CHAPTER 4

Single- and Multiport
Networks

E ver since single- and multiple port networks were
first introduced into the electrical engineering profession through Guillemin and Feld-
keller, they have quickly become indispensable tools in restructuring and simplifying
complicated circuits as well as in providing fundamental insight into the performance
of active and passive electronic devices. Moreover, the importance of network model-
ing has extended far beyond electrical engineering and has influenced such diverse
fields as vibrational analysis in structural and mechanical engineering as well as bio-
medicine. For example, today’s piezoelectric medical transducer elements and their
electrical-mechanical conversion mechanisms are most easily modeled as a three-port
network.

The ability to reduce most passive and active circuit devices, irrespective of their
complicated and often nonlinear behavior, to simple input-output relations has many
advantages. Chief among them is the experimental determination of input and output
port parameters without the need to know the internal structure of the system. The
“black box” methodology has tremendous appeal to engineers whose concern is mostly
focused on the overall circuit performance rather than the analysis of individual compo-
nents. This approach is especially important in RF and MW circuits, where complete
field theoretical solutions to Maxwell’s equations are either too difficult to derive or the
solutions provide more information than is normally needed to develop functional,
practical designs involving systems such as filters, resonators, and amplifiers.

In the following sections our objective is to establish the basic network input-out-
put parameter relations such as impedance, admittance, hybrid, and ABCD-parameters.
We then develop conversions between these sets. Rules of connecting networks are pre-
sented to show how more complicated circuits can be constructed by series and parallel
cascading of individual network blocks. Finally, the scattering parameters are presented
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as an important practical way of characterizing RFE/MW circuits and devices through
the use of power wave relations.

4.1 Basic Definitions

Before embarking on a discussion of electrical networks we have to identify some
general definitions pertaining to directions and polarity of voltages and currents. For
our purposes we use the convention shown in Figure 4-1. Regardless of whether we
deal with a single-port or an N-port network, the port-indexed current is assumed to
flow into the respective port and the associated voltage is recorded as indicated.
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Figure 4-1 Basic voltage and current definitions for single- and
multiport network.

In establishing the various parameter conventions we begin with the voltage-cur-
rent relations through double-indexed impedance coefficients Z,,,, where indices n and
m range between 1 and N. The voltage at eachport n =1 ... N is given by

for port 1,
for port 2, and
VN = ZN1i1+ZN2i2+"'+ZNNiN (4.10)

for port N. We see that each port n is affected by its own impedance Z,, as well as by a
linear superposition of all other ports. In a more concise notation, (4.1) can be con-
verted into an impedance or Z-matrix form:
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Vi Zy Zy o Ziy|| g
Vol = |Za1 Zon  Zon|) By “2)
VN Zyy Zyy - Zyn| L in
or, in matrix notation,
{V} = [Z]{I} 4.3)

where {V} and {I} are vectors of voltages v, v,, ..., vy and currents i, i,, ..., iy,
respectively, and [Z] is the impedance matrix.
Each impedance element in (4.2) can be determined via the following protocol:

1%
z, =2 (4.4)

nm

~.

i, =0 (for k#m)

which means that the voltage v, is recorded at port n while port m is driven by current
i,, and the rest of the ports are maintained under open terminal conditions (i.e. iy = 0
where k#m).

Instead of voltages as the dependent variable, we can specify currents such that

Iy Yiu Yo oo Yinl{ W
i\ = (Yo Yoo o Yonl) 72 4.5)
iy Yni Yno = Y| VW
or
{I} = [Y{V} (4.6)

where, similar to (4.4), we define the individual elements of the admittance or
Y-matrix as
in
Yy =— @.7
Vm

nm
v, =0 (for k#m)

Comparing (4.2) and (4.5), it is apparent that impedance and admittance matrices are
the inverse of each other:

(Z] = Y] (4.8)
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RFEMW-

Example 4-1: Matrix representation of Pi-network

For the pi-network (the name of the network comes from the resem-
blance with the greek letter IT) shown in Figure 4-2 with generic
impedances Z,, Z, and Z find the impedance and admittance
matrices.

___________________

2

+o

port 1 Vl': Z, Z: \ V2 port2

Figure 4-2 Pi-network as a two-port network.

Solution:  The impedance elements are found by using (4.4) and
the appropriate open- and short-circuit termination conditions.

To find Z;; we must compute the ratio of the voltage drop v,
across port 1 to the current i; flowing into this port when the current
into port 2 equals zero. The requirement i, = 0 is equivalent to an
open-circuit condition. Thus, the impedance Z,; is equal to the par-
allel combination of impedances Z, and Zg+Z.

v Z,(Zpg+2Z
m e <2
, =
The value for Z,, can be found as the ratio of voltage drop v; mea-
sured across port 1 to the current i, . In this case we must ensure that
the current i, remains zero (i.e., we must treat port 1 as open). Volt-
age v, is equal to the voltage drop across impedance Z, and can be
obtained using the voltage divider rule:
Zy
Zp+Z, VB
where v,p is a voltage drop across impedances Z, and Zp con-
nected in series and computed as v,z = i,[ZI(Z, + Zp)]. Thus,

Vi =
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ZpZc
Zy+Zp+2Z,

ZA [ZCII(ZA+ZB)] =

Similarly, we can obtain the remaining two coefficients of the
impedance matrix:

1 Z.Z
Zy = 2 7z [2al25 4 Z0)] = _afc
2T . ZB AT TR T Z v Zp+ 2,
v, Z(Z,+Zp)
Z22 = ; = ZC"(ZA-.-ZB) = m
=0

Thus, the impedance matrix for the generic pi-network is written in
the form

2] 1 {ZA(ZB vZo)  ZuZe

Zo+Zp+2c| 7,Zc ZL(Z,+Zp)

The coefficients for the admittance matrix can be derived using
(4.7). To find the value for Y;; we must find the ratio of current flow
into port 1 to the voltage drop across this port when the second port
is shortened (i.e., v, = 0).

1 1

= — 4 —

y, =4
11 = ZA ZB

Vi

v, =0

The value for coefficient Y, of the admittance matrix can be
obtained by shortening port 1 (i.e., forcing v, = 0) and measuring
the ratio of the current i, to the voltage drop across port 2. We note
that, when a positive voltage is applied to port 2, the current i; will
flow away from port 1, resulting in a negative current:

1

Zp

y, = 1
12—v2

=0
The rest of the admittance matrix can be derived in the same way,
leading to the following final form
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1

_— = -
v %% % | {YA+YB -YB}
Zy Zy Zc

where Y, = Z,', Y, = Z5 ,and Y. = Z(. .

Direct evaluation shows that the obtained impedance and
admittance matrices are indeed inversely related, which supports the
validity of (4.8).

The practical determination of the matrix coefficients can be
accomplished easily by enforcing open- and short-circuit condi-
tions. However, as the frequency reaches RF limits, parasitic termi-
nal effects can no longer be ignored and a different measurement
approach becomes necessary.

Example 4-1 indicates that both impedance and admittance matrices are symmet-
ric. This is generally true for linear, passive networks. Passive in this context implies
not containing any current or voltage sources. We can state the symmetry as

Zom = L 4.9

which also applies for admittances because of (4.8). In fact, it can be proved that any
reciprocal (that is, nonactive, linear) and lossless N-port network is symmetric.

Besides impedance and admittance network descriptions, there are two more use-
ful parameter sets depending on how the voltage and currents are arranged. Restricting
our discussion to two-port networks and with reference to Figure 4-1, we define the

chain or ABCD-matrix as
{V1}= AB{"z} (4.10)

and the hybrid or h-matrix as

{Vl} = [h" "12]{ il} @.11)
i hyt hapf L vy



Basic Definitions 149

The determination of the individual matrix coefficients is identical to the method intro-
duced for the impedance and admittance matrices. For instance, to find k,, in (4.11),
we set i; to zero and compute the ratio of v, over v, ; that is,
Vi
hyy = v
i|=0

It is interesting to note that in the hybrid representation parameters h,, and h,, define
the forward current and reverse voltage gain, respectively. The remaining two parame-
ters determine the input impedance (,,) and output admittance (4,,) of the network.
These properties of the hybrid representation explain why it is most often used for low-
frequency transistor models. The following example shows the derivation of the hybrid
matrix representation for a bipolar-junction transistor (BJT) for low-frequency
operation.

RF &M W

Example 4-2: Low-frequency hybrid network description of a
BJT

Describe the common-emitter BJT transistor in terms of its hybrid
network parameters for the low-frequency, small-signal transistor
model shown in Figure 4-3.
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Figure 4-3 Common-emitter low-frequency, small-signal transistor model.

Solution:  In the transistor model shown in Figure 4-3 rgp, rpc,
and rqy represent base-emitter, base-collector, and collector-emit-
ter internal resistances of the transistor. The current through the cur-
rent-controlled current source is dependent on the current iy’
flowing through the base-emitter resistance.
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To evaluate the h;; parameter of the hybrid matrix according
to (4.10) we must short-circuit the collector and emitter terminals,
thus setting v, = vy = 0, and compute the ratio of the base-emit-
ter voltage to the base current. Using the notation established in
Figure 4-3, we notice that &, is equal to the parallel combination of

rgg and rp.:
v Fpcl . .
hy, = _BE = BCBE (input impedance)
7] _ e+ Tpc
VCeE =

Following a similar procedure, the relations for the remaining three
parameters of the hybrid representation can be established as follows:

v r

hy, = _BE = —BE (voltage feedback ratio)
vCEiB= TBe+TBC
i rge—r

hyy = £ = E—Iic————@ (smali-signal current gain)
'B|, _o TBE +Tpc

CE ~

i + .

hy, = < = —1— + —Q— (output admittance)
Vee|, _, Tce TBEtThC

In the majority of all practical transistor designs, the current amplifi-
cation coefficient B is usually much greater than unity and the
collector-base resistance is much larger than the base-emitter resis-
tance. Keeping these relations in mind, we can simplify the expres-
sions derived for the h-matrix representation of the transistor:

B = VeE _ . .
n=—-— = Igg (input impedance)
'8 veg =0
v
hy = _BE = 0 (voltage feedback ratio)
VeE ig=0
Ic . .
hy = ;,; = B (small-signal current gain)

veg=0
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i
hy, = < =1 B (output admittance)
VCE ip=0 CE Tsc

The hybrid network description is a very popular way to char-
acterize the BJT, and its h-parameter coefficients are widely
reported in many data sheets.

Due to the presence of the current source in Example 4-2, the h-matrix is no
longer symmetric (h, # h,,) and the transistor model is nonreciprocal. In low-fre-
quency electronic circuit design the coefficients of the hybrid matrix representation are
often listed as h;, for hy;, h,, for hyy, hy, for hy,, and h,, for hy,.

Up to this point we considered the problem of deriving the matrix representation
based on a known topology and element values of the circuit. However, in practical
design tasks it is often required to solve an inverse problem and obtain the equivalent
circuit for an unknown or incompletely defined device based on a few measurements.
This becomes extremely important when the characterization of the device is per-
formed under a particular set of operating conditions, but it becomes necessary to eval-
uate its performance under completely different circuit conditions. In this case the use
of the equivalent circuit representation enables an engineer to predict with reasonable
accuracy the response of the device or circuit under changing operating conditions. In
the following example we will derive the values of the internal resistances of the BJT
from known h-matrix parameters.

RF &M W

Example 4-3: Determination of internal resistances and cur-
rent gain of a BJT based on h-parameter mea-
surements

Use the equivalent circuit representation of the BJT shown in
Figure 4-3 and employ the following measured hybrid parameters:
h, =5kQ, h,, = 2x107*, hs, = 250, h,, = 20 uS (these
parameters correspond to the 2n3904 transistor manufactured by
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Motorola). Find the internal resistances rgp, rpc, and ro, and the
current gain f.

Solution:  As derived in Example 4-2, the values of the h-matrix
for the equivalent circuit shown in Figure 4-3 are given by the fol-
lowing four equations:

h;, = TBcTBE (input impedance) 4.12)
Tge*+ T'pc
TBE .
re = ————— (voltage feedback ratio) 4.13)
Tge + 'pc
B = Prec—rae (small-signal . 4.14
fe = ———— (small-sign current gain) (4.14)
T+ Tpc
h 1 1+ .
oe = — +————  (output admittance) (4.15)

Tce TBe*TBC

If we divide (4.12) by (4.13), we determine that the base-collector
resistance is equal to the ratio of h;, over h,,. Accordingly, for
values given in the problem formulation, we obtain:
rgc = h;./h,, = 71 MQ. Substituting this value into either equa-
tion (4.12) or (4.13), we find rgg = h;,/(1-h,,) = 5 k. Know-
ing rgc and rgg, (4.14) allows us to find the current gain
coefficient B = (h,,~hg)/(h,,—1) = 300.02. Finally, the col-
lector-emitter resistance can be evaluated from (4.15) as

h,
L = 63.35 kQ

2 -
hoehie —hyehg, + 2h0,~ h,,

oe "ile

Tce =

We note from the obtained values that rp is indeed much smaller
than rp..

This example provides a first idea of how the measured h-
parameters can be used as a basis to characterize the BJT circuit
model. The concept of “inverting” the measurements to determine
circuit model parameters will be further analyzed in Chapter 7.
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4.2 Interconnecting Networks

4.2.1 Series Connection of Networks

A series connection consisting of two two-port networks is shown in Figure 4-4.
The individual networks are shown in impedance matrix representation.
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Figure 4-4 Series connection of two two-port networks.

In this case the individual voltages are additive while the currents remain the

same. This results in
1) vy + v, ip

where the new composite network [Z] takes the form

’ ” ’ »
2\ +2," 2y, + 2y,

[Z] = [Z,] + [Z,,]= 14 ” ’ ”n
2y +Zy)" 2y + 2y

(4.17)

Caution has to be exercised in not indiscriminately connecting individual net-
works, as short circuits may be created. This situation is exemplified in Figure 4-5 (a).
The problem can be avoided by including a transformer, as seen in Figure 4-5 (b). The
transformer in this case decouples input and output ports of the second network. How-
ever, this approach will only work for AC signals since the transformer acts as a high-
pass filter and rejects all DC contributions.

When two networks are connected with the output interchanged, as shown in
Figure 4-6, the most suitable representation is the hybrid form.

In the network connection that is shown in Figure 4-6, the voltages on the input
ports and currents on the output ports are additive (i.e., v; = v;"+v,” and
i, = iy"+1i,”), while the voltages on the output ports and currents on input ports are



154 Chapter 4 « Single- and Multiport Networks

(@) (b)

Figure 4-5 (a) Short circuit in series connection. (b) Transformer to avoid short

circuit.
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Figure 4-6 Connection of two-port networks suitable for hybrid representation.

the same (i.e., v, = v, = v,” and i; = i;” = i;”). From this observation we can
conclude that the resulting h-matrix for the overall system is equal to the sum of the h-
matrices of the individual networks:

{ 41 } = {"1"""1”} - hyy" +hyy” h12'+h12”{ i } (4.18)
iy iy + 1" hot' +hyy” hyy" +hy"| L v,

An example of this type of connection is the Darlington transistor pair Q,and
0, shown in Figure 4-7.

4.2.2 Parallel Connection of Networks

A parallel connection of two dual-port networks is shown in Figure 4-8 for the
admittance matrices Y’ and Y”, where, unlike (4.16), the currents are now additive
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Figure 4-7 Series connection of two hybrid networks.

el e
iy i +1,” 123

and the new admittance matrix is defined as the sum of the individual admittances

” Y,.)+Y,," Y, +Y,,”
[Y] = [Y/] + [Y ]= 11’ 11” 12’ 12” (4.20)
Yo' +Yy" Yy +Yp
i' i'
+ o —> <= o +
Vi [¥'] Vi
port 1 i i port 2
——> <_.__
vi' [YII] vg

Figure 4-8 Parallel connection of two two-port networks.

4.2.3 Cascading Networks

The ABCD-parameter description is most suitable when cascading networks, as
depicted in Figure 4-9 for the example of a two-transistor configuration. In this case the
current on the output of the first network is equal in value, but opposite in sign, to the
input current of the second network (i.e., i,” = —i;”). The voltage drop v,” across the
output port of the first network is equal to the voltage drop v,” across the input port of
the second network. Thus, we can write the following relations:
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Figure 4-9 Cascading two networks.
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The overall system ABCD-matrix is equal to the product of the ABCD-matrices of the
individual networks.

——

- <

- —

—_——
]

(4.21)

424 Summary of ABCD Network Representations

As we will see in subsequent chapters, microwave circuits can usually be repre-
sented as the result of cascading simpler networks. It is therefore important to develop
ABCD-matrix representations for simple two-port networks that can be used as build-
ing blocks of more complex configurations. In this section several examples are consid-
ered for which we will derive ABCD-parameters such as transmission line, series
impedance, and passive T-network. Other very useful circuits, such as parallel imped-
ance, passive pi-network, and transformer, are left as exercises at the end of this chapter
(see Problems 4.10—4.12). The results of all the computations are summarized in Table
4-1 at the end of this section.
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RF &M W-

Example 4-4: ABCD network representation of an impedance
element

Compute the ABCD-matrix representation for the following net-

work:
ct, ]__2_| <_1_2°
L i
v| v2
(o3 -0

Solution:  Guided by the definition (4.10), to determine parame-
ter A we have to compute the ratio of the voltage drop across port 1
to the voltage drop across port 2 when the current into this port is
equal to zero (i.e., port 2 is disconnected). In this case, it is apparent
that for the circuit under consideration, the voltages on both ports
are equal to their ratio, which is equal to unity

To obtain the value for B, we need to find the ratio of the voltage
drop across port 1 to the current flowing from port 2 when the termi-
nals of port 2 are shortened. From the circuit topology, this ratio is
equal to the impedance Z:

_ " _
B=-1 =Z

vy =0

The remaining two parameters are found according to (4.10) of the
ABCD-representation and can be shown to be

iy
=0and D = —

!
—

v, =0

The ABCD-matrix coefficients are determined in a similar
manner as the previously discussed Z-, Y-, and h-matrix coefficients.
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The accurate prediction of the coefficients again depends on the
ability to enforce open- and short-circuit terminal conditions.

In the following example the ABCD-parameters of the passive T-network are
determined. In the derivation of the parameters we will rely on the knowledge of ABCD
parameters for series and parallel connections of the impedance.

RF &M W

Example 4-5: ABCD matrix computation of a T-network

Compute the ABCD-matrix representation for the following T-net-
work:

Solution:  This problem can be solved using two different
approaches. The first approach involves directly applying the defini-
tion of the ABCD-matrix coefficients and compute them as done in
the previous example. Another approach is to utilize the knowledge
of the ABCD-parameters for parallel and series connections of a sin-
gle impedance. If we choose this method, we first have to break the
initial circuit into subcircuits as follows:

— N
Network 4 ﬁe/t\m' Network B
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As discussed previously, the ABCD-matrix representation of the
entire circuit is equal to the product of the ABCD-matrices of the
individual subcircuits. Using the results from Example 4-4 and
Problem 4.8, we can write

z Z,Z

Lol 2 1+2ﬁ Z,+Zyp+ 23

[ABCD] = | Z4|| * B| = c c
01|z 1|]o 1 1 Zy
_ 1+ —
ZC ZC

Here we see the advantage of using the ABCD-matrix repre-
sentation in that a more complex network can be constructed by
multiplication of simpler building blocks.

As a last example, let us consider the computation of the ABCD parameters for a
transmission line.

RFEMW—

Example 4-6: ABCD-matrix coefficient computation of a
transmission line section

Compute the ABCD-matrix representation of the following trans-
mission line with characteristic impedance Z,, propagation con-
stant {3, and length L.

A

I
—> -

Solution:  Similar to Example 4-4, we have to apply open- and
short-circuit conditions at port 2. For a transmission line these con-
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ditions are equivalent to the analysis of open- and short-circuit stub
lines. Such lines are simply the open/short-circuit transmission line
representations discussed in Sections 2.9.3 and 2.9.2. In these sec-
tions we found that for the open-circuit stub the voltage and current
are given by the following expressions [see (2.71) and (2.72)]:

ot
V(d) = 2V*cos(Bd) and I(d) = ZJZV sin(Bd)
0
where distance d is measured from the open port (i.e., in our case

from port 2).
For a short-circuit stub of length [ voltages and currents are
determined by (2.67) and (2.68):

+

V(d) = 2jV'sin(Bd) and I(d) = g-z‘icos([sd)
0

where distance d is again measured from port 2 to port 1. In addition
to these relations, it is important to recall that the current is defined
as flowing toward the load. Therefore, the current is equal to i; at
port 1 and equal to —i, at port 2.

Having determined the relations for voltages and currents, it is
now possible to establish equations for the ABCD-parameters of the
transmission line. Parameter A is defined as the ratio of the voltages
at ports 1 and 2 when port 2 is open (i.e., we have to use the formu-
las for the open-circuit stub):

- 2V" cos(Bl) -
2v*

where we employ the fact that d = 0 atport2and d = [ at port 1.

Parameter B is defined as the ratio of the voltage drop across
port 1 to the current flowing from port 2 (i.e., toward the load) when
port 2 is shorted. For this case we have to use the formulas for volt-
age and current defined for a short-circuit stub. This yields

Vi
A= —
V2

cos(B!)

i,=0

oyt .
p=2 22V smBh iy
|, ., 2V'/z,

The remaining two coefficients are obtained in a similar manner:
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RS
; gjzlsin(ﬁl)
c=41 =0 n = jYysin(Bl)
Vzi 0 2V
L=
+
. 2V cos(Bl)
_ h _ 2 _
= — = —————— = cos(B))
_12 v2=0 2‘7‘/_
0

Thus, a transmission line with characteristic impedance Z,, propa-
gation constant B, and length / has the following matrix representa-
tion:

{A ]= cos(Bl) jZysin(Bl)
CD jYosin(Bl) cos(Bl)

The ABCD transmission line representation has the expected
periodic parameter behavior similar to the line input impedance
formula derived in Chapter 2.

In Table 4-1 six of the most common circuit configurations are summarized in
terms of their ABCD two-port network representations. From these six basic models,
more complicated circuits are readily constructed by suitably combining these elemen-
tary networks.

4.3 Network Properties and Applications

4.3.1 Interrelations between Parameter Sets

Depending on the particular circuit configuration, we may be forced to convert
between different parameter sets to arrive at a particular input/output description. For
instance, the low-frequency transistor parameters are often recorded in h-matrix form.
However, when cascading the transistor with additional networks, a more useful
ABCD-matrix form may be appropriate. Thus, converting the h-matrix into an ABCD-
matrix form and vice versa can greatly simplify the analysis.
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Table 4-1 ABCD-Parameters of Some Useful Two-Port Circuits.

Circuit ABCD-Parameters
i) Z i
— I' rl A= 1 B=Z
" " C=0 D=1
i!_’ &iz
A= 1 B=0
v Y v, C=Y D=1
i Z, Zg & A= 1+ZA B=Z,+Zy+ ACB
&= 1 El‘r—_-]_‘ c
vl Zc v2 1
= — D= 1+-2
Z *Ze
. =L
i, B b A= 1+ c
c
Vl’iii H%Vz Y D=1+-4
C= Y, +Yz+-22 c
Yo
< { o
: o _
o A= ‘_:(TSBI B= jZ,sinBl
v z, B v, C= ]smﬁl
— — — }—o =Tz, D= cosPl
d
LN b B=0
° A= N
ko

To show how the conversion between the individual parameter sets can be accom-
plished, let us find an ABCD-matrix representation of a given h-matrix. From the defi-
nition (4.11) we can express parameter A as follows
- hyiy +hipvo

v
A=

4.22)
V2

1%
i,=0 2
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In this expression we are able to re-express the current i, in (4.11) in terms of the volt-
age v, because i, = 0. The result is

h
h (——sz )+h v
= - el i 2 = L(”22’111"112"21) = _ah (4.23)
12 by, hy

v
A=

where Ah = hy hy, —h,h,, denotes the determinant of the h-matrix. Similarly, for
the remaining coefficients we compute

(52)
by M\ hy, hyy

v
B = -t = = h = (4.24)
12 v, =0 ) 2 hy
—h
i "
c=-21 =2 2 (4.25)
V2 =0 V2 hy
I
j hyy
D=1 ) S (4.26)
bl _ ) hy

This concludes the conversion from h-parameters to ABCD form. A similar procedure
could have been performed from ABCD-parameters to h-matrix form.

As an additional case, let us investigate the conversion from ABCD-parameters to
the Z-representation. Starting with (4.2) and using (4.11), we can develop the following
relations: -

Av
z, =" =22_.4 @4.27)
i =0 Cv, C
. Av —Q—C—'v
7. W _Av-Bh T2 D2 _AD-BC _AABCD ;.
12 ili o C Cc C C '
1= BV2 sz
" vi/A  Avy/A
Zy = 2 =t =2 == (4.29)
2 b0 Cv Cv, C
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1% V) D
7. = "2 =
2 = T =

Lliy=0
where AABCD = AD - BC is the determinant of the ABCD-matrix.

By relying on the respective defining voltage and current relations, it is relatively
straightforward to work out all parameter conversions. For convenience, Table 4-2 sum-
marizes the formulas for the previously defined four network parameter sets (see also
Appendix H for a complete list of all conversion formulas).

(4.30)

Table 4-2 Conversion between Different Network Representations

[Z] [yl [h] [ABCD]
Zyp Zp AZ Zy, Zn AZ
@ Zy, 2y, AZ AZ Zy Zy Zy Zy
Zaza | ZwZy | Zn1 | 1%
AZ AZ Zy Zy Zy Zy
Yn Yy 1 Yo Yo 1
v AY ~AY YuYg, Y, Yy Yy, Yy
Iy Ty Yor Yo Yu Ay Ay Ty
Ah by 1 hy _Ah _hy
[h] hy hy hy by hyy hyy hy by
| b 1 har AR hy by e 1
hy hy hyy by hy by
AAMBCD | D AABCD | B AABCD
[ABCD] C C B B D D A B
1 D 1 A 1 C cD
C C B B D D

4.3.2 Analysis of Microwave Amplifier

In this section we consider, by way of an example, the usage of the conversion
between different network representations to analyze a relatively complicated circuit.
Basis of the analysis is the circuit diagram of a particular microwave amplifier shown in
Figure 4-10.



Network Properties and Applications 165

Figure 4-10 Microwave amplifier circuit diagram.

The first step is to break down the circuit into smaller, simpler subnetworks. This
can be accomplished in several ways, one of which is shown in Figure 4-11.

Feedback loop
R
+—NW— Output matching
° ° network
Input matching L Ji
network Lo
e E— {
e ] T

Figure 4-11 Subnetwork representation of the microwave ampilifier.

As shown in this figure, the amplifier is divided into a set of four subcircuits. The
input matching network consists of a transmission line (for convenience only the upper
trace is shown) and is cascaded with a parallel combination of the transistor and a feed-
back loop. This circuit is then cascaded with an output matching network.

For the transistor we will use a high-frequency hybrid pi-network model (see also
Chapter 7), which is shown in Figure 4-12.

Ic
<—°C

Bo

Eo °F

Figure 4-12 High-frequency hybrid transistor model.
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The derivation of the h-parameters is left as a problem (Problem 4.13 at the end of
this chapter). Here we only list the resulting h-matrix for the transistor:

TBE
hi, = h, = 4.31
i WC p 1
hyp = h,, = —— " BCBE (431b)

" 1+ jo(Cgp+Cpo)Tae

rBE(gm _j(DCBc)
1+ jo(Cgg+Cpe)rpg

hyy = hy = (4.31c)

1 JoCgo(1+g,rgp+ joCpprpp)
h22=hoe=r_+ 1+7
CE Jo(Cpe+ Cpc)rpe

To compute the matrix for the parallel combination of the transistor and the feed-
back loop resistor we have to convert the h-matrix into a Y-matrix called [Y],, in order
to apply the summation rule (4.20). To accomplish this, we can use formulas from
Table 4-2 and add the result to the Y-matrix of the feedback resistor. The admittance
matrix for the feedback resistor can be derived either directly using the definition of the
Y-matrix or by converting the ABCD-parameters derived in Example 4-4 into the Y-

form. The result of these computations is

l:Yu Y12j| - R —r! (4.32)
Y Yol |-k R?

After the summation we obtain the admittance matrix for the parallel combination of
the transistor and the feedback resistor [Y], , z-

The same result could have been obtained if we had noticed that the feedback
resistor is connected in parallel with the capacitor Cp of the transistor. Thus, to obtain
the admittance matrix of the parallel combination of the feedback resistor and the tran-
sistor, we simply need to replace Cgz- in the h-matrix of the transistor with
Cpc+ 1/(joR) and then convert the resulting matrix into Y-representation.

The final step in the analysis is to multiply the ABCD-matrices for the input
matching network (index: IMN), the transistor with feedback resistor (index: tr + R),
and the output matching network (index: OMN)

Fﬂ =Fﬂ Fﬂ Fﬂ 433
CDlwp L€ Dliux|C Dl 2l€ Dl

4.31d)
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where the ABCD-matrices for the matching networks are found using the results from
Table 4-1:

cosPl jZ,sinPl
4B o] isinp (4.34)
C Dl — cosPl
0
AB 1-0’LC  2jol- jo’L*C
} ) —o JOL - j (4.35)
C Dfomn joC 1-w’LC

Due to rather lengthy expressions we are not presenting the final result for the
ABCD-parameters of the entire amplifier. Instead we urge the interested readers to per-
form these computations by relying on a mathematical spreadsheet program of their
choice (MathCad, MATLAB, Mathematica, etc.). One of the results of these computa-
tions is shown in Figure 4-13, where the small-signal current gain for the amplifier with
short-circuited output (inverse of the D-coefficient) is plotted versus frequency for dif-
ferent values of the feedback resistor.

40 ' ' R =10 kQ
R=1kQ
357 = Q ]
% R =500
g R=300 Q
§o 30f R=200Q
]
e
5 2 ]
=
g) 20
3
g
wn 15 - n
10104 165 166 167 168 10°
Frequency, Hz

Figure 4-13 Small-signal current gain of the ampilifier versus frequency for
different values of the feedback resistor.



168 Chapter 4 « Single- and Multiport Networks

The computations are based on the circuit in Figure 4-11 with L = 1 nH,
C = 10 pF, transmission line length of / = 5 cm, and phase velocity equal to 65% of
the speed of light. The transistor is described by the following set of values:
rgg =520 Q, rop = 80k Q, Cgp = 10 pF, Cgo = 1 pF,and g, = 0.192 5.

4.4 Scattering Parameters

In almost all databooks and technical literature regarding RF systems, the scatter-
ing or S-parameter representation plays a central role. This importance is derived from
the fact that practical system characterizations can no longer be accomplished through
simple open- or short-circuit measurements, as it is customarily done in low-frequency
applications and as discussed at the beginning of this chapter. We should recall what
happens when we attempt to create a short circuit with a wire: The wire itself possesses
an inductance that can be of substantial magnitude at high frequency. Also, the open
circuit leads to capacitive loading at the terminal. In either case, the open/short-circuit
conditions needed to determine Z-, Y-, k-, and ABCD-parameters can no longer be guar-
anteed. Moreover, when dealing with wavepropagation phenomena, it is not desirable
to introduce a reflection coefficient whose magnitude is unity. For instance, the terminal
discontinuity will cause undesirable voltage and/or current wave reflections, leading to
oscillations that can result in the destruction of the device. With the S-parameters, the
RF engineer has a tool to characterize the two-port network description of practically
all RF devices without requiring unachievable terminal conditions or causing harm to
the device under test (DUT). '

4.4.1 Definition of Scattering Parameters

Simply put, S-parameters are power wave descriptors that permit us to define the
input-output relations of a network in terms of incident and reflected power waves.
With reference to Figure 4-14 we define an incident normalized power wave a, and a
reflected normalized power wave b, as follows:

1

a, = ——=(V, +Zyl,) (4.362)
2./Z, °

b= —L (v —z,0) (4.36b)

n 2 JZ:)
where the index # refers either to port number 1 or 2. The impedance Z,, is the charac-

teristic impedance of the connecting lines on the input and output side of the network.
Under more general conditions the line impedance on the input side can differ from the
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line impedance on the output side. However, for our initial discussion, we will keep
things simple and assume that both impedances are the same.

—+H> o—] —o <tH—
[s]
DA ",

Figure 4-14 Convention used to define S-parameters for a two-port network.

Inverting (4.36) leads to the following voltage and current expressions:
V, = JZy(a,+b,) (4.37a)

= La-b) (4.37b)

1
Tz

The physical meaning of (4.36) becomes clear when we recall the equations for power:

I o1
P, = 3Re{V,I;} = i(|a,,|2-|b,,|2) (4.38)

Isolating forward and backward traveling wave components in (4.37), we immediately
see

V+
a, = JZ, = JZ,I, (4.39)
b, = Ya _ -JZo, (4.39b)
JZ,

which is consistent with the definitions (4.37) since

V, = Vy+V, = Zy, - Zl, (4.40)

Based on the directional convention shown in Figure 4-14 we are now in a position to

define the S-parameters:
{”1} = |Su 512}{“1} @.41)
b, S21 Spa| L @y

where the terms are
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S = lﬁ _ reflected power wave at port 1 (4.422)
=g . ~ incident power wave at port 1 '
a, =
S, = liz _ transmitted power wave at port 2 (4.42b)
L ,  incident power wave at port 1 '
a =
S = b_z _ reflected power wave at port 2 (4.42¢)
27 g, o "~ incident power wave at port 2 '
a, =
b .
Sp, = a_1 = tr?:cs;:il;:fd power wave at prc;r; 1 (4.42d)
2|, o power wave at po

a =
We observe that the conditions a, = 0 and a; = 0 imply that no power waves are
returned to the network at either port 2 or port 1. However, these condition can only be
ensured when the connecting transmission lines are terminated into their characteristic
impedances.

Since the S-parameters are closely related to power relations, we can express the
normalized input and output waves in terms of time averaged power. With reference to
Section 2.10.2 we note that the average power at port 1 is given by

P, ll ‘l (1—|rm|) ll ‘I -8y (4.43)

where the reflection coefficient at the input side is expressed in terms of S;; under
matched output according to the following argument:

- _Vi_ b

I, =Sy (4.44)
+
Vi %4

a,=0

in —

This also allows us to redefine the VSWR at port 1 in terms of S;; as
1+|8y|

VSWR =
1-|8y|

(4.45)
Furthermore, based on (4.39a) we can identify the incident power in (4.43) and express
itin terms of a; :

vit_, _laf’

Z, = P = 5 (4.46)

NI =
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which is the maximal available power from the generator. Using (4.46) and (4.44) in
(4.43) finally gives us the total power at port 1 (under matched output condition)
expressed as a combination of incident and reflected powers:

mc

2
a
Py =P, +P = %(|a1|2—|b1|2) = L%L(l_lrinIZ) (4.47)

If the reflection coefficient, or S, , is zero, all available power from the source is deliv-
ered to port 1 of the network. An identical analysis at port 2 yields

|“2|2

P, = %(|a2|2—|b2|2) = 2L a-ra.d (4.48)

4.4.2 Meaning of S-Parameters

As already mentioned in the previous section, the S-parameters can only be deter-
mined under conditions of perfect matching on the input or output side. For instance, in
order to record S;, and §,, we have to ensure that on the output side the line imped-
ance Z, is matched for a, = 0 to be enforced, as shown in Figure 4-15.

Zo ﬁH’ a;=0
<t I;H—>

1

Figure 4-15 Measurement of S, and S,;by matching the line impedance Z, at
port 2 through a corresponding load impedance Z, = £,

This configuration allows us to compute S;; by finding the input reflection
coefficient:

Z -7

in — Zin+ZO (449)

In addition, taking the logarithm of the magnitude of S;; gives us the return loss in dB
RL = —2010g|S11| (4.50)
Moreover, with port 2 properly terminated, we find
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b Vo / JZ
Sy = =2 = 2/ olZo (4.51)
Mgz +Zo11)/(2,/Z¢)| |
L'=v, =0
Since a, = 0, we can set to zero the positive traveling voltage and current waves at
port 2. Replacing V, by the generator voltage V;, minus the voltage drop over the
source impedance Z,,, V;, - Z,I, gives
2v, 2V,
S = 2 = 2 4.52)
S P
Here we observe that the voltage recorded at port 2 is directly related to the generator
voltage and thus specifies the forward voltage gain of the network. To find the for-
ward power gain, we square (4.52) to obtain

Va

(4.53)
Voi/2

2
Gy = |Sy|" =

If we reverse the measurement procedure and attach a generator voltage Vs, to
port 2 and properly terminate port 1, as shown in Figure 4-16, we can determine the
remaining two S-parameters, S,, and S,.

a=0 4 i
ZGI l Z, [S] Z,

1 2

Figure 4-16 Measurement of S,, and S;, by matching the line impedance Z, at
port 1 through a corresponding input impedance Zg = Z,.

To compute S,, we need to find the output reflection coefficient I',,, in a similar
way as already discussed for S;;:
Z out ~ Z 0

S22 = l-“()ut = VA A + ZO (4-54)
ou

and for S,
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S = b, Vi/ 2y 455)
2=~ = = :
a2 a,=0 (V2+Z()12)/(2 Zo) I+ V+ o
1 =V, =

The term S;, can further be manipulated through the substitution of V, by
Vg2 —Zyl,, leading to the form

(4.56)

known as the reverse voltage gain and whose square |S12|2 is identified as reverse
power gain. While determining §;; and S,, can be directly computed as part of the
impedance definitions, S, an §,; require the replacement of the defining voltages by
the appropriate network parameters. In the following example, the S-parameters are
computed for a simple, three element network.

RFEMW—

Example 4-7: Determination of a T-network elements

Find the S-parameters and the resistive elements for the 3 dB attenu-
ator network shown in Figure 4-17(a) assuming that the network is
placed into a transmission line section with a characteristic line
impedance of Z;, = 50 Q.

Solution:  An attenuator should be matched to the line imped-
ance and must therefore meet the requirement S;; = §,, = 0.Asa
result, based on Figure 4-17(b) and consistent with (4.49), we set
R;(R, + 50 Q)

(R;+R,+50 Q)
Because of symmetry, it is immediately clear that R, = R,. We
now investigate the voltage V, = V, at port 2 in terms of
V, = V]L. According to the circuit configuration shown in Figure
4-17(c), the following expression is obtained

Z, = R + =50 Q
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R, R,
Port 1 R;  Port2
(@)
R, R, R, R,
%& %50 Q %50 Q %Ra
Port 1 Port 2 Po;t 1 | Port 2

(b) (©

Figure 4-17 S-parameter computation for a T-network. (a) circuit diagram;
(b) circuit for Sy, and S,; measurements; (c) circuit for S, and S,, measurements.

Ry(R, +50 Q)

Ry+R; +50 Q ( 50 Q )v
Ry(R, +50 Q)+ 50Q+R,) !
Ry, +R +50Q !

V2=

For a 3 dB attenuation, we require

2w, V
Sy=22=2=L_0707=5,
Va1 Vi 2

Setting the ratio of V,/V; to 0.707 in the preceding equation
allows us, in combination with the input impedance expression, to
determine R, and R;. After simplification it is seen that

Ri=Ry==17 _ 8580 andR, = 232, = 1414 Q

J2+1

The choice of the resistor network ensures that at the input and
output ports an impedance of 50 Q is maintained. This implies that
this network can be inserted into a 50 Q transmission line section
without causing undesired reflections, resulting in an insertion loss.
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The definitions for the S-parameters require appropriate termination. For instance,
if §;, is desired, the transmission line connected to port 2 has to be terminated into its
characteristic line impedance. This does not necessarily mean that the output impedance
Z ,, of the network has to be matched to the line impedance Z,. Rather, the line imped-
ance must be matched to ensure that no wave is reflected from the load, as implied by
a, = 0.If this is not the case, we will see in Section 4.4.5 how S, is modified.

4.4.3 Chain Scattering Matrix

To extend the concept of the S-parameter representation to cascaded networks, it
is more efficient to rewrite the power wave expressions arranged in terms of input and
output ports. This results in the chain scattering matrix notation. That is,

{“1}= T11T12{b2}
b, Ty Tyl a,
It is immediately seen that the cascading of two dual-port networks becomes a simple

multiplication. This is apparent in Figure 4-18, where network A (given by matrix [T],)
is connected to network B (given by matrix [T]p).

(4.57)

bt af ai b? a;

O o ———0
port 1 (1], (1], port 2

o—o o ——

<t > 4> >

b b} a° b?

Figure 4-18 Cascading of two networks A and B.

If network A is described by the relation

A A A
{ 4 } - |Tn T”{ (4.582)
b Ty Ty,
and network B by
B B ..B
a
{ : } = [Tu Tn { (4.58b)
by Ty Ts,

we notice, based on the parameter convention shown in Figure 4-18, that
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bA aB
4114
a, by

Thus, for the combined system, we conclude

A A A B ..B B

ay | _|Ty T||Th Tl b2 4.60)

A |4 allB B &8 '
1 T Ty [Ty Typ| ' ™2

which is the desired matrix multiplication. Therefore, the chain scattering matrix plays
a similar role as the ABCD-matrix discussed earlier.

The conversion from the S-matrix to the chain matrix notation follows identical
steps as outlined in Section 4.3.1. In particular, to compute T, for instance, we see that

T, =2 =4 _1 (4.61)
11 = 3~ - I .
bza =0 Sna; Sy
Similarly,
S
Ty, = -S—z (4.62)
S
T, = =2 (4.63)
S2l
(81189 = 813521)  —AS
T, = —U 2~°12921) _ -AS (4.64)

Conversely, when the chain scattering parameters are given and we need to convert to
S-parameters, we find the following relations:

Sy = Z—i = —;—ji—ii = ;—2 (4.65)
a,=

Sy, = T11T22T‘“T21T12 - ?_17; (4.66)

S = - (4.67)

Sy = T (4.68)
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Alternatively, a matrix manipulation as discussed in the next section could have been
carried out with the same result.

4.4.4 Conversion between Z- and S-Parameters

We have already seen how certain S-parameters can be defined in terms of input
and output impedances of a network [i.e., equations (4.49) and (4.54)]. In this section,
we go through a formal conversion between the Z- and S-parameter sets. Once this
interrelation is established, we are able to formulate conversion links between all six
network parameter sets (S, Z, Y, ABCD, h, T).

To find the conversion between the previously defined S-parameters and the Z-
parameters, let us begin with the defining S-parameter relation in matrix notation [i.e.,
4.41)]

{b} = [S]{a} (4.69)
Multiplying by A/—Z_O gives
JZoib} = {V'} = [Z,[S]{a} = [SI{V"} (4.70)
Adding {V*} = ,/Z{a} to both sides results in
{V} = [S{V'}+{V'} = (IS1+[ED{V"} @.71)

where [E] is the identity matrix. To compare this form with the impedance expression
{V} = [Z]{1}, we have to express {V+} in terms of {I}. This is accomplished by
first subtracting [S1{V"} from both sides of {V*} = ,/Z,{a}; thatis,

{V'}-ISKV'} = JZ,({a} - {b}) = Zy{I} (4.72)
Now, by isolating {V+} , it is seen that
{V'} = Zo([E]-[S])_l{I} 4.73)
Substituting (4.73) into (4.71) yields the desired result of
{V} = (ISI+[ED{V'} = Zo([S]+[E])([E]—[S])-1{I} 4.74)
or
[Z] = Zo([S]+[l?3])([E]—[S])_1 4.75)

Explicit evaluation yields
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-1
[Zn Zy| _ z, 1+8; S [[1-Su —Si
Zy Zy Sy 1+Syu[| - 1-8p
2 |1+Su Si (4.76)
ol 5, 148,

- 1-Sp» Sp
(1=81)(1=82) =5151| s, 1-8,;

Identifying individual terms is now easily carried out. A complete summary of all net-
work coefficient sets is given in Appendix C.

4.4.5 Signal Flow Chart Modeling

The analysis of RF networks and their overall interconnection is greatly facilitated
through signal flow charts as commonly used in system and control theory. As origi-
nally introduced to seismology and remote sensing, wave propagation can be associated
with directed paths and associated nodes connecting these paths. Even complicated net-
works are easily reduced to input-output relations in which the reflection and transmis-
sion coefficients play integral parts. In this section we will briefly summarize key
principles needed for a signal flow network analysis.

The main concepts required to construct flow charts are as follows:

1. Nodes that are deployed to identify network parameters such as a;, b,, a,, b,
when dealing with S-parameters

2. Branches that are needed when connecting the network parameters

3. Addition and subtraction of branch values in accordance with the directions of the
branches

We will now discuss these three items in detail. To this end let us consider a section
of a transmission line that is terminated in a load impedance Z; , as seen in Figure 4-19.

a
- " __ a
Z, iIZL b VI‘L
-z - -
b H

(a) (b)
Figure 4-19 Terminated transmission line segment with incident and reflected S-
parameter description. (a) Conventional form, and (b) Signal flow form.
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Even though we could use voltage values as node identifier, it is the S-parameter
representation that finds widespread use. In Figure 4-19(b) the nodes a and b are con-
nected through the load reflection coefficient I'; . This makes sense since the reflection
coefficient is the ratio b/a, so that it simply states that node b is found as a result of mul-
tiplying node a by I'; . This is depicted in generic form in Figure 4-20.

a b
Oy —0
{a) Source node a, which launches wave. (b) Sink node b, which receives wave.
al b
O—>p—o0

(c) Branch connecting source and sink.
Figure 4-20 Generic source node (a), receiver node (b), and the associated (c)
branch connection.
In terms of notation, we can encode the situation shown in Figure 4-20 as
b="Ta 4.77)

A more complicated situation arises when we need to make the transmission line

circuit shown in Figure 4-19 more realistic by including a source term, as seen in Fig-
ure 4-21.

b a

N
R
8
5
<

Y-

8

S

P 3 a 1 b b
(a) (b) (c)

Figure 4-21 Terminated transmission line with source. (a) conventional form, (b)
signal flow form, and (c) simplified signal flow form.

Unlike Figure 4-19, the nodes a and b are preceded by two additional nodes that
we shall denote a” and b’. The ratio b’/a’ defines the source reflection coefficient I'gas
already discussed in Section 2.11. Here we also see that b’ is given by multiplying a’
with the source reflection coefficient. By relying on the concept of summation, we
define b’ as the sum of bg and a’T’. Thus, the source by is

bs = b'—a'Ty (4.78)
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An explicit expression for by is obtained by noting that
Ve = Ve+1gZg (4.79)
based on an outflowing current convention (see Figure 4-21). This can be converted into

the form

Vet Vo= Vo+Z ——V; Vs (4.80)
+ = + - .
§TOST 66z, Z,

Rearranging terms and division by «/Z) gives
JZq Vs Vs
—V,= — -T¢— (4.81)
Z6+%0 " [z, Vg
When comparing (4.81) with (4.78), we immediately see that

b, = _A@_v (4.82)
§T Zg+z, © '
An important conclusion can be drawn when expressing a” in (4.78) by I'; b” so that we
obtain

’ ’ bS
b= b+ UL = Tp - (4.83)

This is a known as a self- or feedback loop (see Figure 4-22), which allows us to repre-
sent the nodes by and b’ by a single branch whose value is given by (4.83).

by 1/(1-LT})
:',> O
bs z E b’ bs b’
1-‘LI‘S

Figure 4-22 A self-loop that collapses to a single branch.

All signal flow chart principles can therefore be reduced to six building blocks, as
summarized in Table 4-3.

By way of an example, let us analyze a more complicated RF circuit consisting of
a sourced and terminated dual-port network.
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Table 4-3  Signal flow chart building blocks

Description Graphical Representation
a a
o ] —_-Z-Z - - —p——p — —
Nodal Assignment Z , Z, = s
— S ——=%——--:C-=:Z - —————— —
—— - a a
—Z-Z<z - = ——po——
Branch Z, , E] zZ, = T,
—ZZT - —<——~>—b
Series Connection o—‘S;ba—o-—S;cf—c = oSﬁ»SLo
a b c a c
S
Parallel Connection ) |, §,+5,
al_ 2 b a b
bo—€2— S b 52 S
Splitting of Branches 52y = cd—
a o—p— ¢ a o—p—o—p—
S S8
b 1/1-1)
> o—Pp—0
Self-loop a E S ¢ é ) ¢
r
RF&M W+

Example 4-8: Flow chart analysis of a dual-port network

For the network shown in Figure 4-23 find the ratios of b;/a; and

a,/bg. Assume unity for the multiplication factor of the transmis-
sion line segments.
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— VL | S
I A 8] z, Lz
o .

(a) Circuit representation

by 1 1 al‘S:ZIbZ !

1 b S, 9 1
(b) Signal flow chart

T4 S, AS,, [ I,

Figure 4-23 Sourced and terminated two-port network.

Solution:  The process of setting up the individual ratios is
explained best by going through a step-by-step simplification for the
ratio a,/bg employing the rules summarized in Table 4-3. Figure 4-
24 depicts the five steps.
Step 1: Splitting of the rightmost loop between b, and a,, leading
to the self-loop S,,I";
Step 2: Decomposition of the self-loop between branches a, and b,,
resulting in the multiplication factor S,;/(1 - S5,I';), which can be
combined with I"; and S,
Step 3: Series and parallel connections between a, and b, , leading
to the input reflection coefficient

1 2L
Step 4: Splitting the loop into a self-loop, resulting in the multiplica-
tion factor

Iy

S12521
(S nti-o T SzerrL)rS
Step 5: Decomposition of the self-loop at a;, leading to the
expression
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bs!. } al §2l bz bs} 1 a] SZI 92
I Suy AS» I = Tl Suy Q 13
- ‘022 L
by Spia b, S‘n a
Step 1
S2I -------------
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Figure 4-24 Step-by-step simplification to determine the ratio a,/by.
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1
S12521
Rearranging and simplification leads to the final form:

by 1—(S) Tg+Sul+ 85125, g) + 851151,

o bs

The preceding derivation follows a pattern similar to finding
the transfer function of a control system or a signal processor. Even
complicated circuits can be reduced efficiently and quickly to estab-
lish the nodal dependcies.

The preceding example points out what will happen if the matching condition for
recording the S-parameters is not satisfied. As we know, if we compute S;; we need to
ensure that a, = 0. However, if a, # 0, as is the case in the preceding example, we see
that §,; is modified by the additional factor S,,5,,T';/(1 - S,T}).

4.4.6 Generalization of S-Parameters

In our discussion thus far it was assumed that the characteristic line impedance at
both ports has the same value Z;. However, this does not have to be the case. Indeed, if
we assume that port 1 is connected to line impedance Z;, and port 2 to impedance
Zy,, we have to represent the voltage and current waves at the respective port
(n=12)as

V,=Vi+V, = [Z,(a,+b,) (4.84)

and

I _h__n = - (4'85)
" ZOn ZOn JZOn ,/Zon
where we immediately observe
v, v,
a, = —,b, = —= (4.86)
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These equations allow the definition of the S-parameters as follows:

b, Vi /. |Z,
S. = ‘.1_* = N0 (4.87)

i = —
Na,=0(n=j) V]'/"/ZOJ'

When compared to the previous S-parameter definitions, we notice that scaling by the
appropriate line impedances has to be taken into account. It should also be apparent that
although the focus of our derivations was a two-port network, the preceding formulas
can be extended to an N-port network where n = 1,...,N.

A second consideration is related to the fact that practical measurements involve
the determination of the network S-parameters through transmission lines of finite
length. In this case we need to investigate a system where the measurement planes are
shifted away from the actual network, as depicted in Figure 4-25.

Vi=0(n#j)

bs a, a,
Zs 4> "
Two-port |
Vs Zo netw%rk Zu Z=2a
i T
| A <
_l‘ 0 2 Zy 0 _12

Figure 4-25 Two-port network with finite-length transmission line segments.

An incident voltage wave launched from the power supply will have to travel a
distance /; in order to reach port 1. Consistent with the notation introduced in
Section 2.9, we note that at port 1 the incident voltage is given as

Viz;= 0)= V] (4.88)
and, at the generator side, as
—iB. (-]
Vilz,= —I))= V]e ) (4.89)

The reflected voltage wave at port 1 can be cast in the form

Vi(z;= 0)= VI (4.90)
and

- JBy (-1

V;](zl= —ll)= Vle (491)
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where, as usual, 3; stands for the lossless propagation constant of line 1. In an identical
fashion, the voltage behavior at port 2 can be formulated by simply replacing V., in
terms of V, and Vin terms of V, as well as B, in terms of B, . The preceding equa-
tions can be combined in matrix form

Vi(=1 By v
{ :n( 1) } _|e 0 { 1 } (4'92)
Vout(_l2) 0 ejﬁZIZ V2

which links the impinging waves at the network ports to the corresponding voltages
shifted by the electric lengths of the attached transmission line segments. For the
reflected voltage waves we get the matrix form

V. (-] -iBiy vV,
{ _m( 1) }= e 0 { 1} (4.93)
Vout(—IZ) 0 e-lﬁZIZ V2

As the discussion in Section 4.4.1 taught us, the S-parameters are linked to the coeffi-
cients a, and b,, which in turn can be expressed through voltages (if we assume

Zy = Zy)
Vi S, Sl Vi
{ - } = 11 Y12 { N (494)
v, Sy Sxn|l Vs

It is apparent that if transmission line segments are added, we have to replace the above
voltages by the previously derived expressions, leading to the form

{ Vin(=11) }_ P o |8y S|l o { V;(_ll)} (4.95)
Vou(-1) 0 P [Su Snl| o 7P| Vou-l)

This final reveals that the S-parameters for the shifted network are comprised of three
matrices. In terms of the coefficients, we see that

-j2pyl —j(Byly + Byly)
SHIFT _ Sue 2B, Slze Bili +B2ly

—i(B,1, +Byly) _j2B,1
Sye J(Byly + By, S22el 2l

[S] (4.96)

The physical meaning of this form is easy to understand. The first matrix coefficient
reveals that we have to take into account 23/, or twice the travel time for the incident
voltage to reach port 1 and, upon reflection, return. Similarly, for port 2 we see that the
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phase shift is 2B,1,. Moreover, the cross terms, which are closely related to the for-
ward and reverse gains, require the additive phase shifts associated with transmission
line 1 (B,/;) and transmission line 2 (B,/,), since the overall input/output configura-
tion now consists of both line segments.

~RF &M W

Example 4-9: Input impedance computation of a transmission
line based on the use of the signal flow chart

A lossless transmission line system with characteristic line imped-
ance Z, and length [ is terminated into a load impedance Z; and
attached to a source voltage V; and source impedance Zg;, as
shown in Figure 4-26. (a) Draw the signal flow chart and (b) derive
the input impedance formula at port 1 from the signal flow chart rep-
resentation.

Figure 4-26 Transmission line attached to a voltage source and terminated by a
load impedance.

Solution:  (a) Consistent with our previously established signal
flow chart notation, we can readily convert Figure 4-26 into the form
seen in Figure 4-27.

by1a € a,
[(‘;Au Vh’l
b, ® b

Figure 4-27 Signal flow chart diagram for transmission line system in
Figure 4-26.

(b) The input reflection coefficient at port 1 is given by
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bl = rLe—jZBlal

which is exactly in the form given in Section 3.1, with I'; = T’ and

I = d.Thus
_ 2Bl _ Zin=2
() =Te =7 327,
Solving for Z;, yields the final result
1+ I“Le—j 2Pt
in = £07 . 2Pl
SRS TS Pl

This example shows how the input impedance of a transmis-
sion line can be found quickly and elegantly by using signal flow
chart concepts.

4.4.7 Practical Measurements of S-Parameters

Measurement of the S-parameters of a two-port network requires reflection and
transmission evaluations of traveling waves at both ports. One of the most popular
methods is to use a vector network analyzer. The vector network analyzer is an instru-
ment that can measure voltages in terms of magnitude and phase. Usually network ana-
lyzers have one output port, which provides the RF signal either from an internal source
or an external signal generator, and three measurement channels, which are denoted as
R, A, and B (see Figure 4-28).  —

The RF source is typically set to sweep over a specified frequency range. The
measurement channel R is employed for measuring the incident wave. Channel R also
serves as a reference port. Channels A and B usually measure the reflected and transmit-
ted waves. In general, the measurement channels A and B can be configured to record
any two parameters with a single measurement setup. An example of the test arrange-
ment that allows us to measure S,; and §,; is shown in Figure 4-28.

In this case the value of §,; can be obtained by evaluating the ratio A/R, and
§,; through computing B/R . To measure S,, and Sy, we have to reverse the DUT. In
Figure 4-28 the dual-directional coupler allows the separation of the incident and
reflected waves at the input port of the DUT. The bias tees are employed to provide nec-
essary biasing conditions, such as a quiescent point for the DUT. Since the most com-
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9

000000

)

0000

b
N =
o

50 Q

—_;\ =] Bias tee ]"t @ Bias tee[}=] j —b\

Dual-Directional Dual-Directional
Coupler Coupler

50 Q

DC Power Supply

Figure 4-28 Measurement system for S;; and S,; parameters using a network
analyzer.

mon use of network analyzers is the characterization of two-port devices, bias tees,
directional couplers, and necessary electronic switches as well as the RF sweep signal
generator are all integral parts of most modern analyzers.

As we can see, a practical test arrangement is more complicated when compared
with the simple ideal system described in Sections 4.4.4 and 4.4.6, where we assume
that the DUT is connected to perfectly matched transmission lines of equal (Section
4.4.4) or unequal (Section 4.4.6) characteristic impedance. In a realistic measurement
system we cannot guarantee either matching conditions or ideality of the components.
In fact, we have to consider all effects of the external components connected to the
input and output ports of the DUT. Furthermore, the primary reference plane for mea-
surements of complex voltages, which are then converted into S-parameters, is usually
somewhere inside of the networks analyzer. As a result, it is necessary to take into
account not only attenuation and phase shifts due to the external components, but also
portions of the internal structure of the network analyzer itself.

In general, the measurement test arrangement can be reduced to the cascade of
three networks depicted in Figure 4-29.
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a 1 a 2
> -
Error Error
box A DUT box B
A %,
Measurement N /! Measurement
Reference Plane Desired Reference Plane Reference Plane

(a)

Eyx
RE| E, R Su F Er |B
Ell' E22 n ER
Ly
E12 SIZ
(b)

Figure 4-29 (a) Block diagram of the setup for measurement of S-parameters of
a two-port network; (b) signal flow chart of the measurement test setup.

In Figure 4-29 the signals R, A, B correspond to the reference port and channels A
and B of the network analyzer. RF; is the output line from the signal source. The
branch denoted Ey represents possible leakage between the output of the signal source
and the channel B.

The network analyzer treats everything between the measurement reference
planes as a single device. Therefore, our task is reduced to finding a way to calibrate the
network analyzer in such a way that it becomes possible to eliminate the effect of all
undesired influences or parasitics. The main goal of a calibration procedure is to char-
acterize the error boxes prior to measuring the DUT. This information can then be used
by an internal computer to evaluate the error-free S-parameters of the actual DUT.

Assuming that the error box A network is reciprocal, we can state E;, = E,;.
Therefore, we have to find six parameters (E,;, E,, E,y, Ey, Eg, and E7) to character-
ize the error boxes.

The simplest calibration method involves three or more known loads (open, short,
and matched). The problem with this approach is that such standards are usually imper-
fect and are likely to introduce additional errors into the measurement procedures.
These errors become especially significant at higher frequencies. To avoid the depen-
dency on the accuracy of calibration standards, several methods have been developed
(see Eul and Schiek and Engen and Hoer, listed in the Further Reading section at the
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end of this chapter). In this section we will only consider the so-called Through-
Reflect-Line (TRL) technique (see Engen and Hoer).

The TRL calibration scheme does not rely on known standard loads. Instead, it is
based on the use of three types of connections, which are shown in Figure 4-30.

Ey
RE) E, R 1 F Er |B
Eny  Enj vE;
A 1.
Ep, 1
(a) Through
Ey

lbu

Eny By T Er

A
E 12
(b) Refiect
Ey
R-F;B l::zl R g—jﬁl F gl‘ B‘
EY Epk vE; T
a 1 o
E, e’”
(c) Line
Figure 4-30 Signal flow graphs of TRL method: (a) Through, (b) Reflect, (c) Line
configurations.

The Through connection is made by directly connecting ports 1 and 2 of the DUT.
Next, the Reflect connection uses a load with high reflectivity. The reflection coefficient
does not have to be known because it will be determined during the calibration process.
The only requirement is that the load possesses the same reflection coefficient for both
input and output ports. The Line connection is made by connecting ports 1 and 2 via a
transmission line matched to the impedance of the error boxes. Usually, this impedance
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is close to 50 Q. Before we continue with the actual analysis of each particular con-
nection type, let us first consider the system as a general two-port network.

From Figure 4-29(b) it is seen that the signal at node B is a linear combination of
the input RF signal and the signal at node F:

B = Ey+E.F (4.97)
Applying the self-loop rule, we can write that signal at node F as

S

F= 1-EgSy,

R (4.98)

To compute the signal at port R, the same method as discussed in Example 4-8 can
be used. In this example we first replaced the loop with the signal F through a self-loop
and then performed the same transformation for the signal R. The result of these com-
putations is

E
R = 21 (4.99)

812521 Eg
1 _EZZ(SII + 1 _ERS22)
Substituting (4.99) into (4.98) followed by the substitution of (4.98) into (4.97), we
obtain an expression for signal B:

E21

Sa1
= 4.100
B=Ex+ ETI - ERS221 E (S + SIZSZIER) ( )
22| Y11 1- ERS22
Finally, the value for the signal at node A is obtained by using the summation rule:
E .E - S
A=E;+ 12 a1 (su +S,E —21—) (4.101)
S1251ER R1-EgSy
1- E22 Sll + -iTRsz;

If the measurement system does not introduce any errors, then Ejy = Ey = Ep = 1
and E;; = E,, = Eg = Ex = 0. Substituting these values into (4.99), (4.100), and
(4.101), we find that R = 1, A = S,;, and B = §,,, which shows the validity of the
formulas.

Now we are ready to investigate the TRL connections in more detail. To avoid
confusion, let us denote the measured signals R, A, and B for Through by subscript T,
for Reflect by R, and for Line by L.
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For the Through connection we know that §;; = S,, = 0 and S}, = §,; = 1.
Setting E|, = E,, it follows that

R, = P2 (4.1022)
2
A, = E +—ﬂ2——E 4.102b
T~ "1 1—E22ER R “. )
B, = Ex+E _fn 4.102
T~ *~X Tl_E22ER 4. c)

For the Reflect connection we have S;; = Sy, = I' and S, = §,; = 0. This results
in the equations

Ry = —222 (4.103a)
R~ 1-E,T
ELT
Ap = Enti—%t E,T (4.103b)
B = Ey (4.103c)

Finally, for the Line connection we see that S;; = S;, = 0 and Sy, = §,; = e,

where / is the transmission line length and Yy is a complex propagation constant
(y = a+ jP) that takes into account attenuation effects. The result is

E
R, = —12 — (4.104a)
1-E,Ege "
2 -2yl
A, = £, + F1Fre (4.104b)
L= En 27 :
) E
By = Ex+Epe "' ——2— (4.104c)
1 —E22ERe

Equations (4.102a)—(4.104b) allow us to solve for the unknown coefficients of the error
boxes E,;, Ei;, Eyy, Ex, Eg, Er, the reflection coefficient I', and the transmission
line parameter e"". Knowing the error coefficients we are then in a position to process
the measured data in order to obtain an error-free S-parameter set of the DUT.
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4.5 Summary

Networks play an integral part in analyzing basic low-frequency circuits as well as
RF/MW circuits. For instance, the admittance or Y-matrix for an N-port network can be
written in generic form as

i Y Yo - Yinj|w
| _ |Ya Yo o You|] v2
IN Yni Yo - Yun|{ VN

where currents and voltages become the defining external port conditions. The evalua-
tion of the matrix coefficients is accomplished through appropriate terminal conditions:

Ynm = v_n‘
m v, =0 (for k#m)

The concepts of Z-, Y-, h-, and ABCD-matrix representations of networks can be

directly extended to high-frequency circuits. Unfortunately, we encounter practical dif-

ficulties in applying the required open- and short-circuit network conditions needed

when defining the respective parameter sets. It is for this reason that the scattering

parameters as normalized forward and backward propagating power waves are

introduced:

= JZ—()I:

V+
_ n
A
‘ b, = a8 ~Zol,

N2

For a two-port network this results in the matrix form

{bl} - [Su Slz]{al}
b, Sy Spfla,

Unlike open- or short-circuit network conditions, impedance line matching at the
respective port is now required to establish the S-matrix set. The S-parameters can be
directly related to the reflection coefficients at the input and output of the two-port
network (S}, S,, ). Furthermore, forward and reverse power gains are readily identified

(IS2[% [S12f*)-
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The S-parameters are also very useful descriptors when dealing with signal flow
diagrams. A signal flow diagram is a circuit representation involving nodes and paths
for the sourced and terminated transmission line as follows:

Bl
bs 1 a ‘;’m a,

I;;M vl"L

b, e b,

With signal flow diagrams even complicated systems can be examined in terms of spe-

cific input output relations in a similar manner as done in control system theory.
Chapter 4 finishes with a brief discussion of the practical recording of the S-

parameters for a two-port network (DUT) through the use of a vector network analyzer.

To compensate for various error sources associated with the measurement arrangement,

the so-called TRL method is presented. Here the Through, Reflect, and Line calibrations

are shown to account for the various errors and therefore permit the recording of the

actual S-parameters needed to characterize the DUT.
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Problems
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4.1 From the defining equations (4.3) and (4.6) for the impedance and admit-

42

4.3

4.4

4.5

tance matrices, show that [Z] = [Y]'1 .

For the following generic T-network, find the impedance and admittance
matrices.

il ZA ZB iz
Le -
Yy Z: V2

Show that for a bipolar-junction transistor in a common-base configuration
under small-signal low-frequency conditions (whose equivalent circuit is
shown below) a hybrid parameter matrix can be established as follows:

Teelbe Tpe
ry.+(1+P)r,, rpet (1+P)r,,

rbe+ﬁrce L 1
et (1+B)r,, r,e 1y, +(1+P)r,,

(k] =

where the individual transistor parameters are denoted in the figure.

! Bls |
IE E @ : IC

Is o E== = C

E —~Pp - 1= : :
1 T

EREIC R
______ ! ;

" r B

Using the results from Problem 4.3, compute the equivalent circuit parame-
ters for a BJT in common-base configuration if the h-matrix is given as

166  0.262x107
—0.99668 66.5x10°

[h] =

Employ the conversion table for the different parameter representations of
the two-port network and find the h-matrix representation for a Darlington
pair shown in Figure 4-7 under the assumption that the transistors are speci-
fied by the same h-matrices derived in Example 4-2.
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4.6

4.7

4.8

4.9

4.10

4.11

4.12

197

Using the definition of the ABCD network representation, find the Y-parame-
ter description.

From the results of Problem 4.3 and Example 4.2, establish the conversion
equations between the h-matrix parameters for the common-base and com-
mon-emitter transistor configurations.

Unlike the series connection discussed in Example 4-4, derive the ABCD-
parameters for a two-port network where the impedance Z is connected in
parallel.

Find the ABCD-parameters for a generic three-element pi-network, as
depicted in Figure 4-2.

Compute the ABCD-parameters for an RF transformer with turn ratio
N = N,/N,, where N, is the number of turns a the primary winding and
N, is the number of turns of the secondary winding.

Prove that the h-matrix parameters for a high-frequency hybrid transistor
model shown in Figure 4-12 are given by (4.31).

In this chapter we have mentioned several h-matrix representations of the
bipolar-junction transistor for different frequency conditions. In all cases we
have neglected the influence of the parasitic components associated with the
casing of the transistor. The modification to the equivalent circuit of the tran-
sistor that takes into account these parasitics is shown below:

CBC
Il -
i

Ly B Intrinsic c
Be—YT\ Transistor — Y\ (C
Model

EI

i

Cor ? 1, Ce

E
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4.13

4.14

4.15

4.16

4.17

4.18

Chapter 4 ¢ Single- and Multiport Networks

Assuming that the intrinsic transistor model is given by a generic h-matrix,
derive the modified model that accounts for the casing.

Compute the return loss for a 25 Q resistor connected to a 75 €2 lossless
transmission line.

Find the forward gain of the circuit discussed in Example 4-8.

Given that the input of an amplifier has a VSWR of 2 and the output is given
by VSWR = 3, find the magnitudes of the input and output reflection coeffi-
cients. What does your result mean in terms of S;; and §,,?

Using the same approach as described in Section 4.4.4, show that the S-
parameters of the network can be computed from the known Y-parameters
using
[S] = ([Y1+ Y [ED)1(Y,[E]-[Y])
and the corresponding inverse relation
[Y] = Y,([E]-[SI([S] +[ED™!
where Y, = 1/Z,, is the characteristic line admittance.

The ideal transformer of Problem 4.10 can also be represented in S-parame-
ter form. Show that the S-matrix is given by

51 = () N*-1) (@2N)
1+NY| vy (1-N)

where N = N,/N,.

For the following two circuits, prove that the S-parameters are given as
- r, 1+T
[S] = 1—‘1 1 I“1 and [S] = 2 2
1-T, I 1+, T,
respectively, where T, = (1+2Z,/Z,) ! and T, = —(1+2Yy/Y ).

A
and Y,
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4.19

4.20

4.21

199

For the following T-network inserted into a transmission line with character-
istic impedance of Z; =50, the three resistances are
R, =R, = 856 Q, and R; = 141.8 Q. Find the S-parameters of this
configuration and plot the insertion loss as a function of inductance L for
the frequency of f = 2 GHz and L changing from 0 to 100 nH.

R, R,

In practice, the resistors in the T-network of the previous problem are not
frequency independent. At RF frequencies parasitic effects have to be taken
into account. Compute the S-parameters at 2 GHz when all resistors have a
0.5 nH parasitic series inductance. Assume L is fixed at 10 nH.

A BIJT is operated in a 50 Q circuit at 1.5 GHz. For the bias conditions of 4
mA collector current and collector-emitter voltage of 10 V, the manufacturer
provides the S-parameters in magnitude and angle as follows:

811 =0.6 £-127° S,, =3.88 £87°% §,, =0.039 £28° S,, =0.76 £ -35°.

Find (a) the Z-parameter and (b) the h-parameter representation.



