TWO-PORT NETWORKS

Up to now, all the circuits covered in this course have been
real circuits without complex reactances and the gain was
frequency independent. These models are useful for general
applications, but are inadequate for r.f. and microwave
applications. This material is a short introduction to a more
generalized small-signal description of networks?.

A two-port network is simply a network with four terminals
which are arranged into pairs called ports. In general, there
will be an input port and an output port for the networks we
will be interested in. As shown below this network is
characterized by input voltage vi and current ij while the
output is characterized by wvoltage vy and current ij. It is
common convention to denote these currents as positive going
INTO the network. These sign conventions are summarized in
the figure below.
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Most r.f. devices of interest have only three terminals, i.e.
transistors; however, this merely means that our
representation for these devices uses one device terminal as
common to input and out. As we know from our study of
amplifier topologies this makes perfect sense. After all, each
amplifier has a common terminal which was denoted as
common, l.e. common base, common collector, or common
emitter.

There are four variables associated with any two port network
as shown in the figure above, two wvoltages and two currents.
These are our signals. From mathematics, any two of these
four variables may be picked as independent wvariables with the
remaining two being dependent variables. We will be using the

1a meore lengthy discussion of two—-port networks (with extensive
examples) can be found in Irwin, Introduction to Flectrical
Networks. _
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roman subscripts to represent total AC+ DC parameters. In
practice, two port parameters are usually used to describe only
the ac variables and are denoted by Arabic subscripts, i.e. 1ig,
vy, Iy and vy, rather than the previously used roman
subscripts. This means that we may write the terminal
relationships for an ac two port network as

1l - yllvl + yl2v2 (la)

L =YV T YV, (1b)

These relationships can be expressed compactly in matrix form

as
1 Yy y v -
1 11 12 1
' Yar Yoo [ V2 ’

leading to the name “matrix parameters” to describe this type
of two-port representation.

Before relating matrix parameters to transistor parameters let
us consider the nature of the relationship between independent
and dependent wvariables. For purposes of illustration let us
continue with i4 and iy as the dependent variables. However,
in terms of real world parameters iy and iy are small signal
currents. Let us write the total (ac+dc) terminal variables as
small letters with Roman subscripts, i.e. i, i, vy and vy,
These may be expressed in terms of the previously defined
small signal voltages and currents iy, i3, vq and v, and dc
voltages and currents Iy, I, V1 and V.

i=1 +1 (3a)
=1 +i (3b)

In both equations the first term on the right hand side is the
steady state (dc) term and the second is the small signal (ac)
term which is assumed to fluctuate about the steady state
value. '
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Note that our earlier matrix formulas are in terms of small
signal parameters only. In general we can write the
input/output relationships for the total (ac+dc) variables as

i = f(VI, VH) (4a)
= gv, vy (4D)
We can recall the Taylor series expansion

f(x+h) = f(x) + ha—gihél o (5)

where h << x and perform a Taylor series expansion of f and g
in our expressions for ij; and iy

of (v.,v.) of (v,v )
i = - o [ 1 - o s
=10V + (v o) v Vo) v (62)
I i1
/
2
, g, (v, v,) g, (v, v,)
Ly =B, 0pv) (v o) f + vV o) 3o (6b)

I II

‘where the subscript “O” indicates the initial value, i.e. the dc
value about which we are going to do a small signal expansion.
This looks very formidable but let us examine the terms in light
of our definitions of total, dc and ac (or small signal) terminal
parameters. ij—fg(vy, vy is simply the total terminal variable
minus the dc terminal variable I4, or mathematically

1I—fO(VI,vH) = i-1 =1 (7a)
This can be repeated for the output terminal, or port, to give

1 T go<VI’Vu) = L= (7b)
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These expressions can be substituted into the small signal
expansions (5) to yield

of (v.,v.) of (v.,v )

C_ _ oM 1’ _ oM

bW <5 <VI VI,O) v + (Vn VII,O) avn (82)
og (v ,v ) og (v ,v )

. _ o1’ _ oM’

2 T (v, VI,O) v * vy Vn,o) v (8b)

[ I1

The above expressions can be further simplified if we recognize
(vi=vi,0) and (vi— vy, o) as expressions for the small signal
parameters v4 and v, respectively. This follows from the

definitions of parameters in Equation (3). Simplifying Equation
(8) we get

afO(VI,VH) .o afo(VI,VH)

i =v (9a)
1 1 2
BVI avu
ag (v ,v ) ag_(v,v )
C @) ° 11 @) 1 I
i = + v 9b
2 V1 ov 2 9v (95)

I I1

This is exactly the form of our original matrix equation,
Equation (2), provided that we recognize the derivatives as the
y-matrix parameters. Making the associations we have

of (v ,v.)
o' '
Y1 T aVI (10a)

afo (Vx’ Vn)

10b
aVII ( )

_ 9g (v, v )

v
aII

Yoy (10¢)
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— agO <VI’ VII>

Yoy = (104)

v
aII

As can be seen above the y matrix parameters are simply the
partial derivatives of f and g with respect to the independent
variables vy and vy evaluated at the initial point (Vi Vyp).

Referring to Equation (1) we see that each y-matrix parameter
converts a voltage to a current; hence, each y-matrix element
must have the units of 1/Q, or mhos. This makes each y-
matrix element an admittance which is usually denoted by a
“y” and is the reason why this particular formulation is called
a y-matrix. The y-parameters are particularly useful for r.f.
circuits. Up to this point the two port parameters have been
treated as mathematical abstractions. However, two port
parameters are extremely easy to measure in the real world
and can be easily manipulated to give amplifier gain, etc,

In Equation (1) we see that if v, =0, Equation (1) reduces to
T YV b T Y1y

By simply providing a short across the output terminals and
measuring the currents i; and iy and the input voltage v, we

can measure two of the four y-matrix parameters, or y-
parameters for short.

i
Vi1 T T,L o1 T -+
1 1
yv11 is called the input admittance (output port short-circuited)
and yjq is called the forward transconductance ratio (output
port short-circuited). Similar expressions can be derived for
yv12 and ygpg provided we short-circuit the input port.instead.
The results of this are

i i
= b = 2
Y12 v, V22 v
2
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where we can now identify yq1, as the reverse transconductance
ratio’ (input port short-circuited) and y,, as the output
admittance (input port short-circuited). In practice, v11, Y12,
y21 and yjpg are determined by measuring the terminal
parameters with the input and output ports alternately

shorted.

Before continuing with more general two port networks we
should attempt to relate what we have just done to what we
know of circuits. In general, most amplifiers and electrical
networks have three terminals and are characterized by three
variables. (See the previous discussion of transistor
characteristics and biasing.) By choosing one terminal to be
common to the input and output as shown below we can put
these familiar amplifiers into a two port formalism for
sophisticated network analysis. This mieans that the y-
parameters just discussed can be measured by simply
sequentially putting an ac short (a capacitor) across the
amplifier input and output terminals of a network and
measuring the resulting terminal voltages and currents.
Careful attention must be given to the fact that the currents
were defined with their sign as being positive going into the two
port and negative if coming from the two port. The real
beauty of the two port formalism is that the parameters are
very simple to measure and the various network parameters
such as wvoltage gain, input impedance, Miller effect, etc are
simply described using the two port parameters. As we shall
see in later sections the y-parameters are a single case of a
more general formalism which we shall exploit heavily in our
study of r.f. circuits,.

Three—terminal two port network
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MATRIX PARAMETER DEFINITIONS AND CONVERSIONS

During the remainder of the course it will often be necessary to
convert a problem specified in one set of two-port matrix
parameters to another set.

The two-port h parameters are defined below

b o—AMA— Ogt— 1,

+
v h, ,v C) <>h 1 1 v
12V 2 211
1 N\ \J §h22 2

[0 e —— o]

The corresponding terminal equations are

= 1 + A% , = 1+ v
v h 11 h12 1 h 111 h22

1 11 2 2 2 2

The two-port vy parameters are defined below

ij_ —_—p_ 0 . 0 oy —— i2
v p: \Y
| V1T 2% <v> Ya1vi SV22 |7
(o O

The corresponding terminal equations are

1, = vty Vv 1 = +
1:l. y‘1:1. 1 y12 2 12 y2:I.V1 y22V2
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The two-port z parameters are defined below

211 222
by —MWA— —WA—o g+—1,
+ +
V .
1 21212<> <>22111 2
O Q

The corresponding terminal equations are

= 1 + { = 1 + 1
Vl zllll 21212 V2 22111 22212

The two-port g parameters are defined below

g
22
11 »_ o —‘\N\,—o — i,
\ +
v P> ; v
1 .gné 812! ZC\D <>g2ivl 2
lo! —0

The corresponding terminal equations are

11 gllvl g1212 V2 g21 1 82212

The so-called T, or ABCD, two-port parameters are defined
below

<—

11 ao [A B] _059m 12
Vi \
o——1IC DI o 2
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NOTE THAT THE ABCD-PARAMETERS DEFINE i, IN THE OPPOSITE
DIRECTION TO ALL OTHER MATRIX PARAMETERS. The
corresponding two-port terminal equations are

v, = sz - 512 1_4_=. Cv2 - D12

and, in matrix form, as
vy [A B] v,
L cC D —i,

where the negative sign for iy must be explicitly shown.

To summarize the definitions above, the two-port parameter
matrices are

211 %12 LT yiz
[=] = [v] =

21 %22 Yoo Yo

h h A B
S N SR

h,, hy

It is very handy to be able to convert from one set of matrix
parameters to another for expediency in combining networks or
analyzing networks. To convert between any two sets of
matrix parameters use the table shown on the following page,
MATRICES IN THE SAME ROW OR COLUMN ARE EQUIVALENT.
For example
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. Ah hl

211 212 22 h22
21 %22 b, 1
h22 h22_

The matrix elements are then explicitly equivalent, i.e.

z = h12
12 h etc.
22
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>
I

- A = 2, —z
Y1122 T Y12 211%22 12%21

Ah = h11h22 - h12h21 AT= AD - BC



MATRIX CONVERSIONS

To show how the conversion table on the previous page was
constructed consider the transformation from z-parameters to
y-parameters as an example.

In matrix form the y-parameter equations are

{11] [yll y12 Vl
12 y21 y122 V2

Similarly, for z-parameters

Vl 211 212] 11]
V2 221 Z22 12

Substituting the second set of matrices into the first set

B

One recognizes that the product of the [y] and [z] matrices
must be the identity matrix since the current matrices MUST
be identical, i.e.

B | S R

Multiplying the matrices and equating the resulting matrix
elements with the corresponding elements of the identity matrix
we get the following set of simultaneous equations which can be
solved for the y-parameters in terms of the z-parameters.

+ +
yllzll y12221 y;1.3.221.2 y12222
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+ = +
Vo121 T Va2 = O Y21%12

Y5020 = 1

Working with the off-diagonal equations (the zero elements)

01
zZ,, = -y 2 or = -
V1?11 Y 22%21 Vo1 yzzz
11
z,,
= - or = -y  —=*
Y12%22 Y11%12 Y12 Y113
. 22

Working with the diagonal expressions (the 1's)

z
- 12 =
Yi1%11 T ( Y11 222) 20 =1

z, .z z .z
Y., (—L122 12721y = 4

22

—Z) =
vy (T2 =1
22

and

22 5 12 7 Y2%22 T
11
z .z
y (z - M) = 1
22 ‘722 =
11



zZ, .2 -
v (1122

212221) -1
22

2
11

2

A z
Z\ — - 12
y22 ( ) 1 Yll A

11 z

Substituting these results back into our expressions for y;, and
Y21

= — 21 _— _ (11 21 _ _ 21
v v = - (=)
21 22
211 Az 211 Az
and
z 4 z
. Y ¥ S i U RS
Y10 Vi
y4 A z A
22 z 22 z

which completes our results. Note that these expressions are
identical to those of the second column of the first row of the
matrix conversion table.
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