CHAPTER 3

The Smith Chart

A transmission line changes its impedance
depending on material properties and geometric dimensions. Typical practical realiza-
tions include microstrip line, coaxial cable, and parallel-plate line. In addition, both the
length and operating frequency of the transmission line significantly influence the input
impedance. In the previous chapter we derived the fundamental equation describing the
input impedance of a terminated transmission line. We found that this equation incorpo-
rates the characteristic line impedance, load impedance, and, through the argument of
the tangent function, line length and operating frequency. As we saw in Section 2.9, the
input impedance can equivalently be evaluated by using the spatially dependent reflec-
tion coefficient. To facilitate the evaluation of the reflection coefficient, P. H. Smith
developed a graphical procedure based on conformal mapping principles. This
approach permits an easy and intuitive display of the reflection coefficient as well as the
line impedance in one single graph. Although this graphical procedure, nowadays
known as the Smith Chart, was developed in the 1930s prior to the computer age, it has
retained its popularity and today can be found in every data book describing passive
and active RF/MW components and systems. Almost all computer-aided design pro-
grams utilize the Smith Chart for the analysis of circuit impedances, design of matching
networks, and computations of noise figures, gain, and stability circles. Even instru-
ments such as the ubiquitous network analyzer have the option to represent certain
measurements in a Smith Chart format.

This chapter reviews the steps necessary to convert the input impedance in its
standard complex plane into a suitable complex reflection coefficient representation via
a specific conformal transformation originally proposed by Smith. The graphical dis-
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102 Chapter 3 ¢ The Smith Chart

play of the reflection coefficient in this new complex plane can then be utilized directly
to find the input impedance of the transmission line. Moreover, the Smith Chart facili-
tates evaluation of more complicated circuit configurations, which will be employed in
subsequent chapters to build filters and matching networks for active devices.

The following sections present a step-by-step derivation of the Smith Chart fol-
lowed by several examples of how to use this graphical design tool in computing the
impedance of passive circuits. '

3.1 From Reflection Coefficient to Load Impedance

In Section 2.9 the reflection coefficient is defined as the ratio of reflected voltage
wave to incident voltage wave at a certain fixed spatial location along the transmission
line. Of particular interest is the reflection coefficient at the load location d = 0. From a
physical point of view this coefficient I';, describes the mismatch in impedance between
the characteristic line impedance Z, and the load impedance Z; as expressed by (2.52).
In moving away from the load in the positive d-direction toward the beginning of the
transmission line, we have to multiply I';, by the exponential factor exp(—j2Bd), as
seen in (2.64), to obtain I'(d) . It is this transformation from I';, to I'(d) that constitutes
one of the key ingredients in the Smith Chart as a graphical design tool.

3.1.1  Reflection Coefficient in Phasor Form
The representation of the reflection coefficient I'y can be cast in the following
complex notation.
°” Z,+2,

jer

where 0, = tan_l(l"ol-/ I'y;) . We recall that pure short- and open-circuit conditions in
(3.1) correspond to I’y values of —1 and +1, located on the real axis in the complex I"
plane.
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Example 3-1: Reflection coefficient representations

A transmission line with a characteristic line impedance of
Z, = 50 Q is terminated into the following load impedances:

(@) Z; = 0 (short circuit)



From Reflection Coefficient to Load Impedance

(b) Z; — o (open circuit)
©Z, =50Q

d Z; = (16.67 - j16.67) Q
(e Z;, = (50+ j150) Q

Find the individual reflection coefficients I', and display them in
the complex I' -plane.

Solution:  Based on (3.1) we compute the following numbers for
the reflection coefficients:

(@) I'y = -1 (short circuit)

(b) T'y = 1 (open circuit)

(c) Ty = 0 (matched circuit)

d) I’y = 0.54£221°

(e) I’y = 0.83.£34°

The values are displayed in polar form in Figure 3-1.

90

120
I,=08334°

I, =0.54 £221° )

270
Figure 3-1 Complex I -plane and various locations of T, .

The reflection coefficient is represented in phasor form as done
when dealing with the conventional voltages and currents in basic
circuit theory.
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104 Chapter 3 < The Smith Chart

3.1.2 Normalized Impedance Equation

Let us return to our general input impedance expression (2.69), into which we
substitute the reflection coefficient

0 .
I(@) = [0e e = T4, (62)
This results in
Z.(d) =12 M (3.3)
in 01-T,-JT; '

In order to generalize the subsequent derivations, we normalize (3.3) with respect to the
characteristic line impedance as follows

1+T(d)_ 1+T,+ T,

Z,(d)/ 2y = zp=1+jx = 1-T(d) 1-T,-T,

(3.4)

The preceding equation represents a mapping from one complex plane, the z;,-plane,
to a second complex plane, the I"-plane. Multiplying numerator and denominator of
(3.4) by the complex conjugate of the denominator allows us to isolate real and imagi-
nary parts of z;, in terms of the reflection coefficient. This means

_1-T2-T; +2jT,

L =T+ jx = 3 3.5)
(1-T,)%+T
can be separated into
1L (3.6)
r = —m—— .
(1-T,)%+T? |
and
2T,
o D

Equations (3.6) and (3.7) are explicit transformation rules of finding z,, if the rcﬂectionv
coefficient is specified in terms of I", and I';. Therefore, the mapping from the com-
plex I'-plane into the z;, -plane is straightforward, as the following example under-
scores.
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Example 3-2: Input impedance of a terminated transmission
line

A load impedance Z; = (30 + j60) Q is connected to a 50 Q
transmission line of 2 cm length and operated at 2 GHz. Use the
reflection coefficient concept and find the input impedance Z,
under the assumption that the phase velocity is 50% of the speed of

light.

Solution:  We first determine the load reflection coefficient

I = Z,-Z, _ 30+,60-50
07 Z,+Z, 30+ j60+50
Next we compute I'(d = 2cm) based on the fact that

= 02+j0.6 = J2/5¢°%  (3.8)

220 20 _ gy
p= ATy, _0'50—83.77m
This results in 2Bd = 191.99° and yields for the refection coeffi-

cient

I = Tye?P = T 4T, = —032-j0.55 = J2/5¢72%°
Having thus determined the reflection coefficient, we can now
directly find the corresponding input impedance:

Z, = Zopih = R+ jX = 147- /267 Q

We note that the reflection coefficient phasor form at the load,
Iy, is multiplied with a rotator that incorporates twice the electric
line length Bd. This mathematical statement thus conveys the idea
that voltage/current waves have to travel to the load and return back
to the source to define the input impedance.

Example 3.2 could have been solved just as efficiently by using the impedance
equation (2.65) developed in Section 2.9.
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3.1.3 Parametric Reflection Coefficient Equation

The goal of our investigation is to pursue a different approach toward computing
the input impedance. This new approach involves the inversion of (3.6) and (3.7). In
other words, we ask ourselves how a point in the z;, -domain, expressed through its nor-
malized real, r, and imaginary, x, components, is mapped into the complex I'-plane,
where it then can be expressed in terms of the real, I',, and imaginary, I';, components
of the reflection coefficient. Since I" appears in the numerator and denominator, we
have to suspect that straight lines in the impedance plane z;, may not be mapped into
straight lines in the I" -plane. All we can say at this point is that the matching of the load
impedance to the transmission line impedance Z;, = Z,, or z;; = 1, results in a zero
reflection coefficient (i.e., I', = I'; = 0) located in the center of the I"-plane.

The inversion of (3.6) is accomplished by going through the following basic alge-
braic operations:

2 2

r[(1-T,)*+T3] = 1-T?-1 (3.92)

F(r+1)-2/T,+To(r+1) = 1-r (3.9b)
=1-r

1“2- r +T? — (3.9¢)

At this point the trick consists in recognizing that I", can be written as a complete bino-
mial expression (see also Appendix C)

r 2 r2 2 1-r
(r’_r+1) _(r+1)2+r" T+l 3:5d)
This finally can be cast in the form
2 ) 1 2
() o= ()

In an identical way as done previously, we proceed to invert (3.7). The result for
the normalized reactance is
2 12 _ (1)
@,-0*+(r-1) = (3) G.1)
Both (3.10) and (3.11) are parametric equatlons of cucles in the complex I'-plane that

can be written in the genenc form (T, - a) +(T;- b) = ¢%. Here a, b denote shifts
along the real and imaginary I" axes, and c is the radius of the circle.
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Figure 3-2 depicts the parametric circle equations of (3.10) for various resis-
tances. For example, if the normalized resistance r is zero, the c1rcle is centered at the
origin and posscsscs aradlus of 1 since (3.10) reduces to F + F =1.Forr =1 we
find (T', -1/ 2) + l" = (1/ 2) which represents a c1rcle of radlus 1/2 shifted in the
positive I', direction by 1/2 units. We conclude that as r increases, the radii of the cir-
cles are continually reduced and shifted further to the right toward the point 1 on the
real axis. In the limit for r - o we see that the sh1ft converges to the point
r/(r+1) — 1 and the circle radius approaches 1/(r + 1) —0.

It is important to realize that this mapping transforms fixed values of r only and
does not involve x. Thus, for a fixed r an infinite range of reactance values x, as indi-
cated by the straight lines in the z-plane, maps onto the same resistance circle. The
mapping involving r alone is therefore not a unique point-to-point correspondence.

XA

0i1/3

-1

z-plane I'-plane

Constant resistance lines ( = const)

Figure 3-2 Parametric representation of the normalized resistance rin the
complex I' -plane.

A different graphical display results for the circle equation (3.11), which involves
the normalized reactance. Here the centers of the circles reside all along a lme perpen-
dicular to the I", = 1 point. For instance, for x = o we note that (I", - 1) + 1" =0,
which is a cucle of zero radius, or a point locatcd at T, 1 andT; = 0.Forx = 1
we see that the circle equation becomes (I', — 1) +(T;- 1) = 1. As x — 0 the radii
and shifts along the positive imaginary axis approach infinity. Interestingly, the shifts
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can also be along the negative imaginary axis. Here for x = —1 we notice that the cir-
cle equation becomes (I", — 1)2 +(T;+ 1)2 = 1 with the center located at I',= 1 and
I'; = —1. We observe that negative x -values refer to capacitive impedances residing in
the lower half of the I'"-plane. Figure 3-3 shows the parametric form of the normalized
imaginary impedance. For better readability the circles are displayed inside the unit cir-
cle only. In contrast to Figure 3-2 we notice that fixed x-values are mapped into circles
in the I'-plane for arbitrary resistance values 0 <r <o, as indicated by the straight
lines in the impedance plane.

The transformations (3.10) and (3.11) taken individually do not constitute unique
mappings from the normalized impedance into the reflection coefficient plane. In other
words, impedance points mapped into the I"-plane by either (3.10) or (3.11) cannot
uniquely be inverted back into the original impedance points. However, since the trans-
formations complement each other, a unique mapping can be constructed by combining
both transformations, as discussed in the next section.

XA 4

1/3

[\
-1/3 -
S

z-plane (r >0)
Constant reactance lines (x = const)
Figure 3-3 Parametric representation of the normalized reactance x in the
complex I' -plane.
3.1.4 Graphical Representation

Combining the parametric representations for normalized resistance and reactance
circles (i.e., Figures 3-2 and 3-3) for || <1 results in the Smith Chart as illustrated in
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Figure 3-4. An important observation of the Smith Chart is that there is a one-to-one
mapping between the normalized impedance plane and the reflection coefficient plane.
We notice also that the normalized resistance circles 7 have a range 0 < r < e and the
normalized reactance circles x can represent either negative (i.e., capacitive) or positive
(i.e., inductive) values in the range —eo < x < +o0.

It should be pointed out that the reflection coefficient does not have to satisfy
[T| < 1. Negative resistances, encountered for instance as part of the oscillation condi-
tion for resonators, lead to the case |[I]>1 and consequently map to points residing
outside the unit circle. Graphical displays where the reflection coefficient is greater than
1 are known as compressed Smith Charts. These charts, however, play a rather limited
role in RF/MW engineering designs and are therefore not further pursued in this text.
The interested reader may consult specialized literature (see the Hewlett-Packard appli-
cation note listed at the end of this chapter).

X z=r+jx L4 AV .23
X=+1 0 e+l
3 o r=
T r=1/3
x=+1/3 x=+3
1 3\ r=1 3
173 £ _ > L
O] 4173 i1
1730
1/:: S
x=-3
-3 o
x =1
z-plane I'-plane

Figure 3-4 Smith Chart representation by combining rand x circles for [I'| < 1.

In Figure 3-4 we must note that the angle of rotation 2fd introduced by the length
of the transmission line is measured from the phasor location of I’y = |['g|e” - in clock-
wise (mathematically negative) direction due to the negative exponent (-2 jBd) in the
reflection coefficient expression (3.2). For the computation of the input impedance of a
terminated transmission line, the motion is thus always away from the load impedance
or toward the generator. This rotation is indicated by an arrow on the periphery of the
chart. We further observe that a complete revolution around the unit circle requires
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2Bd = 2-2%d =2n
where d = A/2 or 180°. The quantity Bd is sometimes referred to as the electrical

length of the line.

3.2 Impedance Transformation

3.2.1 Impedance Transformation for General Load

The determination of the impedance response of a high-frequency circuit is often
a critical issue for the RF design engineer. Without detailed knowledge of the imped-
ance behavior, RF/MW system performance cannot adequately be predicted. In this
section we will elaborate on how the impedance can be determined easily and effi-
ciently with the aid of the previously introduced Smith Chart.

A typical Smith Chart computation involving a load impedance Z; connected to a
transmission line of characteristic line impedance Z;, and length d proceeds according
to the following six steps:

1. Normalize the load impedance Z; with respect to the line impedance Z; to deter-
mine z; .

2. Locate z; in the Smith Chart.

3. Identify the corresponding load reflection coefficient I' in the Smith Chart both
in terms of its magnitude and phase.

4. Rotate I, by twice its electrical length Bd to obtain I'; (d).

5. Record the normalized input impedance z;, at this spatial location d.

6. Convert z;, into the actual impedance Z;, .

Example 3-3 goes through these steps, which are the standard procedure to arrive at the
graphical impedance solution.

RF &M W
Example 3-3: Transmission line input impedance determina-
tion with the Smith Chart

Solve Example 3-2 by following the six-step Smith Chart computa-
tions given in the preceding list.



Impedance Transformation

Solution: We commence with the load impedance
Z; = (30+ j60) Q and proceed according to the previously out-
lined steps:

1. The normalized load impedance is

z; = (30 +j60)/50 = 0.6 + j1.2

2. This point can be identified in the Smith Chart as the intersec-
tion of the circle of constant resistance r = 0.6 with the circle of
constant reactance x = 1.2, as seen in Figure 3-5.

3. The straight line connecting the origin to point z; determines
the load reflection coefficient I'. The associated angle is recorded
with respect to the positive real axis.

4. Keeping in mind that the outside circle on the Smith Chart cor-
responds to the unity reflection coefficient (|T'g| = 1), we can find
its magnitude as the length of the vector connecting the origin to z; .
‘Rotating this vector by twice the electrical length of the line (i.e.,
2xPBd = 2x96° = 192°) yields the input reflection coefficient
I,
5. This point uniquely identifies the associated normalized input
impedance z;; = 0.3 - j0.53.

6. The preceding normalized impedance can be converted back
into actual input impedance values by multiplying it by
Z, = 50 Q, resulting in the final solution: Z;, = (15 - j26.5)Q.

We recall that the exact value of the input impedance obtained
in Example 3-2 is (14.7 - j26.7) Q. The small discrepancy is
understandable because of the approximate processing of the graph-
ical data in the Smith Chart. The entire sequence of steps leading to
the determination of the input impedance of the line connected to
the load is shown in Figure 3-5.

m
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Figure 3-5 Usage of the Smith Chart to determine the input impedance for
Example 3-3.

These steps appear at first cumbersome and prone to error if
carried out by hand. However, using mathematical spreadsheets and
relying on modern computer-based instrumentation, the calcula-
tions are routinely done in seconds and with a high degree of

accuracy.
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3.2.2 Standing Wave Ratio
From the basic definition of the SWR in Section 2.8.3 it follows that for an arbi-
trary distance d along the transmission line, the standing wave ratio is written

1+|I(d)|

SWR(d) = 3.12
where I'(d) = I'yjexp(—j2Pd) . Equation (3.12) can be inverted to give
_ SWR-1
IT@| = FRT (3.13)

This form of the reflection coefficient permits the representation of the SWR as circles
in the Smith Chart with the matched condition I'(d) = 0 (or SWR = 1) being the
origin.

It is interesting to note that equation (3.12) is very similar in appearance to the
expression for determining the impedance from a given reflection coefficient:

1+T(d)
01-T(@d)
This similarity, together with the fact that for [I'(d)| <1 the SWR is greater or equal to
unity, suggests that the actual numerical value for the SWR can be found from the
Smith Chart by finding the intersection of the circle of radius |T'(d)| with the right-
hand side of the real axis.

Zd) = Z

(3.14)

RF &M W

Example 3-4: Reflection coefficient, voltage standing wave
ratio, and return loss

Four different load impedances:

@Z, =50Q, b)Z, =485Q, (c)Z, = (75+j25) Q, and
(d) Z, = (10-j5) Q, are sequentially connected to a 50 Q trans-
mission line. Find the reflection coefficients and the SWR circles,
and determine the return loss in dB.

Solution:  The normalized load impedances and corresponding
reflection coefficients, return loss, and SWR values are computed as
follows:
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@z, =1, =(z-1)/(z;+1) =0,RL = =, SWR =1

)z, = 097, T = (z,-1)/(z, + 1) = -0.015, RL5 = 36.3,
SWR = 1.03

©) zp = 1.5+j05,T = (z,-1)/(z,+1) = 0.23 + jO.15,
RL; = 11.1, SWR = 1.77

@z, = 02-j0.1,T = (z,-1)/(z,+1) = —0.66 - j0.14,
RLg = 3.5, SWR = 5.05

To determine the approximate values of the SWR requires us to
exploit the similarity with the input impedance, as discussed previ-
ously. To this end, we first plot the normalized impedance values in
the Smith Chart (see Figure 3-6). Then we draw circles with centers
at the origin and radii whose lengths reach the respective impedance
points defined in the previous step. From these circles we see that
the load refection coefficient for zero load reactance (x; = 0)is

z+l  rp+1
The SWR can be defined in term of the real load reflection coeffi-
cient along the real I'-axis:

1+l 14T,
-0, ~_ 1I-T,
This requires |Iy| = T',20. In other words, for I', >0 we have to

enforce r; 21, meaning that only the intersects of the right-hand-
side circles with the real axis define the SWR.

SWR =

As a graphical design tool, the Smith Chart allows immediate
observation of the degree of mismatch between line and load imped-
ances by plotting the radius of the SWR circle.
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Figure 3-6 SWR circles for various reflection coefficients.

3.2.3 Special Transformation Conditions

The amount of rotation by which the point of the normalized transmission line
impedance circles around the Smith Chart is controlled by the length of the line, or
alternatively the operating frequency. Consequently, both inductive (upper plane) and
capacitive (lower plane) impedances can be generated based on the line length and the
termination conditions at a given frequency. These lumped circuit parameter represen-
tations, realized through distributed circuit analysis techniques, are of significant practi-
cal importance.

The cases of open- and short-circuit line termination are of particular interest in
generating inductive and capacitive behavior and are examined in more detail next.
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Open Circuit Transformations

To obtain a pure inductive or capacitive impedance behavior, we need to operate
along the r = 0 circle. The starting point is the right-hand location (I'j = 1) with
rotation toward the generator in a clockwise sense.

A capacitive impedance —jX - is obtained through the condition

1 1_ .
}-6'6.2—0 =z, = —jeot(Bd,;) (3.15)
as direct comparison with (2.70) shows. The line length d, is found to be
1 -1 1
d, = E[cot (w—c"z'o) + nn] (3.16)

where nnt (n = 1,2, ...) is required due to the periodicity of the cotangent function.
Alternatively, an inductive impedance jX; can be realized via the condition

- .
j(l)LZ—O =z, = —]cot(de) 3.17)
The line length d, is now found to be
1 -1{wL
a, = g[n-co' (55 )+ nr] (3.18)
7B Zy

Both conditions are schematically depicted in Figure 3-7. How to choose a particular
open-circuit line length to exhibit capacitive or inductive behavior is discussed in the
following example.

— RFEM W

Example 3-5: Representation of passive circuit elements
through transmission line section

For an open-ended 50 Q transmission line operated at 3 GHz and
with a phase velocity of 77% of the speed of light, find the line
lengths to create a 2 pF capacitor and a 5.3 nH inductor. Perform
your computations both by relying on (3.16) and (3.18) and by using
the Smith Chart.

Solution:  For a given value of phase velocity, the propagation
constant is
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B = 2nf/v, = 2nf/(0.77¢c) = 81.6 m™"
Substituting this value into (3.16) and (3.18), we conclude that for
the representation of a 2 pF capacitor we need an open-circuit line or
stub with line length d; = 13.27 + n38.5 mm . For the realization of
a 5.3 nH inductor, a d, = 32.81 + n38.5 mm stub is required.

The alternative method for computing the lengths of the
required stubs is through the use of the Smith Chart (see Figure 3-7).
At a 3-GHz frequency, the reactance of a 2 pF capacitor is
Xc = 1/(oC) = 26.5Q. The corresponding normalized imped-

L=53nH
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Figure 3-7 Creating capacitive and inductive impedances via an open-circuit
transmission line.
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ance in this case is zo = —jX, = —j0.53. From the Smith Chart
we can deduce that the required transmission line length has to be
approximately 0.172 of one wavelength. We note that for the given
phase velocity, the wavelength is A = v,/f = 77 mm. This
results in a line length of d;, = 13.24 mm which is very close to the
previously computed value of 13.27 mm. Similarly, for the induc-
tance we obtain z; = j2. The line length in this case is 0.426 of
one wavelength, which is equal to 32.8 mm.

Circuits are often designed with lumped elements before con-
verting them into transmission line segments, similar to the proce-
dure described in this example.

Short-Circuit Transformations
Here the transformation rules follow similar procedures as outlined previously,
except that the starting point in the Smith Chart is now the I'y = -1 point on the real

axis, as indicated in Figure 3-8.
A capacitive impedance —jX .~ follows from the condition

11 _ .
jO)_CZ_0=Zm = Jtan(Bdl) (3.19)
where use is made of (2.66). The line length d, is found to be
d; = 1[1: - tan"(—l—) +nm (3.20)
1™ B oCZ,
Alternatively, an inductive impedance jX; can be realized via the condition
.1 ,
J(oLZ—O =z, = jtan(Bd,) 3.21)
The line length d, is now found to be
11, -1fowL
d, = B[tan (z—o) + (3.22)

At high frequencies, it is very difficult to maintain perfect open-circuit conditions
because of changing temperatures, humidity, and other parameters of the medium sur-
rounding the open transmission line. For this reason short-circuit conditions are more
preferable in practical applications. However, even a short-circuit termination becomes
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L=53nH
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Figure 3-8 Creating capacitive and inductive impedances via a short-circuit
transmission line.

problematic at very high frequencies or when through-hole connections in printed cir-
cuit boards are involved, since they result in additional parasitic inductances. Moreover,
a design engineer may not have a choice if the circuit layout area is to be minimized by
requiring the selection of the shortest line segments. For instance, the realization of a
capacitor always yields the shortest length for an open-circuit line.

3.2.4 Computer Simulations

There are many computer aided design (CAD) programs available to facilitate the
RF/MW circuit design and simulation processes. These programs can perform a multi-
tude of tasks, varying from simple impedance calculations to complex circuit optimiza-
tions and circuit board layouts. One commercial software package that is used throughout
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this textbook is called Monolithic and Microwave Integrated Circuit Analysis and Design
(MMICAD) (Optotek Ltd., Kanata, Ontario, Canada), which is a linear simulator pro-
gram with optimization tools. Another well-known program with advanced features is
EESof’s Libra package (Hewlett-Packard Corporation, Westlake Village, CA, USA),
which is capable of performing linear as well as nonlinear analyses and optimizations.

It is not the purpose of this textbook to review and discuss the various CAD pro-
grams presently in industrial and academic use. However, to reproduce the subsequent
simulation results, Appendix I provides a brief introduction to the basic features of
MATLAB, which was chosen as a tool to carry out most simulations presented in this book.

The main reason for using MATLAB is its wide-spread use as a mathematical
spreadsheet which permits easy programming and direct graphical display. This elimi-
nates the need to rely on complex and expensive programs accessible to only a few
readers. The benefit of a MATLAB routine will immediately become apparent when the
Smith Chart computations have to be performed repetitively for a range of operating
frequencies or line lengths as the following discussion underscores.

In this section we revisit Example 3-2, which computed the input reflection coeffi-
cient and input impedance of a generic transmission line connected to a load. We now
extend this example beyond a single operating frequency and a fixed line length. Our
goal is to examine the effect of a frequency sweep in the range from 0.1 GHz to 3 GHz
and a change in line length varying from 0.1 cm to 3 cm. The example MATLAB routine,
which performs the analysis of the transmission line length changing from 0.1 cm to
3 cm at a fixed operating frequency 2 GHz, is as follows:

% plot smith chart )
$ set characteristic J.mpedance to 50 Ohm
% set load impedance to 30+3j60 Ohm
% compute phase velocity
set frequency to 2 GHz
set the line length to a range from 0 to
3 cm in 1 mm increments
cgmpute propagation constant
eampute load reflection coefficient
: % magnitude of the reflection coefficient
ie(canm)-z*betta*d % phase of the reflection
: % coefficient

ao*cadnapop

In the first line of the MATLAB code (see file fig3_9.m on the accompanying CD)
we generate the Smith Chart with the necessary resistance and reactance circles. The
next lines define the characteristic line impedance Zy, = 50 Q, load impedance
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Z; = (30+j60) Q, operation frequency f = 2X 10° Hz , and phase velocity
v, = 0.5x3x 10" m/s. The command line ¢=0.0:0.001:0.03 creates an array d rep-
resenting the transmission line length, which is varied from 0 mm to 3 cm in 1-mm
increments. After all parameters have been identified, the magnitude and phase of the
input reflection coefficients have to be computed. This is accomplished by determining
the  propagation constant P = 2nf/v » load  reflection  coefficient
Ty = (Z,-Zy)/(Z+Z) and its magnitude |Ty|, and the total angle of rotation
o = £(I'y) - 2PBd. Finally, the display of the impedance as part of the Smith Chart is
done through the plot command, which requires both real and imaginary phasor argu-
ments |g| cos(a) and |Ty|sin(a). The final result is shown in Figure 3-9.

Figure 3-9 Input impedance of a loaded line of 2 cm length for a sweep in
operating frequency from 0.0 to 3 GHz. If the operating frequency is fixed at 2 GHz
and the line length is varied from 0.0 to 3 cm, the same impedance curve is obtained.

For the case where the length of the line is fixed to be 2 cm and the frequency is
swept from values ranging from 0.0 to 3 GHz, the only necessary modification to the
above input file is to set d=0.02, followed by specifying the frequency range in incre-
ments of 100 MHz (i.e., £=0.0:1e7:3e9). We should note that in both cases the electri-
cal length (Bd) of the line changes from 0° to 144°. Therefore, the impedance graphs
produced for both cases are identical.

At the end of the rotation, either by fixing the frequency and varying the length or
vice versa, the input impedance is found to be Z;, = (12.4 + j15.5) Q. It is reassuring
that for a fixed frequency f = 2 GHz and a line length range d =0 . . . 2 cm, we ulti-
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mately arrive at the same input impedance of Z;, = (14.7 - j26.7) Q as obtained in
Example 3-2.

3.3 Admittance Transformation

3.3.1 Parametric Admittance Equation
From the representation of the normalized input impedance (3.4), it is possible to
obtain a normalized admittance equation by simple inversion:

" Y 7 1+I1(d)

(3.23)

where Y, = 1/Z. To represent (3.23) graphically in the Smith Chart, we have several
options. A very intuitive way of displaying admittances in the conventional Smith Chart
or Z-Smith Chart is to recognize that (3.23) can be found from the standard represen-
tation (3.4) via

1-T(d) _ 1+e”"T(d)
1+T'(d) 1- e‘j”r(d)

(3.24)

In other words, we take the normalized input impedance representation and multiply
the reflection coefficient by —1 = ¢ /", which is equivalent to a 180° rotation in the
complex I' -plane.

RF &M W

Example 3-6: Use of the Smith Chart for converting imped-
o ance to admittance

Convert the normalized input impedance z;;, = 1+ j1 = J2¢ (/%)
into normalized admittance and display it in the Smith Chart.

Solution:  The admittance can be found by direct inversion, that is
1 —jrs4) - 1 .1

Yo = 5 2793
In the Smith Chart we simply rotate the reflection coefficient corre-
sponding to z;; by 180° to obtain the impedance. Its numerical

value is equal to y;, as shown in Figure 3-10. To denormalize y;,
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Figure 3-10 Conversion from impedance to admittance by 180° rotation.

we multiply by the inverse of the impedance normalization factor.
Thus, o

1
Yy, = Z)yin = YoVin-

Rotations by 180 degrees to convert from the impedance to the
admittance representation require only a reflection about the origin
in the I'-plane.

123

In addition to the preceding operation, there is a widely used additional possibility.
Instead of rotating the reflection coefficient by 180° in the Z-Smith Chart, we can
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rotate the Smith Chart itself. The chart obtained by this transformation is called the
admittance Smith Chart or the Y-Smith Chart. The correspondences are such that
normalized resistances become normalized conductances and normalized reactances
become normalized susceptances. That is,

R G
= - == =127
r ZO=>g Y, oG
and
X B
x—Z)=>b—Y—O—ZOB

This reinterpretation is depicted in Figure 3-11 for a particular normalized impedance
point z = 0.6 + j1.2.

(a) Z-Smith Chart ~ (b) ¥Smith Chart
Figure 3-11 Reinterpretation of the Z-Smith Chart as a Y-Smith Chart.

As seen in Figure 3-11, the transformation preserves (a) the direction in which the
angle of the reflection coefficient is measured and (b) the direction of rotation (either
toward or away from the generator). Attention has to be paid to the proper identification
of the extreme points: A short-circuit condition z; = 0 in the Z-Smith Chart is
¥y = o in the ¥-Smith Chart, and conversely an open-circuit z; = o in the Z-Smith
Chart is y; = 0 in the Y-Smith Chart. Furthermore, negative values of susceptance are
plotted now in the upper half of the chart, corresponding to inductive behavior, and pos-
itive values in the bottom half, corresponding to capacitive behavior. The real compo-
nent of the admittance increases from right to left.
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Admittance Transformation
To complete our discussion of the Y-Smith Chart, we should mention an addi-

tional, often employed definition of the admittance chart. Here the admittance is repre-
sented in exactly the same manner as the impedance chart without a 180° rotation. In
this case the reflection coefficient phase angle is measured from the opposite end of the

chart (see the book by Gonzalez listed in Further Reading at the end of this chapter).

3.3.2 Additional Graphical Displays
In many practical design applications it is necessary to switch frequently from

impedance to admittance representations and vice versa. To deal with those situations a
combined, or so-called ZY-Smith Chart, can be obtained by overlaying the Z- and ¥

Smith Charts, as shown in Figure 3-12.
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Figure3-12 The ZY-Smith Chart superimposes the Z- and Y-Smith Charts in one
graphical display.
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This combined ZY-Smith Chart allows direct conversion between impedances and
admittances. In other words, a point in this combined chart has two interpretations
depending on whether the Z-Chart or ¥-Chart display is chosen.

RF &M W
Example 3-7: Use of the combined ZY-Smith Chart

Identify (a) the normalized impedance value z = 0.5 + j0.5 and (b)
the normalized admittance value y = 1+ j2 in the combined Z¥-
Smith Chart and find the corresponding values of normalized admit-
tance and impedance.

Solution:  Let us first consider the normalized impedance value
z = 0.5+ ;0.5. In the combined Z¥-Smith Chart we locate the
impedance by using circles of constant resistance r = 0.5 and con-
stant reactance x = 0.5, as shown in Figure 3-12. The intersection of
these two circles determines the specified impedance value
z = 0.5+ j0.5. To find the corresponding admittance value we
simply move along the circles of constant conductance g and sus-
ceptance b. The intersection gives us g =1 and jb =—jl (i.e., the
admittance for part (a) of this example is y = 1 — j1). The solution
for the normalized admittance y = 1+ j2 is obtained in identical
fashion and is also illustrated in Figure 3-12.

The ZY-Smith Chart requires a fair amount of practice due to
its “busy” appearance and the fact that inductors and capacitors
are counted either in positive or negative units depending on
whether an impedance or admittance representation is needed.

3.4 Parallel and Series Connections

In the following sections several basic circuit element configurations are analyzed
and their impedance responses are displayed in the Smith Chart as a function of fre-
quency. The aim is to develop insight into how the impedance/admittance behaves over
a range of frequencies for different combinations of lumped circuit parameters. A prac-
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tical understanding of these circuit responses is needed later in the design of matching
networks (see Chapter 8) and in the development of equivalent circuit models.

3.4.1 Parallel Connection of R and L Elements

Recognizing that g = Z,/R and b; = +Z;/(®L), we can locate the normal-
ized admittance value in the upper Y-Smith Chart plane for a particular, fixed normal-
ized conductance g at a certain angular frequency ®; :

. Zo

Yin(®p) = 8 oL (3.25)
As the angular frequency is increased to the upper limit ®;,, we trace out a curve along
the constant conductance circle g. Figure 3-13 schematically shows the frequency-
dependent admittance behavior for various constant conductance values g = 0.3, 0.5,
0.7, and 1 and for frequencies ranging from 500 MHz to 4 GHz. For a fixed inductance
value of L = 10 nH and a characteristic line impedance Z;, = 50 Q, the susceptance
always starts at —1.59 (500 MHz) and ends at -0.20 (4 GHz).

In Figure 3-13 and the following three additional cases, the transmission line
characteristic impedance is represented as a lumped impedance of Z;, = 50 Q. This is
permissible since our interest is focused on the impedance and admittance behavior of
different load configurations. For these cases the characteristic line impedance serves
only as a normalization factor.

L=10nH
R=Zo/g

Figure 3-13 Admittance response of parallel AL circuit for ®; < ® < ®; at
constant conductances g =0.3, 0.5, 0.7, and 1.
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3.4.2 Parallel Connection of R and C Elements

Here we operate in the lower Y-Chart plane because susceptance b, = Z,0C
remains positive. To locate the normalized admittance value for a particular, fixed nor-
malized conductance g and angular frequency ®; we have

Yin(®y) = g+ jZy0,C (3.26)

Figure 3-14 depicts the frequency-dependent admittance behavior as a function of vari-
ous constant conductance values g =0.3, 0.5, 0.7, and 1. The normalized susceptance
for C = 1 pF and characteristic line impedance Z, = 50 Q always starts at 0.16
(500 MHz) and ends at 1.26 (4 GHz).

]
I

11

=1pF
Zy/g

C
R=

Figure 3-14 Admittance response of parallel RC circuit for ®; < ® < w;; at
constant conductances g = 0.3, 0.5, 0.7, and 1.

3.4.3 Series Connection of R and L Elements

When dealing with series connections, we can conveniently choose the Z-Smith
Chart for the impedance display. Identifying the normalized reactive component as
x; = WL/Z,, itis straightforward to locate the normalized impedance value for a par-
ticular, fixed normalized resistance r at a given angular frequency @, :

Zin(0p) = r+jo,L/Z, (3.27)
In Figure 3-15 the frequency-dependent impedance behavior is shown as a function of

various constant resistance values r = 0.3, 0.5, 0.7, and 1. For the same inductance of
10 nH and characteristic line impedance of 50 Q as used in Figure 3-13, we now pick
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reactance circles associated with 0.63 (500 MHz) and with 5.03 (4 GHz). Because the
reactance is positive and since we use the Z-Smith Chart, all impedances have to reside
in the upper half plane.

Zy, Z, L=10nH

R=rZ,

Figure 3-15 Impedance response of series AL circuit for ®; < ® < o, and
constant resistances r= 0.3, 0.5, 0.7, and 1.

3.4.4 Series Connection of R and C Elements

We again choose the Z-Smith Chart for the impedance display. The normalized
reactive component is x- = +1/(®0CZ,), indicating that all curves will reside in the
lower half of the Smith Chart. The normalized impedance value for a particular, fixed
normalized resistance r at an angular frequency ®, reads

1
0, CZ,

Zp(®y) = r—j (3.28)
Figure 3-16 displays the frequency-dependent impedance behavior as a function of var-
ious constant resistance values r = 0.3, 0.5, 0.7, and 1. The capacitance of 1 pF in series
with the variable resistance connected to a characteristic line impedance of 50 Q now
yields circles associated with the reactances of —6.03 (500 MHz) and —0.8 (4 GHz),
which intersect with the four resistance circles, uniquely determining upper and lower
impedance values.
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Figure 3-16 Impedance response of series RC circuit for ®; < w <, at
constant resistances r=0.3, 0.5, 0.7, and 1.

3.4.5 Example of a FNetwork

In the previous examples only pure series or shunt configurations have been ana-
lyzed. In reality, however, one often encounters combinations of both. To show how
easily the ZY Chart allows transitions between series and shunt connections, let us
investigate by way of an example the behavior of a T-type network connected to the
input of a bipolar transistor. The input port of the transistor is modeled as a parallel RC
network as depicted in Figure 3-17. As we will see in Chapter 6, R; approximates the
base-emitter resistance and C; is the base-emitter junction capacitance. The numerical
parameter values are listed in Figure 3-17.

Z, L, L, TL
. 398nH | 4.38nH L c R
=C =
2.39 pF 191pF| 31250
T-type network Transistor
nput

Figure 3-17 T network connected to the base-emitter input impedance of a
bipolar transistor.
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To use the Smith Chart for the computation of the input impedance of this more
complicated network, we first analyze this circuit at 2 GHz and then show the entire
response of the circuit for a frequency range from 500 MHz to 4 GHz by employing the
commercial MMICAD software simulation package.

To obtain the load impedance, or the input impedance of the transistor, we use the
Y-Smith Chart to identify the conductance point corresponding to the load resistor
R; = 31.25 Q. Assuming a 50 Q characteristic line impedance, we determine the
normalized admittance for this case to be g, = 1.6, which corresponds to point A in
Figure 3-18.

Figure 3-18 Computation of the normalized input impedance of the T network
shown in Figure 3-17 for a center frequency f = 2 GHz.
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The next step is to connect the capacitance C; = 1.91pF in shunt with the resis-
tor R, . At the angular frequency of ®; = 212 X 10° s , the susceptance of this
capacitor becomes Bc = ©;C; = 24 mS, which corresponds to a rotation of the
original point A into the new location B. The amount of rotation is determined by the
normalized susceptance of the capacitor bc, = B¢,Zo = 1.2 and is carried out along
the circle of constant conductance in the ¥-Smith Chart (see Figure 3-18).

Re-evaluating point B in the Z-Smith Chart, we obtain the normalized impedance
of the parallel combination of resistor R; and capacitor C; tobe z; = 0.4 — j0.3.The
series connection of the inductance L; results in the new location C. This point is
obtained through a rotation from xz = -0.3 by an amount x; = ®;L;/Z, = 1.1 to
xc = 0.8 along the circle of constant resistance r = 0.4 in the Z-Smith Chart as dis-
cussed in Section 3.4.3.

Converting point C into a Y-Smith Chart value results in y- = 0.5 - j1.0. The
shunt connected capacitance requires the addition of a normalized susceptance
b = 0CZ, = 1.5, which results in the admittance value of y, = 0.5+ j0.5 or
point D in the Y-Smith Chart. Finally, converting point D into the impedance value
zp = 1-j1 in the Z-Smith Chart allows us to add the normalized reactance
Xy, = w;L,/Z, = 1 along the constant r = 1 circle. Therefore, we reach z;, = 1
or point E in Figure 3-18. This value happens to match the 50 Q characteristic trans-
mission line impedance at the given frequency 2 GHz. In other words,
Z,=2,=50Q.

When the frequency changes we need to go through the same steps but will arrive
at a different input impedance point z;; . It would be extremely tedious to go through
the preceding computations for a range of frequencies. This is most efficiently done by
the computer.

Relying on the previously mentioned CAD program MMICAD we are able to
produce a graphical display of the input impedance in the Z-Smith Chart over the entire
frequency range in preselected increments of 10 MHz, as shown in Figure 3-19. This
figure can also be generated as part of the MATLAB software (see file fig3_18.m on the
accompanying CD).

We notice that the impedance trace ranging from 0.5 to 4 GHz is in agreement
with our previous calculations at 2 GHz. Also, as the frequency approaches 4 GHz, the
capacitor of C = 2.39 pF behaves increasingly like a short circuit in series with a single
inductor L, . For this reason, the normalized resistance r approaches zero and the reac-
tance grows to large positive values.
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Figure 3-19  CAD simulation of the normalized input impedance Z, for the
network depicted in Figure 3-17 over the entire frequency range
500 MHz < f< 4 GHz.

3.5 Summary

This chapter has derived the Smith Chart as the most widely used RF graphical
design tool to display the impedance behavior of a transmission line as a function of
either line length or frequency. Our approach originated from the representation of the
normalized input impedance of a terminated transmission line in the form

1+T(d)_ 1+T,+jT,
1-T(d) 1-T,-T;
which can be inverted in terms of the reflection coefficient to yield two circle equations
(3.10) and (3.11), which take on the following expressions for the normalized

resistance r:
r \? 2 1 \?
(F’_r+1) +I = (r+1)

and for the normalized reactance x

ot - 0

Superimposing the circles described by both equations over the complex polar form of
the normalized impedance z-plane on the unit circle yields the Smith Chart. The key
feature to remember is that one full rotation is equal to half a wavelength because of the

Zp=r+jx =
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exponent 2fd in the reflection coefficient expression (3.2). In addition to observing the
impedance behavior, we can also quantify in the Smith Chart the degree of mismatch
expressed by the standing wave ratio (SWR) equation (3.12), or

1+|I'(d)|
1-[I(d)|
which can be directly obtained from the chart.

To facilitate computer-based evaluation of the Smith Chart, a wide range of com-
mercial programs can be utilized. Due to its ease of implementation on a PC and its
user-friendly interface, throughout this book we have used the package MMICAD
developed by Optotek. However, for the relatively incomplicated circuits analyzed in
this Chapter, one can also create a custom-tailored Smith Chart and perform simple
computations by relying on mathematical spreadsheets such as Mathematica, MATLAB,
or MathCad. To demonstrate the procedure, a number of MATLAB modules have been
developed, and the use of these so-called m.files as part of a basic Smith Chart compu-
tation is demonstrated in Section 3.2.4.

A transition to the admittance, or Y-Smith Chart, can be made via (3.23):

Y1 _1-T@)

Yin =y, T T 1+T@)
and it is found that the only difference to (3.4) is a sign reversal in front of the reflection
coefficient. Consequently, rotating the reflection coefficient in the Z-Smith Chart by
180° results in the ¥-Smith Chart. In practice, this rotation can be avoided by turning
the chart itself. Superimposing the rotated chart over the original Z-Smith Chart pro-
vides a combined ZY-Smith Chart display. The benefit of such a display is the easy tran-
sition from parallel to series connection in circuit designs. This ease is demonstrated by
a T-network configuration connected to the input port of a bipolar transistor consisting
of a parallel RC network. To investigate the impedance behavior as a function of fre-
quency sweep, however, is most easily accomplished through the use of CAD programs.

SWR(d) =
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Problems

3.1 Consideraload Z; = (80 + j40) Q connected to a lossy transmission line
with characteristic line impedance of

7 = 0.1 + ;200
0 Jo.os - j0.003
Determine the reflection coefficient and the standing wave ratio (SWR) at
the load.

3.2 A coaxial cable of characteristic line impedance Z, = 75 Q is terminated
by a load impedance of Z; = (40 + j35) Q. Find the input impedance of
the line for each of the following pairs of frequency f and cable length d
assuming that the propagation velocity is 77% of the speed of light:
(@ f=1GHz andd = 50 cm
() f=5GHz andd = 25 cm
(©) f=9GHz andd = 5cm

3.3 The attenuation coefficient of a transmission line can be determined by
shortening the load side and recording the VSWR at the beginning of the
line. We recall that the reflection coefficient for a lossy line takes on the form
I'(d) = Tyexp(-kl) = T'yexp(-al)exp(—jBl). If the line is 100 m in
length and the VSWR is 3, find the attenuation coefficient o in Np/m, and
dB/m.
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3.5

3.6

3.7

3.8
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A load impedance of Z; = (150 - j50) Q is connected to a 5 cm long
transmission line with characteristic line impedance of Z, = 75 Q. For a
wavelength of 6 cm, compute

(a) the input impedance

(b) the operating frequency, if the phase velocity is 77% the speed of light
(c) the SWR

Identify the following normalized impedances and admittances in the Smith
Chart:

(@ z = 0.1+,0.7

(b) y = 03+,05

() z=02+j0.1

d y =01+,02

Also find the corresponding reflection coefficients and SWRs.

An unknown load impedance is connected to a 0.3A long, 50 Q lossless
transmission line. The SWR and phase of the reflection coefficient measured
at the input of the line are 2.0 and —20°, respectively. Using the Smith Chart,
determine the input and load impedances.

In Section 3.1.3 the circle equation (3.10) for the normalized resistance r is
derived from (3.6). Start with (3.7); that is,
2r;

4
X =

(1-T,)%+1?
and show that the circle equation

LA U RO

can be derived.

Starting with the equation for normalized admittance
_ . _ 1-T
y=g+ib=1Tx

prove that the circle equations for the ¥-Smith Chart are given by the follow-
ing two formulas:
(a) For the constant conductance circle as

2 2
8 2 _(_1_
(r’+1+g) +0 (l+g)

(b) For the constant susceptance circle as
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3.10

3.11

3.12

3.13

3.14

3.15
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(T,+1)°+(T;+1/b) = (1/b)

A lossless transmission line (Z, = 50 Q) is 10 cm long (f = 800 MHz,

v, = 0.77¢). If the input impedance is Z;;, = j60 Q

(a) Find Z; (using the Smith Chart)

(b) What length of a short-circuit transmission line would be needed to
replace Z; ?

A transmission line of characteristic impedance Z, = 50 Q and length
d = 0.15) is terminated into a load impedance of Z, = (25-j30) Q.
Find 'y, Z, (d), and the SWR by using the Z-Smith Chart.

A short-circuited 50  transmission line section is operated at 1 GHz and
possesses a phase velocity of 75% of the speed of light. Use both the analyt-
ical and the Smith Chart approach to determine the shortest lengths required
to obtain (a) a 5.6 pF capacitor, and (b) a 4.7 nH inductor.

Determine the shortest length of a 75 Q open-circuit transmission line that
equivalently represents a capacitor of 4.7 pF at 3 GHz. Assume the phase
velocity is 66% of the speed of light.

A circuit is operated at 1.9 GHz and a lossless section of a 50 Q transmis-
sion line is short circuited to construct a reactance of 25 Q. (a) If the phase
velocity is 3/4 of the speed of light, what is the shortest possible length of
the line to realize this impedance? (b) If an equivalent capacitive load of 25
Q is desired, determine the shortest possible length based on the same phase
velocity.

A microstrip line with 50 Q characteristic line impedance is terminated into
a load impedance consisting of a 200 Q resistor in shunt with a 5 pF capac-
itor. The line is 10 cm in length and the phase velocity is 50% the speed of
light. (a) Find the input impedance in the Smith Chart at 500 MHz, 1 GHz,
and 2 GHz, and (b) use the MATLAB routine (see Section 3.2.4) and plot the
frequency response from 100 MHz to 3 GHz in the Smith Chart.

For an FM broadcasting station operated at 100 MHz, the amplifier output

impedance of 250 Q has to be matched to a 75 Q dipole antenna.

(a) Determine the length and characteristic impedance of a quarter-wave
transformer with v_ = 0.7c.

(b) Find the spacing D for a two-wire lossless transmission line with AWG
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3.16

3.17

3.18

3.19
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26 wire size and a polysterene dielectric (¢, = 2.55).

Consider the case of matching a 73 Q load to a 50 Q line by means of a
A/4 transformer. Assume the matching is achieved for a center frequency of
fc = 2 GHz. Plot the SWR for the frequency range 1/3< f/f-<3.

A line of characteristic impedance of 75 Q is terminated by a load consist-
ing of a series connection of R = 30 Q, L = 10 nH, and C = 2.5 pF.
Find the values of the SWR and minimum line lengths at which a match of
the input impedance to the characteristic line is achieved. Consider the fol-
lowing range of frequencies: (a) 100 MHz, (b) 500 MHz, and (c) 2 GHz.

A 50 Q lossless coaxial cable (¢, = 2.8) is connected to a 75 Q antenna
operated at 2 GHz. If the cable length is 25 cm, find the input impedance by
using the analytical equation (2.71) and the Z-Smith Chart.

A balanced to unbalanced (balun) transformation is often needed to connect
a dipole antenna (balanced) to a coaxial cable (unbalanced). The following
figure depicts the basic concept.

Unbalanced i

coaxial cable L

{ Balanced
antenna
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As an alternative of using a transformer, one often uses the following
antenna connection.

(a) Explain why one leg of the dipole antenna is connected a distance A/4
away from the end of the coax cable.

(b) For an FM broadcast band antenna in the frequency range from 88 to
108 MHz, find the average length where the connection has to be made.

Using the Z¥-Smith Chart, find the input impedance of the following net-

work at 2 GHz.

Z
1 68 pF 3 98 nH___C2 R
T
199 398nHv159pF 50

What is the input impedance of this network at 1 GHz?

A Z, = 50Q transmission line is 0.5A in length and terminated into a load
of Z;, = (50-;30)Q. At 0.35A away from the load, a resistor of
R = 25Q is connected in shunt configuration (see figure below). Find the
input impedance with the help of the ZY Smith Chart.



140 Chapter 3 * The Smith Chart

322 A 50-Q transmission line of 3/4 wavelength in length is connected to two
transmission line sections each of 75 Q in impedance and length of 0.86 and
0.5 wavelength, respectively, as illustrated in the following figure.

M
08 2
‘) 1
1
20
Z, Z,=50Q
0.75A 2o 0’}
Sq
Q Z,
)

The termination for line 1 is Z, = (30 +j40) Q and Z, = (75-j80) Q
for line 2. Employ the Smith Chart and find the input impedance.

3.23 Repeat the previous problem if all characteristic line impedances are
Z, = 50 Q and all transmission line sections are A/4 in length.

324 A dipole antenna of impedance Z; = (75 + j20) Q is connected to a 50 Q
lossless transmission whose length is A/3 . The voltage source Vg = 25V
is attached to the transmission line via an unknown resistance Rg. It is
determined that an average power of 3W is delivered to the load under load-
side matching (Z“Lm”'h = 50 Q). Find the generator resistance R, and
determine the power delivered to the antenna if the generator impedance is
matched to the line via a quarter-wave transformer.
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3.25

3.26

3.27

3.28

3.29
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Determine the values of the inductance L and the capacitance C such that
they result in a 50 Q input impedance at 3 GHz operating frequency for the
following network.

Zin L

C== |aso+j500

o
o—

An open-circuit transmission line (50 €) is operated at 500 MHz (v, =0.7c).
Use the ZY Smith Chart and find the impedance Z, if the line is 65 cm in
length. Find the shortest distance for which the admittance is ¥;;, = —j0.05S.

Find the minimum line length /; and the minimum length of the short-cir-
cuited stub /, in terms of wavelength A, such that the input impedance of
the circuit is equal to 50 Q.

I,

o~ Z |
1 0 ]
Zy Al Z
0| (50 +j50)Q
1
Z,

=50Q

Find the input impedance in terms of magnitude and phase of the following
network at an operating frequency of 950 MHz.

Z, 1/4 0, m

'_-“-—1 Zo i % %
2pF 2o
300 75Q

Repeat your computation and solve Problem 3.28 for a 1.5 GHz operating
frequency. Comment on the differences in your results.
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3.30 A specific transmission line conﬁguration is as follows:

5

The characteristic lme impedance for all three elements is Z, = 50 Q. The

load impedance has a value of Z; = (20 + j40) Q, and the electrical

lengths of the corresponding line segments are ©, = 164.3°, ©, = 57.7°,

and ©; = 25.5°.

(a) Find the input impedance.

(b) Find the input impedance if transmission line segment ©, is open
circuit.

(This problem and Problem 3.27 become very important in Chapter 8, when

we discuss the problem of matching a particular load impedance to a desired

input impedance.)



