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2.1 IMAGES

Image formation occurs when a sensor registers radiation that has interacted with

physical objects. Section 2.2 deals with mathematical models of images and image

formation. Section 2.3 describes several specific image formation technologies.
The mathematical model of imaging has several different components.

1. An image function is the fundamental abstraction of an image.
2. A geometrical model describes how three dimensions are projected into two.

3. A radiometrical model shows how the imaging geometry, light sources, and
reflectance properties of objects affect the light measurement at the sensor.

4. A spatial frequency model describes how spatial variations of the image may
be characterized in a transform domain.

5. A color model describes how different spectral measurements are related to im-
age colors.

6. A digitizing model describes the process of obtaining discrete samples.

This material forms the basis of much image-processing work and is
developed in much more detail elsewhere, e.g., [Rosenfeld and Kak 1976; Pratt
1978]. Our goals are not those of image processing, so we limit our discussion to a
summary of the essentials.

The wide range of possible sources of samples and the resulting different
implications for later processing motivate our overview of specific imaging tech-
niques. Our goal is not to provide an exhaustive catalog, but rather to give an idea
of the range of techniques available. Very different analysis techniques may be
needed depending on how the image was formed. Two examples illustrate this
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point. If the image is formed by reflected light intensity, as in a photograph, the im-
age records both light from primary light sources and (more usually) the light
reflected off physical surfaces. We show in Chapter 3 that in certain cases we can
use these kinds of images together with knowledge about physics to derive the
orientation of the surfaces. If, on the other hand, the image is a computed tomo-.
gram of the human body (discussed in Section 2.3.4), the image represents tissue
density of internal organs. Here orientation calculations are irrelevant, but general
segmentation techniques of Chapters 4 and 5 (the agglomeration of neighboring
samples of similar density into units representing organs) are appropriate.

2.2 IMAGE MODEL

18

Sophisticated image models of a statistical flavor are useful in image processing
[Jain 1981]. Here we are concerned with more geometrical considerations.

2.2.1 Image Functions

An image function is a mathematical representation of an image. Generally, an im-
age function is a vector-valued function of a small number of arguments. A special
case of the image function is the digital (discrete) image function, where the argu-
ments to and value of the function are all integers. Different image functions may
be used to represent the same image, depending on which of its characteristics are
important. For instance, a camera produces an image on black-and-white film
which is usually thought of as a real-valued function (whose value could be the
density of the photographic negative) of two real-valued arguments, one for each
of two spatial dimensions. However, at a very small scale (the order of the film
grain) the negative basically has only two densities, ‘‘opaque’’ and ‘transparent.”

Most images are presented by functions of two spatial variables
f&x) = f(x, y), where f(x, y) is the brightness of the gray level of the image at a
spatial coordinate (x, y). A multispectral image f is a vector-valued function with
components (f;...f,). One special multispectral image is a color image in which,
for example, the components measure the brightness values of each of three
wavelengths, that is,

f (x) = f red(x) S blue(X)»f green(X)

Time-varying images f(x,t) have an added temporal argument. For special
three-dimensional images, x = (x, y, z). Usually, both the domain and range of f
are bounded.

An important part of the formation process is the conversion of the image
representation from a continuous function to a discrete function; we need some
way of describing the images as samples at discrete points, The mathematical tool
we shall use is the delta function.

Formally, the delta function may be defined by
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0 when x Z 0

80x) = oo when x = 0 1)
fﬁ(x) ax =1
If some care is exercised, the delta function may be interpreted as the limit of a set
of functions:
3(x) = 1im §,(x)
n—oo
where
n if|x|< L
2n
8:) =10 otherwise 2.2)
A useful property of the delta function is the sifting property:
[ rx)8(x—a)dx = £(a) @.3)

A continuous image may be multipled by a two-dimensional “comb,” or array of
delta functions, to extract a finite number of discrete samples (one for each delta
function). This mathematical model of the sampling process will be useful later.

2.2.2 Imaging Geometry

Monocular Imaging

Point projection is the fundamental model for the transformation wrought by
our eye, by cameras, or by numerous other imaging devices. To a first-order ap-
proximation, these devices act like a pinhole camera in that the image results from
projecting scene points through a single point onto an image plane (see Fig. 2.1). In
Fig. 2.1, the image plane is behind the point of projection, and the image is re-
versed. However, it is more intuitive to recompose the geometry so that the point
of projection corresponds to a viewpoint behind the image plane, and the image oc-
curs right side up (Fig. 2.2). The mathematics is the same, but now the viewpoint
is +fon the z axis, with z = 0 plane being the image plane upon which the image is
projected. (fis sometimes called the focal length in this context. The use of fin
this section should not be confused with the use of f for image function.) As the
imaged object approaches the viewpoint, its projection gets bigger (try moving
your hand toward your eye). To specify how its imaged size changes, one needs
only the geometry of similar triangles. In Fig. 2.2b y’, the projected height of the
object, is related to its real height y, its position z, and the focal length f by

y _ X (2.4
! f—z f )
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Fig. 2.1 A geometric camera model.

The case for x’ is treated similarly:

X X 2.5
v 2.5
The projected image has z = 0 everywhere. However, projecting away the z com-
ponent is best considered a separate transformation; the projective transform is
usually thought to distort the z component just as it does the x and y. Perspective dis-
tortion thus maps (x, y, z) to

Lo L (2.6)
f—z f—-z f-z )
The perspective transformation yields orthographic projection as a special case
when the viewpoint is the point at infinity in the z direction. Then all objects are pro-
jected onto the viewing plane with no distortion of their xand y coordinates.

The perspective distortion yields a three-dimensional object that has been
“‘pushed out of shape’’; it is more shrunken the farther it is from the viewpoint.

)y, 2") =

‘The z component is not available directly from a two-dimensional image, being

identically equal to zero. In our model, however, the distorted z component has
information about the distance of imaged points from the viewpoint. When this
distorted object is projected orthographically onto the image plane, the result is a
perspective picture. Thus, to achieve the effect of railroad tracks appearing to come
together in the distance, the perspective distortion transforms the tracks so that
they do come together (at a point at infinity)! The simple orthographic projection
that projects away the z component unsurprisingly preserves this distortion.
Several properties of the perspective transform are of interest and are investigated
further in Appendix 1.

Binocular Imaging

Basic binocular imaging geometry is shown in Fig. 2.3a. For simplicity, we
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z (a)

(b)

Fig. 2.2 (a) Camera model equivalent to that of Fig. 2.1; (b) definition of terms.

use a system with two viewpoints. In this model the eyes do not converge; they are
aimed in parallel at the point at infinity in the —z direction. The depth information
about a point is then encoded only by its different positions (disparity) in the two
image planes.

With the stereo arrangement of Fig. 2.3,

_x=df
x' = =
v xt+d)f
x——

f—z

where (x, y') and (x”, y”) are the retinal coordinates for the world point imaged
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Image Fig. 2.3 A nonconvergent binocular
plane imaging system.

through each eye. The baseline of the binocular system is 24. Thus
F-2)x=&-4d)f 2.7
fF-2x"=&+df 2.8)
Subtracting (2.7) from (2.8) gives
(f —2)x" — x) = 2df
or
" - 2.9)
x"—x ,
Thus if points can be matched to determine the disparity (x” — x’) and the base-
line and focal length are known, the z coordinate is simple to calculate.
If the system can converge its directions of view to a finite distance, conver-
gence angle may also be used to compute depth. The hardest part of extracting
depth information from stereo is the matching of points for disparity calculations.

“Light striping’ is a way to maintain geometric simplicity and also simplify match-
ing (Section 2.3.2).

2.2.3 Reflectance

Terminology

A basic aspect of the imaging process is the physics of the reflectance of ob-
jects, which determines how their ‘‘brightness’ in an image depends on their in-
herent characteristics and the geometry of the imaging situation. A clear presenta-
tion of the mathematics of reflectance is given in [Horn and Sjoberg 1978; Horn
1977]. Light energy flux ® is measured in watts; “‘brightness’’ is measured with
respect to area and solid angle. The radiant intensity I of a source is the exitant flux
per unit solid angle:

I= % ~watts/steradian (2.10)
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Here dw is an incremental solid angle. The solid angle of a small area d4 measured
perpendicular to a radius ris given by :

do = -ﬂ; 2.11)
in units of steradians. (The total solid angle of a sphere is 4r.)
The irradianceis flux incident on a surface element dA:
E= % watts/meter? (2.12)

and the flux exitant from the surface is defined in terms of the radiance L, which is
the flux emitted per unit foreshortened surface area per unit solid angle:

__do
dA cosfdw

where 6 is the angle between the surface normal and the direction of emission.

Image irradiance fis the ‘‘brightness” of the image at a point, and is propor-
tional to scene radiance. A ‘‘gray-level’’ is a quantized measurement of image irra-
diance. Image irradiance depends on the reflective properties of the imaged sur-
faces as well as on the illumination characteristics. How a surface reflects light
depends on its micro-structure and physical properties. Surfaces may be matte
(dull, flat), specular (mirrorlike), or have more complicated reflectivity charac-
teristics (Section 3.5.1). The reflectance r of a surface is given quite generally by its
Bidirectional Reflectance Distribution Function (BRDF) [Nicodemus et al. 1977].
The BRDF is the ratio of reflected radiance in the direction towards the viewer to
the irradiance in the direction towards a small area of the source.

watts/ (meter? steradian) (2.13)

Effects of Geometry on an Imaging System

Let us now analyze a simple image-forming system shown in Fig. 2.4 with the
objective of showing how the gray levels are related to the radiance of imaged ob-
jects. Following [Horn and Sjoberg 1978], assume that the imaging device is prop-
erly focused, rays originating in the infinitesimal area d4, on the object’s surface
are projected into some area d4, in the image plane and no rays from other por-
tions of the object’s surface reach this area of the image. The system is assumed to
be an ideal one, obeying the laws of simple geometrical optics.

. The energy flux/unit area that impinges on the sensor is defined to be E,. To
show how E, is related to the scene radiance L, first consider the flux arriving at
the lens from a small surface area dA, . From (2. 13) this is given as

d® = dd, [ Leosfdo 2.14)
This flux is assumed to arrive at an area d4 , in the imaging plane. Hence the irradi-
ance is given by [using Eq. (2.12)]

E-2% (2.15)

d4,

Now relate d4, to dA4, by equating the respective solid angles as seen from the
lens; that is [making use of Eq. (2.12)1,
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6;
- fo - l: tp —»| Fig. 2.4 Geometry of an image
l | forming system.
cosé cos
dA, = dA,——— (2.16)

13 P
Substituting Eqs. (2.16) and (2.14) into (2.15) gives

PG
E= cosa[——o ] dew (2.17
fo

The integral is over the solid angle seen by the lens. In most instances we can as-
sume that L is constant over this angle and hence can be removed from the in-
tegral. Finally, approximate dw by the area of the lens foreshortened by cos«, that
is, (/4) D? cos a divided by the distance f,/cosa squared:

3
_ T p2C08°a
do = 4D T (2.18)
so that finally
2
1|D 4
E = =—|=| cos‘anwL (2.19)

" The interesting results here are that (1) the image irradiance is proportional to the

scene radiance L, and (2) the factor of proportionality includes the fourth power of
the off-axis angle «. Ideally, an imaging device should be calibrated so that the
variation in sensitivity as a function of « is removed.

2.2.4 Spatial Properties

The Fourier Transform

An image is a spatially varying function. One way to analyze spatial variations
is the decomposition of an image function into a set of orthogonal functions, one
such set being the Fourier (sinusoidal) functions. The Fourier transform may be
used to transform the intensity image into the domain of spatial frequency. For no-
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tational convenience and intuition, we shall generally use as an example the con-
tinuous one-dimensional Fourier transform. The results can readily be extended to
the discrete case and also to higher dimensions [Rosenfeld and Kak 1976]. In two
dimensions we shall denote transform domain coordinates by (u, v). The one-
dimensional Fourier transform, denoted F |, is defined by

FUl=F@w

where
+o0
Fw) = [ f&)exp(—j2mux) ds (2.20)

where j = /(=1). Intuitively, Fourier analysis expresses a function as a sum of
‘s_ine waves of different frequency and phase. The Fourier transform has an inverse
J=1F(u)] = f(x). This inverse is given by

fx) = fF(u) exp (j2mux) du (2.21)

The transform has many useful properties, some of which are summarized in Table
2.1. Common one-dimensional Fourier transform pairs are shown in Table 2.2.

The transform F(u) is simply another representation of the image function.
Its meaning can be understood by interpreting Eq. (2.21) for a specific value of x,
say xp :

fGo) = [ Fluexp (2muxe) du 2.22)

This equation states that a particular point in the image can be represented by
a weighted sum of complex exponentials (sinusoidal patterns) at different spatial
frequencies u. F(u) is thus a weighting function for the different frequencies. Low-
spatial frequencies account for the ‘‘slowly’’ varying gray levels in an image, such
as the variation of intensity over a continuous surface. High-frequency com-
ponents are associated with ‘‘quickly varying”’ information, such as edges. Figure
2.5 shows the Fourier transform of an image of rectangles, together with the effects
of removing low- and high-frequency components.

The Fourier transform is defined above to be a continuous transform.
Although it may be performed instantly by optics, a discrete version of it, the “‘fast
Fourier transform,’’ is almost universally used in image processing and computer
vision. This is because of the relative versatility of manipulating the transform in
the digital domain as compared to the optical domain. Image-processing texts, e.g.,
[Pratt 1978; Gonzalez and Wintz 1977] discuss the FFT in some detail; we content
ourselves with an algorithm for it (Appendix 1).

The Convolution Theorem
Convolution is a very important image-processing operation, and is a basic

operation of linear systems theory. The convolution of two functions fand gis a
function 4 of a displacement y defined as

©o

hG) = frg= [ F()g(y — x)ax 2.23)

—oo
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Table 2.1

PROPERTIES OF THE FOURIER TRANSFORM

Spatial Domain Frequency Domain
&) Fu) =511
g(x) G ) =5 [gx)]

(1) Linearity
cif (x) + cg(x)
c1,C2 scalars

(2)  Scaling
S (ax)

(3)  Shifting
flx = xp)

(4) Symmetry
F(x)

(5) Conjugation
f*x)

(6) Convolution

c1F(u) + ¢2,G(u)

1 Hu
la] | a
e 2™E (y)

f=u)

F*(—u)

h(x) = fxg = ff(x')g(x —x)ax' | Fu)G)

@) Differentiation
df(x)
k’l

Qm ju)"F(u)

Parseval’s theorem:

ilf ) Pax = IIF © Pag

Jr0e e o= [FO)6*@ at

fx)

F ()

Real(R)

Real part even (RE)
Imaginary part odd (I0)

Imaginary (I)
RE,IO
RE,IE

RE

RO

IE

10
Complex even (CE)

Cco

RO,IE

R

I
RE
I0
IE
RO
CE
co
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FOURIER TRANSFORM PAIRS

fix) F (u)
Rectangle function Sinc function
1 1
-1 1
2 2 .
Rect (x) Sinc (u)= sin :;ru
L]

Triangle function

Exponential

.

e —alxl

T
Gaussian

Unit impulse  &(x)

Unit step
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Table2.2 (cont.)

Comb function 1 * n
o0 o _2 §(E-—)
z 8 (x — nxg) n=-oo
n=—o0
tpetet |ttt
29  —Xg Xo 2xq -2 -1 | 1 2
Xg  Xq Xo  Xq
€0s 2mwyx

%[B(E—wo)+8($+wo)]

\ [ ] 1
YV |

sin 2rwyx » 3718 (E— o) + 8 (£ +wp) ]

A | T
NN

Intuitively, one function is ‘‘swept past’’ (in one dimension) or ‘‘rubbed over’’ (in
two dimensions) the other. The value of the convolution at any displacement is the
integral of the product of the (relatively displaced) function values. One common
phenomenon that is well expressed by a convolution is the formation of an image
by an optical system. The system (say a camera) has a ‘‘point-spread function,”
which is the image of a single point. (In linear systems theory, this is the ‘‘impulse
response,”’ or response to a delta-function input.) The ideal point-spread function
is, of course, a point. A typical point-spread function is a two-dimensional Gaus-
sian spatial distribution of intensities, but may include such phenomena as
diffraction rings. In any event, if the camera is modeled as a linear system (ignor-

Fig. 2.5 (on facing page) (a) An image, f(x, y). (b) A rotated version of (a), filtered to enhance high spatial
frequencies. (c) Similar to (b), but filtered to enhance low spatial frequencies. (d), (e), and (f) show the loga-
rithm of the power spectrum of (a), (b), and (c). The power spectrum is the log square modulus of the Fourier
transform F (4, v). Considered in polar coordinates (p, 8), points of small p correspond to low spatial frequencies
(““slowly-varying” intensities), large p to high spatial frequencies contributed by “‘fast” variations such as step
edges. The power at (p, ) is determined by the amount of intensity variation at the frequency p occurring at the
angle 6.
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ing the added complexity that the point-spread function usually varies over the
field of view), the image is the convolution of the point-spread function and the in-
put signal. The point-spread function is rubbed over the perfect input image, thus
blurring it.

Convolution is also a good model for the application of many other linear
operators, such as line-detecting templates. It can be used in another guise (called
correlation) to perform matching operations (Chapter 3) which detect instances of
subimages or features in an image.

In the spatial domain, the obvious implementation of the convolution opera-
tion involves a shift-multiply—integrate operation which is hard to do efficiently.
However, multiplication and convolution are “‘transform pairs,”’ so that the.calcu-
lation of the convolution in one domain (say the spatial) is simplified by first
Fourier transforming to the other (the frequency) domain, performing a multipli-
cation, and then transforming back.

The convolution of fand g in the spatial domain is equivalent to the point-
wise product of Fand G in the frequency domain,

F$(f*g) = FG (2.24)

We shall show this in a manner similar to [Duda and Hart 1973]. First we prove
the shift theorem. If the Fourier transform of £ (x) is F(u), defined as

F) = [ £(x) exp [ — j2m (ux)]dx 2.25)

then .
FU G — @)l = [fx—a) exp [— j2m (ux)ldx (2.26)

changing variables so that x’ = x — gand dx = dx’
=[£G exp (= j2mlux + a)llax’ @.27)

Now expl — j2mu(x’ + a)l = exp (— j2mwua) exp ( — j2mwux’), where the first
term is a constant. This means that

5 — a)l = exp(— j2mua) F(u) (shift theorem)
Now we are ready to show that 5[ (x)*g (x)] = F(u) G (u).
F (frg) = f f F)gl = x)) exp (= j2muy) dx dy (2.28)

= ff(x) fg(y - x) exp (= j2muy) dy}dx (2.29)

Recognizing that the terms in braces represent §[g(y — x)] and applying the shift
theorem, we obtain

5(reg) = [ F(x)exp (— j2mux) G (u) dx (2.30)

= F(u)Gu) (2.31)
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2.2.5 Color

Not all images are monochromatic; in fact, applications using multispectral images
are becoming increasingly common (Section 2.3.2). Further, human beings intui-
tively feel that color is an important part of their visual experience, and is useful or
even necessary for powerful visual processing in the real world. Color vision pro-
vides a host of research issues, both for psychology and computer vision. We
briefly discuss two aspects of color vision: color spaces and color perception.
Several models of the human visual system not only include color but have proven
useful in applications [Granrath 1981].

Color Spaces

Color spaces are a way of organizing the colors perceived by human beings. It
happens that weighted combinations of stimuli at three principal wavelengths are
sufficient to define almost all the colors we perceive. These wavelengths form a na-
tural basis or coordinate system from which the color measurement process can be
described. Color perception is not related in a simple way to color measurement,
however.

Color is a perceptual phenomenon related to human response to different
wavelengths in the visible electromagnetic spectrum [400 (blue) to 700 nanometers
(red); a nanometer (nm) is 10~ meter]. The sensation of color arises from the
sensitivities of three, types of neurochemical sensors in the retina to the visible
spectrum. The relative response of these sensors is shown in Fig. 2.6. Note that
each sensor responds to a range of wavelengths. The illumination source has its
own spectral composition f(\) which is modified by the reflecting surface. Let
r (\) be this reflectance function. Then the measurement R produced by the “‘red”
sensor is given by

R=[r0r0m) ax | 2.32)

So the sensor output is actually the integral of three different wavelength-

dependent components: the source f, the surface reflectance r, and the sensor Ag.
Surprisingly, only weighted combinations of three delta-function approxima-

tions to the different f(A\) A (\), thatis, (A z), (A ), and 8 (A ), are necessary to

Relative sensitivity

Sec. 2.2

400 500 600 700

Fig. 2.6 Spectral response of human
Wavelength, nm color sensors.
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produce the sensation of nearly all the colors. This result is displayed on a chromati-
city diagram. Such a diagram is obtained by first normalizing the three sensor meas-

urements:
po R
R+g+B
= RTGTB (2.33)
p—— B
R+G+B

and then plotting perceived color as a function of any two (usually red and green).
Chromaticity explicitly ignores intensity or brightness; it is a section through the
three-dimensional color space (Fig. 2.7). The choice of (A g, A g, Ag) = (410, 530,
650) nm maximizes the realizable colors, but some colors still cannot be realized
since they would require negative values for some of 7, g, and b.

Another more intuitive way of visualizing the possible colors from the RGB
space is to view these measurements as Euclidean coordinates. Here any color can
be visualized as a point in the unit cube. Other coordinate systems are useful for
different applications; computer graphics has proved a strong stimulus for investi-
gation of different color space bases.

Color Perception

Color perception is complex, but the essential step is a transformation of
three input intensity measurements into another basis. The coordinates of the new

(a) (b)

Fig. 2.7 (a) An artist’s conception of the chromaticity diagram—see color insert; (b) a
more useful depiction. Spectral colors range along the curved boundary; the straight boun-
dary is the line of purples.
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basis are more directly related to human color judgments.

Although the RGB basis is good for the acquisition or display of color infor-
mation, it is not a particularly good basis to explain the perception of colors. Hu-
man vision systems can make good judgments about the relative surface reflec-
tance r (A\) despite different illuminating wavelengths; this reflectance seems to be
what we mean by surface color.

Another important feature of the color basis is revealed by an ability to per-
ceive in ‘‘black and white,”’ effectively deriving intensity information from the
color measurements. From an evolutionary point of view, we might expect that
color perception in animals would be compatible with preexisting noncolor percep-
tual mechanisms.

These two needs—the need to make good color judgments and the need to
retain and use intensity information—imply that we use a transformed, non-RGB
basis for color space. Of the different bases in use for color vision, all are variations
on this theme: Intensity forms one dimension and color is a two-dimensional sub-
space. The differences arise in how the color subspace is described. We categorize
such bases into two groups.

1. Intensity/Saturation/Hue (IHS). In this basis, we compute intensity as

intensity: =R + G + B (2.34)

The saturation measures the lack of whiteness in the color. Colors such as “‘fire
engine’’ red and ‘‘grass’ green are saturated; pastels (e.g., pinks and pale blues)
are desaturated. Saturation can be computed from RGB coordinates by the formula
[Tenenbaum and Weyl 1975]

3min (R, G, B)
intensity

Hue is roughly proportional to the average wavelength of the color. It can be
defined using RGB by the following program fragment:

1 {KI(R — G) + (R — B)]}
VR - G)*+ (R - B)(G - B)

If B > Gthenhue: = 2pi — hue

The IHS basis transforms the RGB basis in the following way. Thinking of the
color cube, the diagonal from the origin to (1, 1, 1) becomes the intensity axis.
Saturation is the distance of a point from that axis and hue is the angle with regard
to the point about that axis from some reference (Fig. 2.8).

This basis is essentially that used by artists [Munsell 1939], who term sat-
uration chroma. Also, this basis has been used in graphics [Smith 1978; Joblove
and Greenberg 1978]. ‘

One problem with the IHS basis, particularly as defined by (2.34) through
(2.36), is that it contains essential singularities where it is impossible to define the
color in a consistent manner [Kender 1976]. For example, hue has an essential
singularity for all values of (R, G, B), where R = G = B. This means that special
care must be taken in algorithms that use hue.

' 2. Opponent processes. The opponent process basis uses Cartesian rather than

saturation: = 1 — (2.35)

hue: = cos™ (2.36)
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(a) ‘ (b)

Fig. 2.8 AnIHS Color Space. (a) Cross section at one intensity; (b) cross section at one hue—see color inserts.
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cylindrical coordinates for the color subspace, and was first proposed by Hering
[Teevan and Birney 1961]. The simplest form of basis is a linear transformation
from R, G, B coordinates. The new coordinates are termed “R — G”,
“Bl—Y”,and “W — Bk ”’:

R-G 1 -2 1]z
Bl—-Y|=]-1 -1 2 G]
W — Bk, 1 1 118

The advocates of this representation, such as [Hurvich and Jameson 19571, theor-
ize that this basis has neurological correlates and is in fact the way human beings
represent (‘“‘name”’) colors. For example, in this basis it makes sense to talk about
a ‘“‘reddish blue’’ but not a ‘‘reddish green.”’ Practical opponent process models
usually have more complex weights in the transform matrix to account for psycho-
physical data. Some startling experiments [Land 1977] show our ability to make
correct color judgments even when the illumination consists of only two principal
wavelengths. The opponent process, at the level at which we have developed it,
does not demonstrate how such judgments are made, but does show how stimulus
at only two wavelengths will project into the color subspace. Readers interested in
the details of the theory should consult the references.

Commercial television transmission needs an intensity, or ““W — Bk’ com-
ponent for black-and-white television sets while still spanning the color space. The
National Television Systems Committee (NTSC) uses a ‘“YIQ’’ basis extracted
from RGBvia '
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2.2.6 Digital Images

The digital images with which computer vision deals are represented by m-vector
discrete-valued image functions f(x), usually of one, two, three, or four dimen-
sions.

Usually m = 1, and both the domain and range of f(x) are discrete. The
domain of f is finite, usually a rectangle, and the range of f is positive and
bounded: 0 < f(x) < M for some integer M. For all practical purposes, the image
is a continuous function which is represented by measurements or samples at regu-
larly spaced intervals. At the time the image is sampled, the intensity is usually
quantized into a number of different gray levels. For a discrete image, f (x) is an in-
teger gray level, and x = (x, y) is a pair of integer coordinates representing a sam-
ple point in a two-dimensional image plane. Sampling involves two important
choices: (1) the sampling interval, which determines in a basic way whether all the
information in the image is represented, and (2) the tesselation or spatial pattern of
sample points, which affects important notions of connectivity and distance. In our
presentation, we first show qualitatively the effects of sampling and gray-level
quantization. Second, we discuss the simplest kinds of tesselations of the plane. Fi-
nally, and most important, we describe the sampling theorem, which specifies how
close the image samples must be to represent the image unambiguously.

The choice of integers to represent the gray levels and coordinates is dictated
by limitations in sensing. Also, of course, there are hardware limitations in
representing images arising from their sheer size. Table 2.3 shows the storage re-
quired for an image in 8-bit bytes as a function of m, the number of bits per sam-
ple, and N, the linear dimension of a square image.

For reasons of economy (and others discussed in Chapter 3) we often use im-
ages of considerably less spatial resolution than that required to preserve fidelity to
the human viewer. Figure 2.9 provides a qualitative idea of image degradation with
decreasing spatial resolution.

As shown in Table 2.3, another way to save space besides using less spatial
resolution is to use fewer bits per gray level sample. Figure 2.10 shows an image
represented with different numbers of bits per sample. One striking effect is the
“‘contouring” introduced with small numbers of gray levels. This is, in general, a
problem for computer vision algorithms, which cannot easily discount the false
contours. The choice of spatial and gray-level resolution for any particular com-
puter vision task is an important one which depends on many factors. It is typical in
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Fig. 2.9 Using different numbers of samples. (a) N = 16; (b) N = 32; (c) N =
64; (d) N = 128; (e) N = 256; (f) N = 512.
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Table 2.3

NUMBER OF 8-BIT BYTES OF STORAGE FOR
VARIOUS VALUES OF N AND M

N 3 64 128 256 512
m

1 128 512 2,048 8,192 32,768
2 256 1,024 4,096 16384 65,536
3 512 2,048 8,192 32,768 131,072
4 512 2,048 8,192 32,768 131,072
5 1,04 4,09 16,384 65536 262,144
6 1,024 4,09 16384 65536 262,144
7 1,024 4,09 16384 65536 262,144
8 1,024 4,09 16384 65536 262,144

computer vision to have to balance the desire for increased resolution (both gray
scale and spatial) against its cost. Better data can often make algorithms easier to
write, but a small amount of data can make processing more efficient. Of course,
the image domain, choice of algorithms, and image characteristics all heavily
influence the choice of re’solutions.

Tesselations and Distance Metrics

Although the spatial saimples for £ (x) can be represented as points, it is more
satisfying to the intuition and a closer approximation to the acquisition process to
think of these samples as finite-sized cells of constant gray-level partitioning the
image. These cells are termed pixels, an acronym for picture elements. The pattern
into which the plane is divided is called its tesselation. The most common regular
tesselations of the plane are shown in Fig. 2.11.

Although rectangular tesselations are almost universally used in computer
vision, they have a structural problem known as the ‘‘connectivity paradox.”
Given a pixel in a rectangular tesselation, how should we define the pixels to which
it is connected? Two common ways are four-connectivity and eight-connectivity,
shown in Fig. 2.12.

However, each of these schemes has complications. Consider Fig. 2.12c, con-
sisting of a black object with a hole on a white background. If we use four-
connectedness, the figure consists of four disconnected pieces, yet the hole is
separated from the ‘‘outside’” background. Alternatively, if we use eight-
connectedness, the figure is one connected piece, yet the hole is now connected to
the outside. This paradox poses complications for many geometric algorithms. Tri-
angular and hexagonal tesselations do not suffer from connectivity difficulties (if
we use three-connectedness for triangles); however, distance can be more difficult
to compute on these arrays than for rectangular arrays.

The distance between two pixels in an image is an important measure that is
fundamental to many algorithms. In general, a distance dis a metric. That is,
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Fig. 2.10 Using different numbers of bits per sample. (a) m = 1; (b) m = 2; (c)
m=4;,(d) m=S8.

1 dix, =0 iff x=y

2) dx, y)=d(y, x)

3) dix, y) +d(y, 2 > d(x, 2)

For square arrays with unit spacing between pixels, we can use any of the following
common distance metrics (Fig. 2.13) for two pixels x = (x;,y;) and y = (x5,5,).

Euclidean:

d,(x, y) =/ (c;—x)2 + (1 — y)? (.37
City block:

dey (%, ) = |x1=x3| + [y1=y2l (2.38)
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é é ;é Fig. 2.11 Different tesselations of the
image plane. (a) Rectangular; (b)

(c) triangular; (c) hexagonal.
Chessboard:
dey(x,y) = max'lx 1—Xa| Iyx—sz] (2.39)

Other definitions are possible, and all such measures extend to multiple dimen-
sions. The tesselation of higher-dimensional space into pixels usually is confined to
(n-dimensional) cubical pixels.

The Sampling Theorem

Consider the one-dimensional ‘‘image’” shown in Fig. 2.14. To digitize this
image one must sample the image function. These samples will usually be separat-
ed at regular intervals as shown. How far apart should these samples be to allow
reconstruction (to a given accuracy) of the underlying continuous image from its
samples? This question is answered by the Shannon sampling theorem. An excel-
lent rigorous presentation of the sampling theorem may be found in [Rosenfeld
and Kak 1976]. Here we shall present a shorter graphical interpretation using the
results of Table 2.2. For simplicity we consider the image to be periodic in order to
avoid small edge effects introduced by the finite image domain. A more rigorous .

Sec. 2.2 Image Model 39



40

%Y,
%%, 7
27 4 %% DY
V% D,
Z
(a) (b) (c)

Fig. 2.12 Connectivity paradox for rectangular tesselations. (a) A central pixel
and its 4-connected neighbors; (b) a pixel and its 8-connected neighbors; (c) a
figure with ambiguous connectivity.
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Fig. 2.13 Equidistant contours for dif-
ferent metrics.
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Fig. 2.14 One-dimensional image and its samples.

treatment, which considers these effects, is given in [Andrews and Hunt
1977].

Suppose that the image is sampled with a ‘“‘comb’’ function of spacing x (see
Table 2.2). Then the sampled image can be modeled by

fi(x) = £ X8 (e — nxp) (2.40)

where the image function modulates the comb function. Equivalently, this can be
written as

[ ) =Y flnxe) 8(x — nxo) (2.41)

The right-hand side of Eq. (2.40) is the product of two functions, so that property _
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(6) in Table 2.1 is appropriate. The Fourier transform of f,(x) is equal to the con-
volution of the transforms of each of the two functions. Using this result yields

Fu) = F) s 2380 — 1) (2.42)
X0 n X0
But from Eq. (2.3),
Fu)«s(u—2)=Fu--L) (2.43)
X0 X0
so that
-1 _n
F,(u) = xo%“F(u xo) (2.44)

Therefore, sampling the image function f (x) at intervals of x, is equivalent

in the frequency domain to replicating the transform of £ at intervals of -):— This
0

limits the recovery of f(x) from its sampled representation, f,(x). There are two
basic situations to consider. If the transform of f (x) is bandlimited such that F(u)
= 0 for| u|> 1/(2x,), then there is no overlap between successive replications of
F(u) in the frequency domain. This is shown for the case of Fig. 2.15a, where we
have arbitrarily used a triangular-shaped image transform to illustrate the effects of
sampling. Incidentally, pote that for this transform F(u) = F(—u) and that it has
no imaginary part; from Table 2.2, the one-dimensional image must also be real

and even. Now if F(u) is not bandlimited, i.e., there are u > % for which F(u)
0

# 0, then components of different replications of F (#) will interact to produce the
composite function F,(u), as shown in Fig. 2.15b. In the first case f(x) can be
recovered from F, (u) by multiplying F, (u) by a suitable G (u):

1
G(u) = ! |u|< 2xg
0  otherwise (2.45)
Then
f&x) =5"1UF,()GW)] (2.46)

However, in the second case, F,(u) G (1) is very different from the original F (u).
This is shown in Fig. 2.15c. Sampling a F (u) that is not bandlimited allows infor-
mation at high spatial frequencies to interfere with that at low frequencies, a
phenomenon known as aliasing.

Thus the sampling theorem has this very important result: As long as the im-
age contains no spatial frequencies greater than one-half the sampling frequency,
the underlying continuous image is unambiguously represented by its samples.
Howeuver, lest one be tempted to insist on images that have been so sampled, note
that it may be useful to sample at lower frequencies than would be required for to-
tal reconstruction. Such sampling-is usually preceded by some form of blurring of
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Fig. 2.15 (a) F(u) bandlimited so that F(u) = 0 for |u| > 1/2x,. (b) F(u) not band-
limited as in (a). (c) reconstructed transform.

the image, or can be incorporated with such blurring (by integrating the image in- ‘
tensity over a finite area for each sample). Image blurring can bury irrelevant de-
tails, reduce certain forms of noise, and also reduce the effects of aliasing.

2.3 IMAGING DEVICES FOR COMPUTER VISION

There is a vast array of methods for obtaining a digital image in a computer. In this
section we have in mind only ‘‘traditional’’ images produced by various forms of
radiation impinging on a sensor after having been affected by physical objects.
Many sensors are best modeled as an analog device whose response must be
digitized for computer representation. The types of imaging devices possible are
limited only by the technical ingenuity of their developers; attempting a definitive
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Fig. 2.16 Imaging devices (boxes), information structurés (rectangles), and processes (circles).

taxonomy is probably unwise. Figure 2.16 is a flowchart of devices, information
structures, and processes addressed in this and succeeding sections.

When the image already exists in some form, or physical considerations limit
choice of imaging technology, the choice of digitizing technology may still be open.
Most images are carried on a permanent medium, such as film, or at least are avail-
able in (essentially) analog form to a digitizing device. Generally, the relevant
technical characteristics of imaging or digitizing devices should be foremost in
mind when a technique is being selected. Such considerations as the signal-to-
noise ratio of the device, its resolution, the speed at which it works, and its ex-
pense are important issues.

Sec. 2.3 Imaging Devices for Computer Vision 43



44

2.3.1 Photographic Imaging

The camera is the most familiar producer of optical images on a permanent
medium. We shall not address here the multitudes of still- and movie-camera op-
tions; rather, we briefly treat the characteristics of the photographic film and of the
digitizing devices that convert the image to machine-readable form. More on these
topics is well presented in the References.

Photographic (black-and-white) film consists of an emulswn of silver halide
crystals on a film base. (Several other layers are identifiable, but are not essential to
an understanding of the relevant properties of film.) Upon exposure to light, the
silver halide crystals form development centers, which are small grains of metallic
silver. The photographic development process extends the formation of metallic
silver to the entire silver halide crystal, which thus becomes a binary (‘‘light” or
““no light”) detector. Subsequent processing removes undeveloped silver halide.
The resulting film negative is dark where many crystals were developed and light
where few were. The resolution of the film is determined by the grain size, which
depends on the original halide crystals and on development techniques. Gen-
erally, the faster the film (the less light needed to expose it), the coarser the grain. |
Film exists that is sensitive to infrared radiation; x-ray film typically has two emul-
sion layers, giving it more gray-level range than that of normal film.

A repetition of the negative-forming process is used to obtain a photographic
print. The negative is projected onto photographic paper, which responds roughly
in the same way as the. negative. Most photographic print paper cannot capture in .
one print the range of densities that can be present in a negative. Positive films do

-exist that do not require printing; the most common example is color slide film.

The response of film to light is not completely linear. The photographic den-
sity obtained by a negative is defined as the logarithm (base 10) of the ratio of in-
cident light to transmitted light.

pe
I

The exposure of a negative dictates (approximately) its response. Exposure is
defined as the energy per unit area that exposed the film (in its sensitive spectral
range). Thus exposure is the product of the intensity and the time of exposure. This
mathematical model of the behavior of the photographic exposure process is
correct for a wide operating range of the film, but reciprocity failure effects in the
film keep one from being able always to trade light level for exposure time. At very
low light levels, longer exposure times are needed than are predicted by the prod-
uct rule.

The response of film to light is usually plotted in an “H&D curve”’ (named
for Hurter and Driffield), which plots density versus exposure. The H&D curve of
film displays many of its important characteristics. Figure 2.17 exhibits a typical
H&D curve for a black and white film.

The toe of the curve is the lower region of low slope. It expresses reciprocity
failure and the fact that the film has a certain bias, or fog response, which dom-
inates its behavior at the lowest exposure levels. As one would expect, there is an
upper limit to the density of the film, attained when a maximum number of silver

D= logm
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halide crystals are rendered developable. Increasing exposure beyond this max-
imum level has little effect, accounting for the shoulder in the H&D curve, or its
flattened upper end.

In between the toe and shoulder, there is typically a linear operating region of
the curve. High-contrast films are those with high slope (traditionally called
gamma); they respond dramatically to small changes in exposure. A high-contrast
film may have a gamma between about 1.5 and 10. Films with gammas of approxi-
mately 10 are used in graphics arts to copy line drawings. General -purpose films

have gammas of about 0.5 to 1.0.
The resolution of ‘a general film is about 40 lines/mm, which means that a

1400 x 1400 image may be digitized from a 35mm slide. At any greater sampling
frequency, the individual film grains will occupy more than a pixel, and the resolu-
tion will thus be grain-limited.

Image Digitizers (Scanners)

. Accuracy and speed are the main considerations in converting an image on
film into digital form. Accuracy has two aspects: spatial resolution, loosely the level
of image spatial detail to which the digitizer can respond, and gray-level resolution,
defined generally as the range of densities or reflectances to which the digitizer
responds and how finely it divides the range. Speed is also important because usu-
ally many data are involved; images of 1 million samples are commonplace.

Digitizers broadly take two forms: mechanical and ‘““flying spot.” In a
mechanical digitizer, the film and a sensing assembly are mechanically transported
past one another while readings are made. In a flying-spot digitizer, the film and
sensor are static. What moves is the “‘flying spot,” which is a point of light on the
face of a cathode-ray tube, or a laser beam directed by mirrors. In all digitizers a
very narrow beam of light is directed through the film or onto the print at a known
coordinate point. The light transmittance or reflectance is measured, transformed
from analog to digital form, and made available to the computer through interfac-
ing electronics. The location on the medium where density is being measured may
also be transmitted with each reading, but it is usually determined by relative offset
from positions transmitted less frequently. For example, a ‘‘new scan line”’ im-
pulse is transmitted for TV output; the position along the current scan line yields
an x position, and the number of scan lines yields a y position.
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The mechanical scanners are mostly of two types, flat-bed and drum. In a flat-
bed digitizer, the film is laid flat on a surface over which the light source and the
sensor (usually a very accurate photoelectric cell) are transported in a raster
fashion. In a drum digitizer, the film is fastened to a circular drum which revolves
as the sensor and light source are transported down the drum parallel to its axis of
rotation.

Color mechanical digitizers also exist; they work by using colored filters,
effectively extracting in three scans three ‘‘color overlays’’ which when superim-
posed would yield the original color image. Extracting some ‘‘composite’’ color
signal with one reading presents technical problems and would be difficult to do as
accurately.

Satellite Imagery

LANDSAT and ERTS (Earth Resources Technology Satellites) have similar
scanners which produce images of 2340 x 3380 7-bit pixels in four spectral bands,
covering an area of 100 x 100 nautical miles. The scanner is mechanical, scanning
six horizontal scan lines at a time; the rotation of the earth accounts for the
advancement of the scan in the vertical direction.

A set of four images is shown in Fig. 2.18. The four spectral bands are num-
bered 4, 5, 6, and 7. Band 4 [0.5 to 0.6 um (green)] accentuates sediment-laden
water and shallow water, band 5 [0.6 to 0.7 um (red)] emphasizes cultural features
such as roads and cities; band 6 [0.7 to 0.8 um (near infrared)] emphasizes vegeta-
tion and accentuates the contrast between land and water, band 7 [0.8 to 1.1 um
(near infrared)] is like band 6 except that it is better at penetrating atmospheric
haze.

The LANDSAT images are available at nominal cost from the U.S. govern-
ment (The EROS Data Center, Sioux Falls, South Dakota 57198). They are fur-
nished on tape, and cover the entire surface of the earth (often the buyer has a
choice of the amount of cloud cover). These images form a huge data base of mul-
tispectral imagery, useful for land-use and geological studies; they furnish some-
thing of an image analysis challenge, since one satelhte can produce some 6 billion
bits of image data per day.

Television Imaging

Television cameras are appealing devices for computer vision applications for
several reasons. For one thing, the image is immediate; the camera can show
events as they happen. For another, the image is already in electrical, if not digital
form. ‘‘Television camera’’ is basically a nontechnical term, because many
different technologies produce video signals conforming to the standards set by the
FCC and NTSC. Cameras exist with a wide variety of technical specifications.

Usually, TV cameras have associated electronics which scan an entire ‘pic-
ture’’ at a time. This operation is closely related to broadcast and receiver stand-
ards, and is more oriented to humadn viewing than to computer vision. An entire
image (of some 525 scan lines in the United States) is called a frame, and consists
of two fields, each made up of alternate scan lines from the frame. These fields are
generated and transmitted sequentially by the camera electronics. The transmitted
image is thus interlaced, with all odd-numbered scan lines being ‘‘painted’> on the .
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Fig. 2.18 The straits of Juan de Fuca as seen by the LANDSAT multispectral scanner. (a)
Band 4; (b) band 5; (c) band 6; (d) band 7.

screen alternating with all even-numbered scan lines. In the United States, each
field takes Yo sec to scan, so a whole frame is scanned every 5o sec. The interlacing
is largely to prevent flickering of the image, which would become noticeable if the
frame were painted from top to bottom only once in J5 sec. These automatic scan-
ning electronics' may be replaced or overridden in many cameras, allowing ‘‘ran-
dom access’’ to the image. In some technologies, such as the image dissector, the
longer the signal is collected from any location, the better the signal-to-noise per-
formance. _

There are a number of different systems used to generate television images.
We discuss five main methods below.

Image orthicon tube. This is one of the two main methods in use today (in
addition to the vidicon). It offers very stable performance at all incident light levels
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and is widely used in commercial television. It is a storage-type tube, since it
depends on the neutralization of positive charges by a scanning electron beam.

The image orthicon (Fig. 2.19) is divided into an imaging and readout sec-
tion. In the imaging section, light from the scene is focused onto a semitransparent
photocathode. This photocathode operates the same way as the cathode in a photo-
tube. It emits electrons which are magnetically focused by a coil and are
accelerated toward a positively charged target. The target is a thin glass disk with a
fine-wire-mesh screen facing the photocathode. When electrons strike it, secon-
dary emission from the glass takes place. As electrons are emitted from the photo-
cathode side of the disk, positive charges build up on the scanning side. These
charges correspond to the pattern of light intensity in the scene being viewed.

In the readout section, the back of the target is scanned by a low velocity elec-
tron beam from an electron gun at the rear of the tube. Electrons in this beam are
absorbed by the target in varying amounts, depending on the charge on the target.
The image is represented by the amplitude-modulated intensity of the returned
beam.

Vidicon tube. The vidicon is smaller, lighter, and more rugged than the
image orthicon, making it ideal for portable use. Here the target (the inner surface
of the face plate) is coated with a transparent conducting film which forms a video
signal electrode (Fig. 2.20). A thin photosensitive layer is deposited on the film,
consisting of a large number of tiny resistive globules whose resistance decreases
on illumination THis layer is scanned in raster fashion by a low velocity electron
beam from the electron gun at the rear of the-tube. The beam deposits electrons on
the layer, thus reducing its surface potential. The two surfaces of the target essen-
. tially form a capacitor, and the scanning action of the beam produces a capacitive
current at the video signal electrode which represents the video signal.

The plumbicon is essentially a vidicon with a lead oxide photosensitive layer.
It offers the following advantages over the vidicon: higher sensitivity, lower dark
current, and negligible persistence or lag.
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Fig. 2.19 The image orthicon.
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Fig. 2.20 The vidicon.

Iconoscope tube. The iconoscope is now largely of historical interest. In it,
an electron beam scans a target consisting of a thin mica sheet or mosaic coated
with a photosensitive layer. In contrast to the vidicon and orthicon, the electron
beam and the light both strike the same side of the target surface. The back of the
mosaic is covered with a conductive film connected to an output load. The arrange-
ment is equivalent to a matrix of small capacitors which discharge through a com-
mon lead.

Image dissector. tube. The image dissector tube operates on instantaneous
scanning rather than by neutralizing positive charges. Light from the scene is
focused on a cathode coated with a photosensitive layer (Fig. 2.21). The cathode
emits electrons in proportion to the amount of light striking it. These electrons are
accelerated toward a target by the anode. The target is an electron multiplier
covered by a small aperture which allows only a small part of the ‘‘electron image”’
emitted by the cathode to reach the target. The electron image is focused by a
focusing coil that produces an axial magnetic field. The deflection coils then scan
the electron image past the target aperture, where the electron multiplier produces
a varying voltage representing the video signal. The image is thus ‘‘dissected’ as it
is scanned past the target, in an electronic version of a flat-bed digitizing process.

Charge transfer devices. A more recent development in image formation
is that of solid-state image sensors, known as charge transfer devices (CTDs).
There are two main classes of CTDs: charge-coupled devices (CCDs) and charge-
injection devices (CIDs).

CCDs resemble MOSFETs (metal-oxide semiconductor field-effect transis-
tor) in that they contain a ‘‘source” region and a ‘‘drain’’ region coupled by a_
depletion-region channel (Fig. 2.22). For imaging purposes, they can be con-
sidered as a monolithic array of closely spaced MOS capacitors forming a shift
register (Fig. 2.23). Charges in the depletion region are transferred to the output
by applying a series of clocking pulses to a row of electrodes between the source
and the drain. v

Photons incident on the semiconductor generate a series of charges on the
CCD array. They are transferred to an output register either directly one line at a
time (line transfer) or via a temporary storage area (frame transfer). The storage
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Fig. 2.21 Image dissector.

area is needed in frame transfer because the CCD array is scanned more rapidly
than the output can be directly accommodated.

Charge injection devices (CIDs) resemble CCDs except that during sensing
the charge is confined to the image site where it was generated (Fig. 2.24). The
charges are read using an X-Y addressing technique similar to that used in com-
puter memories. Basically, the stored charge is “‘injected’’ into the substrate and
the resulting displacement current is detected to create the video signal.

CTD technology offers a number of advantages over conventional-tube-type
cameras: light weight, small size, low power consumption, resistance to burn-in,
low blooming, low dark current, high sensitivity, wide spectral and dynamic range,
and lack of persistence. CIDs have the further advantages over CCDs of tolerance
to processing defects, simple mechanization, avoidance of charge transfer losses,
and minimized blooming. CTD cameras are now available commercially.

Analog-to-Digital Conversion

With current technology, the representation of an image as an analog electri-
cal waveform is usually an unavoidable precursor to further processing. Thus the
operation of deriving a digital representation of an analog voltage is basic to com-
puter vision input devices.
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Fig. 2.22 Charge coupled device.
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Fig. 2.23 A CCD array (line transfer).

The function of an analog-to-digital (A/D) converter is to take as input a vol-
tage such as a video signal and to produce as output a representation of the voltage
in digital memory, suitable for reading by an interface to a digital computer. The
quality of an A/D converter is measured by its temporal resolution (the speed at
which it can perform conversions) and the accuracy of its digital output. Analog-
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Fig. 2.24 A CID array.
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to-digital converters are being produced as integrated circuit chips, but high-
quality models are still expensive. The output precision is usually in the 8- to 12-bit
range.

It is quite possible to digitize an entire frame of a TV camera (i.e., approxi-
mately 525 scan lines by 300 or so samples along a scan line) in a single frame time
(1/30 sec in the United States). Several commercial systems can provide such fast
digitization into a ‘‘frame buffer’> memory, along with raster graphics display capa-
bilities from the same frame buffer, and ‘‘video rate processing’’ of the digital data.
The latter term refers to any of various low-level operations (such as averaging,
convolution with small templates, image subtraction) which may be performed as
fast as the images are acquired.

One inexpensive alternative to digitizing entire TV frames at once is to use an
interface that acquires the TV signal for a particular point when the scan passes the
requested location. With efficient programming, this point-by-point digitization
can acquire an entire frame in a few seconds.

2.3.2 Sensing Range

The third dimension may be derived from binocular images by triangulation, as we
saw earlier, or inferred from single monocular visual input by a variety of ‘‘depth
cues,”’ such as size and occlusion. Specialized technology exists to acquire ‘‘depth
images’’ directly and reliably. Here we outline two such techniques: ‘‘light strip-
ing,”” which is based on triangulation, and ‘‘spot ranging,”” which is based on
different principles.

Light Striping

Light striping is a particularly simple case of the use of structured light [Will
and Pennington 1971]. The basic idea is to use geometric information in the illumi-
nation to help extract geometric information from the scene. The spatial frequen-
cies and angles of bars of light falling on a scene may be clustered to find faces; ran-
domly structured light may allow blank, featureless surfaces to be matched in
stereo views; and so forth.

Many researchers [Popplestone et al. 1975; Agin 1972; Sugihara 1977] have
used striping to derive three dimensions. In light striping, a single plane of light is.
projected onto a scene, which causes a stripe of light to appear on the scene (Fig.
2.25). Only the part of the scene illuminated by the plane is sensed by the vision
system. This restricts the ““image’’ to be an essentially one-dimensional entity, and
simplifies matching corresponding points. The plane itself has a known position
(equation in world coordinates), determinable by any number of methods involv-
ing either the measurement of the projecting device or the measurement of the
final resulting plane of light. Every image point determines a single “‘line of sight”’
in three-space upon which the world point that produces the image point must lie.
This line is determined by the focal point of the imaging system and the image
point upon which the world point projects. In a light-striping system, any point
that is sensed in the image is also guaranteed to lie on the light plane in three-
space. But the light plane and the line of sight intersect in just one point (as long as
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Fig. 2.25 Light striping. (a) A typical arrangement; (b) raw data; (c) data segmented into
strips; (d) strips segmented into two surfaces.

the camera’s focal point is not in the light plane). Thus by computation of the in-
tersection of the line of sight with the plane of light, we derive the three-
dimensional point that corresponds to any image point visible as part of a stripe.

The plane of light may result from a laser or from the projection of a slit. Only
the light stripe should be visible to the imaging device; unless a laser is used, this
implies a darkened room. If a camera is fitted with the proper filter, a laser-based
system can be operated in normal light. Another advantage of the laser is that it can
be focused into a narrower plane than can a slit image.

The only points whose three-dimensional coordinates can be computed are
those that can be ‘‘seen’” by both the light-stripe source and the camera at once.
Since there must be a nonzero baseline if triangulation is to derive three-
dimensional information, the camera cannot be too close to the projector, and thus
concavities in the scene are potential trouble spots, since both the striper and the
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camera may not be able to ““see’’ into them. Surfaces in the scene that are nearly
parallel with the light plane will have a relatively small number of stripes projected
onto them by any uniform stripe placement strategy. This problem is ameliorated
by striping with two sets of parallel planes at right angles to each other [Agin 1972].
A major advantage of light striping over spot ranging is that (barring shadows) its
continuity and discontinuity indicate similar conditions on the surface. It is easy to
“‘segment’’ stripe images (Part II): Stripes falling on the same surface may easily
be gathered together. This set of related stripes may be used in a number of ways to
derive further information on the characteristics of the surface (Fig. 2.25b).

Spot Ranging

Civil engineers have used laser-based ‘‘spot range finders”’ for some time. In
laboratory-size environments, they are a relatively new development. There are
two basic techniques. First, one can emit a very sharp pulse and time its return
(““lidar,” the light equivalent of radar). This requires a sophisticated laser and
electronics, since light moves 1 ft every billionth of a second, approximately. The
second technique is to modulate the laser light in amplitude and upon its return
compare the phase of the returning light with that of the modulator. The phase
differences are related to the distance traveled [Nitzan et al. 1977]. A representa-
tive image is shown in Fig. 2.26.

Both these techniques produce results that are accurate to within about 1% of
the range. Both of them allow the laser to be placed close to a camera, and thus
““intensity maps” (images) and range maps may be produced from single
viewpoints. The laser beam can easily poke into holes, and the return beam may be
sensed close to the emitted one, so concavities do not present a serious problem.
Since the laser beam is attenuated by absorption, it can yield intensity information
as well. If the laser produces light of several wavelengths, it is possible to use filters
and obtain multispectral reflectance information as well as depth information from
the same device [Garvey 1976; Nitzan et al. 1977].

The usual mode of use of a spot ranging device is to produce a range map that
corresponds to an intensity map. This has its advantages in that the correspon-
dence may be close. The structural properties of light stripes are lost: It can be hard

o “‘segment’’ the image into surfaces (to tell which ‘‘range pixels’’ are associated
with the same surface). Range maps are amenable to the same sorts of segmenta-
tion techniques that are used for intensity images: Hough techniques, region grow-
ing, or differentiation-based methods of edge finding (Part II).

Ultrasonic Ranging

Just as light can be pulsed to determine range, so can sound and ultrasound
(frequencies much higher than the audible range). Ultrasound has been used ex-
tensively in medicine to produce images of human organs (e.g., [Waag and
Gramiak 1976]). The time between the transmitted and received signal determines
range; the sound signal travels much slower than light, making the problem of tim-
ing the returning signal rather easier than it is in pulsed laser devices. However,
the signal is severely attenuated as it travels through biological tissue, so that the
detection apparatus must be very sensitive.
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Fig. 2.26 Intensity and range images. (a) A (synthesized) intensity image of a
street scene with potholes. The roofs all have the same intensity, which is different
from the walls; (b) a corresponding range image. The wall and roof of each house
have similar ranges, but the ranges differ from house to house.

One basic difference between sound and visible light ranging is that a light
beam is usually reflected off just one surface, but that a sound beam is generally
partially transmitted and partially reflected by ‘‘surfaces.”” The returning sound
pulse has structure determined by the discontinuities in impedence to sound found
in the medium through which it has passed. Roughly, a light beam returns infor-
mation about a spot, whereas a sound beam can return information about the
medium in the entire column of material. Thus, although sound itself travels rela-
tively slowly, the data rate implicit in the returning structured sound pulse is quite
high. Figure 2.27 shows an image made using the range data from ultrasound. The
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Fig. 2.27 Image made from
ultrasound ranging.

sound pulses emanate from the top of the image and proceed toward the bottom,

being partially reflected and transmitted along the way. In the figure, it is as if we
were looking perpendicular to-the beams, which are being displayed as brighter
where strong reflectance is taking place. A single ‘‘scan line”’ of sound thus pro-
duces an image of an entire planar slice of medium.

2.3.3 Reconstruction Imaging

Two-dimensional reconstruction has been the focus of much research attention
because of its important medical applications. High-quality images such as that
shown in Fig. 1.2b can be formed by multiple images of x-ray projection data. This
section contains the principles behind the most important reconstruction algo-
rithms. These techniques are discussed in more detail with an expanded list of
references in [Gordon and Herman 1974]. For a view of the many applications of
two-dimensional reconstruction other than transmission scanning, the reader is re-
ferred to [Gordon et al. 1975].

Figure 2.28 shows the basic geometry to collect one-dimensional projections
of two-dimensional data. (Most systems construct the image in a plane and repeat
this technique for other planes; there are few true three-dimensional reconstruc-
tion systems that use planes of projection data simultaneously to construct
volumes.)

In many applications sensors can measure the one-dimensional projection of
two-dimensional image data. The projection g (x’) of an ideal image f (x, y) in the
direction 0 is given by f f (' y) dy'where X' = Ryx. If enough different projec-
tions are obtained, a good approximation to the image can be obtained with two-
dimensional reconstruction techniques.

From Fig. 2.28, with the source at the first position along line 44°, we can ob-
tain the first projection datum from the detector at the first position along BB'. The
line 4B is termed a ray and the measurement at B a ray sum. Moving the source
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. Fig. 2.28 Projection geometry.

and detector along lines A4’ and BB’ in synchrony allows us to obtain the entire
data for projection 1. Now the lines 44'and BB’ are rotated by a small angle 46
about 0 and the process is repeated. In the original x-ray systems 40 was 1° of an-
gle, and 180 projections were taken. Each projection comprised 160 transmission
measurements. The reconstruction problem is simply this: Given the projection
datag,(x),k =0, ..., N — 1, construct the original image f(x)."

Systems in use today use a fan beam rather than the parallel rays shown.
However, the mathematics is simpler for parallel rays and illustrates the funda-
mental ideas. We describe three related techniques: summation, Fourier interpola-
tion, and convolution.

The Summation Method

The summation method is simple: Distribute every ray sum g (x’) over the
image cells along the ray. Where there are N cells along a ray, each such cell is in-
cremented by —ﬁg (x"). This step is termed back projection. Repeating this process

‘for every ray results in an approximate version of the original [DeRosier 1971].
This technique is equivalent (within a scale factor) to blurring the image, or con-
volving it with a certain point-spread function. In the continuous case of infinitely
many projections, this function is simply the radically symmetric A (r) = 1/r.
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Fig. 2.29 Basis of Fourier techniques. (a) Projection axis x’; (b) corresponding
axis in Fourier Space.

Fourier Algorithms

If a projection is Fourier-transformed, it defines a line through the origin in
frequency space (Fig. 2.29). To show this formally, consider the expression for the
two-dimensional transform

F = [ [ 7Gx ) exp[=j2m(ux + w)] dx dy (2.47)
Now consider y = 0 (projection onto the xaxis): x’ = xand'
golx) = ff(x, y) dy (2.48)
The Fourier transform of this equation is ‘
5 lgo)1 = [ [ £ G, ») dylexp—j2mux dx (2.49)

=fff(x,y) exp — j2mwux dy dx
which, by comparison with (2.47), is .
Flgo(x)] = F(4,0) (2.50)

Generalizing to any @, the transform of an arbitrary g(x’) defines a line in the
Fourier space representation of the cross section. Where S, (») is the cross section
of the Fourier transform along this line,

Sy (@) = F(ucos®, usind) (2.51)
= [ 8 exp Lj2mu (e)lax

Thus one way of reconstructing the original image is to use the Fourier transform
of the projections to define points in the transform of f(x), interpolate the
undefined points of the transform from the known points, and finally take the in-
verse transform to obtain the reconstructed image.
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Fig. 2.30 Convolution method.

This technique can be applied with transforms other than the Fourier
transform, and such methods are discussed in [DeRosier 1971; Crowther and Klug
1971].

The Convolution Method

The convolution method is the natural extension of the summation method.
Since the summation method produces an image degraded from its convolution
with some function 4, one can remove the degradation by a ‘“‘deconvolution.”’ The
straightforward way to accomplish this is to Fourier-transform the degraded image,
multiply the result by an estimate of the transformed 4!, and inverse-Fourier-
transform the result. However, since all the operations are linear, a faster approach
is to deconvolve the projections before performing the back projection. To show
this formally, we use the inverse transform

f(x) =ff F(u, v) exp [j2m (ux + vy)ldu av (2.52)

Changing to cylindrical coordinates (w, 6) yields
7 = [ [ Fy@)explj2mo(xcosd + ysin Oljoldods  (2.53)

Since x’ = xcos® + y sin @, rewrite Eq. (2.53) as
@ = [T YF () Hw))ds (2.54)

Since the image is bandlimited at some interval (-, ®,) one can define H (w)
arbitrarily outside of this interval. Therefore, H (o) can be defined as a constant
minus a triangular peak as shown in Fig. 2.30. Finally, the operation inside the in-
tegral in Eq. (2.54) is a convolution. Using the transforms shown in Fig. 2.30,

S = o) = fo(x)w sinc(w,x)] db 2.55)

Owing to its speed and the fact that the deconvolutions can be performed
while the data are being acquired, the convolution method is the method employed
in the majority of systems.

EXERCISES

2.1 In a binocular animal vision system, assume a focal length f of an eye of 50 mm and a
separation distance 4 of 5 cm. Make a plot of Ax vs. —z using Eq. (2.9). If the resolu-
tion of each eye is on the order of 50 line pairs/mm, what is the useful range of the bi-
nocular system?
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2.2 Inan opponent-process color vision system, assume that the following relations hold:

2.3

2.4

25

2.6

2.7

R-G

Red

Yellow Blue

Green

For example, if the (R—G, B —Y, W—Bk) components of the opponent-process sys-
tem are (0.5, 3, 4), the perceived color will be blue.
Work out the perceived colors for the following (R,G,B) measurements:

(@ (02,03,04) () (0.2,03,00 () (7,4,1)

Develop an indexing scheme for a hexagonal array and define a Euclidean distance
measure between points in the array.

Assume that a one-dimensional image has the following form:
f(x) = cosQmu,x)

and is sampled with #; = u,. Using the graphical method of Section 2.2.6, find an ex-
pression for £ (x) as given by Eq. (2.49). Is this expression equal to the original im-
age? Explain..

A certain image has the following Fourier transform:

nonzero inside a hexagonal domain

F) = otherwise

(a) What are the smallest values for # and v so that F(u) can be reconstructed
from F,(u)?

(b) Suppose now that rectangular sampling is not used but that now the u and v
directions subtend an angle of /3. Does this change your answer as to the
smallest # and v? Explain.

Extend the binocular imaging model of Fig. 2.3 to include convergence: Let the two
imaging systems pivot in the y = 0 plane about the viewpoint. Let the system have a
baseline of 2d and be converged at sonie angle 9 such that a point (x, y, z) appears at
the origin of each image plane.

(a) Solve for zin terms of rand 6.
(b) Solve for zin this situation for points with nonzero disparity.
Compute the convolution of two Rect functions, where

1 0<x<l1
Rect(x) = 0  otherwise

Show the steps in your calculations.
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L for|x| < a
Rect(x) = 0 otherwise

(a) WhatisRect(x) *8(x—a)?
(b) What is the Fourier transform of f(x) where f(x) = Rect(x+c) +
Rect(x—c) and ¢ > a?

2.9 A digitizer has a sampling interval of Ax = Ay = A. Which of the following images
can be represented unambiguously by their sampies? (Assume that effects of a finite
image domain can be neglected.)

(@) (sin(mx/A))/ (wx/A)
- (b) cos(mwx/28)cos(3mx/4A)
(©) Rect(x) (see Problem 2.8)

d) e’
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