CHAPTER 8

Geometric Operations

8.1 INTRODUCTION

Geometric operations change the spatial relationships among the objects in an image. Such
operations may be thought of as moving things around within the image. The effect is the
same as printing the image on a rubber sheet, stretching the rubber sheet, and tacking it
down at various points. Actually, a geometric operation is much more general than that,
since any point in the input image may move to any position in the output image. Such an
unconstrained geometric operation would almost certainly scramble the image content, so
geometric operations are generally constrained to preserve some semblance of order.

Two separate algorithms are required for a geometric operation. First, there must be an
algorithm that defines the spatial transformation itself. This specifies the “motion” of each
pixel as it “moves” from its initial to its final position in the image. Also required is an algo-
rithm for gray-level interpolation. This is necessary because, in general, integer x, y positions
in the input image map to fractional (noninteger) positions in the output image and conversely.

8.1.1 The Spatial Transformation

In most applications, it is desirable to preserve the continuity of curvilinear features and the
connectivity of objects within the image. A less constrained spatial transformation algo-
rithm would break up lines and objects and tend to “splatter” the contents of the image.
One could exhaustively specify the motion of each pixel in the image, but this
would quickly become unwieldy, even for small images. It is more convenient to specify
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mathematically the spatial relationship between points in the input image and points in the
output image. The general definition for a geometric operation is

g(xy) = f(x',y) = fla(x, y), b(xy)] ¢y
where f(x, y) is the input image and g(x, y) is the output image. The functions a(x, y) and
b(x, y) uniquely specify the spatial transformation. If they are continuous, connectivity will
be preserved within the image.

8.1.2 Gray-Level Interpolation

The second requirement for a geometric operation is an algorithm for the interpolation of
gray-level values. In the input image f(x, y), the gray-level values are defined only at inte-
gral values of x and y. Eq. (1), however, will in general dictate that the gray-level value for
g (x, y) be taken from f(x, y) at fractional (nonintegral) coordinate positions. If the geometric
operation is considered a mapping from fto g, pixels in f can map to positions between pix-
els in g and vice versa. For the purposes of this discussion, we stipulate that pixels be located
exactly at integral coordinates of the sampling grid.

Armed with a spatial transformation and an algorithm for gray-level interpolation, we
are prepared to perform a geometric operation. Usually, the gray-level interpolation algo-
rithm is permanently established in the computer program. The algorithm defining the spa-
tial transformation, however, is specified uniquely for the task at hand. Since the gray-level
interpolation algorithm is always the same, or one of several options, it is the spatial trans-
formation that defines a particular geometric operation.

8.1.3 Implementation

One can adopt either of two approaches when implementing a geometric operation. One can
think of the operation as transferring the gray levels from the input image to the output
image, pixel by pixel. If an input pixel maps to a position between four output pixels, then
its gray level is divided among the four output pixels according to the interpolation rule. We
call this the pixel carry-over or forward-mapping approach. (See Figure 8-1.)

An alternative, and more effective, implementation is achieved by the pixel-filling or
backward-mapping algorithm. In this case, the output pixels are mapped back into the input
image, one at a time, to establish their gray levels. If an output pixel falls between four input
pixels, its gray level is determined by gray-level interpolation (Figure 8—1). The backward
spatial transformation is the inverse of the forward transformation.

The forward-mapping algorithm is somewhat wasteful, since many input pixels
might map to positions outside the border of the output image. Furthermore, each output
pixel might be addressed several times, with many input pixels contributing to its final gray-
level value. If the spatial transformation involves demagnification, more than four input
pixels would contribute. If magnification were involved, certain of the output pixels might
be missed when no input pixels mapped to positions near their location.

The backward-mapping algorithm, however, generates the output image pixel by
pixel, line by line. The gray level of each pixel is uniquely determined by one interpolation
step between, at most, four input pixels. The input image, of course, must be accessed ran-
domly in a manner defined by the spatial transformation, and this can be quite complex.
Nevertheless, the pixel-filling approach is the more practical algorithm for general use.
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Figure 8-1 Pixel transfer

8.2 GRAY-LEVEL INTERPOLATION

Since output pixels map to fractiondl positions in the input image, they generally fall into
the space betweer four input pixels. Interpolation is then necessary to determine what gray
level corresponds to that position.

8.2.1 Nearest Neighbor Interpolation

The simiplest interpolation scheme is the so-called zero-order, or nearest neighbor, interpo-
lation. In this case, the gray level of the output pixel is taken to be that of the input pixel
nearest the location to which the output pixel maps. This is computationally simple and pro-
duces acceptablé results in many cases. However, nearest neighbor interpolation can intro-
duce artifacts in images containing fine structure whose gray level changes significantly
from one pixel to the next. Figure 8-2 shows an example of rotating images with nearest
neighbor interpolation, with the resulting sawtooth effect at some of the edges.

8.2.2 Bilinear Interpolation

First-order, or bilinear, interpolation produces more desirable results than does zero-order
interpolation, with only a slight increase in programming complexity and execution time.
Since fitting a plane through four points is an overconstrained problem, first-order interpo-
lation on a rectangular grid requires the bilinear function.

Let f(x, y) be a function of two variables that is known at the vertices of the unit
square. Suppose we desire to establish by interpolation the value of f(x, y) at an arbitrary
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Figure 8-2 Coniparison of zero-order and first-order gray level interpolation

point inside the square (Figure 8-3). We can do so by fitting a hyperbolic paraboloid,
defined by the bilinear equation '

f(x,y) = ax+by+cxy+d (2)

through the four known values.
The four coefficients, a through d, are to be chosen so that f(x, y) fits the known values
at the four corners. There is a simple algorithm that produces a bilinear interpolation function
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Figure 8-3 Bilinear interpolation
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which fits f(x, y) at the corners. First, we linearly interpolate between the upper two points to
establish the value of

f(x,0) = f(0,0) + x [f(1,0) - f(0,0)] ©)
Similarly, for the two lower points,

fe 1) = f(0, 1) +x[f(L, 1)~ £(0, )] “
Finally, we linearly interpolate vertically to determine the value of

Fuy) = f(x,0)+y[f(x, 1)~ f(x,0)] &)

Substituting Eqgs. (3) and (4) into Eq. (5), expanding, and collecting terms produces

fCoy) = [£(1,0)=£(0,0)]x+ [f(0, 1)~ £(0,0)]y
+ [f(1, D)+ £(0,0) - f(0, 1) - (1, 0)] xy + f(0, 0)
which is in the form of Eq. (2) and is thus bilinear. Upon inspection, it is clear that Eq. (6)
fits the four known values of f(x, y) at the corners of the unit square.

Notice that if we hold either x or y constant, Eq. (2) becomes linear in the other vari-
able. This illustrates that the hyperbolic paraboloid is a two-way ruled surface; that is, it
intersects all planes parallel to the xz-plane and all planes parallel to the yz-plane in a
straight line.

Bilinear interpolation can be implemented either directly, by Eq. (6), or by perform-
ing the triple linear interpalation given by Egs. (3), (4), and (5). Since Eq. (6) involves four
multiplications and eight additions or subtractions, geometric transformation programs
typically do the latter, which requires only three multiplications and six additions or
subtractions.

Although the foregoing development was performed on the unit square, it is easily
generalized by an integer translation, after which x and y represent the fractional pixel posi-
tion. Figure 8-2 compares bilinear with nearest neighbor interpolation.

When adjacent four-pixel neighborhoods are interpolated with the bilinear equation,
the resulting surfaces match in amplitude at the neighborhood boundaries, but do not match
in slope. Thus, a surface generated by piecewise bilinear interpolation is continuous, but its
derivatives, in general, are discontinuous at the neighborhood boundaries.

(6)

8.2.3 Higher Order Interpolation

In geometric operations, the smoothing effect of bilinear gray level interpolation may
degrade fine detail in the image, particularly if magnification is involved. In other applica-
tions, the slope discontinuities of bilinear interpolation may produce undesirable effects. In
either of these cases, the extra computational efforts of higher order interpolation may be
justified. A function similar to, but more complex than, Eq. (2) and having more than four
coefficients is made to fit through a neighborhood of more than four points.

If the number of coefficients equals the number of points, the interpolating surface
can be made to fit at every point. If the points outnumber the coefficients, a curve-fitting or
error-minimizing procedure can be used. Examples of higher order interpolating functions
are cubic splines, Legendre centered functions, and the function sin(ox)/cx. The latter is
discussed in later chapters. Higher order interpolation is usually implemented by convolu-
tion. A discussion of this is reserved for Part 2 of the text.
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8.3 THE SPATIAL TRANSFORMATION

Eq. (1) gives the general expression for the spatial transformation. It is instructive to con-
sider some less complex special cases before going on to general geometric operations.

8.3.1 Simple Transformations

If we let
a(x,y) = x bx,y)=y @)
in Eq. (1), we have the identity operation, which merely copies finto g without modification.
If we let
a(x,y) = x+x  b(xy)=y+y )

we have the translation operation, in which the point x,y is translated to the origin, and fea-

tures within the image are moved by an amount ,/x3 + y3. Using the formulation called

homogeneous coordinates [1-9] we can consider the x-y plane to be the z=1 plaue of three-
dimensional x, y, z space and write Eq. (8) compactly in matrix form as

a(x,y) 10xy||x
b,y T |01 yl|y ©))
1 001 |1
Letting
a(x,y) = xlc  b(x,y)=yld (10)

will magnify the image by the factors ¢ in the x-direction and d in the y-direction. The origin
of the image (typically the upper left-hand corner) remains stationary as the image
“expands.” In homogeneous coordinates Eq. (10) is written as

a(x,y)| |:00]|x
blxy)| T 1030/|y (i
1 001}l

Letting ¢ = —~1 produces a reflection about the y-axis,

a(X,y) = —X b(X,)’)=y (12)
and similarly for d and the x-axis.
Finally, letting

a(x,y) = x cos(8) -y sin(6) (13)
and
(x,y) = xsin ((6) +y cos(0) (14)

produces a rotation through an angle 6 about the origin. This equation can be written in
homogeneous coordinates as '
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a(x,y) cos(6) —sin(0) 0| x
b(x,y)| = | sin(6) cos(6) 0|y (15)
1 0 0 1i1

Clearly, we can combine translation with magnification to cause the image to “grow” about
a point other than the origin. Likewise, we can combine translation with rotation to produce
rotation about an arbitrary point.

Homogeneous coordinates provide a simple way to determine the formulas for com-
pound transformations. For example, rotation about the point x,y, is accomplished by

a(x,y) 10xy[|cos(8) —sin(6) 0|10 -xq/|x
b(x,y)| = |01 yy|| sin(6) cos(8) 0|01 —yy||y (16)
1 001 0 0 11{00 1 1

The image is first translated so that the point x,y, is at the origin, then rotated through the
angle 6, and then translated back to its origin. Multiplying out Eq. 16 yields the appropriate
transformation equations. Other compound transformations can be constructed similarly. In
the construction of the right-hand side of the equation, the sequence of operations is from
left to right.

Separable Implementations. If an image is subjected to translation [Eq. (8)]
or magnification [Eq. (11)], the output pixel addresses, a(x, y) and b(x, y), depend only on
xandy, respectively. Thus, it is possible, and sometimes more efficient, to perform the oper-
ation in two steps. First it is done, for example, in the horizontal direction, producing an
intermediate image. Then the vertical part of the operation proceeds, using the intermediate
image as its input and producing the final result.

Catmull and Smith [10] have shown that it is possible to perform a rotation in the
same type of two-step procedure. Solving for x in Eq. (13) yields

_a(x,y) +ysin(6)
- cos(6)
and substituting this into Eq. (14) leads to

a7

a(x,y)sin(0) +y

b(x,y) = T(G)_ (18)

Thus, we can use Eq. (13), which is linear in x along any scan line, in combination with
b(x,y) =y in the first (horizontal-only) part of the operation. Then we can use Eq. (18),
which is linear in y along any column, along with a(x, y) = x in the second (vertical-only)
part of the operation.

In this type of rotation, image features are “compressed” in the x-direction by the fac-
tor cos () in the first step, and then “expanded” in the y-direction in the second step. The
technique fails at multiples of 90 degrees, where the cosine goes through zero, and inaccu-
racy restricts it to smaller angles.

For image registration applications, the required rotation angles are normally small.
Even if this is not the case, rotation through multiples of 90 degrees can be done with simple
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row and column swapping. Thus, it is possible to rotate an image through any angle while
keeping the actual rotation angle between plus and minus 45 degrees and the compression
factor no less than 0.707. With this restriction, then, translation, magnification and rotation
have one-dimensional implementations.

8.3.2 General Transformations

For relatively simple spatial transformations, it may be practical to use an analytic expres-
sion for Eq. (1). In many image-processing applications, however, the desired spatial trans-
formation is relatively complex and not amenable to convenient mathematical expression.
Furthermore, the desired pixel translations are frequently obtained from measurement of
actual images, and it is desirable to specify the geometric transformation in these terms
rather than in functional form.

An example of this is the geometric calibration of an image taken with a camera having
geometric distortion. First, a rectangular grid target is digitized and displayed. Because of
geometric distortion in the camera, the displayed grid pattern will not be exactly rectangular.
(See Figure 8—4.) The desired spatial transformation is that which makes the grid pattern
rectangular again, thereby correcting the distortion introduced by the camera. This same spa-
tial transformation can then be used on subsequent images digitized by the same camera
(assuming that the distortion is not scene dependent), thereby producing undistorted images.

(b)

Figure 8—4 Geometric calibration of an early Ranger spacecraft camera: (a) before,
(b) after (Courtesy NASA-JPL, from [19])

8.3.3 Specification by Control Points

It is convenient to specify the spatial transformation as a series of displacement values for
selected control points in the image. Since only a small fraction of the pixels are actually
specified, the displacements of noncontrol points must be determined by interpolation.
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One way to do this is to develop functional expressions for a(x, y) and b(x, y) in Eq.
(1). Commonly, a polynomial is used as the general form of the transformation expression.
Its parameters are selected to make it fit the control points and their specified displacements.
This is called polynomial warping. It is practical to use polynomials up to the fifth order for
the transformation function [11].

In many cases, the limitations of polynomial warping will not accommodate the com-
plex transformation required. Thus, some programs for geometric operations break the image
up into polygonal regions and use piecewise bilinear mapping functions. The user specifies an
input control grid made up of control points that form the vertices of contiguous quadrilaterals
in the input image [11-16]. The input control grid maps to a grid of contiguous, horizontally
oriented rectangles in the output image (Figure 8--5). The vertices (input control points) of the
quadrilateral map directly to the corresponding vertices of the rectangle. Similarly, points
inside an input quadrilateral map to points within the corresponding output rectangle.

Input Output

8.3.4 Polynomial Warping

Figure 8-5 Spatial mapping of
control points

If the number of terms in the polynomial matches the number of control points, then the
transformation can be designed to map the control points exactly as specified. Solving for
the coefficients of the polynomial becomes an exercise in simultaneous linear equations,
and a matrix inversion will normally produce the required result. (See Sec. 19.5.2.)

If there are more control points than terms in the polynomial, however, a fitting pro-
cedure must be used to determine the coefficients of the polynomial. In this case, the spatial
transformation is a best fit to the control point specifications, and the mapping of individual
control points does not occur exactly as specified.

Techniques for fitting one- and two-dimensional functions to a set of given data
points are discussed in Section 19.5. The pseudoinverse technique (Sec. 19.5.2, Appendix
3) for determining the coefficients of the best fitting function is commonly used for poly-
nomial warping. Other numerical methods, such as singular value decomposition ([17],
Appendix 3) and orthonormal decomposition [11] may prove superior in practice.

Once the coefficients of the polynomial have been determined, the implementation is
the same as before. There are numerical methods, however, such as Horner’s nesting
scheme [11,18], that can reduce the required number of computational steps. Even so, the
task can be formidable when performing higher order warps on large images.

8.3.5 Control Grid Interpolation

If polynomial warping is impractical, the image must be warped in pieces. In the most com-
mon implementation, the input control points form a grid that maps to a grid of contiguous,
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horizontally oriented rectangles in the output image, as in Figure 8-5. The input control
points map to the vertices of the corresponding rectangles, while points inside each input
polygon map to points within the corresponding output rectangle.

Bilinear interpolation is a common choice for control grid interpolation, because it is
computationally simple and produces a smooth mapping that preserves continuity and con-
nectivity. The general expression for the bilinear spatial transformation is

G(x,y) = F(x',y') = Flax+by+cxy+d, ex+ fy+gxy+h) (19)

The bilinear transformation is defined by the values of the eight coefficients a through &. By
specifying that the four vertices of a quadrilateral map to the four vertices of the correspond-
ing rectangle, we create two sets of four linear equations in four unknowns. The mapping
from x' to x generates four equations in a, b, ¢, and d, and likewise for the mapping from y'
to y and the coefficients ¢, f, g, and h. These sets of equations may be solved for a through
h [recall Eq. (6)] to specify the bilinear spatial transformation algorithm that applies to all
output points falling inside the rectangle.

While the spatial transformation algorithm could be implemented as Eq. (19), there is
a more convenient and computationally efficient way of implementing it. By redefining the
coefficients a and e, we can write Eq. (19) as

G(x,y) = Flx+dx(x,y),y+dy(x, y)] (20

where dx(x, y) and dy(x, y) are pixel displacements that are bilinear functions of x and y.
Figure 8-6 shows these displacements with the input quadrilateral superimposed upon the
output rectangle to which it maps. The problem now reduces to specifying dx and dy for all
points inside the rectangle. Since dx(x, y) and dy(x, y) are bilinear in x and y, they become
linear in x along each output line. Thus, for each line, we can define an increment, Ax, such
that, assuming unit pixel spacing,

dx(x+1,y) = dx(x,y) +Ax 21
and similarly for dy. The increment Ax changes from line to line, but is easily computed
from the displacement values at the ends of the output rectangle. These can be interpolated
between the given displacements at the vertices. Implementing Eq. (21) requires only two
additions, one for dx and one for dy, at each output pixel to compute the coordinates of the
corresponding input point. v

The foregoing procedure specifies the spatial transformation for points falling inside
the output rectangle. Frequently, a single quadrilateral-to-rectangle mapping is inadequate
to specify the desired spatial transformations, and one can designate contiguous sets of
quadrilaterals in the input image that map into contiguous sets of rectangles in the output
image. It is not necessary, however, for the rectangles to cover the output image completely.

Xi
Xg Vg b' Vb

dy (xy ;)
— x",fc_ Figure 8-6 Control point
Xg Vd dx (xy ) displacements
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Figure 8-7 shows an output image in which six contiguous rectangles are defined.
Inside each of the rectangles, the spatial transformation is defined as described above. The
figure also shows how the spatial transformation can be extrapolated outside the rectangles
by which it is defined. The numbers inside the unspecified (dotted) rectangles indicate the
control rectangles from which the bilinear coefficients are used [12]. For example, the spat;
ial transformation used in the upper left-hand rectangle of the output image uses the bilinear
coefficients for rectangle 1. !

It is clear from the previous discussion that the bilinear transformation is continuous
and unique at the vertices and boundaries of output rectangles. At each boundary, bilinear
interpolation degenerates into linear interpolation between the two end points.

When specifying adjacent rectangles in the output image, one must make their vertices
coincident. Similarly, adjacent quadrilaterals in the input image must have coincident vertices.
Nonadjacent quadrilaterals, however, are not so constrained and may even overlap. Objects
inside areas where input quadrilaterals overlap become duplicated in the output image.
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Figure 8-7 Control grid
extrapolation
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8.4 APPLICATIONS OF GEOMETRIC OPERATIONS
8.4.1 Geometric Calibration

An important application of geometric operations is the removal of camera-induced geo-
metric distortion from digital images [13—16,19]. An example appears in Figure 8—4. Geo-
metric calibration has proved important in extracting quantitative spatial measurements
from a wide variety of digitized images. Certain images, such as those from satellites and
airborne side-looking radar, are subject to rather severe geometric distortions. These images
often require geometric correction prior to interpretation.

8.4.2 Image Rectification

Some imaging systems use non-rectangular pixel coordinates. Before images digitized with
such a system can be viewed properly on ordinary display systems, they must be rectified,
that is, transformed into rectangular pixel coordinates.

The Viking Lander spacecraft, for example, used an angle-scanning camera designed
for digitizing Martian panoramas. It used a spherical coordinate system with scan lines
spaced at equal angles of elevation, and its pixel spacing represented equal increments of
azimuth angle. Figure 8-8(a) shows the distortion this design produced on rectangular dis-
plays, particularly for objects located near the camera.
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(a)

(b)

Figure 8-8 Viking Lander camera
correction: (a) before, (b) after
(Courtesy NASA-JPL)

Rectification of angle-scanned images for rectangular display involves the projection
of a spherical surface onto a tangent plane. The projection lines emanate from the center of the
sphere and carry points on its surface out to the plane. The relationship between input and out-
put pixel location is derived in [ 14]. Figure 8-8(a) was rectified for rectangular display in Fig-
ure 8-8(b). Notice that the table edges appear straight, as they should, in the rectified image.

A free-roaming robot, like a human, requires wide-angle stereoscopic vision in order
to navigate among obstacles, such as passing through doorways. A fish-eye lens can image
a field of view approximately 180 degrees wide, but it does so with considerable distortion
(Figure 8-9a,b). A properly designed geometric operation can rectify such an image into a
rectangular coordinate system (Figure 8-9c,d) so that stereoscopic ranging techniques (dis-
cussed in Chapter 22) can locate the surrounding objects in three dimensions. In this exam-
ple, a fifth-order polynomial warp, implemented in a polar coordinate system, rectified the
images [20,21].
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(a) (b)

(d)

Figure 8-9 Geometric rectification of an image taken with a fish-eye lens: (a) test
target, (b) fisheye image; (c) original, (d) rectified hallway image (Courtesy Shishir
Shah, The University of Texas at Austin, from [20])

8.4.3 Image Registration

Another application of geometric operations is registering similar images for purposes of
comparison. This is typified by image subtraction to detect motion or change. As pointed
out in Chapter 7, if similar images are displaced slightly and subtracted, the difference
image has a strong partial derivative component. This could easily mask the image differ-
ences of interest. If images of a stationary object can be digitized from a fixed camera posi-
tion, they can be obtained in register. If this is not the case, however, it is likely that the
images will have to be registered prior to subtraction.

While simple translation is easily accomplished, rotation or more complex distortion
requires a geometric operation. Registration of film scan images is likely to involve
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translation and rotation. Serial sections of biological tissue, sliced on a microtome and pho-
tographed through a microscope, for example, are subject to rather severe geometric distor-
tion. In such cases, simple translation and rotation are inadequate. Instead, one such image
can be taken as a standard of reference and the others distorted to match it. Small features
are located throughout the images and used to define control points. Chapter 7 shows exam-
ples of image subtraction in which careful registration is required.

8.4.4 Image Format Conversion

Geometric operations are sometimes useful simply for placing images into a format more
convenient for interpretation. Figure 8-10(a) shows a photographic map of the chromo-
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Figure 8-10 Drosophila
chromosome map: (a) original, (b)
(b) straightened (Courtesy NASA-JPL)
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somes of one species of the fruit fly Drosophila. The map is made by pasting up photographs
of chromosomes taken through a microscope. Geneticists analyze the pattern of bands on the
chromosomes to deduce patterns of evolution. The areas are numbered for reference.

Figure 8-10(b) shows the result of using a geometric operation to produce a map in
which the chromosomes appear straight. In the input image, each chromosome was overlaid
with a control grid of quadrilaterals, each with two sides parallel to the chromosome axis.
These were mapped into horizontal strings of rectangles in the output image. In order to pre-
vent axial distortion of the chromosome, the horizontal length of each rectangle was made
equal to the mean of the two axial sides of the corresponding quadrilateral.

The numbers below chromosome 3 suffered less distortion than the others because a
second row of quadrilaterals was defined below this chromosome. These were actually paral-
lelograms with vertical ends and sides parallel to the chromosome axis. They mapped into a
second row of rectangles falling beneath those that defined the straightened chromosome.

8.4.5 Map Projection

Another major application of geometric operations is projecting images for purposes of
mapping. For example, it is necessary to produce photomosaic maps of the Earth, moon, and
planets using images transmitted back from spacecraft. The borders of the spacecraft cam-
era image project onto the planet’s surface, forming a “footprint” with four curvilinear sides
[Figure 8-11(a)]. The sphérical surface of the planet is projected onto a flat surface to make
amap [Figure 8-11(b)]. The “footprint” also projects onto the map, producing a further dis-
torted four-sided figure.

A geometric operation can transform the spacecraft camera image into the form it
should assume on the map. Multiple images processed in this way can be combined into a
mosaic to form a photographic map of the planet. The task of determining the control points
for projecting a given image is somewhat involved. The program must take the spacecraft
viewing geometry and the desired cartographic projection parameters and generate input
and output control grids.

Determining the spatial transformation between the input and the projected image is
a two-step process. Software used in the space program solves this problem by working
backward from the output image to the input image. The specified cartographic projection
technique defines the relationship between points in the output image and points on the
planet’s surface. The spacecraft viewing geometry determines the spatial relationship
between points on the surface of the planet and pixel positions in the camera image. The
program overlays a rectangular control grid on the output image and maps it back through
the cartographic projection and the spacecraft viewing geometry to overlay it on the input
image. The following section outlines this technique.

Cartography. The science of cartography is concerned with producing two-
dimensional maps of spherical or ellipsoidal bodies. This is not a simple matter, because
spherical surfaces cannot be flattened without distortion. Cartographers solve the problem
by projecting the spherical surface onto a plane or onto a cylinder or cone that can be
“unrolled” to form a flat surface [22,23].

Map Properties. There are three important properties that a particular map may
or may not have, depending on its method of generation. A map is said to be equidistant if
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(a)

Map

Planet

Output image
Spacecraft ~ InPutimage
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Figure 8-11 Photographic mapping: (a) spacecraft camera “footprint,” (b)
map projection (Courtesy NASA-JPL)
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scale is preserved along certain lines. This means distances along those lines are propor-
tional to the distance between corresponding points on the planet. A map has the property
of equivalence if the area of a region is preserved in the projection. Such maps may be used
for comparing the areas of different features. A map is conformal or orthomorphic if angles
are preserved in the projection—that is, if lines on the surface intersect at the same angle as
their projections on the map. A conformal map also preserves shape at a point. This means
that the shape of small features is distorted only very slightly. The distortion of shapes
becomes progressively more significant as the size of the features increases.

Cartographic Projections. There are three types of surfaces onto which sur-
face features may be projected to form a two-dimensional map: the plane, the cylinder, and
the cone. The last two must be cut along a line parallel to the axis and “unrolled” to form a
flat map. The cone may be considered the general case, since the plane can be thought of as
a cone with apex angle 180° and the cylinder a cone with apex angle 0°.

While many types of projections have been defined and used throughout cartographic
history, four of the most important are the orthographic, the stereographic, the Mercator,
and the Lambert conformal conic projections [24]. These projections differ in the tech-
niques by which they are generated and in their properties. They are described next, with
reference to Figure 8—12.

In the orthographic projection, surface features are projected onto a plane tangent to
the sphere at a point called the center of projection. Features are projected along parallel
lines normal to the plane. When the center of projection is a pole, the scale along parallels
of latitude is constant. By contrast, the radial scale decreases away from the center of pro-
jection. There is little distortion of features near the center of projection. Parallels of latitude
project as concentric circles centered on the pole, and meridians project as straight lines
intersecting at the pole.
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The orthographic projection is useful because it approximates viewing the planet
from a large distance, and the eye is able to visualize the spherical shape of the planet.
Because scale and shape are distorted, however, orthographic maps are of restricted quan-
titative use, except for small features near the center of projection.

The stereographic projection is similar to the orthographic projection, except that the
projection rays emanate from a perspective point located directly opposite the center of pro-
jection. In the polar case, parallels of latitude project as concentric circles centered on the
pole, and meridians project as radial lines intersecting at the pole. The scale along parallels
and that along meridians increase away from the pole. They increase proportionately, how-
ever, so that at any point the longitude and latitude scales are the same. This makes the ste-
reographic projection conformal, and shape is preserved locally. There is little distortion of
features near the center of projection. Coupled with conformality, this property makes the
stereographic projection quite useful. ’

The Mercator projection maps surface features onto a right circular cylinder that is
tangent to the sphere at the equator. The cylinder axis is colinear with the polar axis of the
sphere. Meridians map to equidistant vertical lines, and parallels map to circles on the cyl-
inder, which open up to form horizontal lines on the map. Scale along latitude lines
increases with distance from the equator. The projection is designed so that the perspectival
point moves up the axis with increasing latitude, keeping the latitude and longitude scales
equal and thus making the'map conformal. Scale is exaggerated away from the equator, and
features near the poles become quite large. The poles themselves cannot be mapped.

The vertical position of latitude lines is given by

y = Rln [tan(45 + %’)] 22)

where R is the planet’s radius on the map and ¢ is latitude.

Historically, the Mercator projection has been used for navigation because a course of
constant compass heading projects to a straight line on the map.

In the Lambert conformal conic projection, surface features are projected onto a cone
having the same axis as the planet. The cone intersects the sphere at two parallels called the
standard parallels. Meridians map to straight lines, and parallels map to circles inside the
cone. When the cone is unrolled, the parallels become arcs and the meridians merge at the
pole. The spacing of the parallels is adjusted to achieve conformality. The two standard par-
allels project at true scale: Scale decreases between them and is exaggerated outside of them.

8.4.5.1 Implementation

The steps necessary to project a spacecraft image for mapping purposes are the following:

1. Establish the spacecraft camera viewing geometry.

2. Determine an expression giving camera position as a function of the latitude and lon-
gitude of the corresponding point on the planet’s surface.

3. Select the map projection parameters (type of projection, center of projection, etc.),
and establish the borders of the output image on the map.

4. Determine an expression giving the latitude and longitude of a point on the planet’s
surface in terms of the pixel coordinates of the corresponding point on the map.
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5. Combine the results of steps 2 and 4 to yield an expression giving camera pixel posi-
tion as a functiqn of position on the output map.

6. Overlay a rectilinear control grid on the output picture.

7. Use the expression of step 5 to map the output control points into the input image, thus
establishing the input control grid.

8. Use the results of step 7 in a geometric operation to effect the projection.

The spacecraft viewing geometry may be established with reference to Figure 8-13. In this
figure, the spacecraft is located at a distance R, from the center of the planet, directly above
the point at latitude ¢, and longitude A,. Point C is the perspective point that represents the
nodal point (center) of the camera lens. Point p is in the camera image and corresponds to
point p’, which has longitude A and latitude ¢ on the surface. The distance f represents the
focal length of the lens and is exaggerated for clarity in the figure. The vector Q extends
from C to p'. Notice that the vector

P=|y, (23)
f

has components x, and y,, which are the camera pixel position coordinates. Since P and Q
are colinear, they are related by a scale factor:

)
P = (_ 24
0. Q )
From Figure 8-13, we see that
A
%
R
}
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x Q
/\S
&
S
14
Py i
f

Figure 8-13 Spacecraft viewing geometry
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Q = R-S (25)

which we can write in matrix notation as

0, RcosdcosAd— R cos @, cosAg
Q,| = [M]| Rcos¢sinA - R, cos ¢, sin A, (26)
0, Rsing — R sin ¢

where [M] is the three-by-three matrix that transforms from planet-centered to spacecraft
coordinates.
Finally, Eq. (24) implies that

X, = (i)Qx and yp=(—Q]i)Qy 27
Z Z

Several cartography texts develop equations that give map position in terms of latitude and

longitude on the surface. Since we must work backward from map to planet, however,

inverse forms of the equations are required. These are developed in [24] for the four pro-

jections mentioned above.

Spacecraft images often require both geometric correction and map projection, sug-
gesting two sequential geometric operations. Pixel interpolation done twice, however,
would reduce detail in the image, so the two geometric operations are usually combined into
one execution that both corrects and projects the image.

8.4.5.2 Examples of Map Projection

Figure 8-14 illustrates the steps used in producing a photographic map. Part (a) is a Mar-
iner 10 image of Mercury prior to correction for photometric and geometric distortion. In
(b), the image has been subjected to a geometric operation to produce an orthographic pro-
jection. In (c), several neighboring orthographic projections have been combined to form
a mosaic. Finally, in (d), a latitude and longitude grid has overlaid the orthographic
mosaic.

Figure 8-15 shows a polar orthographic projection of images of Mars taken from
Mariner 6 and Mariner 7 [25]. A mosaic of high-resolution, narrow-angle images has been
inserted into a mosaic of wide-angle, low-resolution pictures of the entire polar area. Figure
8-16 shows a four-foot-diameter globe covered with 2,000 orthographic projections of
Mariner 9 images of Mars [15].

8.4.6 Morphing

Several special effects that have become popular in the motion picture and television indus-
tries are based on geometric operations. Morphing is a technique that allows one object to
transform gradually into another [26].

Suppose we have two images from which we wish to create a sequence of movie
frames. That sequence is to depict the transformation of the object in the first scene into the
object in the second scene. An example would be transforming the face of a cat into the face
of atiger. In a dissolve, the first image gradually fades out as the second fades in. This tech-
nique rarely produces a realistic looking transformation. With a morph, however, during a
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Figure 8-14 Example of Mariner 10 map projection: (a) original image; (b) ortho-
graphic projection; (c) mosaic of several projections; (d) map grid overlay (Courtesy
NASA-JPL)

dissolve points on the object are incrementally warped from their initial position to their
final position, creating a more impressive result.

Figure 8—17 shows four frames from a morph sequence. Figures 8—17a and 8-17d are
the initial and final images, respectively. Figure 8-17b and 8-17c¢ represent the 40% and
70% points, respectively, in the sequence.

At each step in the sequence, both the initial and final images are warped so that their
control points map to positions intermediate between their initial and final positions. This
produces two sequences in which the marked features move gradually from their initial to
their final positions. A dissolve between these two sequences completes the morph operation.

Morphing can also be done between two movie sequences. Here, since the objects are
moving, the corresponding control points must be designated in each frame of each
sequence. Most commonly, the control points are specified for only a few of the frames, and
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Figure 8-15  Polar orthographic map of Mars (Courtesy NASA-JPL, from [23])

spatial interpolation supplies the rest. At each frame in the sequence, the two images are
warped so that their control points align. The position to which a pair of control points is
mapped starts near the initial image position and gradually moves toward the final image
position as the sequence progresses.

In practice, it is often only one object in the scene that is actually transformed, with
the background remaining stationary. The object of interest is filmed against a black back-
ground. The finished morph sequence is then inserted into a scene containing the appropri-
ate background.
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Figure 8-16 Mariner 9 photomosaic
globe of Mars (Courtesy NASA-JPL)

Figure 8-17 Image morphing
sequence: () initial image, (b) 40%
point, (c) 70% point, (d) final image.
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8.5 SUMMARY OF IMPORTANT POINTS

1. A geometric operation requires a means for specifying its spatial transformation and

2.

an algorithm for gray-level interpolation.

A geometric operation can be thought of as mapping each output image pixel into the
input image, where the ouput gray-level value is determined by interpolation.

3. Bilinear gray-level interpolation is generally superior to nearest neighbor interpola-

tion, and it produces only a modest increase in program complexity and execution
time.

4. A spatial transformation can be specified by a pair of control grids, one defined in the
input image and one in the output image.

5. The input control points map to the corresponding output control points.

6. Between control points, a spatial transformation is obtained by interpolation.

7. Bilinear interpolation is useful for non-control-point interpolation.

8. Geometric operations are useful for digitizer calibration, display rectification, image
registration, map projection, image reformatting for display, and visual special effects.

PROBLEMS
1. Let F(221,396) = 18, F(221,397) = 45, F(222,396) = 52, and F(222,397) = 36. What is

F(221.3,396.7), obtained by nearest neighbor interpolation? By bilinear interpolation? Write the
bilinear equation (Eq. 2), showing the values of the coefficients. Draw a graph similar to
Figure 8-3.

Let F(109,775) = 113, F(109,776) = 109, F(110,775) = 105, and F(110,776) = 103. What is
F(110.27,776.44), obtained by nearest neighbor interpolation? By bilinear interpolation? Write
the bilinear equation (Eq. 2), showing the values of the coefficients. Draw a graph similar to
Figure 8-3.

Write the geometric transformation required to rotate an image 33° counterclockwise about the
point x, y = 207,421. Assume that 0,0 is at the upper left.

Suppose you have two digitized images of a canyon wall taken 100 years apart and you wish to
detect changes due to erosion by image subtraction. You find a rock that is located at 303,467 in
the first image and at 316,440 in the second image, and a stump that is located at 298,227 in the
first image and at 311,200 in the second image. Has there been any (a) translation? (b) rotation? (c)
change in scale? How much? Write the geometric transformation required to register the second
image with the first prior to subtraction. Assume that there has been no geometric distortion
beyond translation, rotation, and change in scale.

Suppose you have two digitized images of a section of a city taken from the top of a tall building
25 years apart and you wish to display changes by projecting an overlay of the two images. You
find a corner of a building that is located at 103,84 in the first image and at 107,94 in the second
image, and a window that is located at 433,504 in the first image and at 377,439 in the second
image. Has there been any (a) translation? (b) rotation? (c) change in scale? How much? Write
the geometric transformation required to register the second image with the first. Assume that
there has been no geometric distortion beyond translation, rotation, and change in scale.

Suppose you have two digitized images of a movie star’s face taken 30 years apart and you wish
to include a fade between the two portraits in an upcoming documentary. You find that the cen-



Chap. 8 Projects 139

10.

11.

12.

13.

PROJECTS

ters of the film idol’s pupils are located at 83,231 and 437,244 in the first image and at 64,281 and
479,370 in the second image. Has there been any (a) translation? (b) rotation? (c) change in scale?
How much? Write the geometric transformation required to register the second image with the
first. Assume that there has been no geometric distortion beyond translation, rotation, and change
in scale.

Suppose you have a digitized photograph of the ground taken at an angle from behind the window
of an airplane. You want to rectify the image so that it appears as if you are looking straight down.
A square cotton field has corners at pixel coordinates (62, 85), (77, 128), (125, 134), and (140,
106). Derive the geometric transformation that will rectify the image. Plot the cotton field in the
image before and after rectification.

Suppose you have film that was taken by a security camera during a daring daylight holdup of a
bank. At one point in the series of images, one of the bandits ducks behind a counter and briefly
removes his mask. Beside him is a chrome-plated vertical column 24 inches in diameter. The
reflection of his face is visible in the shiny column, but is too distorted for identification. Derive
the equation for a geometric transformation that will rectify the image of the bad guy. Assume
that the column is parallel to the y-axis in the digitized image and the pixel spacing corresponds
to 10 pixels per inch at the column. You may also assume that the radius of the column is negli-
gible compared to its distance from the camera and from the villain.

The police have a photograph taken during the commission of a crime. Unfortunately, the rob-
bery took place behind the tourist with the camera. You notice in the photo a large chrome-plated
sphere that appears to be-acting like a mirror. You use a film digitizer with 25-u pixel spacing and
find that the image of the ball measures 360 pixels in diameter. The actual ball is 3 feet in diam-
eter, and it was 27 feet from the camera position. Develop an equation for the geometric trans-
formation that will rectify the image of the robbers. You may assume that the radius of the ball
is negligible compared to its distance from the camera and from the crime.

Suppose you have a photograph of a bite mark on the arm of a murder victim. The photo was
taken at the autopsy of the victim. The body has since been cremated, but the district attorney
needs a rectified picture of the bite mark to match against the bite of the suspect in order to get
a conviction. Assume that the arm is a cylinder 80 mm in diameter lying parallel to the x-axis.
Develop the equation for a geometric transformation that will “unroll” the bite mark for compar-
ison with bites made on wax sheets by the suspect.

Develop the geometric transformation equations required to rotate an image 60 degrees counter-
clockwise about the point x, y = 120,210.

Develop the geometric transformation equations required to scale an image by 130 percent about
the point x, y = 64,120 along a line 30 degrees counterclockwise from the x-axis and by 85 per-
cent along a line 30 degrees counterclockwise from the y-axis.

Derive Eq. (18).

These projects require access to an image-processing workstation with digitization and gen-
eral geometric transformation capabilities.

1.

Digitize an image of a friend taken with a wide-angle “fish-eye” lens. Develop equations that
describe the distortion and use polynomial warping to correct it.
Digitize an image of a friend taken with a fish-eye lens. Use linear objects in the image as fiducial
marks, and use a geometric transformation to correct the image.
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3. Digitize an image of a friend taken with a fish-eye lens. Take a second image of a grid from the
same camera position, and use a geometric transformation to correct the image

4. Digitize an image of a spherical hallway safety mirror, and use a geometric transformation to rec-
tify the image. Use linear objects in the image as fiducial marks.

5. Digitize an image of a person reflected in a fun house mirror and then a second image containing
a large grid. Use the same camera position both times. Use a geometric transformation to rectify
the image of the person. Write a report, commenting on the accuracy of the results and any dif-
ficulties encountered.

6. Digitize an image of a large grid in a fun house mirror. Digitize an ordinary image of a friend of
yours, and use a geometric operation to show what he or she would look like if seen in the mirror.

7. Digitize an image of a structure such as a house or building taken from an odd angle. Use a geo-
metric operation to develop elevation (90 degree) views of the structure.

8. Develop an image-processing program that can be used to predict the effects of cosmetic and
reconstructive surgery (a “nose job,” chin augmentation, etc.). Use the program to determine
what, if any, cosmetic surgery might improve your appearance or that of a friend or a celebrity.

9. Develop a geometric transformation program that will warp one facial photograph to match the
features in another. Digitize a picture of a famous personality, digitize a picture of yourself in the
same pose, and warp your picture to look like the other person.

10. Use a geometric transformation to “unroll” a picture of a poster wrapped around a pole.

11. Develop a geometric transformation program that will rotate, translate, and scale an image by
specified amounts. Evaluate your implementation in terms of speed and accuracy.

12. Develop a geometric transformation program that will rotate, translate, and scale an image by
specified amounts when the rotation angle is small (say, 6 < 6°). Use approximations to make
execution of the program as fast as possible. Evaluate your implementation in terms of speed and
accuracy.

13. Develop an image sequence that morphs an image of your face into that of a famous person.

14. View a movie containing morph operations (e.g., Terminator 2) on a video player with stop-
motion capability. Examine the morph sequences in slow motion, and estimate how many control
points were required and where they were located. Write a brief paper outlining your estimates,
along with the digitizing, processing and display requirements for this project, as well as on the
financial impact of these scenes on the producers.
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