaries.
[rry, cc] = find((Lp(2:end-1, :) > 0) & (Lp(1:end-2, :) == 0));
re=rr+1;

for k = 1:length(rr)
rr(k);
cc(k);
if (Lp(r ¢) >0) & (Lp(r — 1, c) == 0) & isempty(B{Lp(r, c)})
% We've found the start of the next boundary. Compute its
% linear offset, record which boundary it is, mark it, and
% initialize the counter for the number of boundary pixels.
idx = (c-1)*size(Lp, 1) + r;
which = Lp(idx);

scratch(1) = idx;

Lp(idx) = START;

numPixels = 1;

currentPixel = idx;

initial departure_direction = [];
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done = 0;
next_search_direction = 2;
while ~done

% Find the next boundary pixel.
direction = next_search_direction;
found_next_pixel = 0;
for k = 1:length(offsets)
neighbor = currentPixel + offsets(direction);
if Lp(neighbor) ~= 0
% Found the next boundary pixel.

if (Lp(currentPixel) == START) & ...
isempty(initial_departure_direction)
% We are making the initial departure from
% the starting pixel.
initial_departure_direction = direction;

elseif (Lp(currentPixel) == START) & ...
(initial_departure_direction == direction)
% We are about to retrace our path.
% That means we're done.
done = 1;
found_next_pixel = 1;
break;
end

% Take the next step along the boundary.
next_search_direction = ...
next_search_direction_lut(direction);
found_next_pixel = 1;
numPixels = numPixels + 1;
if numPixels > size(scratch, 1)
% Double the scratch space.
scratch(2*size(scratch, 1)) = 0;
end
scratch(numPixels) = neighbor;

if Lp(neighbor) ~= START
Lp(neighbor) = BOUNDARY;
end

currentPixel = neighbor;
break;
end

direction = next_direction_lut(direction);
end

if ~found_next_pixel
% If there is no next neighbor, the object must just
% have a single pixel.
numPixels = 2;
scratch(2) = scratch(1);
done = 1;
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end
end

% Convert linear indices to row-column coordinates and save
% in the output cell array.
[row, col] = ind2sub(size(Lp), scratch(1:numPixels));
B{which} = [row — 1, col — 1];
end
end

if stremp(dir, 'cecw')
for k = 1:1length(B)
B{k} = B{k}(end:-1:1, :);
end
end

function [s, su] = bsubsamp(b, gridsep)

%BSUBSAMP Subsample a boundary.

[S, SU] = BSUBSAMP(B, GRIDSEP) subsamples the boundary B by
assigning each of its points to the grid node to which it is
closest. The grid is specified by GRIDSEP, which is the
separation in pixels between the grid lines. For example, if
GRIDSEP = 2, there are two pixels in between grid lines. So, for
instance, the grid points in the first row would be at (1,1),
(1,4), (1,6), ..., and similarly in the y direction. The value
of GRIDSEP must be an even integer. The boundary is specified by
a set of coordinates in the form of an np-by-2 array. It is
assumed that the boundary is one pixel thick.

Output S is the subsampled boundary. Output SU is normalized so
that the grid separation is unity. This is useful for obtaining
the Freeman chain code of the subsampled boundary.

o ° o° o° A° O° P O° O° d° O° o° o° o°

% Check input.

[np, nc] = size(b);

if np < nc
error('B must be of size np-by-2.');

end

if gridsep/2 ~= round(gridsep/2)
error('GRIDSEP must be an even integer.')

end

% Some boundary tracing programs, such as boundaries.m, end with
% the beginning, resulting in a sequence in which the coordinates
% of the first and last points are the same. If this is the case
% in b, eliminate the last point.
if isequal(b(1, :), b(np, :))

np =np—1;

b =b(1:np, :);
end
% Find the max x and y spanned by the boundary.
xmax = max(b(:, 1));
ymax = max(b(:, 2));
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Determine the number of grid lines with gridsep points in
between them that can fit in the intervals [1,xmax], [1,ymax],
without any points in b being left over. If points are left
over, add zeros to extend xmax and ymax so that an integral
number of grid lines are obtained.

Size needed in the x-direction:

gridsep + 1;

ceil(xmax/L);

(n —1)*L + 1;

Zx is the number of zeros that would be needed to have grid
% lines without any points in b being left over.
Zx = abs(xmax — T — L);
if Zx ==L
Zx = 0;
end
% Number of grid lines in the x-direction, with L pixel spaces
% in between each grid line.
GLx = (xmax + Zx — 1)/L + 1;

% And for the y-direction:
n = ceil(ymax/L);
T=(n—-1)*L + 1;

Zy = abs(ymax — T — L);

if Zy ==

® — 3 1~ o° o° o° J° o° o°

GLy = (ymax + Zy — 1)/L + 1;

% Form vectors of x and y grid locations.

= 1:GLx;

Vector of grid line locations intersecting x-axis.
I)

(I) = gridsep*I + (I — gridsep);

= 1:GLy;
Vector of grid line locations intersecting y-axis.
(J) = gridsep*d + (J — gridsep);

< . 3 o° M

Compute both components of the cityblock distance between each
element of b and all the grid-line intersections. Assign each
point to the grid location for which each comp of the cityblock
distance was less than gridsep/2. Because gridsep is an even
integer, these assignments are unique. Note the use of meshgrid to
optimize the code.

DIST = gridsep/2;

[XG, YG] = meshgrid(X, Y);

o® o° o° o° o° o°

Q=1
for k=1:np
[I,d] = find(abs(XG — b(k, 1)) <= DIST & abs(YG — b(k, 2)) <= ...

DIST);
IL = length(I);
ord = k*ones(IL, 1); % To keep track of order of input coordinates
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K=Q+ IL-1;
d1(Q:K, :) = cat(2, X(I), ord);
d2(Q:K, :) = cat(2, Y(J), ord);
Q=K+ 1;

end

d is the set of points assigned to the new grid with line
separation of gridsep. Note that it is formed as d=(d2,d1) to
compensate for the coordinate transposition inherent in using
meshgrid (see Chapter 2).

= cat(2, d2(:, 1), d1); % The second column of di is ord.

Q. o° o° o° o°

Sort the points using the values in ord, which is the last col in

o

fliplr(d); % So the last column becomes first.
sortrows(d);
fliplr(d); % Flip back.

Eliminate duplicate rows in the first two components of

d to create the output. The cw or ccw order MUST be preserved.
=d(:, 1:2);

s, m, n] = unique(s, 'rows');

Q0 0 o° o°

Function unique sorts the data--Restore to original order
by using the contents of m.
= [s, m];
= fliplr(s);
sortrows(s);
fliplr(s);
s(:, 1:2);
Scale to unit grid so that can use directly to obtain Freeman

chain code. The shape does not change.
su = round(s./gridsep) + 1;

o o — n o o°

w v n nuon

o° o°

C

function image = changeclass(class, varargin)
%CHANGECLASS changes the storage class of an image.
12 = CHANGECLASS(CLASS, I);

RGB2 = CHANGECLASS(CLASS, RGB);

BW2 = CHANGECLASS(CLASS, BW);

X2 = CHANGECLASS(CLASS, X, 'indexed');

Copyright 1993-2002 The MathWorks, Inc. Used with permission.
$Revision: 1.2 $§ $Date: 2003/02/19 22:09:58 $

switch class
case ‘'uint8'’

image = im2uint8(varargin{:});
case 'uint16’

image = im2uint16(varargin{:});

o® o° o° o°

o of
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case 'double’

image = im2double(varargin{:});
otherwise

error('Unsupported IPT data class.');
end

function [VG, A, PPG]= colorgrad(f, T)

%COLORGRAD Computes the vector gradient of an RGB image.

[VG, VA, PPG] = COLORGRAD(F, T) computes the vector gradient, VG,
and corresponding angle array, VA, (in radians) of RGB image

F. It also computes PPG, the per-plane composite gradient
obtained by summing the 2-D gradients of the individual color
planes. Input T is a threshold in the range [0, 1]. If it is
included in the argument list, the values of VG and PPG are
thresholded by letting VG(x,y) = 0 for values <= T and VG(X,y) =
VG(X,y) otherwise. Similar comments apply to PPG. If T is not
included in the argument list then T is set to 0. Both output
gradients are scaled to the range [0, 1].

if (ndims(f) ~= 3) | (size(f, 3) ~-= 3)
error('Input image must be RGB.');
end

% Compute the x and y derivatives of the three component images
% using Sobel operators.

0° P ° O° o° O° of o° o° o°

sh = fspecial('sobel');

sv = sh';

Rx = imfilter(double(f(:, :, 1)), sh, 'replicate');
Ry = imfilter(double(f(:, :, 1)), sv, 'replicate');
Gx = imfilter(double(f(:, :, 2)), sh, 'replicate');
Gy = imfilter(double(f(:, :, 2)), sv, 'replicate');
Bx = imfilter(double(f(:, :, 3)), sh, 'replicate');
By = imfilter(double(f(:, :, 3)), sv, 'replicate');

% Compute the parameters of the vector gradient.

gxx = Rx."2 + Gx."2 + BX."2;

gyy = Ry."2 + Gy."2 + By."2;

gxy = Rx.*Ry + Gx.*Gy + Bx.*By;,

A = 0.5*(atan(2*gxy./(gxx — gyy + eps)));

G1 = 0.5*((gxx + gyy) + (gxx — gyy).*cos(2*A) + 2*gxy.*sin(2*A));
% Now repeat for angle + pi/2. Then select the maximum at each point.

A=A+ pi/2;

G2 = 0.5*((gxx + gyy) + (gxx — gyy).*cos(2*A) + 2*gxy.*sin(2*A));
G1 = G1.70.5;

G2 = G2.70.5;

% Form VG by picking the maximum at each (x,y) and then scale
% to the range [0, 1].
VG = mat2gray(max(G1, G2));

% Compute the per-plane gradients.
RG = sqrt(Rx."2 + Ry."2);
GG = sgrt(Gx.”2 + Gy."2);

563



564  Appendix C  M-Funtions

BG =
% Fo
% SC
PPG

% Th

if n
v
P

end

func
%COL

0 o° o° o° O° o° S° o° O° O° O° o° o° o°

r
e

—h o° o°
I 3 0

if (
e
end
M=
% Co
(f,
f =
In
in

3 3 - H ° °

nwouwonon

if 1
m
else
m
else
e
end

sqrt(Bx."2 + By."2);

rm the composite by adding the individual results and
ale to [0, 1].
= mat2gray(RG + GG + BG);

reshold the result.
argin == 2

G = (VG > T).*VG;

PG = (PPG > T).*PPG;

tion I = colorseg(varargin)

ORSEG Performs segmentation of a color image.

S = COLORSEG('EUCLIDEAN', F, T, M) performs segmentation of color
image F using a Euclidean measure of similarity. M is a 1-by-3
vector representing the average color used for segmentation (this
is the center of the sphere in Fig. 6.26 of DIPUM). T is the
threshold against which the distances are compared.

S = COLORSEG('MAHALANOBIS', F, T, M, C) performs segmentation of
color image F using the Mahalanobis distance as a measure of
similarity. C is the 3-by-3 covariance matrix of the sample color
vectors of the class of interest. See function covmatrix for the
computation ofAC and M.

S is the segmented image (a binary matrix) in which 0s denote the
background.

eliminaries.
call that varargin is a cell array.
varargin{2};
ndims(f) ~= 3) | (size(f, 3) ~= 3)

rror('Input image must be RGB.');

size(f, 1); N = size(f, 2);

nvert f to vector format using function imstack2vectors.
L] = imstack2vectors(f);

double(f);

itialize I as a column vector. It will be reshaped later
to an image.

zeros (M*N, 1);

varargin{3};

varargin{4};

m(:)'; % Make sure that m is a row vector.
ength(varargin) ==

ethod = 'euclidean';

if length(varargin) ==

ethod = 'mahalanobis’;

rror('Wrong number of inputs.');



Appendix € # M-Funtions

switch method
case 'euclidean’
% Compute the Euclidean distance between all rows of X and m. See
% Section 12.2 of DIPUM for an explanation of the following
expression. D(i) is the Euclidean distance between vector X(i,:)
and vector m.
= length(f);
= sqrt(sum(abs(f — repmat(m, p, 1))."2, 2));
case 'mahalanobis'
C = varargin{5};
D = mahalanobis(f, C, m);
otherwise
error('Unknown segmentation method.')
end

O T o° o°

D is a vector of size MN-by-1 containing the distance computations
from all the color pixels to vector m. Find the distances <= T.
= find(D <= T);

Set the values of I(J) to 1. These are the segmented
color pixels.
(J) =1;

% Reshape I into an M-by-N image.
I = reshape(I, M, N);

o o°

o® o°

L]

function ¢ = connectpoly(x, y)

%CONNECTPOLY Connects vertices of a polygon.

C = CONNECTPOLY (X, Y) connects the points with coordinates given
in X and Y with straight lines. These points are assumed to be a
sequence of polygon vertices organized in the clockwise or
counterclockwise direction. The output, C, is the set of points
along the boundary of the polygon in the form of an nr-by-2
coordinate sequence in the same direction as the input. The last
point in the sequence is equal to the first.

vi=x(:), vl

% Close polygon.

if ~isequal(v(end, :), v(1, :))
viend + 1, :) = v(1, :);

end

o P o° o° o° o° o

% Connect vertices.

segments = cell(1, length(v) — 1);

for I = 2:length(v)
[x, y] = intline(v(I - 1, 1), v(I, 1), v(I =1, 2), v(I, 2));
segments{I — 1} = [x, y];

end

c = cat(1, segments{:});

function s = diameter(L)
%DIAMETER Measure diameter and related properties of image regions.
% - S = DIAMETER(L) computes the diameter, the major axis endpoints,

565



566  Appendix C i M-Funtions

the minor axis endpoints, and the basic rectangle of each labeled
region in the label matrix L. Positive integer elements of L
correspond to different regions. For example, the set of elements
of L equal to 1 corresponds to region 1; the set of elements of L
equal to 2 corresponds to region 2; and so on. S is a structure
array of length max(L(:)). The fields of the structure array
include:

Diameter
MajorAxis
MinorAxis
BasicRectangle

The Diameter field, a scalar, is the maximum distance between any
two pixels in the corresponding region.

The MajorAxis field is a 2-by-2 matrix. The rows contain the row
and column coordinates for the endpoints of the major axis of the
corresponding region.

The MinorAxis field is a 2-by-2 matrix. The rows contain the row
and column coordinates for the endpoints of the minor axis of the
corresponding region.

The BasicRectangle field is a 4-by-2 matrix. Each row contains
the row and column coordinates of a corner of the
region-enclosing rectangle defined by the major and minor axes.

For more information about these measurements, see Section 11.2.1
of Digital Image Processing, by Gonzalez and Woods, 2nd edition,
Prentice Hall.

d® 0° J° o° o° I O° O° O° O° S° O° I° I° O° I O° S° O° AP O° OF J° O° O° O° O O° O Of o°

regionprops(L, {'Image’', 'BoundingBox'});

for k = 1:length(s)
[s(k).Diameter, s(k).MajorAxis, perim_r, perim c] = ...
compute_diameter(s(k));
[s(k).BasicRectangle, s(k).MinorAxis] = ...
compute_basic_rectangle(s(k), perim_r, perim c);

w
1]

end

function [d, majoraxis, r, c] = compute_diameter(s)

[D, MAJORAXIS, R, C] = COMPUTE_DIAMETER(S) computes the diameter
and major axis for the region represented by the structure S. S
must contain the fields Image and BoundingBox. COMPUTE_DIAMETER
also returns the row and column coordinates (R and C) of the
perimeter pixels of s.Image.

o°® of o° of o°

% Compute row and column coordinates of perimeter pixels.
[r, c] = find(bwperim(s.Image));
r=r(:);
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c=c(:);
[rp, cp] = prune_pixel list(r, c);

num_pixels = length(rp);
switch num_pixels
case 0

d = -Inf;

majoraxis = ones(2, 2);

case 1
d = 0;
majoraxis = [rp cp; rp cpl;

case 2
d = (rp(2) - rp(1))*2 + (cp(2) - cp(1))"2;
majoraxis = [rp cpl;

otherwise
% Generate all combinations of 1:num_pixels taken two at at time.
% Method suggested by Peter Acklam.
[idx(:, 2) idx(:, 1)] = find(tril(ones(num_pixels), —-1));
re = rp(idx);
cc = cp(idx);

dist_squared = (rr(:, 1) —rr(:, 2)).72 + ...
(cc(:y 1) —cc(:, 2)).%2; -

[max_dist_squared, idx] = max(dist_squared);

majoraxis = [rr(idx,:)' cc(idx,:)'];

d = sqrt(max_dist_squared);

upper_image_row = s.BoundingBox(2) + 0.5;
left_image_col = s.BoundingBox(1) + 0.5;

majoraxis(:, 1) = majoraxis(:, 1) + upper_image_row — 1;
majoraxis(:, 2) = majoraxis(:, 2) + left_image col — 1;

function [basicrect, minoraxis] = compute_basic_rectangle(s,

perim_r, perim_c)
[BASICRECT,MINORAXIS] = COMPUTE_BASIC RECTANGLE(S, PERIM_R,
PERIM_C) computes the basic rectangle and the minor axis
end-points for the region represented by the structure S. § must
contain the fields Image, BoundingBox, MajorAxis, and
Diameter. PERIM R and PERIM C are the row and column coordinates
of perimeter of s.Image. BASICRECT is a 4-by-2 matrix, each row
of which contains the row and column coordinates of one corner of
the basic rectangle.

d® o° o° o° o o° o° o°

% Compute the orientation of the major axis.
theta = atan2(s.MajorAxis(2, 1) — s.MajorAxis(1, 1),
s.MajorAxis(2, 2) — s.MajorAxis(1, 2));

% Form rotation matrix.
T = [cos(theta) sin(theta); —sin(theta) cos(theta)];
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Rotate perimeter pixels.
[perim_c perim_r];

=p T

Calculate minimum and maximum x- and y-coordinates for the rotated
perimeter pixels.

=p(:, 1);

=p(:, 2);

min_x = min(x);

max_x = max(x);

min_y = min(y);

max_y = max(y);

corners_x = [min_x max_x max_x min_x]';
corners_y = [min_y min_y max_y max_y]';
% Rotate corners of the basic rectangle.
corners = [corners_x corners_y] * T;

< X o ° T T o°

nmonounou

% Translate according to the region's bounding box.
upper_image_row = s.BoundingBox(2) + 0.5;
left_image_col = s.BoundingBox(1) + 0.5;

basicrect = [corners(:, 2) + upper_image_row — 1,
corners(:, 1) + left_image col - 1];

% Compute minor axis end-points, rotated.
X = (min_x + max_x) / 2;

yi = min_y;

y2 = max_y;

endpoints = [x y1; x y2];

% Rotate minor axis end-points back.
endpoints = endpoints * T;

% Translate according to the region's bounding box.
minoraxis = [endpoints(:, 2) + upper_image_row — 1, ...
endpoints(:, 1) + left_image_col — 1];

function [r, c] = prune_pixel_list(r, c)

% [R, C] = PRUNE_PIXEL_LIST(R, C) removes pixels from the vectors
% R and C that cannot be endpoints of the major axis. This

% elimination is based on geometrical constraints described in

% Russ, Image Processing Handbook, Chapter 8.

top = min(r);

bottom = max(r);

left = min(c);

right = max(c);

% Which points are inside the upper circle?

x = (left + right)/2;

y = top;

radius = bottom - top;

inside_upper = ( (¢ — x)."2 + (r —y).”2 ) < radius"2;
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% Which points are inside the lower circle?
y = bottom;
inside_lower = ( (¢ — x)."2 + (r — y)."2 ) < radius"2;

o°

Which points are inside the left circle?
x = left;

y = (top + bottom)/2;

radius = right - left;

inside_left = ( (¢ — x)."2 + (r — y)."2 ) < radius"2;

% Which points are inside the right circle?
X = right;
inside_right = ( (¢ - x)."2 + (r - y)."2 ) < radius"2;

% Eliminate points that are inside all four circles.

delete_idx = find(inside left & inside_right & ...
inside_upper & inside_lower);

[1;

[1;

r(delete_idx)
c(delete_idx)

F

function c¢ = fchcode(b, conn, dir)

%FCHCODE Computes the Freeman chain code of a boundary.

C = FCHCODE(B) computes the 8-connected Freeman chain code of a
set of 2-D coordinate pairs contained in B, an np-by-2 array. C
is a structure with the following fields:

c.fcc = Freeman chain code (1-by-np)

c.diff = First difference of code c.fcc (1-by-np)

c.mm = Integer of minimum magnitude from c.fcc (1-by-np)
c.diffmm = First difference of code c.mm (1-by-np)

€.x0y0 = Coordinates where the code starts (1-by-2)

C = FCHCODE(B, CONN) produces the same outputs as above, but
with the code connectivity specified in CONN. CONN can be 8 for
an 8-connected chain code, or CONN can be 4 for a 4-connected
chain code. Specifying CONN=4 is valid only if the input
sequence, B, contains transitions with values 0, 2, 4, and 6,
exclusively.

C = FHCODE(B, CONN, DIR) produces the same outputs as above, but,
in addition, the desired code direction is specified. Values for
DIR can be:

'same' Same as the order of the sequence of points in b.
This is the default.

‘reverse’ Outputs the code in the direction opposite to the
direction of the points in B. The starting point
for each DIR is the same.

A o° o o° o° O° J° O O° O O° O° I° O O° O° S O° O J° O° O O° O &° Of o°
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% The elements of B are assumed to correspond to a 1-pixel-thick,
% fully-connected, closed boundary. B cannot contain duplicate

% coordinate pairs, except in the first and last positions, which
% is a common feature of boundary tracing programs.

%

%  FREEMAN CHAIN CODE REPRESENTATION

% The table on the left shows the 8-connected Freeman chain codes
% corresponding to allowed deltax, deltay pairs. An 8-chain is

% converted to a 4-chain if (1) if conn = 4; and (2) only

% transitions 0, 2, 4, and 6 occur in the 8-code. Note that

% dividing 0, 2, 4, and 6 by 2 produce the 4-code.

L T e

% deltax | deltay | 8-code corresp 4-code

% 0 1 0 0

% -1 1 1

% -1 0 2 1

% -1 -1 3

% 0 -1 4 2

% 1 —1 5

% 1 0 6 3

% 1 A 7

L e L L

%

% The formula z = 4*(deltax + 2) + (deltay + 2) gives the following
% sequence corresponding to rows 1-8 in the preceding table: z =
% 11,7,6,5,9,13,14,15. These values can be used as indices into the
% table, improving the speed of computing the chain code. The

% preceding formula is not unique, but it is based on the smallest
% integers (4 and 2) that are powers of 2.

% Preliminaries.

if nargin ==
dir = 'same';
conn = 8;
elseif nargin == 2
dir = 'same';
elseif nargin == 3
% Nothing to do here.
else
error('Incorrect number of inputs.')
end
[np, nc] = size(b);
if np < nc
error('B must be of size np-by-2.');
end

% Some boundary tracing programs, such as boundaries.m, output a
% sequence in which the coordinates of the first and last points are
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% the same. If this is the case, eliminate the last point.
if isequal(b(1, :), b(np, :))

np =np—1;

b =b(t:inp, :);
end

% Build the code table using the single indices from the formula
% for z given above:

C(11)=0; C(7)=1; C(6)=2; C(5)=3; C(9)=4;

C(13)=5; C(14)=6; C(15)=7;

% End of Preliminaries.

% Begin processing.

X0 = b(1, 1);

y0 = b(1, 2);

c.x0y0 = [x0, y0];

% Make sure the coordinates are organized sequentially:

% Get the deltax and deltay between successive points in b. The
% last row of a is the first row of b.

a = circshift(b, [-1, 0]);

% DEL = a — b is an nr-by-2 matrix in which the rows contain the
% deltax and deltay between successive points in b. The two

% components in the kth row of matrix DEL are deltax and deltay
% between point (xk, yk) and (xk+1, yk+1). The last row of DEL
% contains the deltax and deltay between (xnr, ynr) and (x1, y1),
% (i.e., between the last and first points in b).

DEL = a — b;

% If the abs value of either (or both) components of a pair
% (deltax, deltay) is greater than 1, then by definition the curve
% 1is broken (or the points are out of order), and the program
% terminates.
if any(abs(DEL(:, 1)) > 1) | any(abs(DEL(:, 2)) > 1);

error('The input curve is broken or points are out of order.')
end

o°

Create a single index vector using the formula described above.

z = 4%(DEL(:, 1) + 2) + (DEL(:, 2) + 2);

% Use the index to map into the table. The following are
% the Freeman 8-chain codes, organized in a 1-by-np array.
fcc = C(z);

% Check if direction of code sequence needs to be reversed.
if strcmp(dir, 'reverse')

fcc = coderev(fcc); % See below for function coderev.
end

% If 4-connectivity is specified, check that all components
% of fcc are 0, 2, 4, or 6.
if conn ==
val = find(fcc == 1 | fcc == 3 | fcc == 5 | fcc ==7 );
if isempty(val)

571



572  Appendix C 1@ M-Funtions

fcc = fce./2;
else

warning('The specified 4-connected code cannot be satisfied.')
end

end

% Freeman chain code for structure output.
.fcc = fcc;

Obtain the first difference of fcc.
.diff = codediff(fcc,conn); % See below for function codediff.

® O

(]

Obtain code of the integer of minimum magnitude.
.mm = minmag(fcc); % See below for function minmag.

O o°

Obtain the first difference of fcc
.diffmm = codediff(c.mm, conn);

o°

o

function cr = coderev(fcc)

Traverses the sequence of 8-connected Freeman chain code fcc in
the opposite direction, changing the values of each code
segment. The starting point is not changed. fcc is a 1-by-np
array.

Flip the array left to right. This redefines the starting point
as the last point and reverses the order of "travel" through the
code. ’

cr = fliplr(fcc);

o o° of of

o o o°

Next, obtain the new code values by traversing the code in the
opposite direction. (O becomes 4, 1 becomes 5, ... , 5 becomes 1,
6 becomes 2, and 7 becomes 3).

ind1 = find(0 <= cr & cr <= 3);

ind2 = find(4 <= cr & cr <= 7);

cr(ind1) = cr(ind1) + 4;

cr(ind2) = cr(ind2) - 4;

[
©
%
[

%

function z = minmag(c)

%MINMAG Finds the integer of minimum magnitude in a chain code.

Z = MINMAG(C) finds the integer of minimum magnitude in a given
4- or 8-connected Freeman chain code, C. The code is assumed to
be a 1-by-np array.

o o° o°

% The integer of minimum magnitude starts with min(c), but there
% may be more than one such value. Find them all,
I = find(c == min(c));
% and shift each one left so that it starts with min(c).
J =0;
A = zeros(length(I), length(c));
for k = I;
Jd=4Jd+1;
A(J, :) = circshift(c,[0 —(k-1)]);

end
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% Matrix A contains all the possible candidates for the integer of
% minimum magnitude. Starting with the 2nd column, succesively find
% the minima in each column of A. The number of candidates decreases
% as the seach moves to the right on A. This is reflected in the
% elements of J. When length(J)=1, one candidate remains. This is
% the integer of minimum magnitude.
[M, N] = size(A);
J = (1:M) '
for k = 2:N
D(1:M, 1) = Inf;
D(J, 1) = A(J, K);
amin = min(A(J, k));
J = find(D(:, 1) == amin);
if length(J)==1
z =AW, 1);
return
end
end

function d = codediff(fcc, conn)

%CODEDIFF Computes the first difference of a chain code.

% D = CODEDIFF(FCC) computes the first difference of code, FCC. The
% code FCC is treated as a circular sequence, so the last element
% of D is the difference between the last and first elements of

% FCC. The input code is a 1-by-np vector.

%

% The first difference is found by counting the number of direction

% changes (in a counter-clockwise direction) that separate two
adjacent elements of the code.

%

sr = circshift(fcc, [0, —-1]1); % Shift input left by 1 location.
delta = sr - fcc;

d = delta;

I = find(delta < 0);

type = conn;

switch type

case 4 % Code is 4-connected
d(I) = d(I) + 4;

case 8 % Code is 8-connected
d(I) = d(I) + 8;

end

G

function g = gscale(f, varargin)

%GSCALE Scales the intensity of the input image.

% G = GSCALE(F, 'full8') scales the intensities of F to the full
% 8-bit intensity range [0, 255]. This is the default if there is
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only one input argument.

G = GSCALE(F, 'full16') scales the intensities of F to the full
16-bit intensity range [0, 65535].

G = GSCALE(F, 'minmax', LOW, HIGH) scales the intensities of F to
the range [LOW, HIGH]. These values must be provided, and they
must be in the range [0, 1], independently of the class of the
input. GSCALE performs any necessary scaling. If the input is of
class double, and its values are not in the range [0, 1], then
GSCALE scales it to this range before processing.

0° 0° ° o° o O° O° O° O° I O° o° o°

The class of the output is the same as the class of the input.

if length(varargin) == 0 % If only one argument it must be f.
method = 'full8';

else
method = varargin{1};

end

if strcmp(class(f), 'double') & (max(f(:)) > 1 | min(f(:)) < 0)
f = mat2gray(f);
end

% Perform the specified scaling.
switch method
case 'fulls'
g = im2uint8(mat2gray(double(f)));
case 'fullie’
g = im2uinti6(mat2gray(double(f)));
case 'minmax'
low = varargin{2}; high = varargin{3};
if low > 1 | low < 0 | high > 1 | high <0
error('Parameters low and high must be in the range [0, 1].')
end
if strcmp(class(f), 'double')
low_in = min(f(:));
high_in = max(f(:));
elseif stremp(class(f), 'uint8')
low_in = double(min(f(:)))./255;
high_in = double(max(f(:)))./255;
elseif stremp(class(f), 'uint16')
low_in = double(min(f(:)))./65535;
high_in = double(max(f(:)))./65535;
end
% imadjust automatically matches the class of the input.
g = imadjust(f, [low_in high_in], [low high]);
otherwise
error('Unknown method."')
end
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function [X, R] = imstack2vectors(S, MASK)

%IMSTACK2VECTORS Extracts vectors from an image stack.

[X, R] = imstack2vectors(S, MASK) extracts vectors from S, which
is an M-by-N-by-n stack array of n registered images of size
M-by-N each (see Fig. 11.24). The extracted vectors are arranged
as the rows of array X. Input MASK is an M-by-N logical or
numeric image with nonzero values (1s if it is a logical array)
in the locations where elements of S are to be used in forming X
and Os in locations to be ignored. The number of row vectors in X
is equal to the number of nonzero elements of MASK. If MASK is
omitted, all M*N locations are used in forming X. A simple way to
obtain MASK interactively is to use function roipoly. Finally, R
is an array whose rows are the 2-D coordinates containing the
region locations in MASK from which the vectors in S were
extracted to form X.

o ° o° o° I° O° I° O° J° O O° o° o

% Preliminaries.
[M, N, n] = size(S);

if nargin ==

MASK = true(M, N);
else

MASK = MASK ~= 0;
end

% Find the set of locations where the vectors will be kept before
% MASK is changed later in the program.

[I, J] = find(MASK);

R = 1[I, J];

Now find X.

First reshape S into X by turning each set of n values along the third
dimension of S so that it becomes a row of X. The order is from top to
bottom along the first column, the second column, and so on.

= M*N;

= reshape(S, Q, n);

Now reshape MASK so that it corresponds to the right locations
vertically along the elements of X.
MASK = reshape(MASK, Q, 1);

% Keep the rows of X at locations where MASK is not 0.
X = X(MASK, :);

function [x, y] = intline(x1, x2, y1, y2)

%SINTLINE Integer-coordinate line drawing algorithm.

[X, Y] = INTLINE(X1, X2, Y1, Y2) computes an
approximation to the line segment joining (X1, Y1) and
(X2, Y2) with integer coordinates. X1, X2, Y1, and Y2
should be integers. INTLINE is reversible; that is,
INTLINE(X1, X2, Y1, Y2) produces the same results as
FLIPUD(INTLINE(X2, X1, Y2, Y1)).

o

>X O o° o° o°

o of

o° o° o of of o°
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% Copyright 1993-2002 The MathWorks, Inc. Used with permission.
$Revision: 5.11 $ $Date: 2002/03/15 15:57:47 $

abs(x2 — x1);
abs(y2 — y1);

%
dx
dy
% Check for degenerate case.
if ((dx == 0) & (dy == 0))

X = X1;

y =yt

return;
end
flip = 0;
if (dx >= dy)

if (x1 > x2)
% Always "draw" from left to right.
t=x1; x1 = x2; x2 = t;
t =yl y1 =y2; y2 = t;

flip = 1;
end
m= (y2 = y1)/(x2 = x1);
X = (x1:x2).';
y = round(yl + m*(x — x1));
else
if (y1 > y2)
% Always “"draw" from bottom to top.
t =x1; x1 =x2; x2 = t;
t=y1; y1 =y2; y2 = t;
flip = 1;
end
m= (x2 — x1)/(y2 — y1);
y = (y1:y2). '
X = round(xt + m*(y — y1));
end
if (flip)
x = flipud(x);
y = flipud(y);
end

function phi = invmoments(F)

%INVMOMENTS Compute invariant moments of image.

PHI = INVMOMENTS(F) computes the moment invariants of the image
F. PHI is a seven-element row vector containing the moment
invariants as defined in equations (11.3-17) through (11.3-23) of
Gonzalez and Woods, Digital Image Processing, 2nd Ed.

o° o° o° o° o° o°

F must be a 2-D, real, nonsparse, numeric or logical matrix.

if (ndims(F) ~= 2) | issparse(F) | ~isreal(F) | ~(isnumeric(F) | ...
islogical(F))
error(['F must be a 2-D, real, nonsparse, numeric or logical '...
‘matrix.']);
end
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F = double(F);
phi = compute_phi(compute_eta(compute_m(F)));

function m = compute_m(F)

[My, N] = size(F);

[x, y] = meshgrid(1:N, 1:M);

% Turn x, y, and F into column vectors to make the summations a bit
easier to compute in the following.

o°

X =x(1);
y =y(:);
F=F();
% DIP equation (11.3-12)
m.m00 = sum(F);
% Protect against divide-by-zero warnings.
if (m.m00 == 0)
m.m00 = eps;
end

% The other central moments:

m.m10 = sum(x .* F);

m.m01 = sum(y .* F);

m.mi1 = sum(x .*y .* F);
m.m20 = sum(x."2 .* F);
m.m02 = sum(y.”2 .* F);
m.m30 = sum(x.”3 .* F);
m.m03 = sum(y."3 .* F);
m.mi2 = sum(x .* y."2 .* F);
m.m21 = sum(x."2 .* y .* F);

function e = compute_eta(m)
% DIP equations (11.3-14) through (11.3-16).

xbar = m.m10 / m.m0O;
ybar = m.m01 / m.m0O;
e.etallt = (m.mi1 — ybar*m.m10) / m.m00"2;
e.eta20 = (m.m20 — xbar*m.m10) / m.m00"2;
e.eta02 = (m.m02 — ybar*m.m01) / m.m00"2;
e.eta30 = (m.m30 — 3 * xbar * m.m20 + 2 * xbar*2 * m.m10) / m.m00"2.5;
e.eta03 = (m.m03 — 3 * ybar * m.m02 + 2 * ybar*2 * m.m01) / m.m00"2.5;
e.eta21t = (m.m21 — 2 * xbar * m.m11 — ybar * m.m20 + ...
2 * xbar*2 * m.m01) / m.m00"2.5;
e.etal2 = (m.m12 — 2 * ybar * m.m11 — xbar * m.m02 + ..
2 * ybar*2 * m.m10) / m.m00"2.5;

S n = = m e n e e e ieeiaaiioiioaas %

function phi = compute_phi(e)
% DIP equations (11.3-17) through (11.3-23).
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phi(1) = e.eta20 + e.eta02;
phi(2) = (e.eta20 — e.etal02)"2 + 4*e.etal1"2;
phi(3) = (e.eta30 — 3*e.etal2)"2 + (3*e.eta21 - e. eta03) 2;
phi(4) = (e.eta30 + e.etal2)"2 + (e.eta21 + e.etad3)"2
phi(5) = (e.eta30 - 3*e.etal2) * (e eta30 + e.etal2) «
( (e.eta30 + e.etal2)"2 — 3*(e.eta21 + e.etald3)"2 ) + ...
(3*e.eta21 — e.etal3) * (e.eta21 + e.etal3) * ...
( 3*(e.etad30 + e. eta12)A2 (e.eta21 + e.etal3)"2 );
phi(6) = (e.eta20 — e.eta02) * ( (e.eta30 + e.etat2)"2 — ...
(e.eta21 + e.etal3)"2 ) + ...
4 * e.etall * (e.etal30 + e.etal2) * (e.eta21 + e.eta03);
phi(7) = (3*e.eta21 - e.etal3) * (e.etal30 + e.etal2) * ...

(

( (e.eta30 + e.etal2)"2 — 3*(e.eta21 + e.etal3)"2 ) +
(3*e.etal2 — e.eta30) * (e.eta21 + e.etal3) * .

( 3*(e.eta30 + e.etal2)"2 — (e.eta21 + e.etald3)"2 );

function [x, y] = minperpoly(B, cellsize)
SMINPERPOLY Computes the minimum perimeter polygon.

S° 0° A% ° J° O° O° I° O° o°

[X, Y] = MINPERPOLY(F, CELLSIZE) computes the vertices in [X, Y]
of the minimum perimeter polygon of a single binary region or
boundary in image B. The procedure is based on Slansky's
shrinking rubber band approach. Parameter CELLSIZE determines the
size of the square cells that enclose the boundary of the region
in B. CELLSIZE must be a nonzero integer greater than 1.

The algorithm is applicable only to boundaries that are not
self-intersecting and that do not have one-pixel-thick
protrusions.

if cellsize <= 1

end

=

A o X X °® °® — I W I o° o° o°

error('CELLSIZE must be an integer > 1.');

Fill B in case the input was provided as a boundary. Later
the boundary will be extracted with 4-connectivity, which
is required by the algorithm. The use of bwperim assures
that 4-connectivity is preserved at this point.

imfill(B, ‘'holes');
bwperim(B);
N] = size(B);

Increase image size so that the image is of size K-by-K
with (a) K >= max(M,N) and (b) K/cellsize = a power of 2.

nextpow2(max (M, N)/cellsize);
(2°K)*cellsize;

Increase image size to nearest integer power of 2, by
appending zeros to the end of the image. This will allow
quadtree decompositions as small as cells of size 2-by-2,
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which is the smallest allowed value of cellsize.

K — M;

K — N;

padarray (B, [M N], 'post'); % f is now of size K-by-K

W == o°

uadtree decomposition.
qtdecomp(B, 0, cellsize);

[=3
n o

Get all the subimages of size cellsize-by-cellsize.
vals, r, c] = qtgetblk(B, Q, cellsize);

Get all the subimages that contain at least one black

pixel. These are the cells of the wall enclosing the boundary.
find(sum(sum(vals(:, :, :)) >= 1));

r(I);

c(I);

[x', y'] is a length(I)-by-2 array. Each member of this array is
the left, top corner of a black cell of size cellsize-by-cellsize.
Fill the cells with black to form a closed border of black cells
around interior points. These cells are the cellular complex.
or k = 1:length(I)

B(x(k):x(k) + cellsize—1, y(k):y(k) + cellsize-1) = 1;
end

BF = imfill(B, 'holes');

Extract the points interior to the black border. This is the region
of interest around which the MPP will be found.

—h 0 O I P < X H P P — °
n n

o o°

B = BF & (-B);

% Extract the 4-connected boundary.

B = boundaries(B, 4, 'cw');

% Find the largest one in case of parasitic regions.
J = cellfun('length', B);

I = find(J == max(J));

B = B{I(1)};

Function boundaries outputs the last coordinate pair equal to the
first. Delete it.
= B(1:end-1,:);

Obtain the xy coordinates of the boundary.
B(:, 1);
B(:, 2);

Find the smallest x-coordinate and corresponding
smallest y-coordinate.

find(x == min(x));

find(y == min(y(cx)));

o°® I o° o°

o o < X
won

o

X
y

(9]

% The cell with top leftmost corner at (x1, y1) below is the first
% point considered by the algorithm. The remaining points are
% visited in the clockwise direction starting at (x1, y1).
x(cx(1));

y(cy(1));

X1
y1
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Scroll data so that the first point is (x1, y1).
find(x == x1 & y == y1);

= circshift(x, [=(I = 1), 0]);

circshift(y, [—-(I - 1), 0]);

The same shift applies to B.
= circshift(B, [—(I - 1), 0]);

Get the Freeman chain code. The first row of B is the required
starting point. The first element of the code is the transition
between the 1st and 2nd element of B, the second element of

the code is the transition between the 2nd and 3rd elements of B,
and so on. The last element of the code is the transition between
the last and 1st elements of B. The elements of B form a cw
sequence (see above), so we use 'same' for the direction in
function fchcode.

code = fchcode(B, 4, 'same');

code = code.fcc;

< X o

o°

w

o o° J° I° o° O° o° o°

Follow the code sequence to extract the Black Dots, BD, (convex
corners) and White Dots, WD, (concave corners). The transitions are
as follows: 0-to-1=WD; 0-to0-3=BD; 1-t0-0=BD; 1-to-2=WD; 2-to-1=BD;
2-to-3=WD; 3-to-0=WD; 3-to-2=dot. The formula t = 2*first — second
gives the following unique values for these transitions: -1, -3, 2,
0, 3, 1, 6, 4. These are applicable to travel in the cw direction.
The WD's are displaced one-half a diagonal from the BD's to form
the half-cell expansion required in the algorithm.

o o° ° o° o° O° o° o°

Vertices will be computed as array "vertices" of dimension nv-by-3,
where nv is the number of vertices. The first two elements of any
row of array vertices are the (x,y) coordinates of the vertex
corresponding to that row, and the third element is 1 if the
vertex is convex (BD) or 2 if it is concave (WD). The first vertex
is known to be convex, so it is black.

vertices = [x1, y1, 1];

o o° o° o° o° o°

for k = 2:1length(code)
if code(k — 1) ~= code(k)
n=n+ij

t = 2*code(k-1) — code(k); % t = value of formula.
ift==-3]t==2]1t==8] t==4% Convex: Black Dots.
vertices(n, 1:3) = [x(k), y(k), 11;
elseif t == -1 | t==0] t==1] 1t ==6 % Concave: White Dots.
if t == -
vertices(n, 1:3) = [x(k) — cellsize, y(k) — cellsize,2];
elseif t==
vertices(n, 1:3) = [x(k) + cellsize, y(k) — cellsize,2];
elseif t==
vertices(n, 1:3) = [x(k) + cellsize, y(k) + cellsize,2];
else
vertices(n, 1:3) = [x(k) — cellsize, y(k) + cellsize,2];

end
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else
% Nothing to do here.
end
end
end

% The rest of minperpoly.m processes the vertices to
% arrive at the MPP.

flag = 1;
while flag
% Determine which vertices lie on or inside the
% polygon whose vertices are the Black Dots. Delete all
% other points.
I = find(vertices(:, 3) == 1);
xv = vertices(I, ; % Coordinates of the Black Dots.
3

(:
1);
yv = vertices(I, 2);
1) %
2);

X = vertices(:, s Coordinates of all vertices.
Y = vertices(:,
N = inpolygon(X, Y, xv, yv);
= find(IN ~= 0);
vertices = vertices(I, :);

% Now check for any Black Dots that may have been turned into
% concave vertices after the previous deletion step. Delete
% any such Black Dots and recompute the polygon as in the
% previous section of code. When no more changes occur, set
% flag to 0, which causes the loop to terminate.
= vertices(:, 1);
= vertices(:, 2);
ngles = polyangles(x, y); % Find all the interior angles.
= find(angles > 180 & vertices(:, 3) == 1);
if isempty(I)
flag = 0;
else
J = 1:length(vertices);
for k = 1:length(I)
K = find(J ~= I(k));
J = J(K);
end
vertices = vertices(dJ, :);
end

i

Final pass to delete the vertices with angles of 180 degrees.
= vertices(:, 1);

= vertices(:, 2);

g = polyangles(x, y);

= find(angles ~= 180);

ertices of the MPP:
X = vertices(I, 1);
y = vertices(I, 2);

oe
N <<
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P

function B = pixeldup(A, m, n)

%PIXELDUP Duplicates pixels of an image in both directions.

B = PIXELDUP(A, M, N) duplicates each pixel of A M times in the
vertical direction and N times in the horizontal direction.
Parameters M and N must be integers. If N is not included, it
defaults to M.

% Check inputs.
if nargin < 2
error('At least two inputs are required.');

o® o° o° o°

end

if nargin ==
n=m

end

% Generate a vector with elements 1:size(A, 1).
= 1:size(A, 1);

u
% Duplicate each element of the vector m times.

round(m); % Protect against nonintergers.

= u(ones(1, m), :);

u(:);

Now repeat for the other direction.

1:size(A, 2);

= round(n);

= v(ones(1, n), );

=v(:);

Alu, v);

function angles = polyangles(x, Y)

%POLYANGLES Computes internal polygon angles.

ANGLES = POLYANGLES(X, Y) computes the interior angles (in
degrees) of an arbitrary polygon whose vertices are given in
[X, Y], ordered in a clockwise manner. The program eliminates
duplicate adjacent rows in [X Y], except that the first row may
equal the last, so that the polygon is closed.

[ e )
1 0]

o®

< < 5<
|

o o° of o o°

% Preliminaries.
[x y] = dupgone(x, y); % Eliminate duplicate vertices.
xy = [x(:) y(:)];
if isempty(xy)
% No vertices!
angles = zeros(0, 1);
return;
end
if size(xy, 1) == 1 | ~isequal(xy(1, :), xy(end, :))
% Close the polygon
xy(end + 1, 1) = xy(1, :);
end

% Precompute some quantities.
d = diff(xy, 1);
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vl = —d(1:end, :);

v2 = [d(2:end, :); d(1, :)];
vi_dot_v2 = sum(vi .* v2, 2);
mag_v1 = sqrt(sum(vl.”2, 2));
mag_v2 = sqrt(sum(v2.°2, 2));

% Protect against nearly duplicate vertices; output angle will be 90
% degrees for such cases. The "real" further protects against

% possible small imaginary angle components in those cases.
mag_v1(~mag_v1) = eps;

mag_v2(~mag_v2) = eps;

angles = real(acos(vi_dot_v2 ./ mag_v1 ./ mag_v2) * 180 / pi);

% The first angle computed was for the second vertex, and the

% last was for the first vertex. Scroll one position down to

% make the last vertex be the first.

angles = circshift(angles, [1, 0]);

% Now determine if any vertices are concave and adjust the angles
% accordingly.

sgn = convex_angle_test(xy);

% Any element of sgn that's —1 indicates that the angle is

% concave. The corresponding angles have to be subtracted

% from 360.

I = find(sgn == -1);

angles(I) = 360 — angles(I);

function sgn = convex_angle_ test(xy)

The rows of array xy are ordered vertices of a polygon. If the
kth angle is convex (>0 and <= 180 degress) then sgn(k) =

1. Otherwise sgn(k) = —1. This function assumes that the first
vertex in the list is convex, and that no other vertex has a
smaller value of x-coordinate. These two conditions are true in
the first vertex generated by the MPP algorithm. Also the
vertices are assumed to be ordered in a clockwise sequence, and
there can be no duplicate vertices.

The test is based on the fact that every convex vertex is on the
positive side of the line passing through the two vertices
immediately following each vertex being considered. If a vertex
is concave then it lies on the negative side of the line joining
the next two vertices. This property is true also if positive and
negative are interchanged in the preceding two sentences.

% It is assumed that the polygon is closed. If not, close it.
if size(xy, 1) == 1 | ~isequal(xy(1, :), xy(end, :))
xy(end + 1, 1) =xy(1, :);
end
% Sign convention: sgn = 1 for convex vertices (i.e, interior angle > 0
% and <= 180 degrees), sgn = —1 for concave vertices.

o o° o° d° o° o O° O° Of o o° o° Of o o°
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% Extreme points to be used in the following loop. A 1 is appended
% to perform the inner (dot) product with w, which is 1-by-3 (see
% below).

L = 10°25;

top_left = [-L, -L, 1];
top_right = [-L, L, 1];
bottom_left = [L, -L, 1];
bottom_right = [L, L, 1];

sgn = 1; % The first vertex is known to be convex.

% Start following the vertices.
for k = 2:1length(xy) — 1
pfirst= xy(k = 1, :);
psecond = xy(k, :); % This is the point tested for convexity.
pthird = xy(k + 1, :);
Get the coefficients of the line (polygon edge) passing
through pfirst and psecond.
= polyedge(pfirst, psecond);

Establish the positive side of the line wix + w2y + w3 = 0.

The positive side of the line should be in the right side of the
vector (psecond — pfirst). deltax and deltay of this vector

give the direction of travel. This establishes which of the

extreme points ‘(see above) should be on the + side. If that

point is on the negative side of the line, then w is replaced by -w.

o® o°

=

d® o° o° o° o° o°

deltax = psecond(:, 1) — pfirst(:, 1);

deltay = psecond(:, 2) — pfirst(:, 2);

if deltax == 0 & deltay ==
error('Data into convexity test is O or duplicated.')

end

if deltax <= 0 & deltay >= 0 % Bottom_right should be on + side.
vector_product = dot(w, bottom_right); % Inner product.
w = sign(vector_product)*w;

elseif deltax <= 0 & deltay <= 0 % Top_right should be on + side.
vector_product = dot(w, top_right);
w = sign(vector_product)*w;

elseif deltax >= 0 & deltay <= 0 % Top_left should be on + side.
vector_product = dot(w, top_left);
w = sign(vector_product)*w;

else % deltax >= 0 & deltay >= 0, so bottom_left should be on + side.
vector_product = dot(w, bottom_left);
w = sign(vector_product)*w;

end

% For the vertex at psecond to be convex, pthird has to be on the

% positive side of the line.

sgn(k) = 1;

if (w(1)*pthird(:, 1) + w(2)*pthird(:, 2) + w(3)) <O
sgn(k) = -1;

end

end



Appendix ¢ © M-Funtions

function w = polyedge(p1, p2)
% Outputs the coefficients of the line passing through p1 and
% p2. The line is of the form wix + w2y + w3 = 0.

x1 = p1(:, 1); y1 =pi(:, 2);
x2 =p2(:, 1); y2 =p2(:, 2);
if xi==
w2 = 0;
wl = —1/x1;
w3 = 1;
elseif yi==y2
wi = 0;
w2 -1/y1;
w3
elseif x1 ==yl & x2 == y2
wl =1;
w2 = 1;
w3 = 0;
else
wi
w2

nonwon

(y1 = y2)/(x1*(y2 = y1) — y1*(x2 — x1) + eps);
-wi*(x2 — x1)/(y2 — y1);
1

nou

function [xg, yg] = dupgone(x, y)
% Eliminates duplicate, adjacent rows in [x y], except that the
% first and last rows can be equal so that the polygon is closed.

Xg = X;

Yg =Y;

if size(xg, 1) >
I = find((x(1: end 1, 1) == x(2:end, :)) & ...

(y(1 end-1, :) == y(2:end, :)));

xg(I) =
yg(I) = [1;

end

R

function [xn, yn] = randvertex(x, y, npix)

%RANDVERTEX Adds random noise to the vertices of a polygon.

[XN, YN] = RANDVERTEX[X, Y, NPIX] adds uniformly distributed
noise to the coordinates of vertices of a polygon. The
coordinates of the vertices are input in X and Y, and NPIX is the
maximum number of pixel locations by which any pair (X(i), Y(i))
is allowed to deviate. For example, if NPIX = 1, the location of
any X(1i) will not deviate by more than one pixel location in the
x-direction, and similarly for Y(i). Noise is added independently
to the two coordinates.

0 % o o° J° o° o° o°
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% Convert to columns.

= x(1);

y(:);

Preliminary calculations.

L = length(x);

xnoise = rand(L, 1);

ynoise = rand(L, 1);

xdev = npix*xnoise.*sign(xnoise — 0.5);
ydev = npix*ynoise.*sign(ynoise — 0.5);

< x
it

o°

% Add noise and round.
xn = round(x + xdev);
yn = round(y + ydev);

% All pixel locations must be no less than 1.
Xn = max(xn, 1);
yn = max(yn, 1);

S

function [st, angle, x0, y0] = signature(b, varargin)

%SIGNATURE Computes the signature of a boundary.

[ST, ANGLE, X0, YO] = SIGNATURE(B) computes the

signature of a given boundary, B, where B is an np-by-2 array
(np > 2) containing the (x, y) coordinates of the boundary
ordered in a clockwise or counterclockwise direction. The
amplitude of the signature as a function of increasing ANGLE is
output in ST. (XO0,Y0) are the coordinates of the centroid of the
boundary. The maximum size of arrays ST and ANGLE is 360-by-1,
indicating a maximum resolution of one degree. The input must be
a one-pixel-thick boundary obtained, for example, by using the
function boundaries. By definition, a boundary is a closed curve.

[ST, ANGLE, X0, YO] = SIGNATURE(B) computes the signature, using
the centroid as the origin of the signature vector.

[ST, ANGLE, X0, YO] = SIGNATURE(B, X0, YO) computes the boundary
using the specified (X0, YO) as the origin of the signature
vector.

o ° o° o ° ° O o° O° O° O I O° O° ° o° o°

% Check dimensions of b.
[np, nc] = size(b);
if (np < nc | nc ~= 2)
error('B must be of size np-by-2.');
end

Some boundary tracing programs, such as boundaries.m, end where
they started, resulting in a sequence in which the coordinates

of the first and last points are the same. If this is the case,
in b, eliminate the last point.

if isequal(b(1, :), b(np, :))

b=>Db(linp -1, 1);

o® o° o° o°
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np =np—1;

end

% Compute parameters.

if nargin ==
x0 = round(sum(b(:, 1))/np); % Coordinates of the centroid.
y0 = round(sum(b(:, 2))/np);

elseif nargin ==

x0 = varargin{i};

y0 = varargin{2};
else

error('Incorrect number of inputs.');
end

% Shift origin of coord system to (x0, y0)).

b(:, 1) =b(:, 1) — x0;

b(:, 2) = b(:, 2) - y0;

% Convert the coordinates to polar. But first have to convert the

% given image coordinates, (x, y), to the coordinate system used by
% MATLAB for conversion between Cartesian and polar cordinates.

% Designate these coordinates by (xc, yc). The two coordinate systems
% are related as follows: xc =Yy and yc = —X.

xc = b(:, 2);

yc = =b(:, 1);
[theta, rho] = cart2pol(xc, yc);.

% Convert angles to degrees.
theta = theta.*(180/pi);

% Convert to all nonnegative angles.
j = theta == 0; % Store the indices of theta = 0 for use below.
theta = theta.*(0.5*abs(1 + sign(theta)))...
— 0.5%(—1 + sign(theta)).*(360 + theta);
theta(j) = 0; % To preserve the 0 values.

temp = theta;

% Order temp so that sequence starts with the smallest angle.
% This will be used below in a check for monotonicity.

I = find(temp == min(temp));

Scroll up so that sequence starts with the smallest angle.
Use I(1) in case the min is not unique (in this case the
sequence will not be monotonic anyway).

temp = circshift(temp, [—(I(1) — 1), 01);

% Check for monotonicity, and issue a warning if sequence
% is not monotonic. First determine if sequence is
% Cw Oor ccw.
abs(temp(1) — temp(2));
abs(temp(1) — temp(3));
if k2 > ki
sense = 1; % ccw
elseif k2 < k1
sense = —1; % cw

X X
N —
won
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else

warning(['The first 3 points in B do not form a monotonic '

'sequence.']);

end
% Check the rest of the sequence for monotonicity. Because
the angles are rounded to the nearest integer later in the
program, only differences greater than 0.5 degrees are
considered in the test for monotonicity in the rest of
the sequence.
flag = 0;
for k = 3:length(temp) - 1

diff = sense*(temp(k + 1) — temp(k));

o® o o o°

if diff < -.5
flag = 1;
end
end
if flag
warning('Angles do not form a monotonic sequence.');
end

% Round theta to 1 degree increments.
theta = round(theta);

% Keep theta and rho together.
tr = [theta, rho];’

% Delete duplicate angles. The unique operation

% also sorts the input in ascending order.

[w, u, v] = unique(tr(:, 1));

tr = tr(u,:); % u identifies the rows kept by unique.

% If the last angle equals 360 degrees plus the first
% angle, delete the last angle.
if tr(end, 1) == tr(1) + 360
tr = tr(t:end — 1, :);
end

% Output the angle values.
angle = tr(:, 1);

% The signature is the set of values of rho corresponding
% to the angle values.
st = tr(:, 2);

function [srad, sang, S] = specxture(f)

%SPECXTURE Computes spectral texture of an image.

[SRAD, SANG, S] = SPECXTURE(F) computes SRAD, the spectral energy
distribution as a function of radius from the center of the
spectrum, SANG, the spectral energy distribution as a function of
angle for O to 180 degrees in increments of 1 degree, and S =
log(1 + spectrum of f), normalized to the range [0, 1]. The
maximum value of radius is min(M,N), where M and N are the number
of rows and columns of image (region) f. Thus, SRAD is a row
vector of length = (min(M, N)/2) — 1; and SANG is a row vector of
length 180.

o ° o° d° o° O° J° o° o°
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% Obtain the centered spectrum, S, of f. The variables of S are

% (u, v), running from 1:M and 1:N, with the center (zero frequency)
% at [M/2 + 1, N/2 + 1] (see Chapter 4).

S = fftshift(fft2(f));

S = abs(S);

[M, N] = size(S);

X0 = M/2 + 1;

yo = N/2 + 1;

% Maximum radius that guarantees a circle centered at (x0, y0) that
% does not exceed the boundaries of S.
rmax = min(M, N)/2 — 1;

% Compute srad.
srad = zeros(1, rmax);
srad(1) = S(x0, y0);
for r = 2:rmax
[xc, yc] = halfcircle(r, x0, yO0);
srad(r) = sum(S(sub2ind(size(S), xc, yc)));
end

% Compute sang.
[xc, yc] = halfcircle(rmax, x0, y0);
sang = zeros(1, length(xc));
for a = 1:length(xc) ;
[xr, yr] = radial(x0, y0, xc(a), yc(a));
sang(a) = sum(S(sub2ind(size(S), xr, yr)));
end

% Output the log of the spectrum for easier viewing, scaled to the
% range [0, 1].
S = mat2gray(log(1 + S));

function [xc, yc] = halfcircle(r, x0, y0)
Computes the integer coordinates of a half circle of radius r and
center at (x0,y0) using one degree increments.

Goes from 91 to 270 because we want the half circle to be in the
region defined by top right and top left quadrants, in the
standard image coordinates.

o® o° of o o°

o°

theta=91:270;
theta = theta*pi/180;

[xc, yc] = pol2cart(theta, r);
Xc = round(xc)' + x0; % Column vector.
yc = round(yc)' + y0;

function [xr, yr] = radial(x0, y0, x, y);
Computes the coordinates of a straight line segment extending
from (x0, y0) to (X, y).

o® of of
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% Based on function intline.m. xr and yr are
% returned as column vectors.

[xr, yr] = intline(x0, x, y0, Vy);

function [v, unv] = statmoments(p, n)

%STATMOMENTS Computes statistical central moments of image histogram.
[W, UNV] = STATMOMENTS(P, N) computes up to the Nth statistical
central moment of a histogram whose components are in vector

P. The length of P must equal 256 or 65536.

The program outputs a vector V with V(1) = mean, V(2) = variance,
V(3) = 3rd moment, . . . V(N) = Nth central moment. The random
variable values are normalized to the range [0, 1], so all
moments also are in this range.

The program also outputs a vector UNV containing the same moments
as V, but using un-normalized random variable values (e.g., O to
255 if length(P) = 2"8). For example, if length(P) = 256 and V(1)
= 0.5, then UNV(1) would have the value UNV(1) = 127.5 (half of
the [0 255] range).

Lp = length(p);
if (Lp ~= 256) & (Lp ~= 65536)
error('P must be a 256- or 65536-element vector.');
end
G=1Lp-1;
% Make sure the histogram has unit area, and convert it to a
% column vector.
p = p/sum(p); p = p(:);
% Form a vector of all the possible values of the
% random variable.
z
%
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= 0:G;
Now normalize the z's to the range [0, 1].
z = 2./G;

% The mean.

m = z*p;

% Center random variables about the mean.
zZ=2z-m;

% Compute the central moments.
v = zeros(1, n);

v(1) = m;
for j = 2:n
v(i) = (z.77)*p;
, end

if nargout > 1
% Compute the uncentralized moments.
unv = zeros(1, n);
unv(1)=m.*G;
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for j = 2:
unv(j)
end
end

=}

((z*G)."1)*p;

function [t] = statxture(f, scale)
%STATXTURE Computes statistical measures of texture in an image.
% T = STATXURE(F, SCALE) computes six measures of texture from an
image (region) F. Parameter SCALE is a 6-dim row vector whose
elements multiply the 6 corresponding elements of T for scaling
purposes. If SCALE is not provided it defaults to all 1s. The
output T is 6-by-1 vector with the following elements:

T(1) = Average gray level

A o° o° ° I° O° P O° o° o

T(2) = Average contrast

T(3) = Measure of smoothness
T(4) = Third moment

T(5) = Measure of uniformity
T(6) = Entropy

if pargin == 1
scale(1:6) = 1;

else % Make sure it's a row vector.
scale = scale(:)';

end

% Obtain histogram and normalize. it.

p = imhist(f);

p./numel(f);

length(p);

p
L
% Compute the three moments. We need the unnormalized ones
% from function statmoments. These are in vector mu.

[v, mu] = statmoments(p, 3);

% Compute the six texture measures:

% Average gray level.

t(1) = mu(1);

% Standard deviation.

t(2) = mu(2).70.5;

% Smoothness.

% First normalize the variance to [0 1] by
% dividing it by (L-1)"2.

varn = mu(2)/(L - 1)"2;

t(3) =1 -1/(1 + varn);

% Third moment (normalized by (L — 1)"2 also).
t(4) = mu(3)/(L - 1)"2;

% Uniformity.

t(5) = sum(p."2);

% Entropy.

t(6) = —sum(p.*(log2(p + eps)));

% Scale the values.
t = t.*scale;
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X

function [B, theta] = x2majoraxis(A, B, type)

%sX2MAJORAXIS Aligns coordinate x with the major axis of a region.
[B2, THETA] = X2MAJORAXIS(A, B, TYPE) aligns the x-coordinate
axis with the major axis of a region or boundary. The y-axis is
perpendicular to the x-axis. The rows of 2-by-2 matrix A are the
coordinates of the two end points of the major axis, in the form
A = [x1 y1; x2 y2]. On input, B is either a binary image (i.e.,
an array of class logical) containing a single region, or it is
an np-by-2 set of points representing a (connected) boundary. In
the latter case, the first column of B must represent
x-coordinates and the second column must represent the
corresponding y-coordinates. On output, B contains the same data
as the input, but aligned with the major axis. If the input is an
image, so is the output; similarly the output is a sequence of
coordinates if the input is such a sequence. Parameter THETA is
the initial angle between the major axis and the x-axis. The
origin of the xy-axis system is at the bottom left; the x-axis is
the horizontal axis and the y-axis is the vertical.

Keep in mind that rotations can introduce round-off errors when
the data are converted to integer coordinates, which is a
requirement. Thus, postprocessing (e.g., with bwmorph) of the
output may be required to reconnect a boundary.
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% Preliminaries.
if islogical(B)

type = 'region';
elseif size(B, 2) == 2

type = 'boundary';

[M, N] = size(B);

if M <N

error('B is boundary. It must be of size np-by-2; np > 2.')

end

% Compute centroid for later use. ¢ is a 1-by-2 vector.

% Its 1st component is the mean of the boundary in the x-direction.
% The second is the mean in the y-direction.
c(1) = round((min(B(:, 1)) + max(B(:, 1))/2));
c
%

(2) = round((min(B(:, 2)) + max(B(:, 2))/2));

It is possible for a connected boundary to develop small breaks
after rotation. To prevent this; the input boundary is filled,
processed as a region, and then the boundary is re-extracted. This
guarantees that the output will be a connected boundary.

= max(size(B));

The following image is of size m-by-m to make sure that there
there will be no size truncation after rotation.

bound2im(B,m,m);

imfill(B, 'holes');

° o° o°
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else
error('Input must be a boundary or a binary image'.)
end

% Major axis in vector form.
v(1) = A(2, 1) = A(1, 1);

v(2) = A(2, 2) - A(1, 2);

v =v(:); % v is a col vector

% Unit vector along x-axis.
u=[1; 0];

% Find angle between major axis and x-axis. The angle is
% given by acos of the inner product of u and v divided by
% the product of their norms. Because the inputs are image
% points, they are in the first quadrant.
nv = norm(v);
nu = norm(u);
theta = acos(u'*v/nv*nu);
if theta > pi/2
theta = —(theta — pi/2);
end
theta = theta*180/pi; % Convert angle to degrees.

% Rotate by angle theta and crop the rotated image to original size.
B = imrotate(B, theta, 'bilinear', 'crop');

% If the input was a boundary, re-extract it.
if strcmp(type, 'boundary')
B = boundaries(B);
B = B{1};
% Shift so that centroid of the extracted boundary is
% approx equal to the centroid of the original boundary:
B(:y 1) = B(:y, 1) — min(B(:, 1)) + c(1);
B(:, 2) =B(:, 2) —min(B(:, 2)) + c(2);

end
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