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in problems which include the axis » = 0 in the range over which the solution is to
apply. The solution to the z equation (7) when T? = — 72 is

Z = C5sin 7z + Cj cos 7z (18)

Summarizing, either of the following forms satisfies Laplace’s equation in the two
cylindrical coordinates r and z:

O(r, 2) = [CJTr) + C,NoTIICs sinh Tz + C, cosh Tz] (19)
O(r, 2) = [Cio(tr) + CK(]IC) sin 7z + C} cos 7z] (20)

As was the case with the rectangular harmonics, the two forms are not really different
since (19) includes (20) if T is allowed to become imaginary, but the two separate ways
of writing the solution are useful, as will be demonstrated in later examples. The case
with no assumed symmetries is discussed in the following section.

7.14  BESSEL FUNCTIONS

In Sec. 7.13 an example of a Bessel function was shown as a solution of the differential
equation 7.13(8) which describes the radial variations in Laplace’s equation for axially
symmetric fields where a product solution is assumed. This is just one of a whole family
of functions which are solutions of the general Bessel differential equation.

Bessel Functions with Real Arguments For certain problems, as, for example,
the solution for field between the two halves of a longitudinally split cylinder, it may
be necessary to retain the ¢ variations in the equation. The solution may be assumed
in product form again, RF¢Z, where R is a function of r alone, F P of ¢ alone, and Z of
z alone, Z has solutions in hyperbolic functions as before, and F, may also be satisfied
by sinusoids:

Z = Ccosh Tz + D sinh Tz 1)
Fy = E cos v¢ + F sin v 2)

The differential equation for R is then shghtly different from the zero-order Bessel
equation obtained previously:

d’*R 1 dr v?

— + - T2 - <R =0 3
az T rat ( r2) )

It is apparent at once that Eq. 7.13(8) is a special case of this more general equation,

that is, v = 0. A series solution to the general equation carried through as in Sec. 7.13

shows that the function defined by the series

z 1)"‘(Tr /2)v+2m

7, = omT(v + m + 1)

@

is a solution to the equation.
I'(v + m + 1) is the gamma function of (v + m + 1) and, for v integral, is equivalent
to the factorial of (v + m). Also for v nonintegral, values of this gamma function are
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Fie. 7.14 (a) Bessel functions of the first kind. () Bessel functions of the second kind.

tabulated. If v is an integer n,

&)

hnd (_ I)M(Tr/z)n +2m
J(Tr) =
AT = et
It can be shown that J_,, = (—1)"J,,. A few of these functions are plotted in Fig. 7.14a.
Similarly, a second independent solution'® to the equation is

cos vl (Tr) — J_ (Tr)
sin var

©

N,(Tr) =

3 Ifv is nonintegral, J_, Is not linearly related to J,, and It is then proper to use either J_,
or N, as the second solution; forv integral, N, must be used. Equation (6) is indeterminate
for v integral but is subject to evaluation by usual methods.
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and N_, = (—1)"N,. As may be noted in Fig. 7.14b these are infinite at the origin. A
complete solution to (3) may be written |

R = AJ(Tr) + BNTp 0

The constant v is known as the order of the equation. J, is then called a Bessel function
of first kind, order v; N, is a Bessel function of second kind, order v. Of most interest
for this chapter are cases in which v = n, an integer.

It is useful to keep in mind that, in the physical problem considered here, v is the
number of radians of the sinusoidal variation of the potential per radian of angle about
the axis.

The functions J,(v) and N, (v) are tabulated in the references.!*!> Some care should
be observed in using these references, for there is a wide variation in notation for the
second solution, and not all the functions used are equivalent, since they differ in the
values of arbitrary constants selected for the series. The N, (v) is chosen here because
it is the form most common in current mathematical physics and also the form most
commonly tabulated. Of course, it is quite proper to use any one of the second solutions
throughout a given problem, since all the differences will be absorbed in the arbitrary
constants of the problem, and the same final numerical result will be obtained; but it is
necessary to be consistent in the use of only one of these throughout any given analysis.

It is of interest to observe the similarity between (3) and the simple harmonic equa-
tion, the solutions of which are sinusoids. The difference between these two differential
equations lies in the term (1/r)(dR/dr) which produces its major effect as r — 0. Note
that for regions far removed from the axis as, for example, near the outer edge of Fig.
1.19a, the region bounded by surfaces of a cylindrical coordinate system approximates
a cube. For these reasons, it may be expected that, away from the origin, the Bessel
functions are similar to sinusoids. That this is true may be seen in Figs. 7.14a and b.
For large values of the arguments, the Bessel functions approach sinusoids with mag-
nitude decreasing as the square root of radius, as will be seen in the asymptotic forms,
Egs. 7.15(1) and 7.15(2).

Hankel Functions It is sometimes convenient to take solutions to the simple har-
monic equation in the form of complex exponentials rather than sinusoids. That is, the
solution of

d’z

— +KZ=0 8

2 ®

can be written as

Z = Ae+sz + Be—sz (9)

14 E. Jahnke, F. Emde, and F. Lésch, Tables of Higher Functions, 6th ed. revised by F. Lésch,
McGraw-Hill, New York, 1960.

15 M. Abramowiiz and I. A. Stegun (Eds.), Handbook of Mathematical Functions, Dover,
New York, 1964.
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where

e*/X: = cos Kz + jsin Kz (10)

Since the complex exponentials are linear combinations of cosine and sine functions,
we may also write the general solution of (8) as

Z = A'e® + B sinKz

or other combinations.

Similarly, it is convenient to define new Bessel functions which are linear combi-
nations of the J,(Tr) and N,(Tr) functions. By direct analogy with the definition (10)
of the complex exponential, we write

HM(Tr) = J(Tr) + jN(Tr) (11)
H®(Tr) = J(Tr) — jNTr) (12)

These are called Hankel functions of the first and second kinds, respectively. Since they
both contain the function N,(T7), they are both singular at » = 0. Negative and positive
orders are related by

HO(Tr) = e/™H{(Tr)
HOTr) = e~ ™HO(Tr)

For large values of the argument, these can be approximated by complex exponentials,
with magnitude decreasing as square root of radius. For example,

H(l)(Tr) — .._2_ ej(Tr— 7/4—vm/2)
Troo wTr

This asymptotic form suggests that Hankel functions may be useful in wave propagation
problems as the complex exponential is in plane-wave propagation. It is also sometimes
convenient to use Hankel functions as alternate independent solutions in static problems.
Complete solutions of (3) may be written in a variety of ways using combinations of
Bessel and Hankel functions.

Bessel and Hankel Functions of Imaginary Arguments If T is imaginary,
T = jr, and (3) becomes

d’R 1dR V2
F+;;—(72+;§)R=0 (13)

The solution to (3) is valid here if T is replaced by j7 in the definitions of J,(Tr) and
N,(Tr). In this case N,(j7r) is complex and so requires two numbers for each value of
the argument, whereas j~*J,(j7r) is always a purely real number. It is convenient to
replace N,(j7r) by a Hankel function. The quantity j*~'H{"(jr) is also purely real and
so requires tabulation of only one value for each value of the argument. If v is not an
integer, j*J _,(jr) is independent of j ~*J,(jr) and may be used as a second solution.
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Thus, for nonintegral v two possible complete solutions are.

R = AJ,(jm) + ByJ_.(jm) (14)
and

R = Ay, (jm) + BHP(jm) | (15)

where powers of j are included in the constants. For v = n, an integer, the two solutions
in (14) are not independent but (15) is still a valid solution.
It is common practice to denote these solutions as

I, 0) = T (jo) (16)
K@) = -72—' 7 HD o) an

where v = .

As is noted in Sec. 7.15 some of the formulas relating Bessel functions and Hankel
functions must be changed for these modified Bessel functions. Special cases of these
functions were seen as Iy(77) and Ky(7) in Sec. 7.13 for the axially symmetric field.
The forms of I,(7r) and K,(7r) for v = 0, 1 are shown in Fig. 7.14c. As is suggested
by these curves, the asymptotic forms of the modified Bessel functions are related to
growing and decaying real exponentials, as will be seen in Eqs. 7.15(5) and 7.15(6). It
is also clear from the figure that K (77) is singular at the origin.

5 b—
‘N Io(v)
Ii(v)
3 -
Kiy(u)
2
1
Ko(v)
0 I v
0 1 2 3 4

Fie. 7.14c Modified Bessel functions.
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7.15  BESSEL FUNCTION ZEROS AND FORMULAS'®"

The first several zeros of the low-order Bessel functions and of the derivatives of Bessel
functions are given in Tables 7.15a and 7.15b, respectively.

Table 7.15a
Zeros of Bessel Functions
"0 ] 1 IQ NO N 1 NQ
2.405 3.832 5.136 0.894 2.197 3.384
5.520 7.016 8.417 3.958 5.430 6.794
8.654 10.173 11.620 7.086 8.596 10.023

Table 7.15b
Zeros of Derivatives of Bessel Functions

I I I N, N N,
0.000 1.841 3.054 2.197 3.683 5.003
3.832 5.331 6.706 5.430 6.942 8.351
10.173 8.536 9.969 8.596 10.123 11.574
Asymptotic Forms
2 T VT
J,w)y—> [—coslv — — — — )
Voo m 4 2
2 . T VT
N@w)—> [—sinlv — — — — 2)
Voo T 4 2
va(v) — l ellv—(7/4)—(va/2)] 3)
v—® v
2 (A
HP@W) » [—e (7/4)— (vn/2)] [0))
oo )
) = L) > [ e )
v oo v
2 2
PHHO() = = K,0) > [—e™" 6
J v _Si ) - 01(’°° ) p— ©)

16 More extensive tabulations are found in the sources given in footnotes 14 and 15.
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Derivatives The following formulas which may be found by differentiating the
appropriate series, term by term, are valid for any of the functions J,(v), N,(v),
H{@), and HP(v). Let R, (v) denote any one of these, and R, denote (d/dv)[R,(v)].

Ry, = ~R,(v) )
1
Ri(v) = Ry) — ;R,(v) ®
UR,(v) = VR, (V) — VR, (V) ®
UR,(v) = —VR, () + UR,_,(V) (10)
%[v-”Rv(u)] = —v7'R,,,(v) (1)
i[ YR = 'R 12
dv v v(v)] =U v—l(v) ( )
Note that

, d 1d

R,(Tr) = P [R(Tn)] = Tar [R(TN)] (13)

For the I and K functions, different forms for the foregoing derivatives must be used.
They may be obtained from these formulas by substituting Eqs. 7.14(16) and 7.14(17)
in the preceding expressions. Some of these are

vl (v) = vI,(v) + vl,, @) (14)
vl ) = —vlL©) + vl,_,)
vK (v) = vK,(v) — vK,, ,(v)

. s)
vK,v) = —vK,(v) — vK,_,(v)

Recurrence Formulas By recurrence formulas, it is possible to obtain the values
for Bessel functions of any order, when the values of functions for any two other orders,
differing from the first by integers, are known. For example, subtract (10) from (9).
The result may be written

2
ijv(u) =R,,,0) + R,_,©) (16)

As before, R, may denote J,, N,,, H", or H?, but not /, or K, For these, the recurrence
formulas are

2
L) = 14@) = L@ an

2
~ K0 = K@) - K@) (18)
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Integrals Integrals that will be useful in solving later problems are given below.
R, denotes J,, N,, H), or H®:

fv‘”Rm(v) dv = —v7'R,(V) (19)

f V'R,_,(v) dv = V"R (V) (20)

v
UR (av)R(Bv) dv = ———
f o - B @
X [BR,(a0)R, (Bv) — aR,_,(an)R(BV)], @ # B
2
kaz(av) dv = ’—’2— [R{av) — R,_,(av)R, , ;(av)]
(22)

<

2 ‘" v2 )
T | RA@) + {1 = == R¥aw)

7.16 EXPANSION OF A FUNCTION AS A SERIES OF BESSEL FUNCTIONS

In Sec. 7.11 a study was made of the method of Fourier series by which a function may
be expressed over a given region as a series of sines or cosines. It is possible to evaluate
the coefficients in such a case because of the orthogonality property of sinusoids. A
study of the integrals, Eqs. 7.15(21) and 7.15(22), shows that there are similar orthog-
onality expressions for Bessel functions. For example, these integrals may be written
for zero-order Bessel functions, and if a and B are taken as p,,/a and pq/ a, where p,,
and p, are the mth and gth roots of Jo(v) = 0, that is, Jo(p,,) = 0 and Jo(p,) = 0,
Pm 7 P, then Eq. 7.15(21) gives

a " p r
L rJ(,(‘%)Jo(f) dr =0 Q)

So, a function f(r) may be expressed as an infinite sum of zero-order Bessel functions

r r r
fr) = br’o(l’l ;) + bz{ﬁ(l’z ;) + b3-’o<P3 ;) + -

=3 bmJ(,(M) @
m=1 a

The coefficients b,, may be evaluated in a manner similar to that used for Fourier
coefficients by muitiplying each term of (2) by rJy(p,,r/a) and integrating from 0 to

or
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a. Then by (1) all terms on the right disappear except the mth term:
2

a Pl B a ) P”
J; rf(r)Jo(T) dr = J; bmr[Jo( p )] dr

From Eq. 7.15(22),

a 2
[ bmrJ%(”*"") dr = 5 b o) 3)
[} a 2
or
__2 [ Pa’
b, = azlf(pm)J; rf(r)JO( . ) dr @)

In the above, as in the Fourier series, the orthogonality relations enabled us to obtain
coefficients of the series under the assumption that the series is a proper representation
of the function to be expanded, but two additional points are required to show that the
representation is valid. The series must of course converge, and the set of orthogonal
functions must be complete, that is, sufficient to represent an arbitrary function over
the interval of concern. These points have been shown for the Bessel series of (2) and
for other orthogonal sets of functions to be used in this text.!”

Expansions similar to (2) can be made with Bessel functions of other orders and

types (Prob. 7.16a).

Example 7.16
BESSEL FUNCTION EXPANSION FOR CONSTANT IN RANGEO <r < A

If the function f(r) in (4) is a constant Vj, in the range 0 < r < @, we have

2V, “ Pl
by = g f o 5
" @B o ’J°( a )d’ )

Using Eq. 7.15(20) withR = J,v = 1,and v = p,,r/a, the integral in (5) becomes

() £ o)) - [ ()]

2
a
= —Ji(pn)
p

m

©®

7 See, for example, E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, 4th
ed., pp. 374-378, University Press, Cambridge, 1927.
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and the series expansion (2) for the constant Vj is

o 2 Pl
o) mgl Pt 1 (D) JO( a ) M

or, using the values of the zeros of J;, in Table 7.15a,

f0) = 0.832V, _ (2.405r 0.362V, _ [5.520r
J,(2.405) 7° J1(5.520)"°\ a4 g
0231V, , (8.654r\ ®
J,(8.654) "°

Further evaluation of (8) requires reference to tables in the sources given in footnotes
14 and 15 or numerical evaluation of Eq. 7.13(11).

7.17 FiELDS DESCRIBED BY CYLINDRICAL HARMONICS

We will consider here the two basic types of boundary value problems which exist in
axially symmetric cylindrical systems. These can be understood by reference to Fig.
7.17a. In one type both ®, and ®,, the potentials on the ends, are zero and a nonzero
potential @, is applied to the cylindrical surface. In the second type ®; = 0 and either
(or both) @, or ®, are nonzero. The gaps between ends and side are considered neg-
ligibly small. For simplicity, the nonzero potentials will be taken to be independent of
the coordinate_along the surface. In the first type, a Fourier series of sinusoids is used
to expand the boundary potentials as was done in the rectangular problems. In the
second situation, a series of Bessel functions is used to expand the boundary potential
along the radial coordinate.

Nonzero Potential on Cylindrical Surface Since the boundary potentials are
axially symmetric, zero-order Bessel functions should be used. The repeated zeros along
the z coordinate dictate the use of sinusoidal functions of z. The potential in Eq. 7.13(20)
is the appropriate form. Certain of the constants can be evaluated immediately. Since
Ky(7r) is singular on the axis, C; must be identically zero to give a finite potential there.
The cos 7z equals unity at z = O but the potential must be zero there so C; = 0. As
in the problem discussed in Sec. 7.10 the repeated zeros at z = I require that 7 = ma/l.
Therefore the general harmonic which fits all boundary conditions except ® = Vj at

r=ais
®, = A,,,Io(—’f;—’f)sin('"—f—z) )

Figure 7.17b shows a sketch of this harmonic for m = 1 and with the nonzero boundary
potential on the cylinder. It is clear that we have here the problem of expanding the
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~ ~
z=1
(c)
F18.7.17 (a) Cylinder with conducting boundaries. (b) One harmonic component for matching
boundary conditions when nonzero potential is applied to cylindrical surface in (a). (¢) One
harmonic component for matching boundary conditions when nonzero potential is applied to end
surface in (a).

boundary potential in sinusoids just as in the rectangular problem of Sec. 7.12. Follow-
ing the procedure used there we obtain

o= S 4V Io(mar /1) . mmz @
modd mar Io(maa /1) I

Nonzero Potential on End In this situation if we refer to Fig. 7.17a, we see that

®, = ®; = 0 and ¢, = V. In selecting the proper form for the solution from Sec.

7.13, the boundary condition that ® = 0 at r = a for all values of z indicates that the

R function must become zero at r = a. Thus, we select the J;, functions since the /,’s

do not ever become zero. (The corresponding second solution, N, does not appear since



7.18 Spherical Harmonics 379

potential must remain finite on the axis.) The value of T in Eq. 7.13(19) is determined
from the condition that & = 0 at r = a for all values of z. Thus, if p,, is the mth root
of Jo(v) = 0, T must be p,,/a. The corresponding solution for Z is in hyperbolic
functions. The coefficient of the hyperbolic cosine term must be zero since P is zero
at z = O for all values of r. Thus, a sum of all cylindrical harmonics with arbitrary
amplitudes which satisfy the symmetry of the problem and the boundary conditions so
far imposed may be written

O, 2 = O B,,,JO(M) sinh(M) 3)
m=1 a a
One of the harmonics and the required boundary potentials are shown in Fig. 7.17c.
The remaining condition is that,atz = [, ® = Oatr = gaand ® = Vyatr <a.
Here we can use the general technique of expanding the boundary potential in a series
of the same form as that used for the potentials inside the region, as regards the de-
pendence on the coordinate along the boundary. In Ex. 7.16 we expanded a constant
over the range 0 < r < a in J,, functions so that result can be used here to evaluate the
constants in (3). Evaluating (3) at the boundary z = [, we have

@, 1) = 2=1 B, sim(%"LI)JO(I*”;‘—r) @

Equations (4) and 7.16(7) must be equivalent for all values of r. Consequently, coef-
ficients of corresponding terms of Jo(p,,r/a) must be equal. The constant B,, is now
completely determined, and the potential at any point inside the region is

O,z = > Vo inh(M)Jo(M) )

2 pod (P sinh(pl/a) "\ a a

7.18 SPHERICAL HARMONICS

Consider next Laplace’s equation in spherical coordinates for regions with symmetry
about the axis so that variations with azimuthal angle ¢ may be neglected. Laplace’s
equation in the two remaining spherical coordinates r and 6 then becomes (obtainable
from form of inside front cover)

3(r®) 1 o8 (. ,o®
—— —— — —_ 1
arZ +rsin060(sm086) 0 )

or
I P 15 1

— + + + — =0 2
r ar " r36®  rtan 6 00 @

Assume a product solution
® = RO
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where R is a function of r alone, and O of 8 alone:
1

rR"© + 2R'O + lRG)" + RO’ =0
r r tan @
and
r?R" gﬂ _ _Q _ o’ 3)
R R o O tan 0

From the previous logic, if the two sides of the equations are to be equal to each other
for all values of r and 6, both sides can be equal only to a constant. Since the constant
may be expressed in any nonrestrictive way, let it be m(m + 1). The two resulting
ordinary differential equations are then

d’R dR
20— 4+ 2y — — + =0

r’ s 2r - m(m + 1)R (C)]

d*e 1 4o
— gy — = + 10 =0 5
i “iamoag T MmO ©)

Equation (4) has a solution which is easily verified to be

R =Cyr™ + Cy~m+D 6)

A solution to (5) in terms of simple functions is not obvious, so, as with the Bessel
equation, a series solution may be assumed. The coefficients of this series must be
determined so that the differential equation (5) is satisfied and the resulting series made
to define a new function. There is one departure here from an exact analog with the
Bessel functions, for it turns out that a proper selection of the arbitrary constants will
make the series for the new function terminate in a finite number of terms if m is an
integer. Thus, for any integer m, the polynomial defined by

P,(cos 0) = 1 [ ] (cos? 8 — D™ @)

d
2"m! | d(cos 6)

is a solution to the differential equation (5). The equation is known as Legendre’s
equation; the solutions are called Legendre polynomials of order m. Their forms for the
first few values of m are tabulated below and are shown in Fig. 7.18a. Since they are
polynomials and not infinite series, their values can be calculated easily if desired, but
values of the polynomials are also tabulated in many references.

Py(cos ) = 1

Py(cos 6) = cos 6

Py(cos 6) = 3(3cos? 6 — 1)

Ps(cos 6) = 4(5 cos® 8 — 3 cos 6)

P,(cos 8) = }(35 cos* & — 30 cos®> 6 + 3)
Ps(cos 6) = (63 cos® 8 — 70 cos® 6 + 15 cos 6)

®)
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10

w

Fie. 7.18a Legendre polynomials.

It is recognized that © = C,P,(cos 6) is only one solution to the second-order
differential equation (5). There must be a second independent solution, which may be
obtained from the first in the same manner as for Bessel functions, but it turns out that
this solution becomes infinite for 8 = 0. Consequently it is not needed when the axis
of spherical coordinates is included in the region over which the solution applies. When
the axis is excluded, the second solution must be-included. It is typically denoted
Q,(cos 6) and tabulated in the references.®

An orthogonality relation for Legendre polynomials is quite similar to those for
sinusoids and Bessel functions which led to the Fourier series and expansion in Bessel

. functions, respectively.

f P,(cos )P, (cos @) sin 8d6 = 0, m#n )
0

2
2m + 1

w
f [P, (cos 6)1 sin 6 dO = (10)
0
It follows that, if a function f(6) defined between the limits of O to 7 is written as a
series of Legendre polynomials,

-

6 = 2, a,P,(cos 6), o<o6< an

m=0

8 W, R. Smythe, Static and Dynamic Electricity, 3rd ed., Hemisphere Publishing Co., Wash-
ingfon, DC, 1989.
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the coefficients must be given by the formula

2m

a, =

* 1 fo F(O)P,(cos 6) sin 0 dO (12)

" 2

Example 7.18a
HIGH-PERMEABILITY SPHERE IN UNIFORM FIELD

We will examine the field distribution in and around a sphere of permeability p # u,
when it is placed in an otherwise uniform magnetic field in free space. The uniform
field is disturbed by the sphere as indicated in Fig. 7.18b. The reason for choosing this
example is threefold. It shows, first, an application of spherical harmonics. Second, it
is an example of a situation in which the constants in series solutions for two regions
are evaluated by matching across a boundary. Finally, it is an example of a magnetic
boundary-value problem.

Since there are no currents in the region to be studied, we may use the scalar magnetic
potential introduced in Sec. 2.13. The magnetic intensity is given by

H= -0, (13)

As the problem is axially symmetric and the axis is included in the region of interest,
the solutions P,(cos 6) are applicable. The series solutions with these restrictions are

®,(r, ) = O, P,(cos O)[Cyr™ + Cpr~ ™+ (14)

The procedure is to write general forms for the potential inside and outside the sphere
and match these across the boundary. Since the potential must remain finite at » = 0,

Fie. 7.18b Sphere of magnetic material in an otherwise uniform magnetic field.



