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In digital-integrated electronics, computer communication, and many other appli-
cations, it is important to understand the response of transmission lines to steplike
changes in their inputs, as we studied in detail in Chapter 2. We have seen that waves
travel down a transmission line by successively charging the distributed capacitors
of the line and establishing current in the distributed inductors. In this context, a
wave is a function of both time and space but does not necessarily involve periodic
oscillations of a physical quantity (e.g., the height of water in ocean waves). If a dis-
turbance that occurs at a certain point and time causes disturbances at other points in
the surrounding region at later times, then wave motion is said to exist. Because of
the nonzero travel time along a transmission line, disturbances initiated at one loca-
tion induce effects that are retarded in time at other locations. The natural response of
transmission lines to sudden changes in their inputs typically involves wave motion,
with disturbances traveling down the line, producing reflections at terminations, or
discontinuities, which in turn propagate back to the source end, and so on. However,
except in special cases, the natural response eventually decays after some time in-
terval and is primarily described by the intrinsic properties of the transmission line
(characteristic impedance and one-way travel time, or length) and its termination
(i.e., the load), rather than the input excitation.

In many engineering applications, however, it is also important to understand
the steady-state response of transmission lines to sinusoidal excitations. Electrical
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power and communication signals are often transmitted as sinusoids or modified
sinusoids. Other nonsinusoidal signals, such as pulses utilized in a digitally coded
system, may be considered as a superposition (i.e., Fourier series) of sinusoids of dif-
ferent frequencies. In sinusoidal signal applications, the initial onset of a sinusoidal
input produces a natural response. However, this initial transient typically decays
rapidly in time, while the forced response supported by the sinusoidal excitation
continues indefinitely. Once the steady state is reached, voltages and currents on the
transmission line vary sinusoidally in time at each point along the line while also
traveling down the line. The finite travel time of waves leads to phase differences
between the voltages (or currents) at different points along the line. The steady-state
solutions for voltage and current waves when reflections are present lead to standing
waves, which also vary sinusoidally in time at each point on the line but do not travel
along the line. The differences between traveling and standing waves will become
clear in the following sections.

In discussing the steady-state response of transmission lines to sinusoidal ex-
citation, we take full advantage of powerful tools' commonly used for analysis of
alternating-current phenomena in lumped electrical circuits, including phasors and
complex impedance. The phasor notation eliminates the need to keep track of the
known sinusoidal time dependence of the various quantities and allows us to trans-
form the transmission line equations from partial differential equations to ordinary
differential equations. The magnitude of the complex impedance of a device or a
load is a measure of the degree to which it opposes the excitation by a sinusoidal
voltage source; a load with a higher impedance (in magnitude) at any given fre-
quency requires a higher voltage in order to allow a given amount of current through
it at the given frequency. The phase of the impedance represents the phase differ-
ence between the voltage across it and the current through it. In lumped circuits, the
impedance of a load is determined only by its internal dynamics (i.e., its physical
makeup as represented by its voltage-current characteristics, e.g., V = L dlI/dt for
an inductor). In transmission line applications, the impedance of a load presented to a
source via a transmission line depends on the characteristic impedance and the elec-
trical length® (physical length per unit of wavelength) of the line connecting them.
This additional length dependence makes the performance of transmission line sys-
tems dependent on frequency—to a greater degree than is typical in lumped circuit
applications.

In this chapter, we exclusively consider excitations that are pure sinusoids. In
most applications, transmission line systems have to accommodate signals made up
of modified sinusoids, with the energy or information spread over a small band-
width around a central frequency. The case of excitations involving waveforms that

'These tools were first introduced by a famous electrical engineer, C. P. Steinmetz, in his first book,
Theory and Calculation of AC Phenomena, McGraw-Hill, 1897.

2The electrical length of a transmission line is its physical length divided by the wavelength at the
frequency of operation. For example, the electrical length of a 1.5-m-long air-filled coaxial line operating
at 100 MHz (wavelength A = 3 m) is 0.5A, while the electrical length of the same line operating at
1 MHz (wavelength A = 300 m) is 0.005A.
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are other than sinusoidal can usually be handled by suitably decomposing the sig-
nal into its Fourier components, each of which can be analyzed as described in this
chapter. In the first seven sections we consider lossless (i.e., R = 0 and G = 0)
transmission lines. Lossy transmission lines (i.e., R # 0 and G # 0) and resonant
transmission line elements are discussed in Sections 3.8 and 3.9, respectively. We
shall see that the effects of small but nonzero losses can be accounted for by suitably
modifying the lossless analysis. Note also that the loss terms are truly negligible
in many applications, so that the lossless cases considered in detail are of practical
interest in their own right.

Our topical presentation in this chapter starts in Section 3.1 with a discussion
of the solutions of transmission line equations expressed in terms of voltage and
current phasors. The important special cases of transmission lines with short- and
open-circuited terminations are covered in Section 3.2, followed in Section 3.3 by
the analysis of the response of lines terminated in an arbitrary impedance, and in
Section 3.4 by a discussion of power and energy relations. The subject of impedance
matching, crucially important in practice, is covered in Section 3.5, and the Smith
chart, a graphical method useful for both quantitative analysis and qualitative visu-
alization of transmission line behavior, is discussed in Section 3.6. Selected appli-
cation examples involving the steady-state response of lossless transmission lines
are presented in Section 3.7. Lossy and resonant transmission lines are discussed
respectively in Sections 3.8 and 3.9.

3.1

WAVE SOLUTIONS USING PHASORS

The fundamental transmission line equations for the lossless case were developed in
Chapter 2 (see equations [2.3] and [2.4]):

oV 09

= =L% [3.1]
9 IV
o= o 13.2]

Equations [3.1] and [3.2] are written in terms of the space-time functions describing
the instantaneous values of voltage and current at any point z on the line, denoted
respectively as V'(z, ) and $(z, f). When the excitation is sinusoidal, and under
steady-state conditions, we can use the phasor concept to reduce the transmission
line equations [3.1] and [3.2] to ordinary differential equations (instead of partial
differential equations, as they are now) so that we can more easily obtain general
solutions. As in circuit analysis, the relations between phasors and actual space-time
functions are as follows:

V(z t) = Re{V(2)e’'} [3.3a]
$(z, 1) = Re{l(z)e’} [3.35]
Here, both phasors V(z) and I(z) are functions of z only and are in general complex.
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We can now rewrite® equations [3.1] and [3.2] in terms of the phasor quantities
by replacing /9t with jw. We have

avz) _ .
praie JowLI(2) [3.4]
and
al(x) _ _ .
wra JoCV(2) [3.5]

Combining [3.4] and [3.5], we can write a single equation in terms of V(z),

d*V(z) _ a*v(z) _

iz (@?LC)V(z) or iz -B*V(2) [3.6]

where, B = w+/LC is called the phase constant. Equation [3.6] is referred to as the
complex wave equation and is a second-order ordinary differential equation com-
monly encountered in analysis of physical systems. The general solution of [3.6] is
of the form

V() = Ve B2 + V- etiP? [3.7]

where, as we shall see below, e /#* and e/#* represent, respectively, wave propa-
gation in the +z and —z directions, and where V* and V™ are complex constants
to be determined by the boundary conditions. The corresponding expression for the
current /(z) can be found by substituting [3.7] in [3.4]. We find

@) = I"e 4 [t = Ve e~ Ve ik [38]

where Z, = V*/I* = —V~/I- = JL/C is the characteristic impedance of the
transmission line.

Using [3.3], and the expressions [3.7] and [3.8] for the voltage and current pha-
sors, we can find the corresponding space-time expressions for the instantaneous
voltage and current. We have

V(z, 1) = Re{V(2)e™'} = Re{V*+e et + V- etiPigior}
= V* cos(wt — Bz) + V™ cos(wt + B2)

[3.9]

3The actual derivation of [3.4] from [3.1] is as follows:

W —_ — ﬁ i jot —_ i jwt
P =12 — 7 ey = ~LL @eliem)
Y(zt) $(z1)
- %{ej“'d%@} = Rel- L)1) — T2 = —joLi)
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where we have assumed* V+ and V™ to be real. Similarly, we have
1
Zy
The voltage and current solutions consist of a superposition of two waves, one
propagating in the +z direction (i.e., toward the load) and the other in the —z direc-
tion (i.e., a reflected wave moving away from the load). To see the wave behavior,
consider the case of an infinitely long transmission line; in this case no reflected

wave is present, and thus V- = 0. The voltage and current for an infinitely long line
are

$(z, 1) = =[V* cos(wt — Bz) — V™ cos(wt + B2)] [3.10]

V(z) = V*e IPz V(z,t) = V* cos(wt — Bz) [3.11]
and

+

— K_ —jBz. = _‘_/: —
I(2) = 7 e /P, $(z, 1) 7 cos(wt — Bz) [3.12]

Note that, everywhere along the line, the ratio of the voltage to current phasors is Z;
hence, Z, is called the characteristic impedance of the line. Note, however, that this
is true not only for an infinitely long line but also for a line of finite length that is
terminated at a load impedance Z; = Z,, as we discuss later.

The solutions [3.11] and [3.12] are in the form of [1.2], which was introduced in
Chapter 1 by stating that electromagnetic quantities with such space-time dependen-
cies are often encountered. Here we see that this form of solution is indeed a natural
solution of the fundamental transmission line equations.’ The space-time behavior
of the voltage wave given by [3.11] is illustrated in Figure 3.1. We note from Fig-
ure 3.1a that the period of the sinusoidal oscillations (as observed at fixed points in
space) is T, = 2@/w. The voltage varies sinusoidally at all points in space, but it
reaches its maxima at different times at different positions. Figure 3.1b indicates that
the voltage distribution as a function of distance (observed at a fixed instant of time)
is also sinusoidal. The distance between the crests of the voltage at a fixed instant of
time is the wavelength A = 27/f3. As time progresses, the wave propagates to the
right (+z direction), as can be seen by observing a particular point on the waveform
(e.g., the crest or the minimum) at different instants of time. The speed of this mo-
tion is the phase velocity, defined as the velocity at which an observer must travel
to observe a stationary (i.e., not varying with time) voltage. The voltage observed
would be the same as long as the argument of the cosine in [3.11] is the same; thus

we have
wt— Bz = const. —> v=‘£=2=__w__=L [3.13]
' Podt B w/Lc Jic

“If instead V* and V-~ were complex, with V* = |V*|e/4” and V™~ = |[V~|e/%”, we would have
V(z 1) = |V*|cos(wt — Bz + ¢*) + |V |cos(wt + Bz + ¢7)

SWe will encounter the same type of space-time variation once again in Chapter 8, as the natural solution
of Maxwell’s equations for time-harmonic (or sinusoidal steady-state) electric and magnetic fields.
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FIGURE 3.1. Wave behavior in space and time. (a) ¥(z, 1) =

V* cos[2m(t/T,) — 2m(z/A)] versus t/T, forz = Oand z = M4. (b) V(z, 1) =
V* cos[27(t/T,) — 2w (z/A)] versus Z/A fort = Oand ¢ = T,/4.

In both panels we have taken V* = 1.

where v, is the phase velocity, which was also introduced in Sections 1.1.3 and 2.2
(see equation [2.7]).

As discussed in Section 2.2, for most of the commonly used two-conductor
transmission lines (Figure 2.1), the phase velocity v, is not a function of the par-
ticular geometry of the metallic conductors but is instead solely determined by the
electrical and magnetic properties of the surrounding insulating medium. When the
surrounding medium is air, the phase velocity is the speed of light in free space,
namely, v, = ¢ =3 X 10® m-s™! = 30 cm-(ns)~'. The phase velocity v, for some
other insulating materials was tabulated in Table 2.1. Phase velocities for some ad-
ditional materials are given in Table 3.1, together with the corresponding values of
wavelength at a frequency of 300 MHz. Note that since A = 27/, we have v, =
/B = Af, so that the phase constant 8 and wavelength A depend on the electrical
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TABLE 3.1. Phase velocity and wavelength in different materials

Wavelength Phase velocity speed

Material (mat300 MHz) (cm-(ns)”! at 300 MHz)
Air 1 30

Silicon 0.29 8.7
Polyethylene 0.67 20.0

Epoxy glass (PC board) 0.45 13.5

GaAs 0.30 9.1

Silicon carbide (SiC) 0.15 4.6

Glycerin 0.14 4.2

and magnetic properties of the material surrounding the transmission line conductors
as well as on the frequency of operation.

3.2

VOLTAGE AND CURRENT ON LINES WITH
SHORT- OR OPEN-CIRCUIT TERMINATIONS

Most sinusoidal steady-state applications involve transmission lines terminated at a
load impedance Z; . Often, voltages and currents near the load end are of greatest
interest, since they determine the degree of matching between the line and the load
and the amount of power delivered to (versus that reflected from) the load. A portion
of a lossless transmission line terminated in an arbitrary load impedance Z; is shown
in Figure 3.2. We can use this setup to explore the concept of reflected waves on
transmission lines, a fundamental feature of distributed circuits in general.

Assume that a forward-propagating (+z direction) wave of the form V*e 7Bz
produced by a source located at some position z (z < 0) is incident on load Z; located
at z = 0. Contrary to the case of an infinitely long transmission line, here the ratio
of the total voltage V(z) to the total current I(z) at any position z along the line
is not equal to Z,. For example, at the load position (z = 0), we must satisfy the

I(z)

- I
Vte -jBz + + 1
Vi VA
Source V-e+ife V(2) Z, L L
"""" I
Z(z) .
z=0

FIGURE 3.2. A terminated lossless transmission line. For convenience, the position
of the load is taken to be z = 0.
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boundary condition [V(z)/I(z)],=0 = Z., where Z; is in general not equal to Zj,.
Thus, since V*/I* = Z,, and in general Z, # Z, a reverse-propagating (—z direc-
tion) reflected wave of the form V~e*/# with the appropriate value for V- must be
present so that the load boundary condition is satisfied. The total voltage and current
phasors, V(z) and I(z), at any position on the line consist of the sum of the forward
and reverse waves as specified by [3.7] and [3.8], namely

V(z) = V¥e B 4 Vet [3.14]
I(2) = %[V"e‘jﬁz — V=etif [3.15]

where V* and V™ are in general complex constants to be determined by the boundary
conditions.

When a transmission line has only a forward-traveling wave with no reflected
wave (e.g., in the case of an infinitely long line), the ratio of the total voltage to the
current is the characteristic impedance Z,, as was discussed in Section 3.1. When the
line is terminated so that, in general, a reflected wave exists, the ratio of the total line
voltage V(z) to the total line current /(z) at any position z—the line impedance—is
not equal to Zy. The line impedance is of considerable practical interest; for example,
the impedance that the line presents to the source at the source end of the line (called
the input impedance of the line, denoted by Z;,) is the line impedance evaluated at
that position. The source, or the generator, does not know anything about the charac-
teristic impedance of the line or whether a reflected wave exists on the line; it merely
sees that when it applies a voltage of V; to the input terminals of the line, a certain
current I; flows, and thus the source interprets the ratio of V,/I; as an impedance of
a particular magnitude and phase.

The line impedance as seen by looking toward the load Z; at any position z along
the line (see Figure 3.2) is defined as

V(z) ., Vte iz + V-elfz
I(z) V+eiBr— V-eibz

[3.16]

In general, the line impedance Z(z) is complex and is a function of position z along
the line. From electrical circuit analysis, we know that a complex impedance Z(z)
can be written as

Z(z) = R(2) + jX(2)

where the real quantities R(z) and X(z) are, respectively, the resistive and the reactive
parts of the line impedance.

The following example considers the case of a matched load, defined as a load
impedance equal to the characteristic impedance of the line, or Z; = Z,.

Example 3-1: Matched load. A lossless transmission line is terminated with
aload Z; = Z,, as shown in Figure 3.3a. Find the magnitude of the reflected wave
V- and the line impedance Z(z).
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FIGURE 3.3. Matched load. (a) Circuit diagram. (b) Z; is
replaced by an infinitely long extension of the same line.

Solution: If Z; = Z,, the load boundary condition V(z = 0)/I(z = 0) =
Z, = Z, is satisfied without any reflected wave, so that V- = 0. The line
impedance at any position z along the line is Z(z) = V(2)/I(z) = Z, = Z in-
dependent of z. In this case, the load impedance Z; can be viewed as an infinite
extension of the same transmission line, as shown in Figure 3.3b.

Transmission line segments terminated in short or open circuits are commonly
used as tuning elements for impedance matching networks (see Sections 3.2.3 and
3.5) and also as resonant circuit elements (see Sections 3.2.3 and 3.9). In the next
two subsections, we study these two special cases in detail before considering (in
Section 3.3) the more general case of lines terminated in an arbitrary impedance Z; .

3.2.1 Short-Circuited Line

Figure 3.4 shows a transmission line of length / terminated in a short circuit. Short-
circuited termination forces the load voltage Vy to be zero, so we have

VL = [V@limo = [V'e Pr+ V elP,.o = V" +V =0

FIGURE 3.4. Short-circuited line. The
input impedance Z, of a short-circuited line can
be capacitive or inductive, depending on the

-1 z=0 length [ of the line.

N
Py R S
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leading to
V-

Iz

V> =-V* or
Note that the load current flowing through the short circuit can be found from [3.15]
using V- = —V+:

2v
Z

1
I = [I(2)];=0 = Z—O(V+ -V =

Anywhere else along the line we have

V(z) = V*(e 7% — /%) = —2V*j sin(B2)

+

+ . . 2
1) = (e + ) = 2 cox(p2)
Zy
The instantaneous space-time function for the voltage can be obtained from V(z)
using [3.3a]. We have

V(z 1) = Re{V(2)e™'} = Re{V* (e /P? — e/Pr)e*'}
= Re{2|V*|e/*” sin(Bz)e /™ e/"}

= 2|V*|sin(Bz) cos(wt - g + ¢+>

where V* = |V*|e/#" is in general a complex constant, to be determined from the
boundary condition at the source end of the transmission line. However, note that
we can assume ¢* = 0 (i.e., V* is a real constant) without any loss of generality
because V* is a constant multiplier that appears in front of all voltages and currents
everywhere along the line. Accounting for a possible finite phase ¢* simply amounts
to shifting the time reference, with no effect on the relationships among the various
quantities. Accordingly, we assume ¢* = 0 throughout the following discussion.

Note that the voltage ¥'(z, t) along a short-circuited line is a cosinusoid (in time)
whose amplitude varies as 2|V*| sin(8z) with position z along the line. It is not a trav-
eling wave, since the peaks (or minima) of the cos(w? — 7/2) always stay (i.e., stand)
at the same positions (i.e., Z/A) along the line as the voltage varies in time (see Fig-
ure 3.5b). The voltage ¥V'(z, ¢) is thus said to represent a pure standing wave. Simi-
larly, for current we have

Iz 1) = ﬂZ)—Jflcos(ﬁz) cos(wt)

which is also a standing wave (see Figure 3.5c). The absolute amplitudes of both the
voltage and current phasors, namely |V(z)| and Z|I(z)|, are shown as functions of
Z/A in Figure 3.5d.

Note that the current and voltage are in time quadrature (i.e., 90° out of phase),
such that when 9(z, ¢) at a given point z is zero, the absolute amplitude of V'(z, ¢) is
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FIGURE 3.5. Voltage and current on a short-circuited line. (a) Schematic
of a short-circuited line. (b) Instantaneous voltage V(z, r) versus z at different times.
(c) Corresponding instantaneous current times the characteristic impedance, namely
Zy$(z, 1). (d) Magnitudes of the voltage and current phasors, showing |V(z)| (solid
line) and Zo|I(z)| (dashed line) as functions of z/A. All of the plots shown are for

V* = 1%,

a maximum, and vice versa. Standing waves stand on the line but do not travel or
carry any time-average power to the load;® they represent reactive power in a manner

5To see this, consider that the instantaneous power carried by the wave is given by

P(z,0) = V(z, )9(z t) = [2|V*|sin([3z)cos(wt - E)][2|V+| cos(Bz) cos(wt)]

2 Zy
= AVTE 2B zycos(wr — ™) coster)
A 2
VP . .
=7 sin(2Bz2) sin(Qwt)

where we have used the trigonometric identities of cos({ — #/2) = sin{ and 2sin{ cos{ = sin(2{).
Note that the instantaneous power carried by the standing wave oscillates in time at a rate twice that of
the voltage and current and that its average over one period (i.e., T = 2m/w) is thus zero, as expected
on the basis of the fact that the voltage and current are 90° out of phase.
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analogous to the voltage and current, also in time quadrature, of a capacitor or in-
ductor. The power relationships on a transmission line are discussed in more detail
in Section 3.4.
The line impedance seen looking toward the short circuit at any position z along
the short-circuited line is
—2jV*sin(Bz) _

_ V(@ _ -
e Z, 2V cos(B2) JjZotan(Bz)

Z(2)

where z < 0. The input impedance of a short-circuited line segment of length [ can
then be found by evaluating the preceding equation at the source end, where z = —1:

Z = ]ZOtan(Bl) = szc [3.17]

We note from [3.17] that the input impedance of a short-circuited line of length
| is purely reactive. As illustrated in Figure 3.6, the input impedance depends on
line length /, or more generally, on the electrical length, which is defined as the
ratio of the physical length of the line to the wavelength, i.e., I[/A, where A = 27/.
The input impedance can be varied by varying the length or the frequency, or both,
and can be capacitive (negative X,.) or inductive (positive X;.). It makes physical
sense that the input impedance is inductive for very short line lengths (I < A/4);
a shorted two-wire line of relatively short length resembles a small loop of wire.
The fact that any reactive input impedance can be realized by simply varying the
length of a short-circuited line (and the open-circuited line as will be discussed in
the next subsection) is very useful in tuning- and impedance-matching applications
at microwave frequencies, as discussed in Section 3.5.

Example 3-2 illustrates the use of [3.17] to determine the input impedance of a
television antenna lead-in wire.

- Z =

i [} | 1
i | | 1 X. /Z,
| | | | + 4 Al
i 1 ] |
| l l |
i ! i | T2
S | | :
~
Ssal 1 ]
77 075 | 05 025
] [} | |
| | | I i)
| ]
A L\
I g 14
i | | |

FIGURE 3.6. Input impedance of a short-circuited line. The normalized
reactance X./Z, of a short-circuited line segment of length [ is shown as a function
of electrical length I/A.
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Example 3-2: Inductance of a short television antenna lead-in wire.
Consider a television antenna lead-in wire of length / = 10 cm having a character-
istic impedance of Z;, = 300(), shorted at one end. Find the input impedance of this
line if it is to be used at 300 MHz.

Solution: We can first determine the electrical length of the line. As in Ex-
ample 2-18, we assume the conductors to be mostly surrounded by air (although
they might in fact be held together by some plastic material) so that the phase
velocity v, = c. Since the wavelength at 300 MHz is A = v,/f =3 X 10%/
(300X 10%) = 1 m, the electrical length is (/A) = 0.1. The input impedance of
the shorted line can then be found directly from [3.17]:

Ze = jZotan(BD) = j(300) tan(zT"z) ~ 2180
This is an inductive input impedance. At a frequency of 300 MHz, an inductive

reactance of X;. = wL, = 218() corresponds to a lumped inductor having an
inductance of L, = 218/(27 X 300 X 10%) = 0.116 wH.

According to [3.17] and Figure 3.6, the input impedance of a short-circuited
line of length | = A/4 is infinite; that is, the line appears as if it is an open circuit.
In practice, however, the input impedance of such a line is limited by its distributed
conductance. Note that considering the circuit model of the line (Figure 2.5) the shunt
conductance per unit length G presents a resistance proportional to (G)™! across the
input terminals of a line, even when the input impedance looking toward the load is
infinite. Although G was assumed to be zero for our lossless analysis, it nevertheless
is a nonzero value and thus limits the input impedance of the line to a finite value.
Similarly, equation [3.17] and Figure 3.6 indicate that the input impedance of a short-
circuited line of length I = A/2 is zero, in other words, that the line appears as ifitis a
short circuit. In practice, however, the minimum value of input impedance of a short-
circuited half-wavelength long line is determined by its series resistance R, which,
although small, is nevertheless a nonzero value. The behavior of a short-circuited
line of length | = A/4 is similar to that of a lumped resonant circuit, as discussed in
Section 3.9.

3.2.2 Open-Circuited Line

Figure 3.7 shows an open-circuited transmission line. The analysis of open-circuited
lossless transmission lines is very similar to that of short-circuited lines.

e ——l 1 =0
 SE——
H +
™ A v
Z°°! 4- FIGURE 3.7. Open-circuited line. The input impedance Z,,

1 of an open-circuited line can be capacitive or inductive, depending
z=-l z=0 on the length of the line.
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Open-circuited termination forces the load current I to be zero, so that using [3.15]
we have

v \ Vvt —vy-
L =[1(],e0 = [__e‘JBZ_ eiB? — -0
L [1( )]z 0 Zo P » —
leading to
V- =V* or T‘; - +1

Note that the load voltage appearing across the open circuit can be found from [3.14]
using V- = V*. We have

VL = [V@lo = [V*e P2 + Ve, = (V* + V) = 2V7
Anywhere else along the line we have

V(z) = V¥(e /P* + €/P%) = 2V* cos(Bz)
=V it giry = oY = oV (i
1(2) Z (e7F= — €/F%) 2 Z jsin(Bz) = 2 A (e™"™)sin(Bz)

The instantaneous space-time expressions for the voltage and current’ are
V(z t) = Re{V(z)e’'} = 2|V*|cos(Bz) cos(w?)

—_ joty 'V+| : - ™
$(z, 1) = Re{l(2)e’'} = 270— sin(Bz2) cos(wt 5)

where we have assumed V* = |V*|e/#", with ¢+ = 0, without any loss of gener-
ality.

As for the short-circuited line, the current and voltage on an open-circuited line
are in time quadrature (i.e., out of phase by 90°) so that the average power carried
is again zero. Both V'(z, r) and $(z, t) are purely standing waves. Their absolute am-
plitude patterns are shown in Figure 3.8b, in the same format as in Figure 3.5d.

The line impedance seen looking toward the open circuit at any position z along
the line is

_ V@

Z(z) = o JZocot(B2)

"Note for the current that

+ +
Re{l(2)e’*"} = %e{ Vz[e"“" - ef'”]ej“"} = %e[ZIX—ZO—I sin(Bz)e’*” e‘j("'z’ej“”}

_ %e{2|‘2| sin(ﬁz)[cos(wt -3+ ¢+>+ jsin(wt— 3+ ¢+)]}

= 2% sin(Bz) cos(wt - % + d;")



122 mm Chapter 3 / Steady-State Waves on Transmission Lines

V@)l Zol(2)!

-1 -0.75 -0.5 -0.25 0

()

FIGURE 3.8. Voltage and current on an open-circuited line. (a) Schematic of an
open-circuited line. (b) Magnitudes of the voltage and current phasors, showing |V(z)|
(solid line) and Z,)I(z)| (dashed line) as functions of z/A, for V* = 1/

where z < 0. The input impedance of an open-circuited line of length [ (i.e, at
z = —l)is then given by

Zoe = Z(z = —1) = = jZycot(Bl) = jXo (3.18]

As for a short-circuited line, the input impedance of an open-circuited line of
length [ is purely reactive. The normalized reactance X,./Z, is plotted in Figure 3.9
as a function of electrical length I/A. A capacitive or inductive reactance can

i
1
i
|
|
|
1
1
1
1
I
m |
|
|
|
i
1
1
|
I
1
]
|
[}
[}

FIGURE 3.9. Input impedance of an open-circuited line. The normalized reactance X,./Z, of an
open-circuited line segment of length / is shown as a function of electrical length I/A.
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be obtained simply by adjusting the line length / for a fixed wavelength A (or
frequency ), or by adjusting the wavelength A (or frequency w) for fixed line
length I. The fact that for | < A/4 the impedance is capacitive makes physical
sense, since a relatively short-length open-circuited line consists of two conductors
with some separation between them, resembling an ordinary lumped capacitor.
Example 3-3 illustrates the use of [3.18] for a practical transmission line.

Example 3-3: Capacitance of a short television antenna lead-in wire.
Consider a television antenna lead-in wire of length / = 20 cm having a characteris-
tic impedance of Z, = 300{) and nothing connected at its end (i.e., open-circuited).
Find the input impedance of this line if it is to be used at 300 MHz.

Solution: Once again we assume the phase velocity to be v, = ¢ and first
determine the electrical length of the line. Since the wavelength at 300 MHz
is A = v,/f =3 X 10%(300 X 10°) = 1 m, the electrical length is (I//A) =
0.2. The input impedance of the open-circuited line can then be found directly
from [3.18]:

Zoe = —jZocot(Bl) = — j(300) cot(szl)’—v ~ j97.5Q

This is a capacitive input impedance. At a frequency of 300 MHz, a capacitive
reactance of X, = —(wC,) ! = —97.5Q) corresponds to a lumped capacitor of
capacitance C,. = [(97.5)(27 X 300 X 10%)]"! = 5.44 pF.

According to [3.18] and Figure 3.9, the input impedance of an open-circuited
line of length | = A/4 is zero; that is, the line appears as if it is short-circuited.
In practice, however, the minimum value of input impedance is determined by its
series resistance R, which, although small, is nevertheless a nonzero value. Similarly,
equation [3.18] and Figure 3.9 both indicate that the input impedance of an open-
circuited line of length [ = A/2 is infinite, that is, that the line appears as if it is an
open circuit. In practice, however, the input impedance of such a line is limited by its
nonzero distributed conductance G. Open- or short-circuited lines of lengths equal
to integer multiples of A/4 or A/2 are analogous to lumped resonant circuits, and such
line segments constitute highly efficient resonators, as discussed in Section 3.9.

3.2.3 Open- and Short-Circuited Lines as Reactive |
Circuit Elements

An important application of transmission lines involves their use as capacitive or
inductive tuning elements in microwave circuits at frequencies between a few giga-
hertz to a few tens of gigahertz. In this frequency range, lumped inductors and
capacitors become exceedingly small and difficult to fabricate. Furthermore, the
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wavelength is small enough that the physical sizes and separation distances of ordi-
nary circuit components are no longer negligible. On the other hand, transmission
line sections of appropriate sizes can be constructed with relative ease. For frequen-
cies higher than ~100 GHz, the physical size of transmission lines is too small, al-
though novel transmission line implementations can operate® at frequencies as high
as 500 GHz, corresponding to submillimeter wavelengths.

That transmission lines behave as reactive circuit elements is quite evident from
Figures 3.6 and 3.9. Consider, for example, the input impedance as a function of fre-
quency of a short-circuited line of length / such that I = A¢/4. At a frequency of
Jo, for which A = A, this line presents an infinite impedance (i.e., appears as an
open circuit) at its input terminals. For frequencies slightly smaller than f;, namely
f < fosothat A > Ay, the length of the line is slightly shorter than A/4, so it presents
a very large inductive impedance (Figure 3.6). For frequencies slightly greater than
Jo, the electrical length of the line is slightly larger than A/4, so it has a very large ca-
pacitive impedance (Figure 3.6). Such behavior is similar to that of a lumped circuit
consisting of a parallel combination of an inductor and a capacitor.

A similar analysis of a short-circuited line of length  such that/ = A¢/2 indicates
that a half-wavelength line behaves as a lumped circuit consisting of a series combi-
nation of an inductor and a capacitor. As can be seen from Figure 3.6, the magnitude
of the input impedance of a short-circuited line of length I = Ay/2 is very small in
the vicinity of its resonant frequency f;, and the input impedance is inductive for
f > fo and capacitive for f < f;.

Corresponding observations can also be made for open-circuited line segments,
for which the input impedance is given as a function of electrical length in Figure 3.9.
Lumped circuit counterparts of various transmission line segments are summarized
in Figure 3.10.

We see from the preceding discussion that short- or open-circuited transmission
line elements act as resonant circuits. In the absence of losses, a short- or open-
circuited line segment would store its electrical energy forever, even if the source
were removed. When losses are taken into account, transmission line resonators con-
sisting of short- or open-circuited lines of lengths equal to integer multiples of A/4
or A/2 are highly efficient energy storage devices and exhibit a high degree of fre-
quency selectivity, as discussed in Section 3.9.

The use of a short-circuited transmission line segment as a microwave induc-
tance is illustrated in Example 3-4.

Example 3-4: Transmission line inductor. A short-circuited coaxial line
with v, = 2.07 X 10® m-s™! is to be designed to provide a 15-nH inductance for a
microwave filter operating at 3 GHz. (a) Find the shortest possible length [ if the
characteristic impedance of the line is Z, = 50(), and (b) find the lumped element
value of the short-circuited line designed in part (a) at 4 GHz.

8Linda P. B. Katehi, Novel transmission lines for the submillimeter-wave region, Proceedings of the
IEEE, 80(11), p. 1771, November 1992.
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FIGURE 3.10. Lumped circuit models of various open- and short-circuited line
segments.
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Solution:

(a) Equating the input impedance of a short-circuited line of length [/ to the
impedance of a lumped inductor, we have

Ze = jZo tan(zT”z) = jwL

where A = v,/f = (2.07 X 10%)/(3 X 10°) = 6.9 cm. For Z; = 50(), we
can write

6.9 _1(277 X3 X 10°x15x%x10°
| = tan

27 50

o ): 1.53 cm

(b) At4 GHz, A = 2.07 X 10'%/(4 X 10°) = 5.175 cm. Thus, the input imped-
ance of the short-circuited 50() coaxial line of length ~1.53 cm is

27 X 1.53

Zsc = ](50) tan(w

)z - j167.4Q

Therefore, at 4 GHz, the short-circuited 50€) coaxial line designed in part
(a) represents a lumped capacitor of element value given by

— j = =7 =
e = /16740 = Co=0238pF

The results are summarized in Figure 3.11.

3.3 LINES TERMINATED IN AN ARBITRARY IMPEDANCE

Most sinusoidal steady-state applications involve transmission lines terminated in
arbitrary complex load impedances. The load to be driven may be an antenna, the
feed-point impedance of which depends in a complicated manner on the antenna
characteristics and operating frequency and is in general quite different from the
characteristic impedance of the transmission line that connects it to a source. For
efficient transmission of the energy from the source to the load, it is often necessary
to match the load to the line, using various techniques to be discussed in Section
3.5. In this section, we consider the fundamental behavior of line voltage, current,
and impedance for arbitrarily terminated transmission lines. Consider a transmission
line of length [ terminated in an arbitrary complex load impedance Z; and excited
by a sinusoidal voltage source, the phasor of which is represented by V,, as shown
in Figure 3.12. The line is uniform and lossless (i.e., Zo = const., R = Oand G =
0), so the voltage and current phasors at any position z < 0 along the line are in
general given by
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| ~1.53 cm
o—
f=3GHz 20.7 cm/(ns)™! = 15 0H
(A=6.9 cm) 50Q -
O
(@)
| ~1.53cm
O~
f=4GHz 20.7 cm/(ns)~! — _.T_ ~0.238 oF
(A=5.175 cm) 50Q = T oP
[
()
FIGURE 3.11.

A short-circuited 50() line as an inductor or capacitor. (a) Designed
to provide a 15 nH inductance at 3 GHz. (b) Equivalent to a ~ 0.238 pF capacitance at
4 GHz.

V(z) = V*te /B 4+ Vetife

[3.19]
I(z) = -1—[V+e"f3‘ — V7 etiF [3.20]
Z,
The boundary condition at the load end (z = 0) is simply
Vo=2ZL = V(@|eo = ZU(@)l:m0
or

Vr+ V-
L= oy -
The ratio of the phasors of the reverse and forward waves at the load position (z = 0)
is the load voltage reflection coefficient, defined as I'L. = V~/V* such that

-'i- V+e—jﬁ z + +
\% \% z
1A S e gtibe V(2) Z, L L
[ =
Zy . Z() ,
z=-l

z=0
FIGURE 3.12. A terminated line. A lossless transn:ission

line excited by a sinusoidal source terminated in a compl:x load
impedance Z; .
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[3.21]

where we explicitly recognize that I} is in general a complex number with a magni-
tude p and phase angle i, where 0 = p =< 1. Note that, as shown before, [ = —1
(i.e., V- = —V*) for a short-circuited line, [T, = +1 (i.e,, V- = V*) for an open-
circuited line, and I, = 0 (i.e., V- = 0) for a matched load (i.e., Z, = Z).

The voltage and current phasors given by equations [3.19] and [3.20] can now
be written in terms of I as

V(z) = V¥ (e P + TLe/?) = Ve P 1 + T(2)] [3.22]
+ . ) v+ .
Iz = VZ@””" —Tie) = Z=e 71 - T 3.23]
where
T() = V-elb? = TLe/? = pel®+B?)

V+e bz
is the voltage reflection coefficient at any position z along the line, defined as the
ratio of the phasors of the reverse and forward propagating waves at that position.
The voltage reflection coefficient is a complex number with a constant magnitude
p (equal to the magnitude of I') and a phase angle varying with position z. We can
view the quantity I'(z) = I e/?#* as a generalized reflection coefficient defined not
only at the load but also at any point z along the line. Noting that the voltage along
the line is given by
V() = Ve P2+ TLV*'e*
() =V'e L
forward wave reflected wave
we can see that the quantity I'(z) = I'Le/?#* is indeed the ratio of the reflected wave
at point z to the forward wave at that same position.
Note that the line impedance seen looking toward the load at any position z along
the line can be written in terms of I'(z) as
1(2)

1+ I(2)
1-T(2)

Z(2) Z [3.24]

3.3.1 Voltage and Current Standing-Wave Patterns

To understand the nature of the voltage on the line, it is useful to examine the com-
plete time function ¥'(z, £). For this, we start our discussion with the case of a real
(resistive) load impedance (i.e., ¢ = 0 or 7) and rewrite [3.22] as
V(2) = V*[e 9% + pei®]
= V*[(1 £ p)e /P* + p(—e 7B + €/P¥)]
which, by using ¥'(z, 1) = Re{V(z)e’/*'}, gives
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V(z,t) = 1V+|(1 * p)cos(wt — Bz + ¢") = [V*|(2p) sin(Bz) cos (wt + ¢t + g)

\

propagat\irng wave N
standing wave
where we have taken V* = |V*|e/*". In other words, the voltage on the line consists
of a standing wave plus a propagating wave.

According to [3.22], the magnitude of the voltage phasor (i.e., |V(z)|) alternates
between the maximum and minimum values of Vp,.x and Vo given by

Viax = [V@lmax = V(1 + L) = [VF]|(1 + p)
Vain = lV(Z)Imin = |V+|(1 - |FLD = |V+I(l - p)

Similarly, from Equation [3.23], the magnitude of the current phasor (i.e., [I(z)|)
alternates between the maximum and minimum values of

I = @lox = 'g'(l +p)
Imin = II(Z)lmin = |‘;.—j|(1 - P)

where I, occurs at the same position as Vi, and I, occurs at the same position
as Viax. For example, Figure 3.13 shows the variations of both voltage and current
magnitudes (represented by |V(z)| and Z,|I(z)|) as functions of position with respect
to wavelength along the line, for the case of a purely resistive load, with Z, = R =
2Z,. As is apparent from Figure 3.13, the distance between successive voltage max-
ima (or minima) is A/2. Note that for the case shown, with Z; = Ry > Z,, the re-
flection coefficient I is purely real with ¢y = 0and0 = p = 1.

The following example illustrates the concepts of reflection coefficient and
standing-wave pattern.

V() ZyI(2)l 151

———

zZ/A

-1 -0.75 -0.5 -0.25 0

FIGURE 3.13.  Standing-wave patterns for Z, = R, = 2Z,. Magnitudes of the voltage
and current phasors (i.e., |V(z)| and Zo|I(z)|) are shown as functions of electrical distance z/A away
from the load, for V* = 1.
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Example 3-5: A Yagi antenna array driven by a coaxial line. To in-
crease the geographic coverage area of a broadcast station, four Yagi antennas, each
having a feed-point impedance of 50€), are stacked in parallel on a single antenna
tower and connected to the transmitter by a 50} coaxial line, as shown in Fig-
ure 3.14a. (a) Calculate the load reflection coefficient I'.. (b) Calculate Vinax, Vimin,
Inax, and Iy, along the line, assuming V*+ = 1 V. (c) Sketch |V(2)| and |I(2)| as func-
tions of z/A, taking the position of the antenna array terminals to be at z = 0.

Solution:

(a) The total load impedance seen by the coaxial line is a parallel combination
of the four 50() impedances, resulting in

50
7L = — = 1250
4
Yagi array
T 500
Transmitter 50Q
- coax
50Q
1
z=0
()
! V@)l
(mA) ™)
V(! 1 1(2)!
o~ L 1.6
412
408
L 0.4
21 -075  -05 -025 O
ZA
)

FIGURE 3.14.  Yagi array driven by a coaxial line. (a) Array
of a stack of four Yagi antennas fed by a coaxial line. (b) Voltage and
current standing-wave patterns.
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The load reflection coefficient is then given by
ZL—2Zy 125-50 _

_ _ - _ — j180°
L= 25z “Tas+s0 ~ 06=006
so that p = 0.6 and ¢y = 180°.
1) Vo = V(1 +p) = 1.6V Vain = V(1 = p) = 04V
+ +
Inax = “;0|(1+P)=32mA Iin = l;Q'(]—p):SmA

(c) The voltage reflection coefficient at any position z along the line is given by
F(Z) — pej(¢+2131) = 0.66”’(“4””

Using [3.22] and [3.23] with V* = 1V, the magnitudes of the line voltage
and current (i.e., |V(z)| and |/(2)|) are plotted in Figure 3.14b as functions of
electrical distance z/A.

Standing-wave patterns such as those in Figure 3.13 are important in practice
because, although the rapid temporal variations of the line voltages and currents are
not easily accessible, the locations of the voltage minima and maxima and the ratio
of the voltage maxima to minima are often readily measurable. A key parameter that
is commonly used to describe the termination of a transmission line is the standing-
wave ratio (SWR), or S, defined as

=P - p==__ [3.25]

Note that S varies in therange 1 = § = o,
The following example illustrates the concepts of reflection coefficient and
standing-wave ratio for a UHF antenna.

Example 3-6: UHF blade antenna. A UHF blade antenna installed in the
tail-cap of a small aircraft is used for communication over the frequency band
225 MHz to 400 MHz. The following table provides the measured values of the
feed-point impedance of the antenna at various frequencies:’

f(MHz) Z(Q)

225 22.5 - j51
300 35— jl16
400 45— j2.5

9R. L. Thomas, A Practical Introduction to Impedance Matching, Artech House, Inc., 1976.
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A 50€) coaxial line is used to connect the communication unit to the antenna. Cal-
culate the load reflection coefficient I'. and the standing-wave ratio S on the line at
(a) 225 MHz, (b) 300 MHz, and (c) 400 MHz.

Solution:
(a) At 225 MHz, the load reflection coefficient is given by
_ 42y _225- j51— 50 _ 57.9¢ /18

ZL+2Zy, 225-j51+50 88.6e7 %1
The standing-wave ratio S at 225 MHz can then be obtained as follows:
_1+p 1+0.654

= 0.654¢ 7%

I

= = =478
S=1= p 1-0.654
(b) Similarly, at 300 MHz, we have
35— j16—50  21.9¢78% -
h=35= j16 +50 86.5¢-107 0.254
and
g~ 1+ 0.254 ~ 168

T 1-0254
(c) Similarly, at 400 MHz, we have
_45-j25-50 5.59¢ /5%

- = =~ —j152°
fe 45— j254+50  95e-isr 0.0588¢
and
1+ 0.0588
S =1"00sss ~ 13

We see that the reflections on the coaxial line are quite significant near
225 MHz but are much reduced near 400 MHz.

Another quantity that can sometimes be measured in experimental settings is
Zmin, OF the distance from the load to the first minimum of the voltage standing-wave
pattern.!® From [3.22] we have

V(z) = V(e P + TLeP?) = Ve /Pyl + pelt ei?P?)
Since |V(2)| = Vmin When e/¥+289 = —1, or

U +2B2Zmn = —2m+ )m m=0,123,...

1%Tn practice, it may often be difficult to actually measure the first minimum; however, if the location of
any of the minima can be measured, the location of the first minimum can be deduced by using the fact
that successive minima are separated by A/2.
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where —7 = ¢ < 7, and 7, = 0. For any given frequency, measuring the wave-
length (by measuring the distance between successive minima) provides a means to
determine the phase velocity v, = fA.

At the location of the first minimum we have

U+2B2mn=—m7 — Y =—7—2BZmn [3.26]

We see that z,,;, is directly related to the phase ¢ of the reflection coefficient I7,
whereas S determines its magnitude through [3.25]. Once I} is known, the load can
be fully specified (assuming the characteristic impedance Z, is known), or Z, can be
found (if Z; is known). Thus, the two measurable quantities, S and zy;,, completely
characterize the transmission line terminated in an arbitrary load impedance.

It is often useful to rewrite [3.22] and [3.23] in terms of the load voltage V; and
load current I; . Using the fact that Vi = V(2)|,-0 and I, = I(z)|,-o, and after some
manipulation, we have

V(z) = VLcos(Bz) — jlLZysin(B2) [3.27]
Vi .
1(z) = I cos(Bz) — ji sin(Bz) [3.28]
The voltages and currents at the source end (z = —!I) can be found from [3.27] and

[3.28] by substituting z = —I. Note that for a general complex load impedance Z ,
the load voltage V. and current I} are in general complex, so that equations [3.27]
and [3.28] do not necessarily constitute a decomposition of V(z) and I(z) into their
real and imaginary parts.

In general, the voltage and current standing-wave patterns on a terminated line
depend on the nature of the load. Typically what is plotted is |V(z)|, as was shown in
Figure 3.13 for a purely resistive load Ry, = 2Z,. In the general case, with a complex
load Z, , the reflection coefficient I} is complex, with ¢ # 0. From [3.22] we have

V(z) = V*[cos(Bz) — jsin(Bz) + pcos(y + Bz) + jpsin(y + B2)]
and

[V(2)| = |[V*|J/Icos(Bz) + pcos(¥ + B2)2 + [—sin(Bz) + psin(y + B2)]?
[3.29]

which is the quantity plotted in various figures as the voltage standing-wave pattern.
For ¢y = 0 or 7 (i.e., load is purely resistive) [3.29] reduces to

V(z)| = |V+l\/(1 + p)cos?(Bz) + (—1 = p)sin®(B2) [3.30]

where the lower signs correspond to the case for ¢y = . Similar expressions can
also be written for |/(z)|. Voltage and current standing wave patterns for different
types of load impedances are shown in Figures 3.15 and 3.16. The interpretation of
some of these patterns will become clearer after the discussion of line impedance in
the following subsection.
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FIGURE 3.15. Voltage and current standing-wave patterns for different
purely resistive loads. Magnitudes of the voltage and current phasors (i.e., |V(z)|
and Zy|I(z)|) are shown as functions of electrical distance from the load position
ZA, for V* = 1 and for R = 5Zy, 2Zy, Zy/2, and Zy/5.
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FIGURE 3.16. Voltage and current standing-wave patterns for complex loads.
Magnitudes of the voltage and current phasors (i.e., |V(z)| and Zy|I(z)|) are shown as
functions of electrical distance from the load z/A for V* = land forZy = Z, + jZ,
(inductive load) and Z, = Z; — jZ, (capacitive load).

In general, for purely resistive loads (Zp = R_ + jO), the load position is
a point of a voltage maximum or minimum, depending on whether Ry > Z, or
RL. < Z,, respectively. This behavior is apparent from Figure 3.15 and can also be
seen by considering [3.22] and [3.23]. For R, > Z,,0 <I} < land|V(z = 0)| =
Vmax = [V*|(1 + p), whereas for R, < Z;, —1 = . <0and |[V(z = 0)| = Vpyy =
V(1 = p).

The standing-wave patterns in Figure 3.16 for Z; = Z, * jZ, illustrate spe-
cific cases of the general behavior for loads with a reactive (capacitive or inductive)
component. In general, the sign of the reactance (positive or negative) can be de-
termined by inspection of the voltage standing-wave pattern. For Z;, = Ry + jXi,
X, is negative (i.e., the load is capacitive) when the first minimum is at a distance
smaller than one quarter of wavelength from the load (i.e., —Zmin < A/4) and X is
positive (inductive) when the first minimum is at a distance greater than one quar-
ter of a wavelength from the load (i.e., M4 < —zpi, < A/2), as illustrated in Fig-
ures 3.17a,b.
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FIGURE 3.17. Variation of the voltage standing-wave pattern in the vicinity of the load
for inductive or capacitive loads. In descriptive terms, starting from the load (i.e., z = 0),

the standing-wave voltage at first increases (decreases) as one moves away from the load (i.e.,
clockwise in the diagrams shown) for an inductive (capacitive) load. (a) |V(z)| for a capacitive
load. (b) |V(2)| for an inductive load. (¢) [V(2)] = |1 + I'(z)| as the sum of two complex numbers,
1 and I(2), for a capacitive load (-7 < ¢ < 0). (d) [V(2)| = |1 + I(2)| as the sum of two complex
numbers, 1 and I'(z), for an inductive load (0 < ¢ < ). Note once again that V* = 1.

The behavior illustrated in Figures 3.17a,b can be understood upon careful ex-
amination of [3.21] and [3.22]. For a general complex load impedance, [3.21] can
be rewritten as

Ry + jXL — Zy _ (RL— Zo) + jXo
R .+ jXL+Zy (R.+Z)+ jXoL
The phase angle i of the reflection coefficientis0 < ¢ <7 if the load impedance is
inductive (X, > 0) and —7 < ¢ < 0 if the load impedance is capacitive (Xy < 0).
The magnitude of the voltage along the line can be written from [3.22] as

V()| = [V*II1 + T = [V*[|1 + pe®*??)]

where z = 0. Noting that |V*| is a constant, consider the second term and its varia-
tion with z (note that z decreases as one moves away from the load (at z = 0) along
the transmission line). This term is the magnitude of the sum of two numbers, one

IL = pe/ =



3.3 Lines Terminated in an Arbitrary Impedance mm 137

being the real number 1 and the other being a complex number, [(z) = pe/¥+289,
which has a constant magnitude p (0 = p =< 1, as determined by Z; and Z,)
and a phase angle ¢ + 2Bz that decreases with decreasing z (corresponding to
clockwise rotation of this complex number on a circle with radius p centered at
the origin on the complex plane). The two different cases of capacitive and in-
ductive load are shown respectively in Figures 3.17c and 3.17d. For an inductive
load, we see from Figure 3.17d that as we move away from the load (i.e., starting
at z = 0 and rotating clockwise), |V(z)| (which is proportional to |1 + I'(z)|) first in-
creases, reaches a maximum (at ¢ + 23z = 0), and then decreases, consistent with
the variation of |V(z)| for the inductive load as shown in Figure 3.17b. Similarly, for
a capacitive load, we see from Figure 3.17c that as z decreases (starting with z = 0),
|V(z)| first decreases, reaches a minimum (at ¢ + 2Bz = —1r), and then increases,
consistent with Figure 3.17a.

3.3.2 Transmission Line Impedance

An important property of a transmission line is its ability to transform impedances. In
Section 3.2, we saw that the input impedance of a short- or open-circuited transmis-
sion line segment can be made equal to any arbitrary reactive impedance by simply
adjusting its electrical length (I/A). The input impedance of a transmission line ter-
minated in an arbitrary load impedance Z; is similarly dependent on the electrical
length of the line, or the distance from the load at which the impedance is measured.
For the transmission line shown in Figure 3.12, the impedance seen looking toward
the load Z; at any position z along the line (—! = z = 0) given by [3.24] can be
rewritten as

_ V@ _ e P +Tef 7, — jZytan(B2)
Z(z) = 76 - ZOe_jpz_l"Lejpz - ZOZo—jZLtan(Bz) [3.31]

using [3.21], [3.22], and [3.23]. Expression [3.31] for the line impedance is often
written as

Z, cos(Bz) — jZosin(Bz)

Zycos(Bz) — jZ.sin(Bz)

Note that since 8 = 2#/A, the impedance varies periodically with electrical

distance (z/A) along the line, with the same impedance value attained at intervals in
z of £A/2. At the load, where z = 0, we have

P I b
2e=0 =2 =%
as expected. In particular, the input impedance seen by the source at the source end,
where z = —1I,is

Z(2) = Zy

Z. + jZotan(Bl)

Z ¥ jZ an(B)) [3.32]

Za = Z@leens = 7 = 7y
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For example, for a short-circuited line (Z, = 0), the input impedance is
Zy, = jZytan(Bl)
and for an open-circuited line (Z; = ), itis
Zy = —jZycot(Bl)

as was shown in Sections 3.2.1 and 3.2.2.
The following example illustrates the dependence of the input impedance of a
line on its electrical length.

Example 3-7: Input impedance of a line. Find the input impedance of a
75-cm long transmission line where Z, = 70(), terminated with a Z; = 1400} load
at 50, 100, 150, and 200 MHz. Assume the phase velocity v, to be equal to the speed
of light in free space.

Solution:

(a) At f = 50 MHz, we have A = (3 X 10%)/(5 X 107) = 6 m, so the electrical
length of the line is I/A = 0.75/6 = 0.125. Noting that Bl = 2wl/A, we
then have, from [3.32],

140 + j70tan(27 X 0.125) _ _ (140 + j70)(70 — j140)

Zn = 1000 7 140@n@r X 0.125) ~ 0 (0) + (140)°
_ @2+ /)0 - j140) _ 280 — j210 — 56— j420)
5 5
since tan(27r X 0.125) = 1. Note that the input impedance of the line at
50 MHz is capacitive.
(b) At f = 100 MHz, we have A = 3 mand I/A = 0.75/3 = 0.25. From [3.32]
we have

140 + j70tan(2@ X 0.25) _ (70> _ 350
70 + j140tan(27 X 0.25) 140

since tan(27 X 0.25) = o, Note that the input impedance of the line at
100 MHz is purely resistive.

(c) Atf = 150MHz, A = 2mand /A = 0.75/2 = 0.375. We have from [3.32]

Zin =70

7 = 70140+ jT0tn@m X 0375) _ (140 - j70)(70 + j140)
n = 070+ j140tan2m X 0.375) (707 + (140)2
-l DRI~ 56+ jazey

since tan(27 X 0.375) = —1. Note that the input impedance of the line at
150 MHz is inductive.
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(d) At f = 200 MHz, we have A = 1.5 m and I/A = 0.75/1.5 = 0.5. We have
from [3.32]

140 + j70tan(27 X 0.5) _ 70 X 140

= = 140Q
70 + j140tan(27 X 0.5) 70 0

Zin =70

since tan(27 X 0.5) = 0. Note that the input impedance of the line at
200 MHz is purely resistive and is exactly equal to the load impedance.

Normalized Line Impedance In transmission line analysis, it is often con-
venient and common practice to normalize all impedances to the characteristic
impedance Z, of the transmission line. Denoting the normalized version of any
impedance by using a bar at the top, we can rewrite [3.31] to express the normalized
line impedance Z(z) in terms of the normalized load impedance Z;

Z, - jtan(Bz) _ Zicos(Bz) — jsin(B2)
1-jZ tan(Bz)  cos(Bz) — jZisin(Bz)

Z(z) = [3.33]

where

= ZL 1+ FL 1+ pej"’
ZL = =

Zy, 1-I. 1- pe
Using [3.25] and [3.26], we can further write

5 _ Zu _ 1+ jStan(Bzmn) _ cOS(BZmin) + jS Sin(Bzmin)
Zy S+ jtan(Bzmn)  Scos(Bzmin) + JjSIN(BZmin)

which expresses the normalized load impedance Z; in terms of the measurable quan-
tities S and Zpin.

Sometimes it is useful to express the real and imaginary parts of the load
impedance Z; = Ry + jX| explicitly in terms of zy;, and S:

- Ry S
RL = — = )
Zy  $2cos%(Bzmin) + SIN*(BZmin)

% - XL (52 = 1) cos(BZmin) SIN(B Zmin)
o= 4L o

Zy 52 co52(B Zmin) + Sin*(B Zmin)
The relationship between the polarity of X; (i.e., inductive versus capacitive) and
the distance to the first minimum, as depicted in Figure 3.17, can also be deduced
by careful consideration of the preceding equation for X; .
Example 3-8 illustrates the determination of an unknown load impedance from
measurements of S and Zpi,.

Example 3-8: Unknown load. Determine an unknown load Z_ from S
and Zzn;, measurements. The following measurements are carried out on a 100}
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Zy=100Q Zy,
S$=5 unknown FIGUR.E _3’18.' .
Transmission line terminated
-—— —o in an unknown impedance.

transmission line terminated with an unknown load Z; , as shown in Figure 3.18. The
voltage standing-wave ratio S is 5, the distance between successive voltage minima
is 25 cm, and the distance from Z to the first voltage minimum is 8 cm. (a) Deter-
mine the load reflection coefficient I', . (b) Determine the unknown load impedance
Z,.. (c) Determine the location of the first voltage maximum with respect to the load.

Solution:

(a) Using [3.25] and [3.26], we have
S—-1 5-1

25¢cm —> A =50cm

A
2

¢

I = pe’ =0.667e /¥

(b) Using the expression derived previously for Z; in terms of zy;, and S, we
have

-7 = 2BZmin = —T + 2(%)(8) = —0.367 rad or — 64.8°

(BZmin) = :—77—4_2-0—@ = —0327rad — tan(Bzmn) = —1.58
and so
01 + S tan(B zZmin) - 1001 — j5(1.58)

S + j tan(B zmin) (5 —Jj1.58)
(1 — j7.88)(5 + j1.58)
(5 — j1.58)(5 + j1.58)

ZL=

= 100

= 63.4 — j137.6Q

(c) The location of the first voltage maximum is A/4 away from the location of
the voltage minimum. Thus, we have

Zmax = Zmin — M4 = —8 - 12.5 = —20.5cm

Transmission Line Admittance In Sections 3.5 and 3.6, when we discuss
impedance matching and the Smith chart, it will be useful at times to work with the
line admittance rather than the impedance. From [3.31], we can find the expression
for line admittance as

1 1- l"Le"szZ _ Y. — ]Yo tan(BZ)

Y(2) = 7(5 = T+ TLeti2Br 0Yo — jYrtan(B2)

[3.34]
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where Y, = (Zy)™'. Using [3.33], the normalized line admittance Y(z) = Y(2)/Y,

can be written as

7. — jtan(Bz) _ Ficos(B2) — jsin(B2)

1 — jY_tan(B2) cos(Bz) — jYLsin(Bz)

The load reflection coefficient I'; can also be written in terms of admittances as
Yo — YL

T Yot Yo

Y(2) = [3.35]

I

Line Impedance for Resistive Loads The variation with z of the real and imag-
inary parts of the normalized line impedance is illustrated in Figure 3.19a for the
case of aresistive load with Z, = R, = 2Z,. The voltage and current standing-wave

Zy :}ZL=RL=220

125
Re[Z@)] = RQ) 2
1.5
f-—-11
I
/ ~ Y3 ~ | 0.5
s N -05/ SN025 | .
-1 -0.75 >~ / S K
S / _ _ ~ < // t —=0.5
S $mIZ(2)] = X(2) ~-
2/=-0.0985\ 1-1
(@)
2
V)l ZgI(2)! 1.5

z/IA

-1 -0.75 -0.5 -0.25 0

(®)
FIGURE 3.19. Impedance along a line terminated with Z, = R, = 2Z,. (a) The
real and imaginary parts of the normalized line impedance Z(z) are shown as functions of
Z/A. (b) Magnitudes of the voltage and current phasors (i.e., |V(z)| and Zo|I(z)|) are shown
as functions of electrical distance from the load z/A, for V* = 1.
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patterns (from Figure 3.13) are also shown for reference in Figure 3.19b. Note from
Figure 3.19a that, as viewed from different posmons at a distance z from the load, the
real part of the normalized line impedance varies between R(z) = 2and R(z) = 0.5,

with the distance between successive maxima being A/2. The line impedance is
purely real at the load and at distances of integer multiples of A/4 from the load.
These positions also correspond to the positions of voltage maxima and minima along
the line. For —z < A/4, the line impedance Z(z) is capacitive (i.e., its imaginary part
is negative; X(z) < 0), reminiscent of the behavior of the open-circuited line'' (see
Figure 3.9). For M4 < —z < A2, the line impedance Z(z) is inductive (X(z) > 0),
switching thereafter back and forth between being inductive and capacitive at inter-
vals of A/4.

An interesting aspect of the result in Figure 3.19a is the fact that Re{Z(2)} = 1
atz, = —0.0985).'2 If the imaginary part of the line impedance at that position could
somehow be canceled (as we shall see in Section 3.5), the line would appear (from
all positions at locations z < —0.0985A) as if it were matched (i.e., terminated with
an impedance Z,). For example, such cancellation can in principle be achieved by
introducing a purely reactive series impedance that is opposite in sign to the reactive
part of Z(z) at that position, as will be discussed in Section 3.5. The following ex-
ample illustrates the determination of the point at which Re{Z(z)} = 1 for a specific
complex load impedance.

Example 3-9: An inverted-V antenna. A 50(} coaxial line filled with
teflon (v, = 21 cm-(ns)™!) is connected to an inverted-V antenna represented by
Z., as shown in Figure 3.20. At f = 29.6 MHz, the feed-point impedance of the
antenna is approximately measured to be Z; = 75 + j25()."* Find the two closest
positions to the antenna along the line where the real part of the line impedance is
equal to the characteristic impedance of the line (i.e., Z).

Solution: The line impedance at any position z is given by

(75 + j25) — j50¢ _ .3+ j(1 —20)
50— j(75+ j25)¢ T QR+ - j3¢

50Q coax 7z
vp =21 cm/ns L

z=0 FIGURE 3.20. A coaxial line
Z(z) connected to an antenna.

Z(z) = 50

Note that this makes sense because in Figure 3.19a the load resistance is larger than the characteristic
impedance (R, > Z,), which is also the case for the open circuit.

1fThe value of z; can be read roughly from Figure 3.19a or accurately evaluated from [3.33], by letting
Z(z) = 1 + jX(2).

3The ARRL Antenna Book, 17th ed., American Radio Relay League, pp. 27-28 and 27-29, 1994-1996.
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where { = tan(Bz), B = 2@/A, and A = v,/f = (2.1 X 108)/(29.6 X 10°) =
7.09 m. Multiplying both the numerator and the denominator with the complex
conjugate of the denominator, we can extract the real part of Z(z) as

503+ JA =20 (2+§)+1'3Z} _ 5032 +4) —30d —20)
Q@+ —-j38 2+ +j3 (2 + ) + (30)

The value of z for which we have Re{Z(z)} = Z, = 50€) can then be found as

32+ -3¢0 —2) _ 4,
@+ + @37

- 20242 -1=0 — 4,6 =-1370.366

Re{Z(2)} = %e{

RelZ(z)} = Z, — 50

Using

tan(Bz) = tan(z—ﬂg) = tan[ 27rz] 4

A 7.09

and noting that z < 0, we find
71 =—0.149A = —-1.06 m and =z, =-0444A=-3.15m

as the locations at which the real part of the line impedance is equal to the char-
acteristic impedance of the line.

Some aspects of the behavior of the real and imaginary parts of the line
impedance shown in Figure 3.19 for Z, = 2 can be generalized. For example,
the line impedance seen at the positions of voltage maxima (minima) is always
purely real and has maximum (minimum) magnitude. To see this, consider the
voltage along the line at the position of a voltage maximum (i.e., 2 = Zpa) given by

V(Z = Zmax) = Ve P[] 4 pe/¥*2hwmd] = Y+ e /P (] + p)
with a maximum magnitude of
[V(z = Zma)lmax = Vimax = [V*|(1 + p)
occurring at
Y+ 2B2nx = —m2m m=20123...

where =7 = ¢ < 7, Zpx = 0, and where m = 0 does not apply if —7 = ¢ <O0.
At the same position, the current is equal to
+

\%4 .
I(z = Zpax) = Ze""‘m(l -p)
with a minimum magnitude given by
v+

II(Z = Zmax)lmin = Inin = Za (1-p
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so that the line impedance Z(zma) = V(Zmax)/I(Zmax) is clearly purely resistive and
has a maximum magnitude given by

IZ(Zmax)lmax = Rpax = — = Zo—— = S7Z, [3.36]

whereas at the voltage minima (Zmin = Zmax — A/4), the line impedance Z(Zpy) is
purely resistive with a minimum magnitude given by

Vmin 1-

°
vl N

|Z(zmin)|min = Rpin = [3.37]

—

R

Imax

Also, for purely resistive terminations (Z, = R.), the load is at a position of either
minimum or maximum for the voltage and therefore, the load impedance Ry is either
equal to the minimum (R, = Zy/S when Ry < Z;) or maximum (R, = SZ, when
Ry > Z,) magnitude for the line impedance. Note that we have

& for RL > Z,
S_1+p_ Zy
——l—p_
é for R <Z,
Ry

Line Impedance for Complex Load Impedances For general load impedances
that are not purely resistive (i.e., Zp = Ry + jX1), the behavior of the line impedance
Z(2) = R(z) + jX(z) is similar to that for purely resistive loads, in that its real part
R(z) varies between a maximum value of SZ, and a minimum value of Zy/S, and the
imaginary part X(z) alternates sign at intervals of A/4. (SZ, occurs at the positions
of the voltage maxima when the line impedance is purely resistive and therefore is
also the maximum magnitude of the line impedance. Zy/S occurs at the positions
of the voltage minima when the line impedance is also purely resistive and there-
fore is also the minimum magnitude of the line impedance.) However, the maxima
and minima of the magnitudes of either the voltage or the line impedance are not
at the load position. Figures 3.21 and 3.22 show plots of the real and imaginary
parts of the normalized line impedance Z(z) as functions of z/A for selected load
impedances.

Example 3-10 illustrates the numerical evaluation of the reflection coefficient,
standing-wave ratio, and maximum and minimum line resistances for a complex
load termination.

Example 3-10: Reflection coefficient, standing-wave ratio, and maxi-
mum and minimum resistances. A radio transmitter is connected to an an-
tenna having a feed-point impedance of Z; = 70 + j100() with a 50} coaxial line,
as shown in Figure 3.23. Find (a) the load reflection coefficient, (b) the standing-
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- Zo }ZL=RL

(@) R_=5Z,
Re[Z(2)] 1
A o~ = oS
- TS y FYYS b) R =2Z
-1 073 wo_.<05  -025 ~~-__0] ®Ff=2%
$mZ(z
Z| Ll
Re[Z(2)] 21
2/ - ==
e --2075 ~0.5 N __-=025 o] ©R=202
=
mZ@)] Ll
Re[Z(2)] 4t
1 ’l \X 2+
! N
zIA ,' l' \\\
o= ' = : (d) R_=Z,/5
SIS 1075 S05TSs 0 fo2s 0
Y _ N
N ImZ@) N 27

FIGURE 3.21. Line impedance for different purely resistive terminations
The real and imaginary parts of the normalized line impedance Z(z) are shown
as functions of electrical distance z/A along the line for Z; equal to (a) 5Zo, (b)

2Zy, (c) Zo/2, and (d) Zo/5.

wave ratio, and (c) the two positions closest along the line to the load where the line
impedance is purely real, and their corresponding line impedance values.

Solution:
(a) The load refiection coefficient is
I - Z. -2y _ 70 + j100 — 50 _ 1+ j5
LT Zu+Z, 70+ j100+50 6+ j5

= M =~ (0.653¢/3%
J61eian'6)
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Zo ? Z

Re[Z(2)]

-1 S _o715 !l -os 025 g 0
SN 1) — o 1

Sso/ Im[Z(2)] S T -1

-2

7 + t + + +
-1 -0.75 So_-0s 025 ~
! Sso_/ ImiZ) S
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FIGURE 3.22. Line impedance for two different complex load impedances. The
real and imaginary parts of the normalized line impedance Z(z) are shown as functions of
electrical distance z/A along the line for (a) Z. = Zo + jZo and (b) Z1. = Zo — jZ,.

Radio Coax Antenna

transmitter Z,=50Q Zy=70+j100Q

z=0

FIGURE 3.23. Transmission line terminated in an antenna. In
general, the feed-point impedance of an antenna is complex.

(b) The standing-wave ratio is

_1+p 1+0.653

T 1-p 1-0653

(c) The maximum voltage position is the position z,,, at which the line imped-
ance is purely real and the magnitude of the line impedance is a maximum,;
note that the position of the first voltage maximum is closer to the load than
that of the first voltage minimum because the load impedance is inductive.
To find the maximum voltage position, use ¢ + 2Bzpx =0 —  Zpe =
—0.054A:

S 4.76

Ruax = SZy = (4.76)(50) = 2382
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The minimum voltage position is the position zm, at which |Z(z)| is mini-
mum; note that this is the next closest position where the line impedance
Z(z) is real. To find the minimum voltage position, use

ll/ + 2ﬁzmin = =T > Znpin= —0.304A
Note that as expected, zZmin = Zmax — A/4. We then have
Ruin = Zo/S = 50/(4.76) = 10.50)

3.3.3 Calculation of V*

Up to now, we have primarily focused on the line impedance and the variation of
the voltage and current along the line without particular attention to the source end
of the line. The source that excites the transmission line shown in Figure 3.12 is a
voltage source with an open-circuit phasor voltage V, and a source impedance Z;.
Using Equation [3.22], the voltage V; at the source end of the line (z = —[) is

Vi =V(z = -1) = Ve (1 + TLe )
As seen from the source end, the transmission line can be represented by its input
impedance, Z;,. We can thus also express the source-end voltage phasor V; in terms
of the source parameters V, and Z by noting the division of voltage between Z;, and
Z,, namely, 7z

= V
V= Zarz,""
By equating the two preceding expressions for V,, we can solve for the constant V*:
Zin VO
+

" (Za + Z)elP(1 + e 7))
Note that the knowledge of V* and the wavelength A = 27/ completely specifies
the transmission line voltage and current as given in [3.22] and [3.23], as for any
given transmission line with characteristic impedance Z, and load Z; (and hence
).
Example 3-11 illustrates the calculation of V* by considering the source end of
a terminated transmission line circuit.

Example 3-11: Coaxial line feeding an antenna. A sinusoidal voltage
source of Vy(f) = 10cos(57 X 107¢) V and R, = 20} is connected to an antenna
with feed-point impedance Z; = 100} through a 3-m long, lossless coaxial trans-
mission line filled with polyethylene (v, = 20 cm-(ns)~") and with a characteristic
impedance of Z, = 50(), as shown in Figure 3.24a. Find (a) the voltage and cur-
rent phasors, V(z) and I(z), at any location on the line and (b) the corresponding
instantaneous expressions V'(z, f) and $(z, 1).

Solution:
(a) At f = w/(27) = 25 MHz, the wavelength in a polyethylene-filled coaxial
line is
A = v,/f = (20 cm-(ns) ")/(25MHz) = 8 m
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Zin
R,=20Q [=3m
+ &5 50Q coax filled Antenna

Vo= 10e/° — > with polyethylene V; -

0 . L < z, =100

V) _ Vp= 20 cm/ns _
25 MHz

z=-3m (a) z=0

®

z=-3m

Equivalent Circuit

FIGURE 3.24.  Coaxial line feeding an antenna. (a) Circuit configuration.
(b) Thévenin equivalent circuit seen from the source end.

The electrical length of the 3-m line is then I/A = 3/8 = 0.375, so we have
Bl = 27(0.375) = 37/4 and tan(B!) = —1. The input impedance seen at
the source end is

Z. + jZytan(Bl) _ 501OO+ J50(—1)
Zy + jZ tan(Bl) 50 + j100(—1)

Zyn=Z(z= -1 =2

100 - j50\/1 + j2 . . .
= = —_ = +
( =) )(1 " j2> (20 — j10)(1 + j2) = 40 + j30Q
Using the equivalent circuit shown in Figure 3.24b, we have
Z 40 + j30 5e736% 10.3°
= n = o = .4 j10.3 V
R+Z, ° 60+ j30(10) (10) = 7.45¢

3 \/g £i26.6°

We can also write an expression for V; by evaluating V(z) at z = —3 m as

Vi = V(z = —3m) = V*e?™(1 + [ e ™)

Vs

where I is the load reflection coefficient given by
_Z4.-%Z, 100-50 1
T Zu+Z, 100+50 3

Equating the two expressions for V,, we can determine the complex
constant V*

I

ez vie (1 * %)z 74560 = V*=7.07e%V

so that the voltage phasor at any position z from the load is given as
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V(z) = 7.07e /143 ¢ Im4 (1 + Leim™) v
and the corresponding current phasor is
I(z) = 0.141¢ /14¥ g7 imd4 (1 -1 ejm/z) A
(b) Using ¥V'(z, 1) = Re{V(z)e/*'} and $(z, 1) = Re{l(z)e’*'}, we find

mZ

4

V(z t) = 7.07 cos (577107t - % - 143°)+ 2.36 cos (577107t +

- 143°) \"
and

$(z,t) = 0.141 cos (577107t - %E - 143°>—~ 0.0471 cos (577107t + % - 143°) A

3.4 POWER FLOW ON A TRANSMISSION LINE

In practice, the primary purpose of most steady-state sinusoidal transmission line
applications is to maximize the time-average power delivered to a load. The power
and energy flow on a transmission line can be determined from the line voltage and
line current; the product of the instantaneous current $(z, t) and instantaneous volt-
age ¥'(z, ) at any point z is by definition the power that flows into the line' at that
point. In most applications, the quantity of interest is not the rapidly varying instanta-
neous power but its average over one sinusoidal period T ,, namely, the time-average
power, which is given by

TP
P.(2) = TLL V(z, 1)9(z, t)dt
p

where T, = 27/w. The time-average power can also be calculated directly from the
voltage and current phasors:

Py(2) = ;Re{V(@QU (2]}

Consider the general expressions for the voltage and current phasors along a
lossless uniform transmission line:

V@) = Ve B+ [V el

vt _. v+
1) = —e P —T —eP*

Zy Zy

forward wave reverse wave

14Note that the product ¥ (z, £)$(z, 1) represents power flow into the line, rather than out of the line, due
to the defined polarity of the current I(z) and voltage V(z) in Figure 3.12.



150 mm Chapter 3 / Steady-State Waves on Transmission Lines

We denote the time-average power carried by the forward and backward trav-
eling waves as P* and P, respectively, and we evaluate them directly from the
phasors. The time-average power carried by the forward wave is

A = =

.1 (V*e iBy(V*e By | VH(V*)  |V*

Note that although V* is in general complex, V*(V*)* = |[V*|? is a real number."
The power carried by the reverse-propagating wave is
(TLV*ePry(—T L V+telPr)y a4 VP
= — FLFL = — p
Zy 27, 27,

P = %Q‘te{

The fact that P~ is negative simply indicates that the backward wave carries
power in the opposite direction with respect to the defined polarity of I(z) and V(z)
in Figure 3.12. The net total power in the forward direction is then given by

A S A e L A
=2z, Pz, T 27

Thus, the net time-average power flow on a transmission line is maximized
when the load reflection coefficient I} is zero, which, according to [3.21], occurs
when Z; = Z,. Note that when I = 0 and thus Z; = Z,, the standing-wave ra-
tio S = 1, as is evident from [3.25]. Since the transmission line is assumed to be
lossless, all of the net power flowing in the +z direction is eventually delivered to
the load. ‘

The same result can also be obtained by examining the power dissipation in the
load, which is given by'¢

P = JRe{VL L[} = %IILP?R"{ZL} = %IILIZRL

Py = P* + P~

(1-p (3.38]

Noting that we have
VL = V(@)zo = VM + LV = V*1 + 1)
v+ vy v
L =1(2);=0= 5 T = =10 -1,
L = I(@):-0 z Lz =z ( L)

and substituting in the preceding expression for Py, we find

BIf V+ = A+ jB, then V¥*(V*)* = (A+ jBXA — jB) = A>+ B> = |A+ jB|* = [V*].
16Note that Py can also be written in terms of the load voltage Vy, and load admittance Yy as

Py = Y|V Re{YL} = JIVLPGL
where Yy = Z[' = G + jB..
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Zy

_ g [V @ - LI _ VP
2%{ . = =)

PL= SRelVilj) = %%e{ ia+ivrd - FL)T']

[3.39]

which is identical to the total net forward power P,, as derived in [3.38]. We see that
P,, = P, as expected, since, for the case of a lossless line as assumed here, all of
the net power traveling toward the load must be dissipated in the load.

The same result can further be obtained by evaluating P(z) at any point along
the line using the total voltage and current phasors (rather than separating them into
forward and reverse traveling wave components). In other words,

Py(2) = %%e{V(z)[l(z)]*}

where V(z) and I(z) are given by [3.22] and [3.23], respectively. (This derivation is
left as an exercise for the reader.)
In summary, the total net power propagating in the +z direction is

v+

27,

Py(2) = (1-p) (3.40]

and the following observations concerning power flow on a lossless transmission line
can be made:

m  For a given V*, maximum power is delivered to the load when Z; = Z,, I\ =
0 (i.e., p = 0), and § = 1. Noting that Z, is a real number, this condition is
realized when the load is purely resistive, that is, when Z;, = R, = Z,. When
Ry = Z,, the load is said to be matched to the line and all of the power P* is
delivered to the load. Detailed discussion of impedance matching is given in
Section 3.5.

m  To deliver a given amount of power (say, Pp) when the line is not matched (i.e.,
S > 1) requires higher wave power in the incident wave with correspondingly
higher voltages (P* = |V*|*/(2Z,)). The higher voltages are undesirable as they
may cause breakdown!” of the insulation between the two conductors of the line.

= The power efficiency achieved by matching can be assessed by considering the
ratio of the power P, thatis dissipated in a given load to the forward wave power
P* that would be delivered to the load if the line were matched:

P , 4§
P+ P = a+sy

"Electrical breakdown of insulating materials will be discussed in Section 4.10.
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FIGURE 3.25. Power efficiency as a function of standing-wave ratio S.

The variation of P./P* with S is plotted in Figure 3.25. We see that P./P* = 1
for § = 1 and monotonically decreases to zero as S gets larger. Note that for voltage
standing-wave ratios S < 1.5, which are relatively easy to achieve in practice, more
than 90 percent of the power in the forward wave is delivered to the load. In other
words, it is not necessary to strive for S very near unity to attain maximum power
transfer to the load. Usually the more important issues are ensuring that the value of
S is not so large as to make the line performance highly sensitive to frequency (see
Section 3.5), and that the design of the line can accommodate large reactive voltages
and currents that accompany a large value of S.

The degree of mismatch between the load and the line is sometimes described
in terms of return loss, which is defined as the decibel value of the ratio of the power
carried by the reverse wave to the power carried by the forward wave, given as

+1
Return loss = —20 log,, p = 20 log,, %—_—i

If the load is perfectly matched to the line (p = 0), the return loss is infinite, which
simply indicates that there is no reverse wave. If the load is such that p = 1 (i.e.,
a short-circuited or open-circuited line, or a purely reactive load), then the return
loss is 0 dB. In practice, a well-matched system has a return loss of 15 dB or more,
corresponding to a standing-wave ratio of ~1.43 or less.

Examples 3-12, 3-13, and 3-14 illustrate the calculation of power flow and power
delivery to the load for three different transmission line configurations.

Example 3-12: A 125-MHz VHF transmitter-antenna system. A
VHF transmitter operating at 125 MHz and developing V, = 100¢/” V with a
source resistance of R; = 50} feeds an antenna with a feed-point impedance!® of

18The ARRL Antenna Compendium, Vol. 4, p. 56, The American Radio Relay League, 1995-1996.
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R=50Q| -« —j=17m—-»

——AAA——0
VHF + - +
transmitter ,9 ‘—V—’ C;a);till;dnzvnth v VHF antenna
Vo= 100e/0 v A L | z =100-j60Q
(125 MHz) 0 -

o o
(a)
R, 1,
. +

Vo= 10070V v ,
(125 MHz) @ s in

(®)

FIGURE 3.26. A 125-MHz VHF transmitter-antenna system. (a) Circuit
diagram. (b) Equivalent circuit seen by the source.

Z; = 100 — j60 through a 50(), polyethylene-filled coaxial line that is 17 m long.
The setup is shown in Figure 3.26a. (a) Find the voltage V(z) on the line. (b) Find
the load voltage V; . (c) Find the time-average power absorbed by the VHF antenna.
(d) Find the power absorbed by the source impedance R;.

Solution:

(a) First we note that for a polyethylene-filled coaxial line, the wavelength
at 125 MHz is (using Table 3.1 and assuming v, at 125 MHz is the
same as that at 300 MHz) A = v,/f = (2 X 10® m/s)/(125 MHz) =
1.6 m. The length of the line is then

I = 17m = 10.625A = 10.5A + 0.125A

Noting that tan(B!) = tan[(27/A)(0.125A)] = tan(7/4) = 1, and the input
impedance of the line seen from the source end is then
Zy + jZytan(Bl) _ 50(100 — j60) + j50tan(m/4)
Zy + jZy tan(BI) 50 + j(100 — j60) tan(wr/4)

100 — j10 _ 50(100 — j10)(110 — Jj100) _
110 + j100 (110)* + (100)

Zn =12

=50 22.6 — j25.1Q

The equivalent circuit at the source end is as shown in Figure 3.26b. The
source-end voltage V is then
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Z 22.6 — j25.1

= ~ Jj0°
V= g3z~ 501226 j25.1.0%
- j48° - oo
= ige—,——‘,IOOe’O = 44.08_128'9 Vv
76.8¢-7191

But we can also evaluate V from the expression for the line voltage V(z) as
Vi =V(z=—17m) = Vte /P41 + I Le?P?)
= V*elSm(1 + 0.483¢ /B4 i)
= V*e ?4(0.770 — j0.425)

where we have used the facts that /237 = /lB7 = g=/0T57 =ja25m —
e~1%57 and that the load reflection coefficient I is

_ 100 — j60—50 _ 50— j60
" 100 - j60 +50 150 — j60

Equating the two expressions for V;, we can determine the unknown voltage
V* as

V, = Ve 74(0.770 — j0.425) = 44.0¢ %% — V¥ = 50e”™V
Thus the expression for the line voltage is
V(2) = 507 15m74(] + 0.483¢SH4 D) v
(b) The voltage at the load end of the line is
VL = V(z = 0) = 50e”™(1 + 0.483¢™7%)
= 50e3™(1.43 — j0.230) = 72.2¢7/1%" V

(c) Using the value of Vy, the time-average power delivered to the VHF antenna
can be calculated as

= 0.483¢ 72

I

1 1| v, ? 72.2)*(100
P = S, = 3% &, ~ 022000

LI R = =192 W
21| 7t 23136 x 10%)
where |Z,* = |100 — j6O] = (100)* + (60)* = 1.36 X 10*. Note that P
can also be found using the source-end equivalent circuit (Figure 3.26b).

Since the line is lossless, all of the time-average power input to the line at
the source end must be absorbed by the antenna. In other words,

UVl 1 @40P
21Za| " 2[(22.6) + (25.1)1]
(d) Noting that R, = 500 and Z;, = 22.6 — j25.1(), the current at the source

end (again considering the lumped equivalent circuit shown in Fig-
ure 3.26b) is

Py (22.6) =192 W

Vo 100ef0°

= = ~ j19.1°
R+Z —s01me—jos1 0 A

I
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Using the value of I, the time-average power dissipated in the source resis-
tance R, is then

Py, = LI R, = 1(1.30)°(50) = 423 W

Therefore, the total power supplied by the VHEF transmitter is Piow = Pg, +
PL=615W.

Example 3-13: Parallel transmission lines. Three lossless transmission
lines are connected in parallel, as shown in Figure 3.27. Assuming sinusoidal steady-
state excitation with a source to the left of the main line, find the reflection coef-
ficient on the main line and the percentage of the total net forward power that is
absorbed by the two loads Z;, and Z;; for the following cases: (a) Zy; = Zyp, =
Zo3 = Z]_2 = ZL3 = 1000, (b) Zm = SOQ, Z()2 = Zo3 = ZL2 = ZL3 = IOOQ, and
(C) Z()l = Zoz = Zo3 = IOOQ, ZL2 = ZL3 =50+ 1509

Solution:

@) Zoy = Zop = Zoy = Z1, = Zi3 = 10002
Since the two parallel branches are both matched, the input impedance seen
at the terminals of each branch is independent of its line length and is simply
100£). Thus, the line impedance Z; seen from the main line is the parallel
combination of two 100€) impedances, or Z; = 50(). The reflection coeffi-
cient at the junction (as seen from the main line) is then

Z;~Zy _50-100 1

Ty = Zi+Zy 50+100 3
Source T Main fine
end - Zo

FIGURE 3.27. Parallel transmission lines. A main line with
characteristic impedance Z;, drives two other lines of lengths A/4 and
M2, with characteristic impedances Z,, and Zg3, respectively.
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(b)

©

In other words, the power efficiency, defined as the percentage of total power
that is delivered to the loads versus that of the forward wave on the main line,
is
P
P+
Since each line presents the same impedance at the junction, each load ab-
sorbs half of the total power delivered, or approximately 44.4% of the total
power of the incident wave.
Z()l = SOQ, Zoz = Zg3 = ZL2 = ZL3 = 1009
The line impedance at the junction seen from the main line is once again
Z; = 50(). However, the reflection coefficient is now zero since

Z;—Zy _50-50
Z,+Zy 50+50
In other words, 100% of the power of the forward wave in this case is de-
livered, with each load absorbing 50%.

Zyy = 2oy = Zps = 1000, Z;, = Z;3 = 50 + j50Q)

We now need to evaluate the input impedances of each of the two parallel

sections at the junction as seen from the main line. Note that the length of
line 2 is A/4, so that using [3.32], its input impedance is

Zinz = ZOZ ZL2 i ]Z02 tan(z_'\:é
Zy + jZiytan(5 4
Zy® _ (100)° 200 1-j .
Zi, 50450 1+j 1-j /100
whereas line 3 has length A/2 and thus presents Z; 5 at the junction; in other
words, Zi,, = Zi3 = 50 + j50Q). The line impedance Z; at the junction as
seen from the main line is then the parallel combination of Z;, and Z,,,
namely,

_ (100 — j100)(50 + jS0) _ 1001 — j)(1 + j)

/'~ 700 — 100 + 50 + ;50 3-;

(1 = |T;P2) x 100 ~ 88.9%

Fj= O

= 2—3)2(3+j) = 60 + j20
and the reflection coefficient at the end of the main line is
_Zi—Zy 60+j20—100_—40+j20_(—2+j)<8—j)

J C Zi+Zy  60+j20+100 160+j20 \8+; )\8—
=15+ 10 _ -3+ j2 a6
= 3 =53 = 0.277¢
The percentage of the incident power delivered to the two loads is thus

Py

o (1T x 100 = 92.3%
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Since the two impedances Zi,, and Z;,, appear at the junction in parallel,
they share the same voltage. In other words, we have

v P 1| v; [
PL2 = ‘i Zinz 5 QRe{ZinJ}

We can thus calculate the ratio of the powers delivered to the two loads as
P _ |Zu[RelZn} _ (SO +(S0F1100) _
P, |Zu[Re(Zn}  [(100)" + (100)°](50)
Therefore we have

P, ~1x923%=308% and P, =2%X923%=615%

J

Zin;

QRe{Zinz} and PL3 =

Example 3-14: Cascaded transmission lines. An antenna of measured
feed-point impedance of 72 + j36( at 100 MHz is to be driven by a transmitter
through two cascaded coaxial lines with the following characteristics:

Zoy = 120Q I, = 3.75m air-filled v, = ¢ =30cm-(ns)”'
Zyp = 60Q0 I, = 1.75m polyethylene-filled v, =20 cm-(ns) !

where we have used Table 3.1 for the phase velocity v, for the polyethylene-filled
coaxial line assuming it to be approximately the same at 100 MHz. (a) Assuming
both lines to be lossless and assuming a source voltage of Vo = 100¢’° V and resis-
tance of R, = 50Q) for the transmitter, find the time-average power delivered to the
load. (b) Repeat part (a) with /;, = 4.5 m. The setup is shown in Figure 3.28a,

Zin
R, = 500 | 1}=375m r -
Transmitter + Air Polyethylene Antenna
Vo= 100¢/0 v Zp = 120Q Zy = 60Q VL Z; =72+j36Q
V) s Vp1 = 30 cm/ns Vpo = 20 cm/ns
100 MHz <
(2) I
,=175m
ZX
Vo = 100e/© Zin

()

FIGURE 3.28. Cascaded transmission lines. (a) Circuit diagram showing an air-filled line of
impedance 1200 cascaded with a polyethylene-filled line of impedance 60Q). (b) Equivalent circuit
seen by the source.
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Solution:

(a) At 100 MHz, the wavelengths for the two coaxial lines are respectively A, =
Vol f =3 X 108/10° = 3 m, and A, = vu/f = 2 X 10%/10° = 2 m. The
lengths of the lines are then

[, = 3.75m= 1.25\; = \; + 025\
L, = 1.75m = 0.875\, = 0.5\; + 0.375\;
Note that the corresponding phase constants are 8; = 2m/A; and B, =

2m/A,. The impedance Z, seen looking toward the load at the interface be-
tween the two coaxial lines is

7o+ jZptan(Bl) (72 + j36) + j60(—1)

Z, = = : :
Ly iz (Bl 60 + J(72 + j36)(—1)

o 72-j24 03— (B )D@+j3) _ .
_6096+j72_ 4—j3_60 g - 0+ j120
since tan[(27/A,)l,] = tan(37/4) = —1. The input impedance is then

Z, = ZOIZX + jZoi tan(Boli) _ Z} - (120)?

Zo + jZ.tan(Bol)  Z. 36+ j12
_ (120936 - j12)

3G 1102 = 360 — j120Q
With reference to the equivalent circuit in Figure 3.28b, we have
Voo Ln_y, 3007 120(100) ~ 88.8¢7 217V

R +Z, ° 410-
Thus the power delivered to the antenna is

V 1 (888)
2(1.44 X 105)

E’Re{Zm} = (360) = 9.86 W

(b) With [, = 4.5 m = 1.5\, we have

o ) 36+ j12 _ j10.5°
Zp,=36+j12 — V= T j12(100) =43.7e A%
so that
1(43.7)?
L= 3 (1240) ———(36) =23.9W

which is a significant improvement in power delivered, achieved simply by
making the first line segment longer. This result indicates that the amount
of power delivered to a load sensitively depends on the electrical lengths of
the transmission lines.
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3.5

IMPEDANCE MATCHING

We have already encountered the concept of impedance matching in previous sec-
tions, in connection with standing waves on transmission lines. It was shown tha: if
the characteristic impedance Z; of the line is equal to the load impedance Z, , the re-
flection coefficient I = 0, and the standing-wave ratio is unity. When this situation
exists, the characteristic impedance of the line and the load impedance are said to be
matched, that is, they are equal. In most transmission line applications, it is desirable
to match the load impedance to the characteristic impedance of the line in order to
reduce reflections and standing waves that jeopardize the power-handling capabili-
ties of the line and also distort the information transmitted. Impedance matching is
also desirable in order to drive a given load most efficiently (i.e., to deliver maxi-
mum power to the load), although maximum efficiency also requires matching the
generator to the line at the source end. In the presence of sensitive components (low-
noise amplifiers, etc.), impedance matching improves the signal-to-noise ratio of the
system and in other cases generally reduces amplitude and phase errors. In this sec-
tion, we examine different methods of achieving impedance matching.

3.5.1 Matching Using Lumped Reactive Elements

The simplest way to match a given transmission line to a load is to connect a lumped
reactive element in parallel (series) at the point along the line where the real part
of the line admittance (impedance) is equal to thc line characteristic admittance
(impedance).!® This method is useful only at relatively low frequencies for which
lumped elements can be used. The method is depicted in Figure 3.29, which shows
a shunt (parallel) lumped reactive element connected to the line at a distance / from
the load.

Since the matching element is connected in parallel, it is more convenient to
work with line admittance rather than line impedance. The normalized admittance
Y(2) seen on the line looking toward the load from any position z is given by [3.34]:

_ Y@ _ 1-Te
Yo B 1+FLeJ'ZBZ

In Figure 3.29, matching requires that ¥, = ¥, + ¥; = 1. Thus we first need to
choose the position / along the line such that ¥(z = —I) = ¥; = 1 — jB, that is,
Re{¥,} = 1. Then we choose the lumped shunt element to be purely reactive with
an appropriate value such that ¥, = jB, which results in ¥, = ¥, + ¥; = 1. Sub-
stituting z = —1I, we have

1—Tpe /28! _

Y1, =Yz=-1)= T+Te 28 jB

19This possibility was noted earlier in Section 3.2.2 in connection with Figure 3.19, where Re{Z(z1)} = 1
at z; = —0.0985A. Note that, in general, the real part of the line admittance is equal to unity at some
other point z, # z;.
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Y,=Y+¥,

| l
—_———- o o o

Yy Y Yo [] r

———— o p— ° o5
FIGURE 3.29. Matching by a lumped shunt element. The shunt
element Y is connected at a distance / from the load such that the line
admittance Y,(z = —I) = Y (z = =) + Y5, = Y.

from which we can solve for the position / of the lumped reactive element, its type
(i-e., capacitor or inductor), and its normalized susceptance — B. Since the load re-
flection coefficient I is, in the general case, a complex number given by

we have

- 1 — pej‘/’e_jzﬁl 1 —_ pelo

Y= 1 + peite-i2B! 1+ pel® [3.41]

where 6 = ¢ — 281. By multiplying the numerator and the denominator by the
complex conjugate of the denominator,?’ we obtain

- 1-p? , 2psinf
= - 3.42
LT T+ 2pcos6+p2 '1+2pcosf + p? [3.421
\ \ J \ ~~ J
Re(f1}=1 —Sm{¥\}=B
Since Re{Y,} = 1, we can write
1-p? -1
1+ 2pcosf + p?
which yields
9 = ¢ — 281 = cos”\(—p) [3.43]

201 + pe1* = 1* + (pe’®)* = 1+ pe7®
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In other words, the distance [ from the load at which ¥Y(z = —I) = 1 — jB is
given by

¥ =0 _Y—cosTi(=p) _

2B 2B

A,
17 —cosT(=p)] (3.44]

Note that, in general, # = cos™!(—p) (with p > 0) has two solutions, one in the range
7/2 = 6, = m and the other in the range —7 < 0, = —7/2. Also, if [3.44] results
in negative values for [, then the corresponding physically meaningful solution can
be found by simply adding A/2.2' To find B, we substitute cos§ = —p and sinf =
+ /1 — p? (where the plus sign corresponds to /2 = 6; =< 7 and the minus sign
corresponds to —7 < 6, < —a/2) in the imaginary part of ¥, given by [3.42],
resulting in

— n2
L2Vimp 2 [3.45]
1-2p2 + p? /1= p?

where the plus and minus signs correspond to a shunt capacitor (B, > 0) and a shunt
inductor (B, < 0), respectively.? This susceptance also determines the value of the
lumped reactive element Y, which must be connected in parallel to the line in order
to cancel out the reactive part of ¥;. In particular, we should have ¥; = + jB so that
the total admittance ¥, seen from the left side of Y; in Figure 3.29 is

B = -g)m{Yl}lcos0=—-p =

Y2=Y1+Ys=l—jé+jg=l

When matching with series lumped reactive elements, similar equations can be
derived for the distance / away from the load at which Z, = Z(z = —I) = 1 — jX,

_yocostp_ A,
|l = T = 47T(¢I Cos p) [346]

and the normalized reactance of the series lumped element that would provide match-
ing is given by

X=+_2P
J1—p?

Example 3-15 illustrates impedance matching using a single shunt reactive
element.

21For negative [, we have —27 < 281 < 0. By adding A/2, we have 2B(I+A/2) = 2B1+2Q2m/A)(A2) =
281 + 27 > 0, which lies between 0 and 27r.

22Note that § = cos™!(—p) is an angle that is either in the second quadrant, /2 < 6, = 7 (when
sin@; > 0, requiring a capacitive element based on the polarity of the imaginary part of ¥; as given in
[3.42]) or the third quadrant, —7 < 6, < —a/2 (when sin 6, < 0, requiring an inductive element).
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Example 3-15: Matching with a single reactive element. An antenna
having a feed-point impedance of 110€} is to be matched to a 50} coaxial line with
v, = 2 X 10® m/s using a single shunt lumped reactive element, as shown in Fig-
ure 3.30. Find the position (nearest to the load) and the appropriate value of the
reactive element for operation at 30 MHz using (a) a capacitor, and (b) an inductor.

Solution: The load reflection coefficient is
Z.~27Z, 110-50

=752 " To+s %7
Using [3.45], the reactive admittance (or susceptance) at the position of the shunt
element is
B = tﬂ = +0.809

V1 —1(0.375)

(a) For B, = +0.809, the shunt element must be a capacitor. The nearest posi-
tion of the capacitor with respect to the load can be found as

6 A _ A
l} = —— = ———cos 1(—=0.375) = ——(1.955) = —0.156A = 0.344A
m2=0, =7
50Q
at 30 MHz
| L,=230m
50Q coax L ~85.8 50Q coax $ Antenna
vp= 20 cm/ns P pF v, = 20 cm/ns > Z;=110Q
(@
l,=1.04m
502 coax ~0.328 50Q coax Antenna
v, =20 cm/ns uH v, = 20 cm/ns Z =110Q
50Q
at 30 MHz
®)

FIGURE 3.30. Matching with a single reactive element. The two solutions
determined in Example 3-15. (a) Using a shunt capacitor. (b) Using a shunt inductor.
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Since A = v,/f = 2 %X 10%/(30 X 10°) = 6.67 m, the actual position of the
shunt capacitor is /; = 0.344 X6.67 = 2.30 m. To determine the capacitance
C;, we use

(joC)Z) = jB, — [jQm X 30 X 10°C)(50)] = + j0.809
— C,=858pF

(b) For B, = —0.809, the shunt element must be an inductor. Similarly, the

nearest position of the inductor is
0 A A -
L= 3B 7 oo (=0.375) = 4—;( 1.955) = 0.156A

—T<6,<-7/2

Using A = 6.67 m, the actual position of the shunt inductor is [, = 0.156 X
6.67 = 1.04 m. To determine the inductance L,, we use

[— (L) (Z) = jB, — [—jl2mw X 30 X 10°Ly)](50) = — j0.809
— L ~0328pH

3.5.2 Matching Using Series or Shunt Stubs

In Section 3.2, we saw that short- or open-circuited transmission lines can be used as
reactive circuit elements. At microwave frequencies, it is often impractical or incon-
venient to use lumped elements for impedance matching. Instead, we use a common
matching technique that uses single open- or short-circuited stubs (i.e., transmission
line segments) connected either in series or in parallel, as illustrated in Figure 3.31.
In practice, the short-circuited stub is more commonly used for coaxial and wave-
guide applications because a short-circuited line is less sensitive to external influ-
ences (such as capacitive coupling and pick-up) and radiates less than an
open-circuited line segment. However, for microstrips and striplines, open-circuited
stubs are more common in practice because they are easier to fabricate. For similar
practical reasons, the shunt (parallel) stub is more convenient than the series stub;
the discontinuity created by breaking the line may disturb the voltage and current in
the case of the series stub.

The principle of matching with stubs is identical to that discussed in Section
3.5.1 for matching using shunt lumped reactive elements. The only difference here
is that the matching admittance Y is introduced by using open- or short-circuited
line segments (or stubs) of appropriate length [, as shown in Figure 3.32. In the
following, we exclusively consider the case of matching with a short-circuited stub,
as illustrated in Figure 3.32. The corresponding analysis for open-circuited stubs is
similar in all respects and is left as an exercise for the reader.

With the required location ! and the normalized admittance B of the stub as
determined from [3.44] and [3.45], we need only to find the length of the stub [
necessary to present a normalized admittance of ¥, = +jB at the junction. For
this purpose, we can use expression [3.17] from Section 3.2 for the normalized
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Parallel
(shunt)
stub

Series
stub Zy I

Open or shorted
FIGURE 3.31. Matching by shunt or series open- or short-circuited stubs.

input impedance of a short-circuited line of length [; and set the corresponding nor-
malized admittance equal to + jB. Recalling that for a short-circuited line Z;, =
jtan(Bl), we have

or
1
tan(Bl) = —& [3.47]

The value of B determined from [3.45] can be used in [3.47] to find the length
of the short-circuited stub. Note that in [3.47], we have assumed the characteristic
impedance of the short-circuited stub to be equal to that of the main line.
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Y,=Y,+7,

FIGURE 3.32.  Matching with a single parallel (shunt) short-circuited stub.

In practice, single-stub matching can be achieved even if the load impedance
Z, is not explicitly known, by relying on measurements of S to determine p and
measurements of the location of the voltage minimum or maximum to determine ¢.
To see this, consider that the stub location / can be measured relative to the position
Zmax Of the nearest voltage maximum toward the load end so that I — Al = |Zma] <
A/2, as shown in Figure 3.33. Using [3.43], we can then write

. L+mA2 "
I 1
_ Z,s= / Zy, §>1 :]l 7= Z9(0.5-j0.5)
T2
gl oo |
[ ' L@ 1y
--------- 4
L1
Stub V) 05
A location
-1 -075 -05 -025

FIGURE 3.33.  Voltage standing-wave pattern on a transmission line with single-
stub matching. The standing-wave ratio S is unity to the left of the stub. The stub location
is at a distance of Alnx from the nearest voltage maximum toward the load end. The
particular case shown is for Z = 0.5 — j0.5. Note that, as usual, we have assumed V*+ = 1.
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S
Il

U — 2Bl = g+ 2Bzmax — 2BAlnax
= —m2m — 2BAlnax m=2012...

noting that m = 0 does not apply if —7 = ¢ < 0. Using the preceding expression
for 6, we have

1
2B
Thus, p can be directly determined from the measured standing-wave ratio, and
[3.48] determines the stub location with respect to the measured location of the volt-
age maximum.

Figure 3.33 also illustrates the fact that, although the proper choice of the stub
location [ and its length /; achieves matching so that the standing-wave ratio on the
source side of the stub is unity, a standing wave does exist on the segment of line
between the stub and the load.

Impedance matching using a single short-circuited transmission line stub is il-
lustrated in Example 3-16.

Al = — =510 + m27w] = —%[Cos"(-p) +m2w], m=0,12,... [3.48]

Example 3-16: Single-stub matching. Design a single-stub system to
match a load consisting of a resistance Ry = 200} in parallel with an inductance
Ly = 200/7 nH to a transmission line with characteristic impedance Z, = 100}
and operating at 500 MHz. Connect the stub in parallel with the line.

Solution: At 500 MHz, the load admittance is given by

1 1 1 1
-4+ r _ 1 . = 0.005 — j0.005 S
M= R UL T 200 ! 2300 X 109200/ (10)] J
The reflection coefficient at the load is
- Yo=Y 0010005 j0005) _ 1+j ¢4 e

T Yo+ Y. 001+ (0.005— jO.005) 3—
so that p = 0.447 and ¢ = 63.4°. Using [3.44], we have

S cos™!(—0.447) - (1.11 * 2.034))\ _, L=-00731

l
2(2m/A) 4 I, = 025\

where the first solution with a negative value of / can be realized by simply
adding 0.5 so that the stub position is between the load and the source. Thus, the
stub position for the first solution is /; = —0.073A + 0.5A = 0.426A. Note that
we have used 6§ = cos™!(—0.447) = *+117° = *=2.034 radians. Using [3.45],
the normalized susceptance of the input admittance of the short-circuited shunt
stub needed is

B 2(0.447)

= =]

J1—1(0.447)
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. 5,=0252
Solution 2

0O 0
Y, = (URy) <(l/oL,
100G 00e R Le (1/Ry) —(lwLy)
R_=200Q, L; = (200/r) nH
100Q
2= 01254 Y.=05-j0.5
at 500 MHz

1;~0.4261
0 O

¥, = (I/R) - (e,
100Q 100Q RQ L tT ROl
RL=200Q, L = (200/%) nH

/ 100Q

4

Solution 1

Iy =03754

FIGURE 3.34.  Two alternative single-stub matching solutions. Solution 2 would
in general be preferred since it has shorter segments of line (and a shorter stub) over
which the standing-wave ratio differs from unity.

where the plus sign corresponds to the stub position /, and the minus sign corre-
sponds to l,. From [3.47], the length [, of the short-circuited stub at a distance
1; from the load is

A 4 1 A
= — -—=|= = -1) = =0.125A — 0.375A
I tan ( B) 2Wtan -1 0.125A 37

and similarly, the stub length I, needed at position /, is

— A -1 —
lp = ﬁ tan"'(1) = 0.125A

Both of the alternative solutions are shown in Figure 3.34. Since Solution 2
gives a stub position closer to the load and a shorter stub length, it would usu-
ally be preferred over Solution 1. In general, standing waves jeopardize power-
handling capabilities of a line and also lead to signal distortion. Thus, it is de-
sirable to minimize the lengths of line over which the standing-wave ratio is
large. In the case shown in Figure 3.34, more of the line operates under matched
(S = 1) conditions for Solution 2.
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Standing ] s, .

wave ratio /
1 Solution 1
4 +

Solution 2

600

Frequency (MHz)

FIGURE 3.35. Frequency sensitivity of single-stub matching. The standing-wave
ratio S, versus frequency for the two alternative solutions given in Figure 3.34.

The frequency dependence of the various designs can also be important in prac-
tice. A comparison of the frequency responses of the two alternative solutions for the
previous example is given in Figure 3.35. Note that the load admittance as a function
of frequency f = w/(27) is given by

1 . 10°
V() = 550~/ 007
Assuming that the phase velocity along the line is equal to the speed of light ¢, we

have Bl = 27 fl/c. The line admittance seen just to the right of the short-circuited
stub is given as a function of frequency:

YL + jYotanQ2w fl/c)
Y() + jYL tan(27rfl/c)

If we also assume B, = 27 fl/c, the total line admittance seen from the source side
of the short-circuited stub (see Figure 3.32) is

—jYo YL + jYotanQmw fl/c)
tanQw flfc) = °Y, + jY. tanQRw fllc)
The reflection coefficient I, and the standing-wave ratio S, are then given as
Yo — Ya(f). 1+ ()|
Yo + Yao(f)’ 1 - ()

The quantity S,(f) is plotted in Figure 3.35 as a function of frequency between
400 and 600 MHz. Note that the bandwidths? of the two designs are dramatically

Yi(f) = Yo

nf)y=Y+Y, =

L(f) = S:(f) =

BDefined as the frequency range over which the standing-wave ratio S, is lower than a given amount,
for example, S, < 2. The particular value of S, used depends on the application in hand.
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different. Which solution to choose depends on the particular application in hand,
although in most cases minimizing reflections (S, < 2, for example) over a wider
frequency range is desirable. Note that, for the case shown, Solution 2 provides
matching over a substantially broader range of frequencies than does Solution 1.

3.5.3 Quarter-Wave Transformer Matching

A powerful method for matching a given load impedance to a transmission line that
is used to drive it is the so-called quarter-wave transformer matching. This method
takes advantage of the impedance inverting property of a transmission line of length
I = M4, namely, the fact that the input impedance of a line of length [ = A4 is
given by

_ 5 4+ jZytan(Bl)

- Zo + jZi tan(B1)

or in terms of normalized impedances, we have

_4

in -
1=M4 Z

Z;

I1=\a4 Zy

Z _ 1
A [3.49]

in

1=N4

hence the term “impedance inverter.” Thus, a quarter-wave section transforms
impedance in such a way that a kind of inverse of the terminating impedance ap-
pears at its input.

Consider a quarter-wavelength transmission line segment of characteristic
impedance Z,, as shown in Figure 3.36. In the general case of a complex load
impedance Z;, = R, + jX;, we have

Z

R, X
Lpn = ———— =
Ry + jX,

Yo = 5 +j5
% T4

so that a load consisting of a series resistance (R.) and an inductive reactance
(XL > 0) appears at the input of the quarter-wave section as an admittance consist-
ing of a conductance R /Z} (or a resistance Z%/R.) in parallel with a capacitive
susceptance X;/Z% > 0. Similarly, if the load were capacitive (X, < 0), it would
appear as a conductance Ry /Z} in parallel with an inductive susceptance X/Z} < 0.

Al4
; z Z, 7z FIGURE 3.36. Quarter-wave
ﬁ':::n 0 r ? L transformer. A load Z;_ to be driven by a

transmission line of characteristic impedance
Z, connected to the line via a quarter-
wavelength-long line of characteristic

Zn= 220 impedance Z.
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Purely Resistive Loads The practical utility of the impedance-inverting prop-
erty of a quarter-wavelength transmission line becomes apparent when we consider
a purely resistive load. Any arbitrary purely resistive load impedance Z; = Ry is
transformed into a purely resistive input impedance of Z%/Ry.. Thus, by appropriately
choosing the value of the characteristic impedance Zq of the quarter-wavelength
line, its input impedance can be made equal to the characteristic impedance Z; (a
real value for a lossless line) of the main line that is to be used to drive the load.
This property of the quarter-wave line can be used to match two transmission lines
of different characteristic impedances or to match a load impedance to the character-
istic impedance of a transmission line. Note that the matching section must have a

characteristic impedance of
Zo = JRIR, [3.50]

where R, and R, are the two resistive impedances to be matched. Note that in the
case shown in Figure 3.36, R. = Z, and R, = R,. Alternatively, R, could be the
characteristic impedance of another transmission line that may need to be matched
to the main line (Z,) using the quarter-wave section.

The following example illustrates quarter-wave transformer matching of a
purely resistive loac.

Example 3-17: Quarter-wave transformer for a monopole antenna.
Design a quarter-wavelength section to match a thin monopole antenna of length
0.24A? having a purely resistive feed-point impedance of R = 30} to a transmis-
sion line having a characteristic impedance of Z, = 100().

Solution: With reference to Figure 3.37 and according to [3.50], the A/4 sec-
tion must match two impedances—R, = Ry and R; = Z; = 100{)—and thus

Al4
Zy=100Q Zy=548Q Monopole
§=1 5§=183 antenna

Main line Ry =30Q

[ |

FIGURE 3.37. Quarter-wave transformer. The load is a monopole
antenna of length 0.24A, which has a purely resistive impedance of 304).

24The reactive part of the impedance of such monopole antennas with length just shorter than a quarter
wavelength is nearly zero. Monopole or dipole antennas with purely resistive input impedances are
referred to as resonant antennas and are used for many applications. (See Section 14.06 of E. Jordan and
K. Balmain, Electromagnetic Waves and Radiating Systems, Prentice Hall, 1968.)
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must have a characteristic impedance Zq of
Zo = JR\Ry, = JZ,R. = J/(100)(30) = 54.8Q)

The standing-wave ratio is unity beyond the quarter-wave section. However,
note that S = 1.83 within the A/4 section.

Complex Load Impedances In using quarter-wave transformers to match a
complex load impedance to a lossless transmission line (i.e., where Z, is real), it is
necessary to insert the quarter-wave segment at the point along the line where the
line impedance Z(z) is purely resistive. As discussed in previous sections, this point
can be the position of either the voltage maximum or minimum. In most cases, it is
desirable to choose the point closest to the load in order to minimize the length of the
transmission line segment on which § # 1 because the presence of standing waves
jeopardizes power-handling capabilities of the line, tends to reduce signal-to-noise
ratio, and may lead to distortion of the signal transmitted. Example 3-18 illustrates
quarter-wave matching of a complex load.

Example 3-18: Thin-wire half-wave dipole antenna. A thin-wire half-
wave dipole antenna® has an input impedance of Z; = 73 + j42.50(). Design a
quarter-wave transformer to match this antenna to a transmission line with charac-
teristic impedance Z, = 100Q).

Solution: We start by evaluating the reflection coefficient at the load

Z,—Zy, _ 73+ j42.5— 100
Z.+Zy, 73+ j42.5+ 100

so that ¢y = 109° = 1.896 radians. Note that the standing-wave ratio is
_l+p 1+0283
1-p 1-0.283

From previous sections, we know that, for an inductive load, the first voltage
maximum is closer to the load than the first voltage minimum (see Figure 3.17).
The first voltage maximum is at

= (.283¢/1%

I = pe =

S 1.79

_ __«/1_ __ 1.896A
2B 4w
Thus the quarter-wave section should be inserted at z = —0.151A, as shown in

Figure 3.38.

U+ 2BZmex =0 —>  zgm = ~ —0.151A

See, for example, Section 14.06 of E. C. Jordan and K. Balmain, Electromagnetic Waves and Radiating
Systems, Prentice Hall, 1968.
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1=0.1512
1 Al4 I—-———q
Zo=100Q Half-wave
Zy=100Q Zy=1337Q S=179 dipole antenna
Main line §=1 §=134 Z; =73 + j42.5Q

~
1}
(=}

Z(z=-0.1511)
FIGURE 3.38. Quarter-wave matching of the half-wave dipole antenna in Example 3-18.

Noting that the normalized load impedance is Z; = 0.73 + Jj0.425 and that
we have tan[(0.151A)] = 1.392, the normalized line impedance Z(z) seen to-
ward the load at z = —0.151A is

Z, — jtan(B2) _ 073+ 0425+ j1.392 179
1 — jZ tan(Bz) otsia 1 + j(0.73 4+ j0.425)(1.392) '
Note that Z(z = —0.151X) = 1.79 = §, as expected on the basis of the discus-
sion in Section 3.3.2 (i.e., Rmax = S = 1.79). The characteristic impedance Zg
of the quarter-wave section should thus be

Zq = JZ(z = —0.151A)Z, = J/(100)(1.79)(100) =~ 133.7Q

Note that in general, as in this specific example, we have Z(z = zm) = S,
and thus Z, = Zy/S. Note also that the standing-wave ratio in the quarter-
wave section is S = 1.34, as can be calculated by using Z(z = —0.1511)
and Z,.

Z_(Z)lz=—0.151A =

Frequency Sensitivity of Quarter-Wave Matching The frequency sensitiv-
ity of a quarter-wave transformer is a serious limitation since the design is perfect
(i.e., provides S = 1) only at the frequency for which the length of the transformer
segment is exactly A/4. The bandwidth of the transformer can be assessed by plot-
ting the standing-wave ratio S versus frequency, as was done in Section 3.5.2 for the
single-stub tuning example and as is shown in the following example.

Example 3-19: Multiple-stage quarter-wave transformers. A resis-
tive load of R, = 75() is to be matched to a transmission line with characteristic
impedance Z, = 300). The frequency of operation is f, = 300 MHz (which
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=237Q =150Q =95Q Ry =75Q
3 2 1

Zgp=210Q  Zg =105Q Ry =75Q

Al4

Zu=150Q ¢ R =750

Zy=300Q
Triple
Zy=300Q
Double
A4
(®)
Zo=300Q
Single

Al4

©)

FIGURE 3.39. Multiple-stage quarter-wave matching. Matching with triple, double, and
single A/4 sections are illustrated respectively in panels (a), (b), and (c).

corresponds to Ay = v,/fy = 3 X 108/(300 X 10°) = 1 m, assuming an air-filled
coaxial line). Design multiple cascaded quarter-wave matching transformers and at
300 MHz compare their frequency responses between 200 and 400 MHz.

Solution: Three different designs are shown in Figure 3.39. Note that the
choice of the impedance Zy, for the single-transformer case is straightforward.
For the double-transformer case, the condition for exact quarter-wave matching
is Zg, = Zqi~/Zo/Ry, allowing for different choices of Zg, and Zy, as long as
the condition is satisfied. The design shown in Figure 3.39b is one that pro-
vides a standing-wave ratio in the first and second quarter-wave sections of



174 mm Chapter 3 / Steady-State Waves on Transmission Lines

Standing-wave

. 27
ratio S Single
1.871
1.6 1
Double
N Pl
N 141 R4
Y 4
~ s
~ 4
\\ ,/
\\\\ 12+ ,,’
~ - .
—_—— e — —_——— Tripl
.//’ . Q\‘:t\ /__/—;'— \\\“fe
200 300 400
Frequency (MHz)

FIGURE 3.40. Quarter-wave transformer bandwidth. Standing-wave ratio S
versus frequency for the three different transformers shown in Figure 3.39.

respectively S = 1.4 and § = 1.6. For the triple transformer case the condition
for exact quarter-wave matching can be shown to be Zy,Zos = Zg,/ZoR, =
150Zq,. Once again, many different combinations of Zg,, Zg,, Zg; satisfy this
condition, and other performance criteria (such as minimizing S in the quarter-
wave sections) must be used to make particular design choices. One design
approach? is to require the characteristic impedance of the second quarter-
wave segment to be the geometric mean of the two impedances to be matched,
namely Zy, = /(300)(75) = 150€). The choices of Zy and Zg; shown in
Figure 3.39 is one that provides a relatively low value of § <~ 1.26 in all the
transmission line segments.

Figure 3.40 compares the three different designs in terms of their frequency
response. As in Figure 3.35, we base this comparison on the behavior of the total
standing-wave ratio S(f) as a function of frequency. First we note that since the
wavelength at 300 MHz is 1 m (assuming a transmission line with air as the
material surrounding the conductors), all of the quarter-wave segments have
physical lengths of 0.25 m each. To evaluate S(f), we can start at the load end
and transform impedances as we move toward the source end in accordance with

 Ziy + jZotan2m £(0.25M/v,)]
L) = B 7 anlam (0.2 Rlv,)]

where Ay = v,/fo = 1 m, v, = c, and Z; and Z; are, respectively, the input
impedance and the characteristic impedance of the ith quarter-wave transformer
over which the impedance is being transformed, and Z;_, is the input impedance
of the (i — 1)th quarter-wave transformer seen looking toward the load.

ZThere are various established methods for the design of multisection quarter-wavelength transformers.
The approach described here is an ad-hoc one.
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~4 ",
o ® ®
Z,
Z Zy Z,
~A
___'_—‘_'_'_'_,_.—-—— M,
Z, 2> 7, 9’ O O O @
__L.—‘_|_‘_|_l_‘___‘_-— mzz
(a) ®)

FIGURE 3.41. Tapered impedance transformer and a mechanical analogy.

(a) A gradual taper provides wide bandwidth; many small reflections from a series of small
incremental steps add with different phases to produce very small net total reflection.

(b) Mechanical analog of impedance matching to provide better power absorption at a
termination.

It is clear from Figure 3.40 that the bandwidth performance improves with
the use of multiple segments. The improvement between a single and double
quarter-wave section is very significant, with a tolerable standing-wave ratio of
S <~ 1.2 being achieved over a much larger range in a double quarter-wave
section. The triple transformer provides for § <~ 1.1 over the entire range of
200 to 400 MHz. In practice, little improvement is obtained by cascading more
than four sections.”’

In the limit of adding more and more sections, we would approach an infinitely
long, smooth, gradually tapered transmission line with virtually no reflections. This
is illustrated in Figure 3.41a. In practice, it is usually sufficient to make the tapered
section of length ~A or more.

A Mechanical Analogy Impedance matching to achieve maximum energy
transfer is an essential aspect of not just electrical but also other types of physical
systems. One analogy is the transfer of energy in an elastic head-on collision be-
tween a mass M, moving with a speed vy, and a stationary mass M,. In the absence
of losses, and based on the conservation of momentum, and given the elastic na-
ture of the collision, we know that if M, = M|, then all the energy resident in M, is
transferred to M, (i.e., M, stops and M, moves away at velocity vy). If the M, = M,

278, Guccione, Nomograms for speed design of A/4 transformers, Microwaves, August 1975.
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condition is not met, only a fraction of the total energy is transferred to M,, and
M, either reflects and moves in the reverse direction (if M; < M,) or continues its
motion at reduced speed (if M, > M,).

The transfer of energy between M, and M, can be improved by the insertion of a
third mass between them, as shown in Figure 3.41b. The energy transfer is optimum
if the third mass M is the geometric mean of the other two, thatis, if M = /M, M,.
Further improvement in the energy transfer can be achieved by using several bodies
with masses varying monotonically between M, and M,.

3.6

THE SMITH CHART

Many transmission-line problems can be solved easily with graphical procedures,
using the so-called Smith chart.?® The Smith chart is also a useful tool for visualiz-
ing transmission-line matching and design problems. Many aspects of the voltage,
current, and impedance patterns discussed in previous sections can also be inter-
preted and visualized by similar means using the Smith chart. One might think that
graphical techniques are not as useful in this age of powerful computers and calcu-
lators, but it is interesting to note that some commonly used pieces of laboratory test
equipment have displays that imitate the Smith chart, with the line impedance and
standing-wave ratio results presented on such displays. In this section, we describe
the Smith chart and provide examples of its use in understanding transmission-line
problems.

3.6.1 Mapping of Complex Impedance to Complex I

The Smith chart is essentially a conveniently parameterized plot of the normalized

line impedance Z(z) of a transmission line and the generalized voltage reflection

coefficient I'(z) as a function of distance from the load. To understand the utility of

the Smith chart, we need to understand the relationship between Z(z) and I'(z).
From [3.24], we can write the normalized line impedance as

1+1I(2)
1-I()
where we note that I'(z) = pe/¥+289 js the voltage reflection coefficient at any po-

sition z along the line. Denoting I'(z) simply as I', while keeping in mind that it is a
function of z, we can rewrite [3.51] as

Z(z) = [3.51]

=

zZ= i% 3.52]

v

28P. H. Smith, Electronics, January 1939. Also see J. E. Brittain, The Smith chart, IEEE Spectrum, 29(8),
p. 65, August 1992.
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where Z = R+ jX andT" = u+ jv are both complex numbers, so [3.52] represents
a mapping between two complex numbers. Note that if the load is given, then we
know I, and therefore I (and thus Z = R + jX, from [3.52]), at any position at a
distance z from the load. The Smith chart conveniently displays values of Z (or R, X)
on the I' (or u, v) plane for graphical calculation and visualization. From [3.52] we
have

L+ @+ jv) [+ @+ Il — (u— jvl
1—(u+jv) (1 — u)p + 2

7=R+jX= [3.53]

Equating real parts in [3.53] and rearranging, we have

2 )
_ R 2 _ 1
(u 1+ R R) +v (1 " R) [3.54]

which is the equation of a circle in the uv plane centered at u = R/(1 + R),v = 0
and having a radius of 1/(1 + R). Examples of such circles are shown in Figure 3.42a.
Note that R = 1 corresponds to a circle centered at u = i, v = 0, having a
radius 1, and passing through the origin in the uv plane.

Similarly, by equating the imaginary parts in [3.53] and rearranging, we find

1V 1
(u—17+ (v - )_Z) e [3.55]

—

! X=05
i
l _
R=05 | X=0
]
| \
-1 05 1« 1

(a) ®

FIGURE 3.42. Contours of constant R or X. (a)The circles in the uv plane are centered

at [R(1 + R)™', 0], with radius (1 + R)~!. Note the R = 1 circle (dashed lines) passes through
the origin (i.e., », v = 0); this circle is centered at (%, 0) with radius . (b) The circles in the uv
plane are centered at (1, X~!), with radius X~!. Note that for X = *1 we have two circles (dashed
lines) with unity radii and centered at (1, +1).
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/

FIGURE 3.43. Complex reflection
coefficient I'. The complex number I is shown in
the uv plane, together with its variation with z.

T = pef¥+2B2)

which is the equation for a circle in the uv plane centered at u = 1, v = 1/X and
having a radius of 1/X. Examples of such circular segments are shown in Fig-
ure 3.42b. Note that X = =1 corresponds to a circle centered at u = 1, v = *1;
having a radius of 1; and tangent to the v axis atv = *1.

The voltage reflection coefficient I' = u+ jv is defined on the complex uv plane
so that the locus of points of constant |I'| = |Ii| = pare circles centered at the origin.
Once p is known (the value of which is set by Z; and Z;), motion along the line (i.e.,
variation of z) corresponds to motion around this I" circle of fixed radius p. To see
this, consider

T = I‘Leﬂﬁz — pej'lleJ'ZBz — pej(¢+2Bz) [3.56]

As illustrated in Figure 3.43, motion away from the load (i.e., decreasing z) corre-
sponds to clockwise rotation of I" around a circle in the uv plane. Since 8 = 2m/A, a
complete rotation of 28z = —2a occurs when z decreases by —A/2, which is why a
complete cycle of line impedance (or admittance) is repeated every A/2 length along
the line. A circle of constant radius p (corresponding to a given load) also corre-
sponds to a fixed-voltage standing-wave ratio S, since § = (1 + p)(1 — p)~".

Although all I" values along the line terminated with Z; lie on the circle of radius
p, each value of " corresponds (through [3.52]) to a different value of Z = R + jX,
which is the normalized line impedance seen at that position. On a typical Smith
chart, shown in Figure 3.44, the contours of constant R or X are plotted and la-
beled on the uv plane so that the line impedance at any position along the constant p
(or S) circle can be easily read from the chart. A summary of various Smith chart
contours and key points is provided in Figure 3.45.

As shown in Figures 3.45 and 3.46, the horizontal radius to the left of the chart
center (i.e., the negative u axis) is the direction where I' = u + jv = pe¥+2?9 =
pe i ory+2Bz = —(2m+ 1)w where m = 0, 1,2, .. .; in this case the magnitude
of the line voltage is a minimum. Thus, every crossing of the negative u axis as one
moves along the constant p circle corresponds to a minimum in the line voltage (and
thus a maximum in the line current). The distance from the load to the first voltage
minimum, namely zy;,, can thus be found simply by equating 23z to the negative of
the angle from the load point (i.e., I' = I') to this axis measured in the clockwise
direction (i.e., 2Bzmn = —(7 + ), as was discussed in Section 3.3.1). Similarly,
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FIGURE 3.44. Smith transmission line chart.

the crossings of the horizontal radius to the right (i.e., the positive u axis) repre-
sent voltage maxima. Note that when ¢ + 2Bz = —m27w (m = 0, 1,2,...) where
[V(2)| = Vimax, We have

Hence if S is known (instead of p), the S circle (which is the same as the p circle)
can be constructed with its center at the chart center and passing through the same
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FIGURE 3.45. Summary of various Smith chart contours and locations.
(a) For use as an impedance chart. (b) For use as an admittance chart.

point on the positive u axis as the R = § circle. This circle is then the locus of all
impedances appearing at various positions along the transmission line, normalized
to the characteristic impedance Z, of the line.

Once we realize that the upper (lower) half of the impedance Smith chart shown
in Figure 3.45a corresponds to inductive (capacitive) reactances, that the negative u
axis corresponds to a voltage minimum, and that moving away from the load corre-
sponds to moving clockwise along a constant S (or constant p) circle around the chart,
the interpretation of voltage standing-wave patterns for inductive versus capacitive
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V.. |I"| = const.
min
Voltage \/\ ¥ Voltage
minima axis . .
= 2Bz . maxima axis

mil?fﬁ" e R M v +2Bz=-m2x

18O 1 L (Also impedance
minima) maximay

FIGURE 3.46.  Location of voltage minima and maxima on the Smith chart.

loads (as depicted in Figure 3.17) becomes very clear. When we start anywhere in the
upper half of the chart (i.e., inductive load) and move toward the source, we would
encounter the voltage maxima (i.e., positive u axis) before the voltage minima so
that the voltage magnitude would always first increase as we move away from an
inductive load. The reverse would be true for a capacitive load. Many other aspects
of the voltage, current, and impedance patterns discussed in previous sections can
also be interpreted and visualized similarly using the Smith chart.

In cases for which it is more convenient to work with admittances than imped-
ances, the Smith chart can be effectively used as an admittance chart. For this
purpose, we note that since

YO—YL YL_YO

L=5%57 - nen
we have
sy AL ae . 1T

instead of [3.52]. In this case, the R and X circles can be treated, respectively, as
G and B circles. However, note that the upper (lower) half of the chart now corres-
ponds to capacitive (inductive) susceptances, which are represented by positive
(negative) values of B. A summary of various Smith chart contours and key points
for its use as an admittance chart is provided in Figure 3.45b.

3.6.2 Examples of the Use of the Smith Chart

We now consider some applications of the Smith chart. The examples selected il-
lustrate the relatively easy determination of line impedance for given resistive, re-
active, and complex loads; determination of unknown load impedance based on
measurements of standing-wave ratio and location of voltage minimum,; single-stub
impedance matching; and quarter-wave transformer matching.
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FIGURE 3.47. Graphical

solution for Example 3-20.

Example 3-20: Input impedance with pure resistive load. Find the in-
put impedance of a lossless transmission line with the following parameters: Z, =
1004}, Z; = 50 + jO), line length [ = 86.25 cm, wavelength A = 1.5 m.

Solution: We first note that the electrical length of the line is 0.575A. Since
impedance goes through a full cycle every 0.5, the input impedance of this
line would be identical to one with length 0.075A = (0.575 — 0.5)A. The
normalized load impedance is Z, = Z;/Z, = 0.5+ jO. We enter the Smith chart
at the point where the R = 0.5 circle crosses the horizontal axis (note that the
imaginary part of the load impedance is zero). We draw a circle passing through
this point and centered at the origin; this is the constant p circle. We move along
this circle by 0.075A (from 0 mark to —0.075A mark) away from the load (i.e.,
clockwise) and read the impedance as Z;,(z = —0.075\) = 0.59 + j0.36. Since
Z is the normalized impedance, the actual line impedance is Z;, = 59 + j36().
The details of the graphical solution are shown in Figure 3.47.

Example 3-21: Input impedance with a pure reactive load. Find the
input impedance of a lossless transmission line given the following parameters: Z, =
50Q, Z;, = 0 — j75€, line length I = 1.202A (i.e., A + 0.202A).

Solution: The normalized load impedance is Z;, = — j1.5. For a purely reac-
tive load, R, = 0, so that p = 1 and § = «. We enter the chart at the point on
the outermost circle (which corresponds to R = 0), which is intersected by the
X = —1.5 circle. The length scale at that point reads ~ 0.344A. The angle of
I'L, or ¢, may be read to be ~ —67°. We now move along the outer circle (which
in this case is our constant p circle) a distance of 0.202A to the point ~ 0.046A.
The impedance at that point is Z, = j0.3, or Zj, = j15Q). The details of the
graphical solution are given in Figure 3.48.
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~0.046A
(z=-0.2021)

0.254

0.004

~0.3442, FIGURE 3.48. Graphical
(z=0) solution for Example 3-21.

Example 3-22: Input impedance with a complex load. Find the input
impedance of a lossless transmission line given the following parameters: Z, =
100€2, Z;, = 100 + j100(2, line length I = 0.676A (i.e., 0.5A + 0.176A).

Solution: The normalized load impedance is Z; = 1.0 + j1.0. We find the
point on the chart corresponding to R = 1.0 and X = 1.0 (i.e., the intersec-
tion point of the R = 1.0and X = 1.0 circles) and draw a circle passing through
this point and centered at the origin. The intersection of this constant p circle
with the right horizontal axis is at R = 2.62, which is also the value of S. To find
the input impedance, we simply move along this circle (clockwise from the load
position) a distance of 0.176A and read Z;, = 1.0 — j1.0. The input impedance
of the line is then Z;; = 100 — j100€}. The details of the graphical solution are
given in Figure 3.49.

Example 3-23: Unknown load impedance. Find the normalized load
impedance on a transmission line with the following measured parameters: standing-
wave ratio § = 3.6 and first voltage minimum z;, = —0.166A.

Solution: We draw the constant p circle corresponding to S = 3.6 (i.e., in-
tersecting the positive u axis at R = 3.6). The point corresponding to zq, is that
at which this circle crosses the negative u axis. We start at this point of intersec-
tion of the constant S circle with the left horizontal axis and move toward the
load (i.e., counterclockwise) a distance of 0.166A to find the normalized load
impedance. This gives Z; = 0.89 — j1.3. The details of the graphical solution
are shown in Figure 3.50.
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0254

FIGURE 3.49. Graphical
~0.3384 (Input: z=-0.6763)  golution for Example 3-22.

(z=-0.1662) 0

Voltage
minimum

FIGURE 3.50. Graphical solution for Example 3-23.

Example 3-24: Single-stub impedance matching. Given a characteristic
impedance Z, = 80() and a load impedance Z; = 160 — j80(), match the line to
the given load by using a short-circuited shunt stub, as shown in Figure 3.32.

Solution: Refer to Figure 3.51 and to the discussion in Section 3.5 on imped-
ance matching. Note that in view of the shunt connection of the stub, it is more
convenient to deal with admittances. For this purpose, we use the Smith chart
as an admittance chart. We require

Yi=1-jB and Y, = +jB
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where Y, is the admittance seen looking toward the load at the position / where
the stub is to be connected, and Y is the input admittance of the short-circuited
stub of length .

The normalized load impedance is Z; = 2.0 — j1.0. We enter the Smith
chart at the point marked Z; corresponding to the intersection of the resistance
R = 2 circle with the reactance X = —1.0 circle, noting that negative reac-
tances are in the lower half of the chart. The circle centered at the origin and
passing through this point is our constant S (or constant p) circle along which the
complex reflection coefficient I' (or the line impedance) varies as we move away
from the load. Noting that the Smith chart can be used equally for impedances
and admittances, we choose to work with admittances in order to easily handle
a parallel connected stub. The normalized load admittance can be found either
directly (i.e., Y. = (Z.)™! = (2— j)~' = 0.4 + j0.2) or by moving around the
constant S circle by 180°, as shown in Figure 3.51. The normalized load admit-
tance is thus ¥, = 0.4 + j0.2. Note that when we change an impedance to an
admittance on the Smith chart and work from there, all of the R and X circles
can now be used as G and B circles.

'We now move along the constant S circle up to its point of intersection with
the conductance G = 1 circle (P;). The amount that we need to move determines
the stub position at a distance / from the load. For this example, we find / =
0.126A. At the intersection point, the line impedance is ¥; = 1.0 + j1.0, so that
for matching we must have ¥, = —j1.0.

To determine the length of a short-circuited stub that would present an
admittance of — j1.0, we start from the point on the chart corresponding to a
short circuit (i.e., ¥ = o on the right horizontal axis, or the positive u axis).
We move clockwise until we intersect the circle corresponding to a susceptance
B = —1.0. This determines the length of the stub to be I, = 0.125A.

~/0.162)»(z =-0.1264)

Solution 1

Sqlution 2
Yi=1-j1

~0.3384 (z=-0.3021)
FIGURE 3.51.  Graphical solution for Example 3-24.
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Note that we might have taken the second intersection of the constant S
circle with the G = 1 circle (P,), shown in Figure 3.51as ¥ 1. This would have
given [ = 0.302A and Y] = 1.0 — j1.0, requiring a stub impedance of ¥, =
+j1.0, which would be presented by a stub of length [, = 0.375A.

Example 3-25: Quarter-wave transformer matching. Given a transmis-
sion line with a characteristic impedance Z, = 120Q) and load impedance Z; =
72 + j96(), match the line to the given load using a quarter-wave transformer.

Solution: Refer to Figure 3.52, and the discussions in Section 3.5. We first
move along the line a distance of /; such that the impedance Z,; seen looking
toward the line is purely resistive. Noting that the normalized load impedance is
Zi = (72 + j96)/120 = 0.6 + j0.8, we enter the Smith chart at the point where
the R = 0.6 and X = 0.8 circles intersect. We then move clockwise (away
from load) along the constant S circle to its intersection with the horizontal axis,
corresponding to the reactive part of the line impedance being zero. As shown
in Figure 3.52, we need to move by 0.125A, which means that the quarter-wave

A ,

\ (orZy)
4 I

Zin -:-» |

Zy=120Q : ZQ I, 1200 Zy =T72+j96Q
| 1
A 1 j
{ Al4 ooy
0.125A(z=0)
ZL= 0.6+,0.8 Z =173

(1;+0.3754=0.3751) 0

FIGURE 3.52.  Quarter-wave transformer matching; graphical solution for
Example 3-25. The path that we follow on the chart from the load impedance point to the
origin (matching, i.e., Zi, = Zy) is indicated by a thick dark line.
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transformer can be placed at /; = 0.125A. At that point, the line impedance
normalized to a characteristic impedance of 120() is Z, =8, =3.0.

Noting that the quarter-wave transformation will occur on a line with
characteristic impedance Z,, we now have to normalize the impedance to
Zq = JZyS8:1Zy = 208(). The line impedance at z = —0.125A, normalized to
Zy, is then Z; = Z,(120/Zy) = 1.73. Following along the path on the Smith
chart as shown in Figure 3.52, we thus move from Z, to Z;. The transformation
along the quarter-wave segment is equivalent to a clockwise (away from load)
rotation of 180°, which brings us to Z,, = 1/§ = 0.577. Note that this rotation
is along the circle of So = 1.73, which is the standing-wave pattern within
the transformer. We now note that Z;,, = 0.577 is an impedance normalized to
Z,, whereas the characteristic impedance of the line to be matched is 120€).
Re-normalizing back to 120€), we find the input impedance of the line looking
into the quarter-wave segment to be Z;, = Z;(208/120) = 1.0; this brings us to
the center of the chart, which represents a matched line.

3.6.3 Voltage and Current Magnitudes from the Smith Chart

Note that for a lossless transmission line, we have
V(z) = V*e /Pi(1 + pelt e
r

so that the magnitude of the line voltage at any position z is given by
V@)l = [V*[1+T]

Since |V*| is just a scaling constant, the relative value of the line voltage can be
obtained from the Smith chart by measuring the amplitude of the complex num-
ber (1 + I). Note that at each position z along the line I' is a new complex
number as determined by a point on the uv plane (i.e., on the Smith chart). The length
|1+T| can be determined graphically as shown in Figure 3.53. Note that as we move

2l = (V*IZyI1-T
V)l =1Vl + T

FIGURE 3.53. Line
voltage and current from the
Smith chart. We have assumed
vVt =1.
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along the line away from the load, the generalized reflection coefficient vector I'
rotates clockwise, and the voltage vector (1 + |I'|) rotates clockwise like a crank. By
inspection of Figure 3.53, we can see that the maximum and minimum values of the
voltage vector (i.e., maximum and minimum values of its length) are, respectively,
(1 +|T]) and (1 — |T|), so that the standing-wave ratio is S = (1 + [['|)/(1 = |T'|) =
(1 + p)/(1 — p), as was previously established in Section 3.3.1.

3.7

SELECTED APPLICATION EXAMPLES

In this section, we discuss two selected practical application topics, namely,
(a) equivalent circuits for antennas or other loads with complex input impedance,
and (b) matching networks.

3.7.1 Lumped Equivalent Circuits for Antennas and Other
Loads with Complex Input Impedances

The determination of an unknown impedance from measurements of the standing-
wave ratio and location of the voltage minimum, as discussed in Section 3.3, is a
practical microwave method for measurement of unknown impedances that are dif-
ficult to calculate, such as the feed-point impedance of an antenna. Once the feed-
point impedance is determined, an equivalent circuit model of the antenna can be
constructed to determine the behavior of the antenna in various transmission line
circuits. We illustrate the measurement of the unknown load impedance in Example
3-26 and the use of an equivalent circuit of a dipole antenna in Example 3-27.

Example 3-26: A meteor-damaged spaceship antenna. A spaceship has
a microwave transmitter connected to an external antenna via a 50€) coaxial line that
is used to transmit radio waves at 1.5 GHz, as shown in Figure 3.54a. A small meteor
strikes the external antenna and causes damage that results in a mismatch between
the transmitter and the antenna. One of the crew members, an electrical engineer,
decides to use a single short-circuited stub to correct the mismatch. However, the
exact length of the coaxial line is unknown since a large portion of it goes through
the hull of the spaceship. At first, the engineer measures the first voltage mini-
mum position relative to the point where the coax exits on the inner surface of the
hull to be at 8 cm and the next minimum position to be at 18 cm. She also mea-
sures the voltage standing-wave ratio on the line to be 4. Subsequently, a second
crew member undertakes a spacewalk to short-circuit the external terminals of the
damaged antenna, which causes the voltage minimum closest to the exit point of the
cable on the hull (which, for a short-circuited antenna, is a deep voltage null) to move
to 9.84 cm. Using these measurements, find (a) the feed-point impedance Z; of the
damaged antenna and (b) the appropriate length of the short-circuited 50€) coaxial
stub and the closest position (relative to the exit point on the ship’s hull) at which it
needs to be connected in parallel with the line to achieve matching.
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©

FIGURE 3.54. A meteor-damaged antenna on a spaceship. (a) A spaceship uses an externally mounted
antenna at the end of a coaxial line. (b) Determination of the unknown terminal impedance of the damaged
antenna from S and Zpis. (¢) Determination of the length of a short-circuited stub.

Solution:

(a) Using the Smith chart, we draw the constant voltage standing-wave ratio
(S = 4) circle, as shown in Figure 3.54b. The normalized line admittance
seen looking toward the antenna from the appropriate location of the shunt
stub, excluding the stub’s admittance, lies on the S = 4 circle. Next, we
determine the wavelength A from the distance between successive voltage
minima tobe A/2 = 18 — 8 = 10cm — A = 20 cm. When the antenna is
shorted all voltage minima along the coax shift toward the antenna by Al,
which can vary in the range 0 = Al < A/2, depending on the feed-point
impedance of the antenna Z; (which lies on the S = 4 circle). If Z; is ca-
pacitive, the shift is between 0 and A/4, whereas if it is inductive, the shift
is between A/4 and A/2. Since the shift is 18 —9.84 = 8.16 cm or 0.408A in
our case, we conclude that Z; is inductive. Furthermore, if we move on the
S = 4circle, starting from point P, (i.e., minimum voltage point), a distance
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(b)

of 0.5A — 0.408\ = 0.092A in the clockwise direction, we reach the point
that corresponds to Z;, which is read from the Smith chart as 7, =0.35 +
j0.6. Thus, the unknown feed-point impedance of the damaged antenna is
determined to be Z, = Z,Z. = 17.5 + j304), since Z, = 50}.

We start with the normalized line impedance at 8 cm (point P, on the Smith
chart) and convert it to line admittance at the same position (i.e., moving to
point P,) so that we can use the Smith chart as an admittance chart, since the
matching network consists of a shunt stub (see Figure 3.54c). Next, to find
the stub position closest to the exit point along the coaxial line, we move in
the counterclockwise direction on the § = 4 circle (i.e., going toward the
hull of the spaceship) until we find the intersection points with the G=1
circle corresponding to points on the inner side of the hull where the normal-
ized line admittance is Y, = 1 — jB. As seen in Figure 3.54c, there are two
such points, marked Ps and P,. Since P, is a point outside the ship (i.e., the
length between P, and P, is ~ 0.426A = 8.52 > 8 cm), P; corresponds to
the point on the coaxial line closest to the exit point on the ship’s hull. There-
fore, at point P;, we read ¥, from the chart as ¥; = 1 + j1.5 and its location
relative to the exit point as / = 8 — 0.074A = 8 — 1.48 = 6.52 cm. The
length of the shorted stub connected at / = 6.52 cm can be found from Y =
—jcot(Bl) = —j1.5. From this we have Bl = 0.588 — [; = 0.0936\ =
1.87 cm.

In Example 3-27, we use a four-element equivalent lumped circuit to represent
the feed-point impedance of a dipole antenna, as determined from measurements.”
The circuit consists of a resistance, an inductance, and two capacitors, as shown in
Figure 3.55. The values of these elements depend only on the physical dimensions of
the antenna, not on the operation frequency. The empirical equations for these four
elements are as follows:

6.03371
C1 = fogtiia) — 0.7245 PF
0.89075
@ = l[ [og(/a)1%%% — 0.861 0'02541} PF

L, = 0.1/{[1.4813 log(l/a)]"*'* — 0.6188} uH
R, = 0.41288[log(l/a)]* + 7.40754(l/a) "> — 7.27408 k{2

where [ is the total length and a is the radius of the dipole, with both expressed
in meters. These equations adequately represent the impedance of the dipole with
length up to approximately 0.6 wavelength (i.e., [ = 0.6A).

T, G. Tang, Q. M. Tieng, and M. W. Gunn, Equivalent circuit of a dipole antenna using frequency-
independent lumped elements, IEEE Transactions on Antennas and Propagation, 41(1), pp. 100-103,

1993.
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FIGURE 3.55. A dipole antenna and its
equivalent lumped circuit.

Example 3-27: Dipole antenna fed by a coaxial line. Consider a dipole
antenna of length 1.8 m and radius 2.64 mm connected at the end of an RG-213
(50Q) coaxial line, as shown in Figure 3.56a. Calculate the standing-wave ratio S
on the line at (a) 83.33 MHz and (b) 20.83 MHz.

Solution: For! = 1.8 mand a = 2.64 mm, we can use the empirical equa-
tions to calculate the values of the lumped elements in the equivalent circuit as

RG-213
50Q

zZ Dipole antenna
5,15 pF i
- - Ol Il |
o |
: 0.64 pH :
Coax 1 1
2.38kQ ==

2= 500 : % 1.07 pF :

I
. i
[ O ] 1
[ |
e e e e |

)

FIGURE 3.56. Dipole antenna fed by a coaxial line. (a) A
coaxial line and the antenna wires connected to its inner and outer
conductors. (b) Corresponding two-wire equivalent circuit.
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R, =238k}, L, = 0.6537 wH, C, = 5.149 pF, and C, = 1.067 pF respec-
tively. The corresponding two-wire transmission line circuit is shown in Fig-
ure 3.56b.

(a) At f = 83.33 MHz, the feed-point impedance of the dipole antenna can be
calculated using the expression for the load impedance Z;.

1
Y, + Y + Y,

where Z¢, = 1/jwC, = —j370.9Q, Y¢, = G = 1/R, = 4.202 X 107§,
Y, = jwL, = —j2.906 X 1073 S, and Y¢, = jwC, = j5.587 X 1074 S,
respectively. Substituting these values in the Z; expression, we find

1
4.202 X 10~4 — j2.363 X 103

4.202 X 107™* + j2.363 X 1073
(4.202 X 1074) + (2.363 X 10-3)?

= —j370.9 + 72.94 + j410.2 = 72.94 + j39.28Q)

Z]_ = ch +

Z, = —j370.9 +

~ —j370.9 +

The load reflection coefficient I is

_ Zu—-Zy _ 2294+ j39.28
T Zu+2Zy 1229+ j39.28

45.48¢75971°

129.1ei1772
and the standing-wave ratio can be found as
1+p 1+0.3524
1-p 1-0.3524
At 83.33 MHz, the 1.8-m length of the antenna is equal to one-half the wave-
length (A = ¢/f = 3.6 m). Such an antenna is an efficient radiator,>® and

we see here that it can be fed by a standard 50€) coaxial line at a reasonable
standing-wave ratio of § = 2.

(b) Similarly, at f = 20.83 MHz, we have

1
4.202 X 10~ — j1.169 X 10-2 + j1.396 X 10

4.202 X 107 + j1.155 X 102
(4.202 X 1074)2 + (1.155 X 10-2)2

=3.146 — j1397Q)

I

= (0.3524¢/*

S = = 2.088

Z, = - j1484 +

=~ —j1484 +

*See, for example, Section 14.06 of E. C. Jordan and K. Balmain, Electromagnetic Waves and Radiating
Systems, Prentice Hall, 1968.
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The load-reflection coefficient is then given by

_ 3146 — j1397.4 - 50
3.146 — j1397.4 + 50

I = 0.999839¢ /4%

and the standing-wave ratio is

_1+p 1+0.999839
1-p 1-0.999839
The high value of the capacitive reactance of the feed-point impedance at

20.83 MHz (A = 14.4 m) is partly due to the fact that the dipole antenna is
electrically short (//A = 0.125) and is therefore not an efficient radiator.

S = 12430 !

3.7.2 Transmission Line Matching Networks

As discussed in Section 3.5, transmission lines are often used in matching net-
works. In this section, we provide two specific examples involving the use of
microstrip lines to realize matching networks for a microwave amplifier (Ex-
ample 3-28) and for a cellular phone base station (Example 3-29). Microstrip
lines, easily fabricated using printed-circuit techniques, are widely used to match
impedances in microwave transistor amplifiers. Most microwave transistor ampli-
fiers can be classified as either low-noise amplifiers or power amplifiers. In both
cases, the circuit design involves the selection of the appropriate transistor and the
optimum design of the matching networks around it to satisfy the design consider-
ations such as power gain, low noise, and bandwidth. Microstrip transmission line
segments can be used as open- or short-circuited stubs. In fact, a microstrip line
together with a short- or open-circuited shunt stub can transform a 50§} resistor
into any value of impedance.>! Two such matching networks are illustrated in Ex-
ample 3-28. In most applications, it is desirable to achieve matching over a broad
range of frequencies. As discussed in Section 3.5, most of the simple matching
techniques (e.g., quarter-wave transformation, single-stub matching, etc.) do not in
general have good frequency response. In Example 3-29, we illustrate a simple and
commonly used method called shunt compensation, which can greatly improve the
frequency response of a matching network.

Example 3-28: Input matching network of a low-noise microwave
amplifier. Design two separate microstrip-line matching networks, as shown in
Figure 3.57b,c, for the input stage of a low-noise microwave transistor amplifier
to transform a 50() load impedance to an input admittance Yi, = Gin + jBin =

31See Section 2.5 of G. Gonzalez, Microwave Transistor Amplifiers, Analysis and Design, 2nd ed.,
Prentice Hall, 1997.
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A Matching
Main line — network Ry =50Q
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FIGURE 3.57.  Two different matching networks for a microwave amplifier. (a) The
purpose of the matching network is to transform the R, = 50} load resistance to an input
admittance of ¥;, = 50 — j15 mS. (b) Matching network using a shunt short-circuited stub.
(c) Matching network using quarter-wave transformation. The right hand panels in (b) and (c)
show the two-wire equivalents of the microstrip-line circuits.

50 — j15 mS as required to achieve minimum noise performance.’? (a) The first
matching network consists of a short-circuited shunt microstrip stub connected in
parallel with R, followed by a microstrip line of length I, as shown in Figure 3.57b.
The characteristic impedance of each of the two microstrip lines is 50(). Find the
length of each line in terms of wavelength. (b) The second matching network consists

32See pp. 316-321 of T. Edwards, Foundations for Microstrip Circuit Design, 2nd ed., John Wiley and
Sons, 1992.
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() )

FIGURE 3.58. Smith chart solutions for Example 3-28, part (a). (a) First of two alternative
solutions: /; = 0.106A, ;; = 0.38A. (b) Second alternative solution: /, = 0.434A, l;; = 0.12A.

of a quarter-wavelength-long microstrip line of characteristic impedance Zq termi-
nated by Ry at one end and having an eighth-wavelength-long short-circuited mi-
crostrip stub with characteristic impedance Zy, connected in parallel with it at the
other end, as shown in Figure 3.57c. Find Z, and Z,.

Solution:

(a) The matching network shown in Figure 3.57b is somewhat similar to the
single-stub matching networks discussed in Section 3.5, except that the
short-circuited shunt stub is located at the position of the load. In view
of the shunt connections, it is more convenient to use the Smith chart as
an admittance chart. Our desired goal is to achieve an input admittance
of Y, = 50 — j15 mS, which corresponds to a normalized admittance of
Y = Yu/Yy = 2.5 — j0.75, since Yy = (Zo)™' = (50)' = 0.02 S. This
normalized admittance point is marked as point P; in Figure 3.58a,b. The
constant S circle passing through point P; is also shown in Figure 3.58a,b;
this circle corresponds to S = 2.76, as can be determined by reading off the
S value from the chart. The standing-wave ratio of S = 2.76 can also be cal-
culated by noting that the reflection coefficient on the line with Y, terminated
inYy,is T, = pe/’ = (Yo — Yi)/(Yo + Yin) and that S = (1 + p)/(1 — p).
However, in the context of the graphical solution using the Smith chart, we
do not need to know the numerical value of S explicitly.

The goal of the design is to determine the line length / and the stub
length I; so that we depart from point P, and arrive at point P5; on the Smith
chart. We enter the chart at the center point P; (i.e., ZL = Z/Z, = 1 or
YL = Y1/Y, = 1), as shown in Figure 3.58a. Next, we determine the nor-
malized admittance of the short-circuited shunt stub Y. such that the ad-
dition of ¥, = jB, to ¥, = 1 brings us to the point P, on the constant S
circle, where the normalized admittance is Y, = 1 + jBi. There are two
different ways in which this can be done, as illustrated in Figures 3.58a
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(®)

and 3.58b, respectively. In Figure 3.58a, the length of the shunt stub is de-
signed such that it provides a capacitive admittance (i.e., B, > 0), so that
we move in the clockwise direction on the constant G = 1 circle, from
P, to P,, where ¥p, = 1 + j1.06. The minimum 50£) short-circuited stub
length that yields a normalized admittance of Y, = j1.06 is determined as
Y = —jcot(Bl) = j1.06, so that we have [; = 0.38A. To find the line
length /, we move from P, to P; around the constant § circle in the clock-
wise direction, yielding a length [, = 0.106A, as shown in Figure 3.58a.
Similarly, in Figure 3.58b, the length of the shunt stub is chosen such that
it provides an inductive admittance (i.e., B,. < 0), so that we move from
P, to P, in the counter clockwise direction along the G = 1 circle, where
Yp, = 1 — j1.06. Once again, Yp, lies on the same constant S circle pass-
ing through Y;,. The corresponding minimum short-circuited stub length is
l, = 0.12A. Furthermore, to move from P, to P; along the S circle in the
clockwise direction requires a minimum line length /, = 0.434A, as shown
in Figure 3.58b.

For both matching circuits, if an open-circuited shunt stub were used
instead of the short-circuited one, the only change in the design would have
been the length of the open-circuited stub, the minimum value of which can
be obtained by adding *A/4 to the minimum length of the short-circuited
stub, depending on whether the minimum length of the short-circuited stub
is less than or greater than A/4. In addition, although the two designs just
discussed both involve a load impedance of 50(}, this technique can also be
applied to an arbitrary complex load impedance, since all of the calculations
on the Smith chart were carried out using normalized admittances.

For the second matching network, we can rely on quarter-wave transformer
techniques and do not need to use the Smith chart. Noting that the real part
(i.e., conductance) of the required Y;, is Gi, = 50 mS, the input admittance
of the quarter-wave transformer, not including the stub, is given by

Y2
Y,=2=G, — Yy=31.6mS
GL
or Zg = 31.6(). The imaginary part (i.e., susceptance) of the required Yj,,
that is, B;, = —15 mS, can be provided by the short-circuited shunt stub of

length A/8 using
Yo = —jYoscot(Bl) = jBn = —jl15mS

Since Bl = (2@/A)(AM8) = /4 and cot(Bl;) = 1, we have Yo = 15 mS
or Zys = 66.7(). Note that both of the characteristic impedances obtained
(i.e., Zq = 31.6€) and Z,, = 66.7(1) are realizable using microstrips, since
microstrip lines with characteristic impedance values ranging between 10§}
and 110Q) are easy to manufacture in practice.*®

33T. Edwards, Foundations for Microstrip Circuit Design, 2nd ed., John Wiley and Sons, 1992.
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FIGURE 3.59. Quarter-wave matching with shunt compensation. (a) Transmission line circuit
diagram. (b) Practical microstrip implementation. (c) Standing-wave ratio versus frequency for a
simple quarter-wave transformer (solid line) and a quarter-wave transformer with shunt compensation
(dashed line).

Example 3-29: Quarter-wave matching with shunt compensation. A
quarter-wave matching network is to be designed for a cellular phone base sta-
tion power amplifier operating at 900 MHz. The matching network is to match a
resistive load of Ry = 25() to a transmission line with characteristic impedance
Zy = 501, providing a standing-wave ratio S < 1.1 over the frequency range 800
to 1000 MHz. (a) Design a quarter-wave transformer to operate at 900 MHz and as-
sess its standing-wave ratio across the specified frequency range. (b) Consider pos-
sible improvement of the bandwidth performance by the addition of a short-circuited
quarter-wavelength-long (at 900 MHz) stub in shunt with the load, as shown in
Figure 3.59a.

Solution:

(a) First consider the design of a quarter-wave transformer without any short-
circuited compensation shunt stub. In order to match the 25() load to
the 50() line, the quarter-wave transformer should have a characteristic
impedance of Zq = /ZoR. = ./(50)(25) = 35.4Q). Assuming an air-
filled transmission line, the phase velocity is equal to the speed of light
in free space, and the wavelength at the design frequency of 900 MHz is
Ao = vplfo = ¢l fo =3 X 10%/(900 X 10°) = 1 m. Thus, the length of the
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quarter-wave section shouldbe | = (Ao/4) = & m. Atthe design frequency,
the input impedance Z;, of the matching network designed is Z;. At other
frequencies, the quarter-wave transformer of length [ = ;5 m and charac-
teristic impedance Z, transforms the load Ry to its input as

7 g R+ jZqtani2m( Fle)(5)]
" T0Zy + jRytan2m(fle)(5)]

The reflection coefficient, as observed at the junction between the main line
and the matching network, and the standing-wave ratio on the main line are
then

: ‘ 1+

1—p
The frequency dependence of the standing-wave ratio S is shown as a solid
line in Figure 3.59c. We see that S varies sensitively with frequency and
in fact exceeds the design criteria (i.e., S > 1.1) near the edges of the
800-1000 MHz band of interest.

(b) We now consider the use of a short-circuited quarter-wave line in shunt with
the load, as shown in Figure 3.59a, to achieve better frequency response. If
the length [ of the short-circuited stub is chosen to be equal to a quarter
wavelength at the design frequency of 900 MHz, that is, if [, =  m, the
input impedance of the stub as viewed from the load terminals is an open
circuit, so that the presence of the stub has no effect on the system perfor-
mance at 900 MHz. However, at other frequencies, the input impedance of
the short-circuited stub is

Zi. = jZotan[2m(flc)(53)]

where Z is the characteristic impedance of the short-circuited stub. The
stub impedance Z,. appears in parallel with the load resistance Ry, so that
the load impedance is

g = LR _ (ZetanR2m(flo)()DR
" Zet+ R jZutan2(flOGH] + Re

which is transformed to the input of the quarter-wave transformer as

7 =7 Z + jZgtan[27(f/c)(35)]

074 + jZutan[2m(fle)(H)]
where the superscript “c” indicates that this input impedance is for the com-
pensated case, and thus it differs from the uncompensated Z;, found in part

(a). The reflection coefficient and the standing-wave ratio on the main line
for the compensated case are then

c_ L2
e = Ze + Zy

1+ p€

— ¥ c —
pe S =




3.8 Sinusoidal Steady-State Behavior of Lossy Lines mll 199

The frequency dependence of the compensated standing-wave ratio S¢ is
shown as the dashed line in Figure 3.59c, for the case when Zy, = Z, =
50€). We see that S¢ is substantially lower than S over the entire frequency
range of interest, so that the compensation has significantly improved the
frequency response. The design criteria of §¢ < 1.1 is easily met over the
range 800 to 1000 MHz. In general, both the length of the short-circuited
stub and its characteristic impedance Zo, can be optimally chosen to achieve
a desired frequency response.

In practice, similar improvement in frequency response can be achieved
by using a half-wavelength-long open-circuited stub or by using simple par-
allel lumped LC networks.

3.8

SINUSOIDAL STEADY-STATE BEHAVIOR OF
LOSSY LINES

Our analyses so far have been based on the assumption that there is no power loss
in the transmission line itself. A consequence of this assumption was the rather
nonphysical result that the line current at a distance of a quarter wavelength from
a short circuit is zero, and that the input impedance of a quarter-wavelength short-
circuited line is infinite. In reality, every line consumes some power, partly because
of the resistive losses (R) in the conductors and partly because of leakage losses
(G) through the insulating medium surrounding the conductors. For lines with
small losses, the effects of the losses on characteristic impedance, line voltage,
line current, and input impedance are usually negligible, so that the lossless anal-
ysis is valid. However, in other cases, the losses and the resultant attenuation of
signals cannot be ignored. The typical conditions under which losses cannot be
neglected are (1) transmission of signals over long distances, (2) high-frequency
applications, since resistive losses increase with frequency, and (3) use of quarter-
wavelength or half-wavelength-long transmission line segments as circuit elements,
when neglecting losses leads to nonphysical results such as zero current and/or
infinite input impedance. In the third case, losses become the determining fac-
tor on resonant lines when the electrical quantities of interest tend toward zero
or infinity. Thus, input impedance of a quarter-wavelength-long open-circuited
transmission line is in fact not zero, but is a small nonzero value as determined
by the losses. Similarly, the input impedance of a quarter-wavelength-long short-
circuited transmission line is not infinite, but a large finite value determined by
the losses.

The sinusoidal steady-state behavior of lossy lines can be formulated in a manner
quite similar to that of lossless lines. We can start with the most general form of the
transmission line equations that were obtained in Section 2.2:
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V(1 _ 9
e (R + Lat )S’(z, 1) [3.58a]
a9z 1) _ a9

Frani (G +C ar)oV(z’ f) [3.58b]

Under sinusoidal steady-state conditions, it is more convenient to work with the volt-
age and current equations written in terms of the phasor quantities V(z) and I(z), such
that ¥'(z, 1) = Re{V(2)e’'} and $(z, 1) = Re{l(z)e’'}. We have

_AV@ _ gy jeni) [3.59]
dz
-d(’i_(;) = (G + juCO)V (@) [3.59]

Taking the derivative of [3.594] and substituting from [3.595], we find

2
d d‘;Z) = (RG)V(2) + (LG + RC)(jw)V(2) + (jw)(LC)V(2)
= (R + joL)G + joC)V(2)
d*V(2)
e Y*V(2) [3.60]
where
vy = JR+ joL)G + joC) = a + jB [3.61]

is the propagation constant. Note that the propagation constant v is in general a com-
plex number, and its real and imaginary parts, o and 3, are known, respectively, as
the attenuation constant and the phase constant.>* For any given values of R, L, G,
and C and the frequency f, the values of @ and 8 can be directly calculated from
[3.61].

Equation [3.60] is a second-order differential equation similar to the one we
encountered for the lossless case. Its general solution is

V(z) = Ve " + Ve [3.62]

where V* and V~ are complex constants to be determined by the boundary condi-
tions.

The current phasor /(z) can be determined by simply substituting [3.62] into
[3.59a]. Thus, we have

%Note that B for the lossy case is not equal to that for the lossless case, which was defined earlier as
B = w/LC.In the general lossy case, B is a function of R, L, G, and C and has a more complex depen-
dence on the frequency f.
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; _ _dV(2)

R+ joL)l(@) = -2
_ -1 dv(2) _ Y +o—yz _ Y-,y
&= g5l dz =~ "Rvjer’ ¢ "V ED

_ |G+ joC . . iy
I(z) = ,R+ij(V e V7e™?) [3.63]

Zi(v+e—ﬂ —-Vetr)
0

where we have defined Z, as the characteristic impedance, namely,

= [R+joL _ 9.
%= G+ joC = |Zole

Compared to Z, for the lossless case, we see that for the lossy case Z, is in general a
complex number. Note once again that Z, depends on the physical line constants R,
L, G, and C (which in turn depend on the physical makeup and dimensions of the line
as well as the properties of the surrounding media) but now also on the frequency of
operation w = 2 f. For future reference, the general solutions of the transmission
line equations for the voltage and current phasors are

V() = Ve "+ V et [3.644]
IQ) = V' e™ = Ve [3.64b]
0

3.8.1 Infinitely Long or Matched Line

To understand the behavior of the time harmonic solutions for a lossy transmission
line, we first consider the case of an infinitely long or a matched-terminated line.
By analogy with the lossless case, we can see that the second terms in [3.64a] and
[3.64b], those multiplied by the constant V~, are zero in these cases, since no re-
flected wave exists. Accordingly, the voltage and current phasors are
= Vte 7% =i+“ﬂ—>@=
V() = V'e™; I(2) ZOV e 0] Zy

Note that everywhere on the line the ratio of the voltage to current phasors is the
characteristic impedance Z,, once again underscoring the physical meaning of
the characteristic impedance.

It is instructive to write the voltage and current phasors explicitly in terms of the
real and imaginary parts of . In other words, we have

V(z) = V*e®eiFz - [3.654]
+

1) = Vze“’“e‘fﬁz [3.65b]
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FIGURE 3.60. Voltage and current on a matched lossy line. (a) V(z, 1) = V*e™
cos(wt — Bz) versus Z/A fort = 0 and fort = T,/4, where B = 2m/Aand T, = 27/w.
(b) ¥ (z, t) vs. wt for z = 0 and z = A/4. The attenuation constant was takentobea = 1
neper/A. A comparison of voltage ¥ (z, #) and current $(z, t) (c) at time z = 0 as a function
of space and (d) at z = 0 as a function of time, for an assumed case where the R,L, G, and C
values are such that ¢, = — /4. Note that we have assumed V* = 1.

Using [3.65], we can in turn obtain the space-time voltage and current functions as
V(z, 1) = Re{V*Te *e™#?} = V*e *cos(wt — B2) [3.664a]

+

— V_+ —az,~jBz| — _V__ —az — -
9z 1) —le{ Zoe e’ ] = |Zo|e cos(wt — Bz — ¢,) [3.66b]

where we have assumed V* to be real. The solutions for a lossy line are propagating
waves with amplitudes exponentially decaying with increased distance. For physi-
cally realizable solutions, we must have a > 0. Thus, in evaluating the propagation
constant 7y, the sign of the square root in [3.61] must be taken to be that which gives
avalue of @ > 0. To better visualize the behavior of the solutions, we show V(z, £) in
Figure 3.60 as a function of position at fixed times and time at fixed positions. Also
shown is the comparison between V'(z, r) and $(z, t) as a function of space and time,
clearly illustrating the phase difference ¢, between the two waveforms.

It can be shown from [3.65] that, for a matched or infinitely long line, the mag-
nitude of the ratio of voltages or currents corresponding to two different positions
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separated by a length [ is a constant. In other words, the magnitude of the ratio of the
voltage at position (z + /) to the voltage at position z is

Vi) | e
‘ V(Z + l) N e—az+) [367]
Taking the natural logarithm of both sides, we have
- V(@)
ol = ln[ Vi + z)H [3.68]

Note that a/ is a dimensionless number, since the units of « are in m™! and [ is
in meters. However, to underscore the fact that o/ expresses the attenuation on the
line in terms of the natural (Naperian) logarithm of the magnitude of the ratio of
voltages (or currents) at different positions, it is common convention to express a/ in
units of nepers (np). Thus, in conventional usage, the unit of the attenuation constant
«a is nepers-m™'.

In most engineering applications, a more commonly used unit for attenuation is
the decibel (dB). The decibel is a unit derived from the bel, which in turn was named
after Alexander Graham Bell and was used in early work on telephone systems.

Specifically, the decibel is defined as

V@) H [3.69]

Attenuation in decibels = 20 logm{ Vit D)

It is clear from [3.67] and [3.69] that a relation exists between attenuation expressed
in decibels and that expressed in nepers. We have

Attenuation in dB = 20log,, e* = (al)20log,, e = 8.686(l) 3.70]
= 8.686 (attenuation in np)

The advantage of a logarithmic unit such as the decibel or neper is that the total
loss of several cascaded transmission lines (and other networks connected to them)
can simply be found by adding the losses in the individual units. As an example, if
sections of a fiber-optic line have attenuations of 10 dB, 20 dB, and 5 dB, then the
total attenuation of the signal in its passage through all three of the lines would be
10 + 20 + 5 = 35 dB. Similarly, total gains of any number of amplifier stages in a
system can also be easily calculated with the use of logarithmic units.

Examples 3-30 and 3-31 illustrate the numerical values of the line parameters,
respectively, for an open-wire telephone line and a high-speed coplanar strip inter-
connect.

Example 3-30: Open-wire telephone line. An open-wire telephone line
consists of two parallel lines made of copper with diameters ~0.264 mm and spaced
~20 cm apart on the crossarm of the wooden poles. Determine the propagation
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constant 1, its real and imaginary parts « and 3, and the characteristic impedance
Z,. Assume it operates at 1.5 kHz.

Solution:  Using the two-wire transmission line formulas given in Table 2.2,
we find the transmission line parameters to be R = 24.4Q-(km)”', L =
2.93 mH/km, and C = 3.80 nF-(km)~"'. The value of G is assumed to be negli-
gible. We have

vy = JR+ joL)G + joC)

=~ J(24.4 + j2m X 1.5 X 103 X 2.93 X 1073)(0 + j27 X 10° X 3.80 X 107%)

= /(36.8¢/486°)(3.58 X 10-5¢/%") = 0.0363¢/%* (km)™'

= 0.0128 + j0.0339 (km)™"

— a=128%x10"2np-(km)'; B =339%x107 rad-(km) ™'
The phase velocity and wavelength are

w 27w X1.5%x10° _ 2
_@ 2m XS XA0T e 105 kmes s — 27 L 185k
v = 5= Tmenior ~ 278X 10 ks A= =185km

We find that the waves on an open-wire telephone cable propagate at a speed
somewhat smaller than the speed of light in free space, namely, ¢ = 3 X
10® m-s~!. The characteristic impedance is given by

7 = R+ joL
0 G+ joC
_ 244+ j27 X 1.5 X 10° X 2.93 X 1073
j2m X 1.5 X 10° X 3.80 X 10~°

= 1014.5¢7/%7 = 949 — j359Q)

Example 3-31: High-speed GaAs digital circuit coplanar strip inter-
connects. Transmission line properties of typical high-speed interconnects are
experimentally investigated by fabricating and characterizing coplanar strip
interconnects on semi-insulating GaAs substrates.’®> Measurements are carried
out up to 18 GHz, from which the pertinent per-unit line parameters can be ex-
tracted. In one case, the values of the propagation constant y and characteris-
tic impedance Z, at 10 GHz are determined from the measurements to be y =
1.2 (np-(cm) ') + j6(rad-(cm) ") and Z, = 105 — j25(), respectively. Using these
values, calculate the per-unit length parameters (R, L, G, and C) of the coplanar strip
transmission line at 10 GHz.

35K, Kiziloglu, N. Dagli, G. L. Matthaei, and S. I. Long, Experimental analysis of transmission line
parameters in high-speed GaAs digital circuit interconnects, IEEE Transactions on Microwave Theory
and Techniques, 39(8), pp. 1361-1367, August 1991.
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Solution: The per-unit length parameters of the transmission line can readily
be computed from y and Z, using the relations

R+ joL = yZ,
o= Y
G+ joC = 7

Using the measured values of y and Z, at 10 GHz, we have
R+ joL = (1.2 + j6)(105 — j25) = 276 + j600

from which R = 276Q-(cm)”" and L = 600/(27 X 10'°) = 9.55 nH-(cm) ',
respectively. Similarly, we have

12+ j6  6.12e7%
105 — j25  107.9¢-i134

G+ joC = =~ 0.0567¢”°*"" = —0.0021 + j0.0567
from which G = —0.0021 S-(cm)”' and C = 0.0567/Q2m X 10') =
0.902 pF-(cm) ', respectively. The negative value of parameter G is nonphysi-
cal and is likely a result of measurement error.

The average power delivered into the line at any given point z can be found
using the phasor expressions [3.65] for voltage and current:

Pu(@ = 2 Re{VUT}

o (V) .

— %%e[ V+e—aze—132( Z*) e—aze+jﬁz [3‘71]
0

|V+ |2 —2az

ZIZOI 4 COS(¢Z)

We find that the time-average power decreases with distance as e~2*%, with an effec-
tive attenuation constant that is twice that of the voltage and current. The difference
in time-average powers evaluated at any two points z; and z, is the amount of power
dissipated in the segment of the line between z, and z,.

Low-Loss Lines An important practical case is that in which the losses along the
line are small but not negligible. If the line is low loss, we can assume that R <<
oL and G. << wC, which means that the resistive losses and leakage losses in the
surrounding medium are both small. In such cases, useful approximate expressions
can be derived for the characteristic impedance Z, and the propagation constant 7.
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We first consider Z,:

_ |R+ joL
% = \/ G+ joC
\/‘ 1+ Ri(joL) \/’ 1+ R/(szL)]
1+ G/(jwC) 1 + G/(j20C)

where we have used the fact thatfor{ << 1 (1+0)Y2 = 1+({/2)+--- = 1+({/2). By

neglecting the higher-order terms in the numerator and the denominator, and using
1+ &) ' =1~ for{ < 1, we can write the characteristic impedance as

L= [ ( 12wL)< TZC;_C)
ozt e

In general, the second term in the real part of [3.72] is negligible since it involves
the product of two small terms, namely, R/(wL) and G/(wC). Thus, the important
effect of the losses on the transmission line is to introduce a small imaginary com-
ponent to the characteristic impedance. In many cases, the imaginary part of Z, can
be neglected, so that the characteristic impedance is, to the first order, equal to that
for the lossless line.

A similar simplification can also be obtained for the propagation constant vy,
againusing (1 + )2 = 1+ (£/2) + -+ =1+ ({/2) for { << 1. We have

Y = [(R+ joL)G + joC)]"

o R G \I”

mil- -]

Iw\TTe

The real and imaginary parts of y for the low-loss line are thus

1 C L
=3 lR\/; + G‘/g] [3.73a]

B =wJLC [3.73b]

As an example, coaxial lines used at high radio frequencies can be quite ac-
curately represented by the above low-loss formulas of [3.73]. Note that the phase
constant 3 is the same as that in the lossless case, so the phase velocity v, = w/B =
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1/J/LC, independent of frequency. The loss constant « also does not depend on fre-
quency; it simply accounts for a decrease in the overall signal intensity as the wave
propagates along the line. Thus the distortion of an information-carrying signal (con-
sisting of a finite band of frequencies), due to the different speed and attenuation of
its frequency components, is minimized for a low-loss line.

Parameter values for a typical low-loss line are illustrated in Example 3-32.

Example 3-32: Low-loss coaxial line. RG17A/U is a low-loss radio fre-
quency coaxial line. The following data for the nominal parameters of this line are
available: characteristic impedance Z, = 50(), line capacitance C = 96.8 pF-m_l,
and line attenuation ~3 dB/100 m at 100 MHz. Determine the inductance L and re-
sistance R per unit length of this line, assuming that G is negligibly small. Determine
the velocity of propagation.

Solution:  Using [3.70], we can express the attenuation in np-m™'. We have

3dB-(100m)™' = 0.03dB-m™' = gggz ~345%X 103 np-m™! = «

Using the low-loss formulas, we have
1/ R R 3 -
=~ — | — = — =3, X -
a 2[ZO+GZOJ A 3.45 X 107" np-m

which gives us R = 0.345Q-m™! since G = 0 and Z, = 50(). The inductance
can be determined from

Zy = /é— =500 — L= Z2C=(50)%96.8 X 107'?) = 0.242 pH-m™’

We can check to see that the quantity |R/(wL)| = 2.27 X 1073 or is much smaller
than 1, which is apparently why the characteristic impedance for this low-loss
line is real. The phase velocity is given by

==L L 1 = 2.07 X 10° m-s~*

JIC JZZC ZC ~ 50X 968 x 102

3.8.2 Terminated Lossy Lines

An important result of losses is that both the forward wave traveling toward the load
and the reflected wave traveling away from the load are attenuated exponentially
with distance. As an observer moves away from the load on a terminated lossless
line, the standing-wave pattern remains the same. However, on a lossy line, the same
observer finds that the attenuation of the reflected wave causes this wave to be less
important as he or she moves farther from the load. In addition, since the magnitude
of the forward wave becomes larger as the observer moves away from the load, the
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FIGURE 3.61. A terminated lossy transmission line.

relative size of the reflected wave is doubly reduced in moving toward the source.
The net result of this effect is that, regardless of its termination, the transmission
line begins to appear more and more like an infinite (or matched) line when viewed
farther and farther from the load.

We consider a terminated lossy transmission line as shown in Figure 3.61, with
z = 0 taken to be the position of the load as in the case of lossless lines. In general,
the expressions for voltage and current on a terminated lossy transmission line are

V(z) = Vte ™ + Ve = V(e e /P + [Le*e/F?)

= V+e—aze-jﬁz[l + 1“(2)] [3.744]

1Q) = Ve e B - ) [3.74b]

where I'(z) is the complex voltage reflection coefficient at any position z along the
line defined as

V=e? ;
= I"LeZazeﬂBz

Mo = grp:

and where I is the complex load reflection coefficient given as

V- i ZL— 7y
= — = J "' =
=y =r" =275
The line impedance Z(z) at any point z on the line is given by the ratio of the voltage
and the current:

[3.75]

_ V(@ _ e~%eiBL 4 T} e*2eib?
20 = 1y = Perme R~ Tyemerp: [3.76]
It is sometimes useful to rewrite the impedance as follows:
_ o, L+Tee 1+10()
2() = 27—, g ~ PToTYG) - 377

We compare [3.77] for Z(z) to equation [3.31] for the lossless line. We see
that I} in [3.31] is replaced with I €%, so that the magnitude of the reflection
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coefficient for the lossy case is effectively reduced exponentially between the obser-
vation point and the end of the line (i.e., the load position). As viewed from larger and
larger distances from the load (i.e., as z = —), the effect of reflections becomes
negligible, and the line impedance approaches Z, as if the line were an infinitely
long or matched line. To understand this effect, consider the general voltage reflec-
tion coefficient at any point z, namely

F(Z) — I‘LeZazeﬂBz — peZazej(u//+2ﬁz) [378]

In Section 3.6, we noted that motion along the line away from the load corre-
sponded to clockwise rotation of I' = u + jv in the uv plane (or on the Smith chart),
while its magnitude I' = p remained constant. On lossy lines, [3.78] indicates that
the same type of rotation occurs as determined by the /2% term, but that, in addi-
tion, the magnitude of I'(z), namely |I'| = pe??, decreases as we move away from
the load (i.e., as z decreases). Eventually, at some point, [[(z)| — 0, and looking to-
ward the load from the source side beyond this position, the line is indistinguishable
from an infinitely long or matched line.

To examine the behavior of the line voltage, current, and impedance, we first
consider a short-circuited line of length /, so that Z; = 0 in Figure 3.61. In this case,
the load reflection coefficient is I} = —1, so the line voltage and current are

V(z) = V(e — %) = —2V" sinh(yz) [3.79a]

+

2;0 cosh(yz) [3.79b]

I2) = %(e‘yz +e") =

where we have used the defining expressions for the hyperbolic sine and cosine
functions:

{ o ' -{
e —e et +e
cosh{ =
2 4 2

Although the compact form of V(z) in [3.79a] appears very similar to that for the
lossless line (with sin replaced by sinh), the evaluation of sinh(yz) is not trivial,®
since v is a complex quantity. Note that when @ — 0, equations [3.79] for V(z) and
I(z) reduce to their lossless equivalents, since sinh(az) — 0 and cosh(az) = 1.

Using [3.79a] and [3.79b], we can compactly write the input impedance of a
short-circuited line of length [ as

[Zine = Zotanh(‘)’l)

sinh{ =

36The hyperbolic sine of the complex number y = a + jB can be expressed as
sinh(yz) = sinh[(a + jB)z]
= sinh(az) cosh(jBz) + cosh(az) sinh(jBz)
= cos(Bz)sinh(az) + jcosh(az)sin(Bz)
In practice, the evaluation of sinh[(a + jB)z] would be straightforward using any reasonably sophisti-

cated numerical evaluation tool (e.g., a software package or a scientific calculator); however, it is useful
to note for insight the nature of the actual evaluation.
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FIGURE 3.62. Voltage and current standing-wave patterns and impedance on a lossy
short-circuited line. Results are shown for two different values of the attenuation constant, namely
a = 0.5np/A and 1.5 np/A, where A = 2r/B. For simplicity, we have assumed the characteristic
impedance to be real, i.e., ¢, = 0,and V* = 1.

Plots of magnitudes of the line voltage and current and the real and imaginary parts
of the line impedance for a short-circuited line are provided in Figure 3.62, for two
different values of the attenuation constant ¢, namely a = 0.5 np/A and 1.5 np/A.
For simplicity, we have assumed the phase of the characteristic impedance ¢, = 0
in Figure 3.62. In general this phase angle is small, and leads to a phase difference
between the voltage and current, as indicated in [3.66].

The resultant effects of the losses shown in Figure 3.62 become clear upon com-
parative examination of the lossless equivalents given in Figures 3.5 and 3.6. In the
lossless case (Figures 3.5 and 3.6), the line voltage is zero at the load, and every
half-wavelength thereafter, while the line current is a maximum at the same posi-
tions. The line impedance of the lossless line is zero at the load (Z;, = 0), inductive
(i.e., $m{Z(2)} > 0) in the range —A/4 < z < 0, infinite (i.e., an open circuit) at
z = —M4, capacitive in the range —A/2 < 7 < —A/4 back to zero at z = —A/2, and
repeating the same cycle thereafter.

For the lossy case, looking first at the relatively low-loss case of & = 0.5 np/A,
we see that although the voltage and current exhibit generally similar cyclic behav-
ior, the maximum and minimum values of both the line voltage and current increase
with distance from the load. The line voltage is no longer zero at z = —A/2. The dif-
ferences between the values of the maxima and the minima also become smaller as
z becomes increasingly negative, as is clearly evident from the relatively high-loss
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case of @ = 1.5 np/A. At a sufficient distance away from the load, e.g., for z <
—1.5\ in the case of @ = 1.5 np/A, the magnitude of line voltage and current do not
vary significantly over a distance of half-wavelength (i.e., the standing-wave ratio
is unity), as if the line were infinitely long or matched.

The line impedance for the relatively low-loss (@ = 0.5 np/A) case exhibits sim-
ilar behavior to the lossless case. The impedance is inductive (i.e., $m{Z(z)} > 0) in
the approximate range —A/4 < z < 0, attains a large real value (but not quite an open
circuit) at z = —A/4, is capacitive in the approximate range —A/2 < z < —A/4, but
does not quite return to zero at z = —A/2. The peak in the real part of the impedance
at z = —3M4 is considerably smaller than that at z = —A/4. In general, the max-
ima and minima of the imaginary part of Z(z) both approach zero as z attains larger
and larger negative values, while the maxima and minima of the real part of Z(z)
both approach Z,. At sufficient distances from the load, for example, for z < —1.5A
in the case of @ = 1.5 np/A, the line impedance Z(z) = Z,, just as if the line were
infinitely long or matched.

For a lossy line terminated in an open circuit (Z, = %), expressions for V(z),
I(z), and Z;, can be obtained in a manner analogous to the preceding discussion for
a short-circuited line. This straightforward procedure is left as an exercise.

The general behavior of the line voltage, current, and impedance for other ter-
minations is quite similar, as illustrated in Figures 3.63 and 3.64 for a resistive
load impedance of Z; = 5Z,. Results are shown for four different values of the

A -15 -1 ~0.5 0

ZA 15 -1 -05 0  zZA-l5 -1 -05 0
FIGURE 3.63. Voltage and current standing-wave patterns on a terminated
lossy transmission line. The magnitudes of the voltage and current phasors (for
current, the quantity plotted is |I(z)|Zo) of a lossy line terminated in Z, = 5Z, are
shown for values of the attenuation constant « = 0.5, 1, 1.5, and 2 np/A, where

A =27/B.
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FIGURE 3.64. Line impedance standing on a terminated lossy transmission
line. The real and imaginary parts of the line impedance (normalized to Zo) of a lossy line
terminated in Z;, = 5Z, are shown for values of the attenuation constant « = 0.5, 1, 1.5,
and 2 np/A, where A = 2m/B.

attenuation constant. For simplicity, we have once again assumed the phase of the
characteristic impedance ¢, = 0.

The time-average power at any point z along the line can be evaluated using the
expressions [3.74] for V(z) and I(z). We have

Py(2) = %%e{V(Z)[l(Z)]'}

Vepee g | [+ Tueteerelll — Tuetee ey
2 Z

Iv+|2e—2az 1-— Il“L|2e4az — l"l:e2aze—j2ﬁz + I‘LeZaze+j2Bz
= Re -
2 Z;

Consider a terminated transmission line of length [. The time-average power at
its input, namely at z = —, is given by Py (z = —1), whereas that at the load is
given by P, (z = 0). The difference between these quantities is the average power
dissipated in the lossy transmission line. Thus, power lost in the line is given by

Py = Py(z = - - Pu(z = 0)

Reflections in lossy lines can lead to substantially increased losses since each
time a wave travels down the line it is further attenuated. If the load reflects part
of the incident power, more power is dissipated in the lossy line than would have
been dissipated if the line were matched (i.e., [ = 0). If the power dissipated in a
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lossy line under matched conditions is PP, it can be shown®” that the extra power
dissipated as a result of reflections is
Piost — P, {25(

— ==
lost

The extra power dissipated due to mismatch can be substantial, especially when
[TL| > 0.5 and when the line is long.

Example 3-33 illustrates the concepts of power dissipation in lossy lines in the
context of a high-speed microstrip interconnect.

|I“L|2(e2al _ 1)

Example 3-33: A high-speed microstrip interconnect. Consider a high-
speed microstrip transmission line of length 20 cm used to connect a 1-V am-
plitude, 1-GHz, 50€) sinusoidal voltage source to a digital logic gate having an
input impedance of 1 k(}, as shown in Figure 3.65. Based on measurements, the
transmission line parameters of this interconnect at 1 GHz are approximately given
by R = 5Q-cm™!, L = 5 nH-cm™!, C = 0.4 pF-cm™', and G = 0 respectively.

(a)

Zyp = 1312e5305°Q

(®)

FIGURE 3.65. A lossy high-speed microstrip interconnect. (a) The
microstrip transmission line connected to a 1-k{) load and driven by a 1-GHz source.
(b) Thévenin equivalent circuit as seen by the source, where Z;, is the input
impedance at the source end of the microstrip.

3See Section 6-3 of R. K. Moore, Traveling Wave Engineering, McGraw-Hill, New York, 1960.
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(a) Find the propagation constant y and characteristic impedance Z, of the line.
(b) Find the voltages at the source and the load ends of the line. (c) Find the time-
average power delivered to the line by the source and the time-average power deliv-
ered to the load. What is the power dissipated along the line?

Solution:

(a) The propagation constant is given by

y=a+jB =JR+ joL)G + joC)

= \/(500 + j2ar X 10° X 500 X 107°)(j27r X 10° X 40 X 107"%)

~ /318178096 X 0.251¢/%

=~ 28.3¢/%% =223 + j28.2

where a = 2.23 np-m~! and 8 = 28.2 rad-m™'. The characteristic imped-
ance is given by

_ [R+joL

n=G+ joC
500+ j3142 _ [3181ei%0%
j0.251 0.251e/%°

= 112.5¢ 77452 ()
(b) The reflection coefficient at the load end can be found as

_ Zu—Z, _ 1000 — 112.5¢7745%
Zi+2Zy 1000 + 112.5¢- #4527

_ 887.8 + j8.869
1112 — j8.869

The reflection coefficient at any position along the line is given by

I“(Z) - FL e27z = (0.798¢ j1.029° e4.458z e j56.37z

== (0,798 44582 J(56.372+0.018)

I

= 0.798¢/1%

The input impedance of the line is given by
_ _, 1+I(-02)
Zin - Z(Z)|z=—0.2m - ZOI — F(_O.Z)
We first find I(—0.2) as
l"(_O 2) ~ 0.798 e4.458(—0.2) e j[56.37(—-0.2)+0.018] 0 327 e j75.05°
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We now use I'(—0.2) to find Z;,,. We have

-j4522° M
1 — 0.327¢/7505°

1.084 + j0.316
0.915 — j0.316

= (112.5¢7752°)(1.166€/*3!") = 131.2¢/°77Q)

Based on voltage division in the equivalent circuit of Figure 3.65b, the

source-end voltage V is

%y 131.2¢/%7
Zo+Z, ° 11277 + j67.16 + 50
131.2¢7307

= 176¢i2243°

Zi, = 112.5¢

= 112.5¢77452

Vs

6]

= (.745¢7%3" v

The voltage at any position z along the line is given by
V(2) = Ve ™1 + I(2)]
from which V* can be written as

. V(2)
T el + I[(2)]

At z = —0.2 m, we have
V(z = —02) = V, = 0.745¢7%" v
and
€70 = M6 gnd  [(—0.2) = 0.327¢775%
Using these values, the value of V* can be found as

0.745¢ 83" o
e = j29.12
v €046 3101°(] + 0.327¢17505°) 0.423¢ \

The voltage at the load end of the line is given as
VL = V(z = 0) = V*[1 + [L] = (0.423¢/*'%)(1 + 0.798¢’%") = 0.760¢/25" v

(c) The time-average power delivered to the line is given by

2 2

! (112.7) W = 1.82 mW

Ps=§

0.745

131.2

Vs

Vs 1
Zy

)
Similarly, the time-average power delivered to the load can be found as

_ 1w} 107607
PL= 5 = 3 1000 W = 0289 mW
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Thus, based on conservation of energy, the power dissipated in the lossy
line is

Py = P — P =1.82—0.289 = 1.53 mW

3.9

TRANSMISSION LINES AS RESONANT
CIRCUIT ELEMENTS

One of the basic elements in a wide variety of dynamical systems is a resonator.
In electronic applications, resonant circuits are found in the design of systems that
selectively amplify or transmit a single frequency or a narrow band of frequen-
cies. Starting at frequencies of hundreds of MHz, transmission lines and other dis-
tributed devices are commonly used as resonant circuit elements in filters, oscillators,
tuned amplifiers, phase equalizers, or frequency measuring devices. Since important
aspects of the behavior of resonant circuit elements are largely determined by the
degree to which the system is lossy, it is appropriate to discuss transmission-line
resonators after the general discussion of lossy transmission lines.

Below microwave frequencies (<300 MHz), resonant circuits typically consist
of lumped capacitances and inductances. Although microwave integrated circuit el-
ements that behave as capacitances and inductances can be constructed for operation
at microwave frequencies (>300 MHz), such elements usually have too high losses
to be effective as resonant elements and also are physically too small to handle useful
power levels. Accordingly, distributed circuit elements with dimensions comparable
to a wavelength are used as resonant elements. Such elements typically consist of
sections of transmission line elements (coaxial, two-wire line, parallel-plate line,
microstrip, etc.) having lengths of a quarter wavelength or half wavelength.

3.9.1 Lumped Resonant Circuits

Since most concepts underlying lumped resonant circuits carry over to distributed
resonators, we first provide a brief review of lumped resonant circuits. This discus-
sion is also useful because transmission line resonators can often be analyzed and
represented in terms of lumped equivalent circuits. We consider the series RLC cir-
cuit as the simplest example of an electrical resonator, while noting that a nearly
identical analysis also applies to the parallel RLC circuit.

The input impedance of the series RLC circuit shown in Figure 3.66a is the ratio
of the phasor of the applied voltage V to the phasor of the resultant current /, namely

wC

If we view the voltage ¥'(¢) as the input and the current $(¢) as the output, it is clear
that the magnitude of Z;, determines the magnitude of sinusoidal current fluctuations

vV N , 1
Zm—T—R+]wL wc—-R+](wL )
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FIGURE 3.66. A series RLC circuit. (a) Circuit diagram. (b) Magnitude and phase of the
input impedance as a function of frequency around the resonance frequency wo = (LC)™'2.
(c) An analogous simple pendulum of large physical size. The angular resonant frequency for
small oscillations (6 << 7/2) of a simple pendulum is wy = /g/l, where g is the gravitational
acceleration and [ is the length of the pendulum.

for a given magnitude of applied sinusoidal voltage; in terms of phasor quantities V
and I, we have [I| = |V|/|Zi,|. In resonant circuit applications, the important param-
eter is the variation of Z;, with frequency, which is shown in Figure 3.66b. We note
that the magnitude of the impedance |Z,,| is a minimum at the resonant frequency,
wy = (LC) 2, for which Z;, = R. This in turn means that maximum sinusoidal cur-
rent is established in this circuit when the sinusoidal input voltage is at a frequency
® = w,. Establishing an oscillatory current of the same amplitude at frequencies
below or above w, requires larger input voltages.

To better understand the principle of resonance, note that the resonant RLC cir-
cuit is analogous to a simple pendulum, which exhibits a natural frequency for small
oscillations with an angular frequency of w, = ./g/l, where [ is the length of the
pendulum and g is the gravitational acceleration. Consider a pendulum consisting
of a very large and heavy ball hung with a long cable, as shown in Figure 3.66¢. If
we were to make the pendulum swing back and forth at different frequencies, we
would find that it requires a trivially small force to set it into oscillations at wg; even
for a rather heavy ball, a person could set the pendulum into oscillation (i.e., swing-
ing back and forth repeatedly) with the periodic tap of a finger at time intervals of -
approximately 27/wo. However, if we wanted to make the pendulum swing back
and forth at a faster or slower rate than its natural frequency of oscillation, we would
have to exert an enormous amount of force to carry the large weight of the ball across
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to make it go faster than its natural frequency or to hold it back in order to make it
oscillate slower than its natural frequency.

The magnitude of the oscillatory current that can be established in an RLC cir-
cuit at w, is determined by the losses, since Z;, = R, and thus I(wo) = V(wo)/R.
In the absence of losses, that is, if R = 0, we can establish an oscillatory current at
wo with zero input voltage; in other words, if there were any initial stored energy in
the circuit, oscillatory current would flow indefinitely even if we short-circuited the
input terminals (i.e., if V = 0). In practice, one strives to make R as small as possi-
ble, but its value is necessarily nonzero and determines the sharpness, or quality, of
resonance.

A useful measure of the sharpness of resonance is the quality factor Q, defined
as

time-average energy stored
energy lost per second

0= w

with all quantities evaluated at the resonant frequency w = w,. The energy lost
per second (Joules-s™') is the power loss, given by P, = 3|I|*R, in watts. The
time-average energy stored in the inductance is

W, = — J " LgopLdr = & f " Ll cosot + dPLdr = L
YT T, ), 2 T,), 2 ! 4

where we have recognized that the current phasor is usually a complex number I =
|I|le®, so that $(r) = Re{le’* e/*} = |I|cos(wt + ¢b;). Similarly, the time-average
energy stored in the capacitance is
1e
4 (w2C)
where V. is the phasor of the voltage across the series capacitance, the magnitude of
which is given by [V.| = [I//(|jwC[) = [I|/wC. Note that at the resonance frequency
@ = wo, we have Wi, = W since wo = (LC)~"2. The total stored energy in the
RLC circuit at the resonance frequency is W = W+ W¢ = 2W_. The quality factor
Q is then given by

7, _1 20
WC - 4IVCIC_

w 02(SIPL)  woL 1
Q =W = o = o = o~
Ploss -RIIIZ R (DQRC
Let us now examine the behavior of the input impedance as a function of fre-
quency in the vicinity of resonance. At w = wo + Aw, with Aw << w,, we have
) :

Zin=R+](wo+Aw)L+m
= R+ jwoL + jAwL + L —1—2 jAwC + -+
J@okrJ jooC  \jwoC )’

Aw 2Aw

0 0

= R+ j2LAw
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where we have used w3 = 1/LC. Since Q = 1/(woRC), we can express Zj, in terms
of O as

Z. =~ R(l " jzgi—‘:)

The bandwidth of the series RLC circuit can be determined from the variation
with frequency of its input impedance, as shown in Figure 3.66b. The so-called
3-dB bandwidth, defined to be the frequency range over which the magnitude of the
impedance is within a factor of V2 of that at resonance, is marked in Figure 3.66b
by the points at which the real and imaginary parts of the input impedance are equal.
Namely,

200 1
Wo o

Note that the bandwidth is 2Aw, since the behavior around resonance is approxi-

mately symmetrical (for Q >> 1) on both sides of w,. Thus, we have

2Qi—‘;’=1

. wWo
Bandwidth = —
Q
The higher the Q of a resonant circuit, the narrower is its bandwidth. All of the
preceding concepts apply to different kinds of resonant systems, although they were
specifically derived for the series RLC circuit.

3.9.2 Transmission Line Resonators

The simplest examples of distributed resonant circuit elements are short- or open-
circuited transmission lines. Note that, in practice, these may be implemented in
terms of any of the different two-conductor transmission line configurations shown
in Figure 2.1, that is, coaxial, two-wire line, stripline, or others. Consider first the
short-circuited half-wavelength-long line shown in Figure 3.67, which we will show

1=A2
o o R L
Zy,B «a Z,=0 l c
[ [— T
zZ, © 2} Z,
@ (b)

FIGURE 3.67. Short-circuited transmission line resonator. A shorted line
shown in (a) exhibits behavior similar to a series RLC circuit (shown in (b)) for
1= A2.

38Note that, for a given applied voltage V, a reduction in impedance Z;, by a factor of J2 corresponds to a
decrease in the current I = V/Z;, by a factor of /2, 0ra decrease in power by a factor of 2, corresponding
to 3 dB.
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to be equivalent (in terms of the frequency variation of its input impedance) to a
series RLC circuit.
The input impedance of such a lossy line of length [ is

el giBl — g=al =il

Zinle-r = el giBl { g-alg—jpl
where we have taken into account the fact that I} = —1 for a short-circuited ter-
mination. We consider a line of length [ = Ay/2 at @ = w,, where Ay = 27c/w,,
with ¢ being the speed of light in free space. At any other frequency @ for which
A = 27rc/w, we then have

+ jrAwlwg

27 A TW m(wo + Aw TAw Vs
_ 0 _ _ m(wo )_'7T+ eIl — gt

-

For a low-loss line as is considered here, we must have al << 1, so that the = terms
in the preceding equation can be approximated by 1 * al. Making the necessary
substitutions, we have

(1+ al)(—ej'n'Aw/wo) -1 - al)(_e—jnAw/w‘,)
(1 + al)(—eimwloo) 4 (1 — @l)(—e~imdw/wo)

Zin =ZO

—(al) cos(mAw/we) — j2sin(mAw/w)
— j2(al) sin(mrAw/wy) — 2 cos(mAw/w,)

=27
_ —(al) = j(mAw/wy)
T 2(al)(mAwlw) — 2

Zinzzo[al'i-jij]
0

where we have assumed that sin(rAw/w,) = mAw/w, and cos(TAw/w,) = 1 (since
Aw < wy).

The preceding expression can now be compared to the input impedance of a
series RLC circuit. We have

[Zin]gLe = R[l + JZQ%Q-)-] = R+ j2LAw; [Zia]a2 tine = Zo [al + j—ﬂﬁw}
0 0

Thus, the short-circuited line of length A/2 can be represented by an equivalent series
RLC circuit, with element values
al 72y, C. — 2

2’ 2w’ 4 Zymawy

where wo = 1/,/L.,Ceq. By analogy, we can then deduce the expression for the Q of
the short-circuited half-wavelength line to be

Re = Zoal = Z, Ly =
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where By = 27/, is the phase constant at @ = w, and « has to be evaluated at
® = wo. Typical values of Q for short-circuited transmission lines range from sev-
eral hundred to tens of thousands, much higher than is possible for low-frequency
lumped circuits.

Transmission line resonators with high Q values are necessarily low-loss lines
so that the simplified expressions [3.73a] and [3.73b] are valid, respectively, for o
and B. Thus, the Q of a transmission line resonator can be written in terms of the
transmission line parameters as

~ B @CZ

0=~ GZ, + (RIZy)

Example 3-34 illustrates the calculation of the Q of an air-filled coaxial line.

Example 3-34: O of an air-filled coaxial line. Determine the Q of an air-
filled coaxial line, shorted at one end, made of copper with dimensions a = 1 cm
and b = 3 cm. The operating frequency is 300 MHz.

Solution: Wehave A = ¢/f = 1 m = 100 cm. Thus the resonant line length
is I = M2 = 50 cm. Assuming that the losses are low and neglecting shunt
losses (G = 0), the attenuation constant from [3.73a] is & = R/(2Z,). From Ta-
ble 2.2, the series resistance R for a coaxial line made of copper is R =
4.15 X 1078 /f(a™' + b™'), and Z, = 601In(b/a). Thus, we have

_ 4.15x 1078 \/?(a‘1 +b7h)

~ 727 % 10~¢ . -1
2% 60 mba] 27> 107 mp-(em)

and

0== o

ar = 727 x 105 x100 -~ 2!

Note that we have neglected the losses in the imperfect short circuit. Also, if the
space between the conductors of the coaxial line were filled with an insulator
other than air, additional high-frequency losses in the insulator would generally
tend to reduce Q.

A transmission line resonator that behaves like a series RLC circuit can also be
implemented using an open-circuited transmission-line section of length A/4. Open-
circuited line resonators are easier to implement for microstrip or striplines because
short circuits cannot be easily placed on these structures. An analysis of the input
impedance similar to that just given shows that for [ = A/4, we have

——
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FIGURE 3.68. Resonant behavior of short-circuited transmission line segments. For
the purposes of this diagram, the imaginary part of the line impedance for a lossless line of
length [ is shown, namely X,. = Z,tan(81). Note that in applications of transmission lines as
resonators, the losses are generally quite small, so that the behavior of the impedance close to
the load is only negligibly different from the lossless case.

so that the equivalent series RLC circuit parameters are

_ wZy, C 4

— -1. = 14 = —
Ra=2Za™s  Lg= 2% Cq= 5

Thus the Q is

Although we have only considered the series RLC circuit and its transmission
line analog, similar results can be obtained for the parallel RLC circuit. A summary
of the behaviors of various lengths of shorted transmission lines as parallel or se-
ries RLC circuits is given in Figure 3.68. The reader is encouraged to construct an
analogous diagram for an open-circuited transmission line.

3.10

SUMMARY

This chapter discussed the following topics:

= Transmission line equations. When a transmission line is excited by a sinu-
soidal source of angular frequency w at steady state, the variations of the line
voltage and current can be analyzed using the phasor form of the transmission
line equations, which for a lossless line are
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dv .

diZ) = —jwLI(2)
al(z) _ .

a7 JoCV(2)

where L and C are the per-unit length distributed parameters of the line, and V(z)
and I(z) are, respectively, the voltage and current phasors, which are related to
the actual space-time voltage and current expressions as follows:

V(zt) = Re{V()e™};  9(z 1) = Re{l(z)e’}

m Propagating-wave solutions, characteristic impedance, phase velocity, and
wavelength. The solutions of the lossless transmission line equations consist of
a superposition of waves traveling in the +z and —z directions. The voltage and
current phasors and the corresponding space-time functions have the form

V(z) = Ve iP: + V-etifzy,  V(zt) = V' cos(wt — Bz) + V7 cos(wt + B2)
+

\% . \ A + -
I(z) = Ze_’ﬂz - Ze”pz; Iz, t) = %cos(wt - Bz) - Vzcos(wt + B2)

The characteristic impedance Z, of the line is the ratio of the voltage to the
current phasor of the wave propagating in the +z direction (or the negative of
the ratio of the voltage to the current phasor of the wave traveling in the —z
direction) and, for a lossless line, is given by Z, = /L/C. The phase velocity
and the wavelength for a lossless line are given as

v, = 1/VLC; A=2m/B =vlf

Note that the phase velocity of a lossless line is independent of frequency.

s Input impedance of short- and open-circuited lines. The line impedance of a
transmission line seen looking toward the load at any position along the line is
defined as

V(@ _ ., Ve lPr 4+ V-etibe

T Ik LY = Vgt

The input impedances of short- or open-circuited transmission lines of length [

are purely imaginary and are given by

Z, = jZotan(Bl) short-circuited line

Z(2)

Zy = — jZycot(Bl) open-circuited line

Since any arbitrary reactive impedance can be realized by simply adjusting the
length I of open- or short-circuited stubs, these stubs are commonly used as re-
active circuit elements for impedance matching and other applications.

m Reflection coefficient. It is common practice to treat steady-state transmis-
sion line problems by considering the wave traveling in the +z direction
(toward the load) as the incident wave and the wave traveling in the —z
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direction (away from the load and toward the source) as the reflected wave. The
ratio of the reflected to the incident voltage phasor at any position z along the
line is defined as the reflection coefficient, represented by I'(z). The reflection
coefficient at the load end of the line (where z = 0) is given by
V- j
IL= iz (2L = Zo)(ZL + Zy) = pe

The case of Z;, = Z, is referred to as a matched load, for which there is no
reflected wave, since I'y = 0. The reflection coefficient I'(z) at any other location
z (where z < 0) on a lossless line is given by

\%a efﬁz

= T oi2B2 — ,iW+2B2)
Vo ihe Te pe

I'(z) =

s Standing-wave pattern. The superposition of the incident and reflected waves
constitutes a standing-wave pattern that repeats every A/2 over the length of
the line. The standing-wave ratio S is defined as the ratio of the maximum to
minimum voltage (current) magnitude over the line and is given by

LY.
I-p
where p = |I1|. The standing-wave ratio S has practical significance because
it is easily measurable. The value of S varies in the range 1 = S = o, where
S = 1 corresponds to p = 0 (i.e., no reflection case) and S = o corresponds to
p = 1 (i.e., the load is either open or short circuit).

s Transmission line as an impedance transformer. The line impedance of a
lossless transmission line terminated in an arbitrary load impedance, defined as
the ratio of the total voltage to current phasor at position z, is in general complex
and is a periodic function of z, with period of A/2. The line impedance is purely
real at locations along the line where the voltage is a maximum or minimum.

s Power flow. The net time-average power propagating toward the load on a loss-
less transmission line is given by

v+
27,
and is equal to the power Py delivered to the load. For a given value of |V*|, the
power delivered to the load is maximized under matched conditions, or p = 0.

The degree of mismatch between the load and the line can be described in terms
of return loss, given as

P(z) = (1-p)

+
Return loss = 201og,, ;—:—i—

s Impedance matching. In most applications it is desirable to match the load
impedance to the line in order to reduce reflections and standing waves. In
single-stub matching, a short- or open-circuited stub is placed in shunt or
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series atalocation z = —/ along the line at which the normalized line admittance
or the impedance is given as

Y1(Z)lz=—1 =1- jB; Zl(Z)|z=-t =1- ]X

The matching is then completed by choosing the length  of a short- or open-
circuited stub so that it presents an admittance or impedance at z = —/ of Y, =
jBor Z, = jX.In quarter-wave matching, it is first necessary to determine the
location [ along the line at which the line impedance is purely real, that is, where

Z(Z)|z=—l =R+ jO
Matching to a line of impedance Z, is then completed by using a quarter-
wavelength-long line of characteristic impedance Zq = /Z,R.

Smith chart. The fact that the impedance Z(z) and the reflection coefficient I'(z)
on a lossless line are both periodic functions of position z along the line makes
it possible to analyze and visualize the behavior of the line using a graphical
display of I(z), S, and Z(z) known as the Smith chart. The Smith chart provides
a convenient means of analyzing transmission line problems to determine values
of impedance and reflection coefficient (or standing-wave ratio). The Smith chart
is also a useful tool for matching network design.

Lossy transmission lines. The solutions for voltage and current propagating in
the z direction on a lossy transmission line have the form

V(z,t) = V*e *cos(wt — B2)

+

$(z,t) = %;'e"” cos(wt — Bz — ¢;)

where a and B are the real and imaginary parts of the propagation constant y =
a+ jB = J(R+ joL)G + joC),R, L, G, and C are the per-unit distributed
parameters of the line, and w is the angular frequency of the excitation. The
characteristic impedance for a lossy line is in general complex and is given by

; R+ joL
= Jjé: = -
Zo = Zole VG + joC

For terminated lines, the general expressions for line voltage and current are
V(z) = Ve e P71 + I(2)]

I2) = %V*e—“e-fﬁzu ~T@)

where [(z) = ILe*2e/P2, with [ = (Z, — Zo)/(Z.+ Zy) being the complex load
voltage reflection coefficient. The line voltage and current exhibit a standing-
wave pattern near the load, but the differences between the maxima and minima
become smaller as distance from the load increases. At sufficient distances from
the load, the magnitudes of the line voltage and current do not vary significantly
with distance, as if the line were matched. The impedance of a lossy transmission
line is given by
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1+ Tz ., 1+ e*e:

1-T(z) g T e2zei26:

The real and imaginary parts of Z(z) exhibit maxima and minima near the load,
similar to that of a lossless line. However, at sufficient distances from the load,
Z(z) approaches Zy, as if the line were matched.

Transmission line resonators. Short- or open-circuited transmission lines of

lengths that are integer multiples of A/4 behave as highly efficient resonators.
The Q of a low-loss short-circuited half-wavelength-long line is

Q _ a)oCZ()
" GZo + (RIZy)

where C, G, and R are the distributed constants of the line, and w, = (LC)™"?
is the resonant frequency.

Z(x) = 7y

3.1 PROBLEMS

3-1.

3-4.

3-7.

Transmission line capacitor. An open-circuited 50£) microstrip transmission line is
used in a microwave amplifier circuit to provide a capacitance of 3.2 pF at 2.3 GHz.
(a) Find the appropriate electrical length of the line. (b) Find the lumped element values
of the open-circuited line designed in part (a) at 2 and 2.6 GHz.

. Resistive load. A 50Q) transmission line is terminated with an antenna having a feed-

point impedance of 1500). (a) Calculate Vinax, Vmin» max, and Imin along the line, assum-
ing V* = 1 V. (b) Sketch |V(z)| and |I(z)| as functions of z, taking the antenna position
to be z = 0. Assume A = 20 cm.

. Microwave filter. An air-filled coaxial line with Zo = 75€) is designed to provide an

inductive impedance of j231() for a microwave filter to operate at 2.5 GHz. Find the
length of the coaxial line if (a) it is short-circuit terminated and (b) it is open-circuit
terminated.

Capacitive termination. A lossless transmission line with Zg = 100() is terminated
with a capacitive load of 40 — jS0). (a) Calculate the standing-wave ratio S. (b) Find
the position of the first voltage minimum and maximum with respect to the load.
(c) Sketch |V(2)| as a function of Z/A. Assume V* = 1 V.

. Input impedance. A 10-cm-long air transmission line segment with Zo = 10042 is

terminated at z = O with a resistive load of 200} and is operated at 1.5 GHz. Calculate
the input impedance of the line if (a) a shunt capacitance of ~ 2.12 pF is connected
at a point halfway (z = —5 cm) on the line, (b) a series capacitance of ~ 2.12 pF is
connected at z = —5 cm.

. Resistive load. A transmission line segment with Zo = 50() and of length [ is termi-

nated at a load resistance of Ry that can be varied . Sketch the input impedance Z;, as
a function of Ry if (a) [ = A4 and (b) I = A/2. At what value of Ry, do the two curves
intersect?

Inductive tenpination. An air-filled coaxial line with Zy = 50() is terminated with a
load of 100 + jSOﬁQ. If the line is operated at A = 10 cm, calculate (a) the standing-
wave ratio S on the line, (b) the distance from the load to the first voltage maximum,
and (c) the distance from the load to the first current maximum.
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3-8. A wireless communication antenna. The following table provides the approximate
values at various frequencies of the feed-point impedance of a circularly polarized
patch antenna used in the wireless industry for making cellular phone calls in difficult
environments, such as sport arenas and office buildings:

S (MHz) Z.()

800 21.5 - j15.4
850 38.5 + j2.24
900 438 + j9.74
950 55.2 — j10.2
1000 28.8 — j7.40

If this antenna is directly fed by a 50€) transmission line, find and sketch the standing-
wave ratio S as a function of frequency.

3-9. Resistive line impedance. A 50() coaxial line is terminated with a load impedance of
40 + j80(Q) at z = 0. Find the minimum electrical length I/A of the line at which the
line impedance (i.e., Z(z = —1)) is purely resistive. What is the value of the resistive
line impedance?

3-10. Resistive line impedance. A transmission line with Z; = 100 is terminated with
a load impedance of 120 — j200(). Find the minimum length [ of the line at which
the line impedance (i.e., Z(z = —I)) is purely resistive. What is the value of the resis-
tive line impedance?

3-11. Resistive load. A lossless line is terminated with a resistive load of 120€. If the line
presents an impedance of 48 + j36() at a position 3A/8 away from the load, what is
the characteristic impedance Z, of the line?

3-12. Inputimpedance. For the lossless transmission-line system shown in Figure 3.69, find
Z;, for the following load impedances: (a) Z, = o (open circuit), (b) Zp = 0 (short
circuit), and (¢) Zy = Zy/2.

3-13. Input impedance. Repeat Problem 3-12 for the circuit shown in Figure 3.70.

A4 A4

[e,
’—‘ Z 22y gz, Z
z, FIGURE 3.69. Input impedance.
° ‘ Problem 3-12.
Al4 22, Al4
I Z, Zy Z,
Zi o 0 O

FIGURE 3.70.  Input impedance. Problem 3-13.
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A4 M4
[e,
‘_—' Z()l 202 100Q2
7z FIGURE 3.71. Input impedance.
"o Problem 3-14.
3-14. Input impedance. For the lossless transmission-line system shown in Figure 3.71,

3-15.

3-16.

3-17.

3-18.

3-19.

3-20.

what is the ratio Zy,/Zy, if Ziy, = 22507
Unknown termination. Consider a transmission line with Zy = 50€) terminated with
an unknown load impedance Z . (a) Show that

1- ./S tan(Blmin)
S — jtan(Blmin)

where [y, is the length from the load to the first voltage minimum and S'is the standing-
wave ratio. (b) Measurements on a line with Zg = 50€) having an unknown termina-
tion Z; show that S = \/5, lnin = 25 mm, and that the distance between successive
minima is 10 cm. Find the load reflection coefficient Iy, and the unknown termination
Zy.

Distance to the first maximum. Derive a formula similar to that in Problem 3-15 in
terms Of lpnay, Where Ipay is the distance from the load to the first voltage maximum.
Power dissipation. For the lossless transmission line system shown in Figure 3.72,
with Zy = 100Q, (a) calculate the time-average power dissipated in each load. (b)
Switch the values of the load resistors (i.e., Ru; = 2009, R, = 50(2), and repeat
part (a).

Power dissipation. Consider the transmission line system shown in Figure 3.73.
(a) Find the time-average power dissipated in the load Ry with the switch S open.
(b) Repeat part (a) for the switch S closed. Assume steady state in each case.

Power dissipation. Repeat Problem 3-18 if the characteristic impedance of the trans-
mission lines on the source side is changed from 50€) to 25 ﬁQ

Two antennas. Two antennas having feed-point impedances of Z;, = 40 — j30(} and
Zi» = 100 + j50Q are fed with a transmission line system, as shown in Figure 3.74.

ZL =2

A2 Al4
—o an
25Q
- =100Q = 100Q
Ry, =500 & . % Ry, =200Q

10e/°
\2)

O o0~ o

FIGURE 3.72. Power dissipation. Problem 3-17.
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250 3A/4 A4

10 wt
°(‘\’,S)( ) Zy=50Q Zy= 50Q Ry =25Q
100Q

FIGURE 3.73.  Power dissipation. Problem 3-18.

Al

100Q

3460V Zo=50Q

Main line

FIGURE 3.74. Two antennas. Problem 3-20.

(a) Find S on the main line. (b) Find the time-average power supplied by the sinusoidal
source.
(c) Find the time-average power delivered to each antenna. Assume lossless lines.

3-21. Power dissipation. For the transmission line network shown in Figure 3.75, calculate
the time-average power dissipated in the load resistor Ry.

3-22. Three identical antennas. Three identical antennas A1, A2, and A3 are fed by a trans-
mission line system, as shown in Figure 3.76. If the feed-point impedance of each
antenna is Z; = 50 + j50(), find the time-average power delivered to each antenna.

3-23. Power delivery. For the transmission system shown in Figure 3.77, calculate the per-
centage of time-average power delivered to R; and Rip at(a) f = fi,(b) f = fo =
2fi,and (c) f = 5 = 1.5f.

3-24. Matching with a single lumped element. The transmission line matching networks
shown in Figure 3.78 are designed to match a 10Q load impedance to a 50€} line.
(a) For the network with a shunt element, find the minimum distance / from the load
where the unknown shunt element is to be connected such that the input admittance

25Q Ald Al4 50Q
20e1° Ry =200Q 20e/0
% Zy =50Q Zy, = 100Q %)

FIGURE 3.75.  Power dissipation. Problem 3-21.
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100 13A/4 5A/4 504
VA=
12¢70V 100Q 100Q 100Q A3
o/ /s 74
$ S
> A
N AN
Al ¥ 2

a7

FIGURE 3.76. Three identical antennas. Problem 3-22.

37,/4 31,/8

Z,
R .=Z Zy=50Q %
L1= 40 Ri,=7,
Vo cos(2rft)

S
> N

A/ A,/

FIGURE 3.77. Power delivery. The normalized line lengths are
givenat f = fi. Problem 3-23.

=]

R =10Q

A
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[
:
T
Al

(@ ®)
FIGURE 3.78. Matching with a single lumped element. Problem 3-24.
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3-26.

3-27.
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—o

750 Z, =90 +j135Q

FIGURE 3.79. Matching
with series shorted stub.
Problem 3-25.

75Q

seen at B-B' has a conductance part equal to 0.02 S. (b) Determine the unknown shunt
element and its element value such that the input impedance seen at A-A' is matched
to the line (i.e., Z, _,, = 50Q)) at 1 GHz. (c) For the matching network with a lumped
series matching element, find the minimum distance / and the unknown element and
its value such that a perfect match is achieved at 1 GHz. Assume v, = 30 cm-(ns)~ L.
Matching with series stub. A load impedance of 90 + j135() is to be matched to a
75€ lossless transmission line system, as shown in Figure 3.79. If A = 20 cm, what
minimum length of transmission line / will yield a minimum length /; for the series
stub?

Open-ended extension. A transmission line with Zy = 50Q) is terminated with a
100 load resistance shunted by an open-circuited line having Z, = 50() and length
7.4 mm as shown in Figure 3.80. If A = 10 cm on both lines, find the length /s and the
position [ (measured from the 100£) load resistance) of the single short-circuited stub
to match this load to the line.

Series stub matching. A series-shorted-stub matching network is designed to match a
capacitive load of Ry, = 50Q and C;. = 10/(37r) pF to a 100{2 line at 3 GHz, as shown
in Figure 3.81. (a) The stub is positioned at a distance of A/4 away from the load. Verify
the choice of this position and find the corresponding electrical length of the stub to
achieve a perfect match at the design frequency. (b) Calculate the standing-wave ratio
S on the main line at 2 GHz. (c) Calculate S on the main line at 4 GHz.
Quarter-wave transformer. (a) Design a single-section quarter-wave matching trans-
former to match an Ry = 20Q) load to a line with Z; = 80() operating at 1.5 GHz.
(b) Calculate the standing-wave ratio S of the designed circuit at 1.2 and 1.8 GHz.
Helical antenna. The feed-point impedance of an axial-mode helical antenna with
a circumference C on the order of one wavelength is nearly purely resistive and is

I 7.4 mm

_—— o

Zy= 50Q Z,=100Q 9 Zy=50Q

O

FIGURE 3.80. Open-ended extension. Problem 3-26.
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100Q

Main line

100Q

R =50Q
100Q

C, = 10/(3m) pF
T FIGURE 3.81. Series stub

3-30.

3-31.

3-32.

Ald matching. Problem 3-27.

approximately given® by Ry = 140(C/A), with the restriction that 0.8A = C = 1.2A.
Consider a helical antenna designed with a circumference of C = A for operation at a
frequency f, and corresponding wavelength Aq. The antenna must be matched for use
with a S0} transmission line at f,. (a) Design a single-stage quarter-wave transformer
to realize the design objective. (b) Using the circuit designed in part (a), calculate the
standing-wave ratio S on the 50() line at a frequency 15% above the design frequency.
(c) Repeat part (b) at a frequency 15% below the design frequency.

Helical antenna. A helical antenna designed with a feed-point impedance of 125() is
matched to a 52() line by inserting a coaxial transmission line section of characteristic
impedance 95} and length 0.125A at a distance of 0.0556A from the antenna feed
point. (See Figure 3.82.) (a) Verify the design by calculating the standing-wave ratio
S on the line. (b) Using the same circuit as in part (a), calculate S on the main line at
a frequency 20% above the design frequency. Note: Use the approximate expression
given in Problem 3-29 to recalculate the feed-point impedance of the helical antenna.
Quarter-wave matching. Many microwave applications require very low values of §
over a broad band of frequencies. The two circuits shown in Figure 3.83 are designed
to match a load of Z;, = R = 4009 to a line with Zy = 50(), at 900 MHz. The first
circuit is an air-filled coaxial quarter-wave transformer, and the second circuit consists
of two air-filled coaxial quarter-wave transformers cascaded together. (a) Design both
circuits. Assume Zq1Zq, = ZyZ for the second circuit. (b) Compare the bandwidth
of the two circuits designed by calculating S on each line at frequencies 15% above
and below the design frequency.

Is a match possible? A 75() coaxial line is connected directly to an antenna with
a feed-point impedance of Z; = 156(}. (a) Find the load-reflection coefficient and
the standing-wave ratio. (b) An engineer is assigned the task of designing a matching

0.1254 0.0556A
----- —0:
Helical
52Q 95Q 52Q antenna
Ry =125Q
————— ~O

FIGURE 3.82. Helical antenna. Problem 3-30.

3See Chapter 7 of J. D. Kraus, Antennas, 2nd. ed., McGraw-Hill, 1988.
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FIGURE 3.83. Quarter-wave matching. Problem 3-31.

network to match the feed-point impedance of the antenna to the 75() coaxial line.
However, all he has available to use for this design is another coaxial line of charac-
teristic impedance 52(). Is a match possible?

L-section matching networks. A simple and practical matching technique is to
use the lossless L-section matching network that consists of two reactive elements.
(a) Two L-section matching networks marked A1 and A2, each consisting of a lumped
inductor and a capacitor, as shown in Figure 3.84, are used to match a load impedance
of Z = 60 — j80() to a 100} line. Determine the L section(s) that make(s) it pos-
sible to achieve the design goal, and calculate the appropriate values of the reactive
elements at 800 MHz. (b) Repeat part (a) for the two L-section networks marked B1
and B2, consisting of two inductances and two capacitors, respectively.

Variable capacitor. A shunt stub filter consisting of an air-filled coaxial line termi-
nated in a variable capacitor is designed to eliminate the FM radio frequencies (i.e.,
88-108 MHz) on a transmission line with Zy = 100(}, as shown in Figure 3.85. If the

Al L

L Bl
1oor;z> G I :tl “ 10052’ Lz% ] ZL
A2 G o
o—] o_|eTo B2
100rs: Lz} “ 1oo|:; “ | }ZL
(@) ()

FIGURE 3.84. L-section matching networks. Problem 3-33.
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3-35.

3-36.

FIGURE 3.85. Variable capacitor.
Problem 3-34.

stub length is chosen to be 25 cm, find the range of the variable capacitor needed to
eliminate any frequency in the FM band. Assume the characteristic impedance of the
stub to be also equal to 100Q2.

Matching with lumped reactive elements. Two variable reactive elements are po-
sitioned on a transmission line to match an antenna having a feed-point impedance
of 100 + j100) to a Zy = 100} air-filled line at 5 GHz, as shown in Figure 3.86.
(a) Determine the values of the two reactive elements to achieve matching. (b) If the
reactive elements are to be replaced by shorted S0Q air-filled stubs, determine the
corresponding stub lengths.

Fifth-harmonic filter. The circuit shown in Figure 3.87 has two shunt stubs (one open
and one short) that are connected at the same position on a line with Z; = S0(}. The
normalized lengths of the two stubs are given at a frequency fo (or wavelength Ag).
Assume each stub to have a characteristic impedance of 50€). What is the standing-

316

Zo=100Q L 100@ c==" || z.=100+j100Q

FIGURE 3.86. Matching with lumped reactive elements.

Problem 3-35.

o
o
324/20
50Q
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FIGURE 3.87. Fifth-harmonic filter. Problem 3-36.
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wave ratio S on the line at f5? At3 f5? At 5 f4? (Note that this circuit is a fifth-harmonic
filter.)

Standing-wave ratio. For the transmission line shown in Figure 3.88, calculate S on
the main line at (a) 800 MHz, (b) 880 MHz, and (c) 960 MHz.

Quarter-wave matching. (a) For the transmission line system shown in Figure 3.89,
determine the value of the characteristic impedance of a quarter-wave transformer (i.e.,
Zg) and its location / with respect to the load needed to achieve matching between Z;
and Z. (b) Repeat part (a) for Z, = 80 — j60().

Single-stub matching. For the transmission line system shown in Figure 3.90,
(a) design a single shorted stub to be as close as possible to the load such that the
load is matched to the air line at 3 GHz (A = 10 cm). (b) After the matching circuit
is built, an engineer experiencing reflections on the main line discovers that the line
has an open-circuited extension of 2.5 cm beyond the load position. With the design
values of /s and [ found in part (a), what is the actual standing-wave ratio S on the main
line caused by the open-circuit extension?

Quarter-wave transformer. Consider the double quarter-wave transformer system
shown in Figure 3.91. (a) Find I, Zg,, and Zy, such that the load is matched to the
200Q2 line at Ag = 12 cm. Assume ./Zq;Zq, = 60€). (b) Using the values of [, Zg;
found in part (a), find the standing-wave ratio S on the main line at twice the operating
frequency.

f=800 MHz Bl = 150°
50

Main line Ry =50Q
Zo=50Q

FIGURE 3.88. Standing-wave ratio. Problem 3-37.

Al4 1=?

50Q Zy="? 50Q Z; =40 +j30Q

FIGURE 3.89. Quarter-wave matching. Problem 3-38.
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FIGURE 3.90. Single-stub
(®) matching. Problem 3-39.
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FIGURE 3.91. Quarter-wave transformer. Problem 3-40.

3-41. Unknown feed-point impedance. A 50() transmission line is terminated with an an-
tenna that has an unknown feed-point impedance. An engineer runs tests on the line
and measures the standing-wave ratio, wavelength, and a voltage minimum location
away from the antenna feed point to be, respectively, 3.2, 20 cm, and 74 cm. Use the
Smith chart to find the feed-point impedance of the antenna.

3-42. RG218 coaxial line. The RG218 coaxial line is made of copper conductors with
polyethylene as the insulator filling. The diameter of the inner conductor and the outer
diameter of the insulator are 4.95 mm and 17.27 mm, respectively. The line is to be
used at 100 MHz. Find the propagation constant y and the characteristic impedance
Z,. For polyethylene at 100 MHz, v, = 20 cm-(ns)~!, and for a polyethylene-filled
coaxial line at 100 MHz, assume G = 1.58 X 10°/[In(b/a)].
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Two-wire air line. An air-insulated two-wire line made of copper conductors has a
characteristic impedance of 500Q) when it is assumed to be lossless. (a) Find the L,
C, and R parameters of this line at 144 MHz. Assume a wire diameter of 1.024 mm.
(b) Find the propagation constant y and the characteristic impedance Zy with losses
included.

Two-wire matching section. An air-insulated two-wire quarter-wave transmission
line section is constructed using a copper wire with diameter 2.54 mm to match a
588() load impedance to a 75 line at 300 MHz. Assuming the lossless case, find the
length and the spacing of the wires of the matching section. (b) Find y and Z, of the
matching section with the losses included.

A parallel-plate line. A certain parallel-plate line is to be made of two copper strips
each 5 cm wide and separated by 0.5 cm. The dielectric is air and the frequency of
operation is 1 GHz. Find the line parameters L, C, and R, the characteristic impedance
Zy, and the attenuation constant « of the line.

A lossy high-speed interconnect. The per-unit line parameters of an IC interconnect at
5 GHz are extracted using a high-frequency measurement technique resulting in R =
143.5Q-(cm)™", L = 10.1nH-(cm)™", C = 1.1 pF-(cm)~!,and G = 0.014 S-(cm) ™",
respectively.* Find the propagation constant y and the characteristic impedance Z, of
the interconnect at 5 GHz.

Characterization of a high-speed GaAs interconnect. The propagation constant y
and the characteristic impedance Zy at 5 GHz of the GaAs coplanar strip intercon-
nects considered in Example 3-31 are determined from the measurements to be y =
1.1 np-(cm)™" + j3 rad-(cm)~! and Zy = 110 — j40Q), respectively. Using these val-
ues, calculate the per-unit length parameters (R, L, G, and C) of the coplanar strip line
at 5 GHz.

A lossy high-speed interconnect. Consider a high-speed microstrip transmission line
of length 10 cm used to connect a 1-V amplitude, 2-GHz, 50} sinusoidal voltage
source to an integrated circuit chip having an input impedance of 50(). The per-unit
parameters of the microstrip line at 2 GHz are measured to be approximately given
by R = 7.5Q-(cm)”!, L = 4.6 nH-(cm)~!, C = 0.84 pF-(cm)~!, and G = 0, respec-
tively. (a) Find the propagation constant y and the characteristic impedance Z, of the
line. (b) Find the voltages at the source and the load ends of the line. (c) Find the time-
average power delivered to the line by the source and the time-average power delivered
to the load. What is the power dissipated along the line?

Half-wave coaxial line resonator. A A\/2 resonator is constructed using a piece of
copper coaxial line, with an inner conductor of 2-mm diameter and an outer conductor
of 8-mm diameter. If the resonant frequency is 3 GHz, find the Q of (a) the air-filled
coaxial line and (b) the teflon-filled coaxial line, and compare the results. (c) For an
air-filled line, determine the equivalent series RLC circuit parameters, namely Req,
Leg, and Ceq. For teflon at 3 GHz, v, = 20.7 cm-(ns)~!. For a teflon-filled coaxial
line at 3 GHz, the per-unit conductance G of a coaxial line is approximately given by
G = 3.3 X 10™*/[In(b/a)] S-m~".

40W. R. Eisenstadt and Y. Eo, S parameter-based IC interconnect transmission line characterization,
IEEE Trans. on Components, Hybrids, and Manufacturing Technology, 15(4) pp. 483489, August

1992.



