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Wave motion is said to occur when a disturbance of a physical quantity at a particular
point in space at a particular time is related in a definite manner to what occurs at
distant points in later times. Transient waves occur in response to sudden, usually
brief disturbances at a source point, leading to temporary disturbances at distant
points at later times. They are thus different from steady-state waves, which are
sustained by disturbances involving periodic oscillations at the source point.

Transient waves are of importance in many different contexts. Consider, for ex-
ample, a line of cars waiting at a red traffic light. When the light turns green, the cars
do not all start moving at the same time; instead, the first car starts to move first, fol-
lowed by the car behind it, and so on, as the act of starting to move travels backwards
through the line. This wave travels at a speed that depends on the response proper-
ties of the cars and the reaction times of the drivers. As another example, when the
end of a stretched rope is suddenly moved sideways, the action of moving sideways
travels along the rope as a wave whose speed depends on the tension in the rope and
its mass. If the rope is infinitely long, the disturbance simply continues to propagate
away from its source. If, on the other hand, the distant end of the rope is held fixed,
the wave can be reflected back toward the source.

Other examples of transient waves include the thunderclap, the sound wave
emitted from an explosion, and seismic waves launched by an earthquake.
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(d) (e)

FIGURE 2.1. Different types of uniform transmission lines: (a) parallel
two-wire; (b) coaxial; (c) parallel-plate; (d) stripline; (e) microstrip.

Transient waves are often used as tools to study the disturbances that create them.
The sound wave from a blast can be used for detecting the source of the blast from a
long distance; a seismograph measures the strength of a distant earthquake based on
tiny transient motions of the earth. Transient waves can also have destructive effects
far away from the sources of their initial disturbances. The great Alaskan earthquake
of March 27, 1964, produced a giant tsunami, which radiated seaward from Prince
William Sound, causing enormous damage when it hit the Hawaiian islands some
5 hours after the disturbance; its remnants produced numerous seiches! that sloshed
back and forth for more than 24 hours in the various bays, inlets, and harbors along
the western coast of North America. Seismic surface waves launched by the same
earthquake, propagating by rippling the earth’s crust, took 14 minutes to travel from
Prince William Sound to the Gulf Coast region of Texas and Louisiana, where they
triggered seiches in bays, harbors, rivers, and lakes. Cajun trappers and night fisher-
men in a Louisiana bayou were surprised to be violently rocked back and forth just
after they heard of a large Alaskan earthquake on their radios.

The purpose of this chapter is to study voltage and current transients on electri-
cal transmission lines. A transmission line may consist of two parallel wires (as it
will often be illustrated in this book), of coaxial conductors, or of any two conduc-
tors separated by an insulating material or vacuum. Some types of two-conductor
transmission lines are shown in Figure 2.1.

!Seiche is a French word that has become the internationally adopted scientific term for transient free
(or unforced) surges and oscillations that develop primarily in closed and semiclosed bodies of water.
For an excellent, easy-to-read article, see B. J. Korgen, Seiches, American Scientist, 83(4), pp. 330-341,
July—August, 1995.
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Many important electrical engineering applications involve transients: tempo-
rary variations of current and voltage that propagate down a transmission line. Tran-
sients are produced by steplike changes (e.g., sudden on or off) in input voltage or
current. Digital signals consist of a sequence of pulses, which represent superposition
of successive steplike changes; accordingly, the transient response of transmission
lines is of interest in most digital integrated circuit and computer communication
applications. Transient transmission line problems arise in many other contexts. The
transient response of lines can be used to generate rectangular pulses; the earliest
applications of transmission lines involved the use of rectangular pulses for teleg-
raphy. When lightning strikes a power transmission line, a large surge voltage is
locally induced and propagates to other parts of the line as a transient.

This chapter is unique; the following chapters are mostly concerned with appli-
cations that either involve static quantities, which do not vary in time, or involve
steady signals that are sinusoids or modified sinusoids. However, with the rapid
advent of digital integrated circuits, digital communications, and computer commu-
nication applications, transient responses of transmission lines are becoming increas-
ingly important. Increasing clock speeds make signal integrity? analysis a must for
the design of high-speed and high-performance boards. Managing signal integrity
in today’s high-speed printed circuit boards and multichip modules involves fea-
tures such as interconnect lengths, vias, bends, terminations, and stubs and often
requires close attention to transmission line or distributed circuit effects.? It is thus
fitting that we start our discussion of engineering electromagnetics by studying the
transient response of transmission lines. Also, analysis of transients on transmission
lines requires relatively little mathematical complexity and brings about an intuitive
understanding of concepts such as wave propagation and reflection, which facilitates
a better understanding of the following chapters.

Our discussions in this chapter start in Section 2.1 with a heuristic analysis of
transmission line behavior, in particular the response to a step (on or off) input, and
a discussion of lumped circuit models. Section 2.2 introduces the fundamental cir-
cuit equations for a transmission line and their solution for lossless lines in terms of
traveling waves. The reflection of the waves at the termination of a transmission line
and the step response of lossless lines with open and short circuit terminations are
presented in Section 2.3. Section 2.4 covers the step and pulse responses of lossless
transmission lines terminated in resistive loads or in other transmission lines, while
Section 2.5 treats the cases of reactive loads and loads with nonlinear current-voltage
characteristics. Selected practical topics are presented in Section 2.6, followed by a
brief discussion of the parameters of some commonly used practical transmission
lines in Section 2.7.

2The term signal integrity refers to the issues of timing and quality of the signal. The timing analysis
is performed to ensure that the signal arrives at its destination within a specified time interval and that
the signal causes correct logic switching without false switching or transient oscillations, which can
result in excessive time delays. See R. Kollipara and V. Tripathi, Printed wiring boards, Chapter 71 in
J. C. Whitaker (ed.), The Electronics Handbook, CRC Press, 1996, pp. 1069-1083.

3See R. Goyal, Managing signal integrity, IEEE Spectrum, pp. 54-58, March 1994.
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2.1

HEURISTIC DISCUSSION OF TRANSMISSION LINE
BEHAVIOR AND CIRCUIT MODELS

Typically, we explain the electrical behavior of a two-conductor transmission line in
terms of an equal and opposite current flowing in the two conductors, as measured
at any given transverse plane. The flow of this current is accompanied by magnetic
fields set up around the conductors (Ampere’s law), and when these fields change
with time, a voltage (electromotive force) is induced in the conductors (Faraday’s
law), which affects the current flow.* This behavior can be represented by a small in-
ductance associated with each short-length segment of the conductors. Also, any two
conductors separated by a distance (such as the short sections of two conductors fac-
ing one another) have nonzero capacitance, so that when equal and opposite charges
appear on them, there exists a potential drop across them. Hence, each short section
of a two-conductor line exhibits some series inductance and parallel capacitance.’
The values of the inductance and capacitance depend on the physical configuration
and material properties of the two-conductor line, including the surface areas, cross-
sectional shape, spacing,’ and layout of the two conductors as well as the electrical
and magnetic properties’ of the substance filling the space between and around the
conductors.

2.1.1 Heuristic Discussion of Transmission Line Behavior

We can qualitatively understand the behavior of a two-conductor transmission line
by considering a lossless circuit model of the line, consisting of a large number of
series inductors and parallel capacitors connected together, representing the short
sections Az of the line, as illustrated in Figure 2.2.

To illustrate the behavior of a lossless transmission line, we now consider
the simplest possible transient response: the step response, which occurs upon the
sudden application of a constant voltage. At ¢ = 0, a battery of voltage V, and
source resistance R;; is connected to the infinitely long two-conductor transmission
line represented by the lossless circuit shown in Figure 2.2, where each pair of

“Detailed discussion of these experimentally based physical laws will be undertaken later; here we
simply rely on their qualitative manifestations, drawing on the reader’s exposure to these concepts at the
freshman physics level.

SNeglecting losses for now.

SThis can be seen at a qualitative level, from the reader’s understanding of capacitance and inductance
at the freshman physics level. For example, the closer the conductors are to each other, the larger the
capacitance is. On the other hand, the inductance of a two-conductor line is smaller if the conductors are
closer together, since the magnetic field produced by the current flow is linked by a smaller area, thus
inducing less voltage.

7At the simplest level, the magnetic properties of a material represent the ability of a material medium
to store magnetic energy. Similarly, by electrical properties we refer to the ability of a material to store
electric energy or its response to an applied electric field. The microscopic behavior of the materials that
determines these properties will be discussed in Chapters 4 and 6.
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FIGURE 2.2. Circuit model of a two-conductor lossless line.

inductances corresponds to the inductance of a short section of the line of length Az,
and each capacitor corresponds to the capacitance of the same section of length Az.
Initially, the transmission line is completely discharged, so all the capacitances have
zero charge (and thus zero voltage) and the inductances have zero current flowing
through them. The switch in Figure 2.2 is moved to position 1 at ¢ = 0, so that,
starting at ¢ = 0, the source voltage V, appears across the source resistance Ry, and
the terminals of the capacitance C;, which takes time to charge;® and until it charges,
there is no voltage across it to drive currents through L,, and L,,. As the voltage
across C; builds up, the currents in L;, and L, also take time to increase.’ When these
currents increase enough to cause appreciable flow through C,, this capacitance now
takes some time to charge. As it charges, current starts to flow in inductors L,, and
L,;, but this takes time. This same process continues all the way down the line, with
the capacitor C; not starting to charge until the preceding capacitors are charged,
just as if it did not know yet that the voltage step had been applied at the input. In
this way, the information about the change in the position of the switch travels down
the line.

When the switch moves back to position 2 at ¢ = ¢,, the reverse happens: C; has
to discharge through Ry, which pulls current (not suddenly) from L;, and L,,, which
in turn allows C, to discharge, and so on. All of this takes time, so C; is not affected
by the removal of the input signal until the preceding capacitors are discharged first.
The rate of charging and discharging depends only on the circuit element values, so
the charging and discharging disturbances both continue down the line at the same
speed, since L, = Lj, for all i, j and all C; values are equal, assuming a uniform
transmission line.

Note from the above discussion that if the inductance of the line segments is
negligible, the line can be approximated as a lumped capacitor (equal to the parallel
combination of all of its distributed shunt capacitances); all the points on the line
are then at the same potential, and traveling-wave effects are not important. The line
inductance becomes important if the line is relatively long or if the rise time of the
applied signal (as defined in Figure 1.3) is so fast that the current through the inductor

8Voltage across a capacitance cannot change instantaneously.
9Current through an inductor cannot change instantaneously.
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increases very rapidly, producing appreciable voltage drop (V' = L d$/dt) across
the inductor even if the value of L is small. By the same token, it is intuitively clear
that, even if the line is long (and thus L is large), transmission line effects will be
negligible for slow enough rise times, as was discussed in Chapter 1.

2.1.2 Circuit Models of Transmission Lines

It is often more useful to describe transmission line behavior in terms of inductance
and capacitance per unit length, rather than viewing the line as an infinite number
of discrete inductances and capacitances, as implied in Figure 2.2. We must also
note that, in general, the conductors of a transmission line exhibit both inductance
and resistance and that there can be leakage losses through the material surround-
ing the conductors. The inductance per unit length (L) of the line, in units of henrys
per meter, depends on the physical configuration of the conductors (e.g., the sepa-
ration between conductors and their cross-sectional shape and dimensions) and on
the magnetic properties of the material surrounding the conductors. The series resis-
tance per unit length R, in units of ohms per meter, depends on the cross-sectional
shape, dimensions, and electrical conductivity of the conductors'® and the frequency
of operation. Between the conductors there is a capacitance (C), expressed as farads
per meter; there is also a leakage conductance (G) of the material surrounding the
conductors, in units of siemens per meter. The capacitance depends on the shape,
surface area, and proximity of the conductors as well as the electrical properties of
the insulating material surrounding the conductors. The conductance depends on the
shape and dimensions of the outside surface of the conductors!! and on the degree to
which the insulating material is lossy. A uniform transmission line consists of two
conductors of uniform cross section and spacing throughout their length, surrounded
by a material that is also uniform throughout the length of the line. An equivalent
circuit of a uniform transmission line can be drawn in terms of the per-unit-length
parameters, which are the same throughout the line. One such circuit is shown in
Figure 2.3, where each short section of length Az of the line is modeled as a lumped
circuit whose element values are given in terms of the per-unit parameters of the line.
The electrical behavior of a uniform transmission line can be studied in terms of such
a circuit model if the length of the line (Az) represented by a single L-R-C-G section
is very small compared to, for example, the wavelength of electromagnetic waves in
the surrounding material at the frequency of operation. Four different circuit models
are shown in Figure 2.4.

Expressions for L, R, C, and G for some of the commonly used uniform trans-
mission lines shown in Figure 2.1 are provided in Section 2.7. The values of these
quantities depend on the geometric shapes and the cross-sectional dimensions

10The resistance simply represents the ohmic losses due to the current flowing through the conductors;
hence, it depends on the cross-sectional area and the conductivity (see Chapter 5) of the conductors.
'The leakage current flows from one conductor to the other, through the surrounding material, and in
the direction transverse to the main current flowing along the conductors of the line; hence, it depends
on the outer surface area of the conductors.
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FIGURE 2.3. Distributed circuit of a uniform transmission line.
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FIGURE 2.4. Lumped circuit models for a short segment of a uniform
transmission line.

of the line, the electrical conductivity of the metallic conductors used, the electrical
and magnetic properties of the surrounding medium, and the frequency of operation.
The expressions for L, R, C, and G for the various lines can be obtained by means
of electromagnetic field analysis of the particular geometries involved. For some
cases (such as the parallel wire, coaxial line, and parallel plate lines shown in Fig-
ure 2.1), compact analytical expressions for R, L, C, and G can be found. For other,
more complicated structures (e.g., the stripline and microstrip lines in Figure 2.1),
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calculation of the R, L, C, and G parameters usually requires numerical computa-
tion. Methods for the determination of transmission line parameters are discussed
in Chapters 4 through 6 as we introduce the governing electromagnetic equations,
so that we can formally derive the expressions for the transmission line parameters.
For our distributed circuit analyses of transmission lines in this and the following
chapter, it suffices to know that the values of L, R, C, and G are directly calculable
for any uniform transmission line configuration. We can thus proceed by using their
values as specified by the expressions in Section 2.7, as given in handbooks, or as
measured in specific cases.

2.2

TRANSMISSION LINE EQUATIONS AND
WAVE SOLUTIONS

In this section we develop the fundamental equations that govern wave propagation
along general two-conductor transmission lines. Various lumped circuit models of
a single short segment of a transmission line are shown in Figure 2.4. In the limit
of Az — 0, any one of the circuit models of Figure 2.4 can be used to derive the
fundamental transmission line equations. In the following, we use the simplest of
these models (Figure 2.4b), shown in further detail in Figure 2.5.
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FIGURE 2.5. Equivalent circuit of a short length of Az of a two-conductor
transmission line.
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2.2.1 Transmission Line Equations

The section of line of length Az in Figure 2.5 is assumed to be located at a distance z
from a selected point of reference along the transmission line. We consider the total
voltage and current at the input and output terminals of this line section: that is, at
points z and (z + Az). The input and output voltages and currents are denoted as
V(z 1), $(z t) and V'(z + Az, 1), $(z + Az, t), respectively. Using Kirchhoff’s voltage
law, we can see that the difference in voltage between the input and output terminals
is due to the voltage drop across the series elements RAz and LAz, so we have

39(z 1)
Jt
Note that we shall consider Az to be as small as needed so that the lumped circuit--

model of the segment can accurately represent the actual distributed line. In the limit
when Az — 0, we have

V(z+ Az 1) —V(z 1) = —RAz $(z, 1) — LAz

. Ve+Az0) -V _ V() _ _ .99z
i Az 9z R¥zn-L at
or
V1 _ d
i (R + Lat>.¢(z, t) [2.1]

Similarly, using Kirchhoff’s current law, the difference between the current at the
input and output terminals is equal to the total current through the parallel elements
GAz and CAz, so we have
V(z+ Az 1)

dat
Upon dividing by Az and expanding V'(z + Az, f) in a Taylor series,'? and taking
Az — 0, we have:

Iz +Az10)— % 1) = —GAz V(z+ Az, 1) — CAz

. [$z+Az0) -9z 0)] _ () .
AI}E‘O[ Az ] =-GVien-C—p Jim {Az(--)}
or
19at) _ (o, 0
= (G +C ar)wz’ ) [2.2]

Equations [2.1] and [2.2] are known as the transmission line equations or
telegrapher’s equations. We shall see in Chapter 8 that uniform plane electromag-
netic wave propagation is based on very similar equations, written in terms of the

2Y(z+ Az, 1) = V(z 0) + [0V (z DIz]Az + -
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components of electric and magnetic fields instead of voltages and currents. Most
other types of wave phenomena are governed by similar equations; for acoustic waves
in fluids, for example, one replaces voltage with pressure and current with velocity.

2.2.2 Traveling-Wave Solutions for Lossless Lines

Solutions of [2.1] and [2.2] are in general quite difficult and require numerical treat-
ments for the general transient case, when all of the transmission line parameters
are nonzero. However, in a wide range of transmission line applications the series
and parallel loss terms (R and G) can be neglected, in which case analytical so-
lutions of [2.1] and [2.2] become possible. In fact, practical applications in which
transmission lines can be treated as lossless lines are at least as common as those in
which losses are important. Accordingly, our transmission line analyses in this chap-
ter deal exclusively with lossless transmission lines. A brief discussion of transients
on lossy lines is provided in Section 2.6.3, and steady-state response of lossy lines
is discussed in Section 3.8.

We now apply [2.1] and [2.2] to the analysis of the transient response of lossless
transmission lines. For a lossless line we have R = 0 and G = 0, so that [2.1] and
[2.2] reduce to

v 09
9 - Fa (231
09 a
- Y 241

By combining [2.3] and [2.4] we obtain the wave equations for voltage and current,

v o

o7 = o 231
or

3’9 9

a2~ o (261

Either one of [2.5] or [2.6] can be solved for the voltage or current. We follow the
usual practice and consider the solution of the voltage equation [2.5], which can be
rewritten as

>V 10*V 1

o v T e (2.7]

Note that once V'(z, 7) is determined, we can use [2.3] or [2.4] to find $(z, £). The
quantity v, represents the speed of propagation of a disturbance, as will be evident
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in the following discussion. For reasons that will become clear in Chapter 3, v, is
also referred to as the phase velocity; hence the subscript p.

Any function'® f(-) of the variable ¢ = (t — z/v,) is a solution of [2.7]. To see
that

V(o) = f(r— vi) = f®

is a solution of [2.7], we can express the time and space derivatives of ¥'(z, ¢) in
terms of the derivatives of f(£) with respect to ¢:

aV _dfoE _Idf

o " aEa & ™M aE T wwa @&
since d¢/dt = 1. Similarly, noting that d¢/dz = —(1/v,), we have
v 2 2
vo__1of e EV_ 197
9z vp 9 972 v2 9§?

Substituting in [2.7] we find that the wave equation is indeed satisfied by any func-
tion f(-) of the variable £ = (¢t — z/v,).

That an arbitrary function f(t — z/v,) represents a wave traveling in the +z
direction is illustrated in Figure 2.6 for v, = 1 m-s™'. By comparing f(¢ — z/v,) at
two different times ¢ = 2 and ¢ = 3 s, we note that the function maintains its shape
and moves in the +z direction as time f advances, as seen in Figure 2.6a. Similarly, by
comparing f(t — z/v,) at two different positions z = 0 and z = 1 m, we note that the
function maintains its shape but appears at z = 1 m exactly 1 s after its appearance
at z = 0, as seen in Figure 2.6b. Figure 2.6¢c shows a three-dimensional display of
f(t — z/v,) as a function of time at different points z;, z,, and z3. To determine the
speed with which the function moves in the +z direction, we can simply keep track
of any point on the function by setting its argument to a constant. In other words, we
have

t— % =const — £=v,,
Vp dt

The speed of propagation of waves on a transmission line is one of its most im-
portant characteristics. It is evident from [2.7] that v, depends on the line inductance
L and C. In the case of most (all except the microstrip line) of the commonly used
two-conductor transmission lines shown in Figure 2.1, the phase velocity v, in the ab-
sence of losses is not a function of the particular geometry of the metallic conductors

13 An important function of (¢ — z/v;) that is encountered often and that we shall study in later chapters is
the sinusoidal traveling-wave function, A cos[w (¢ — z/v,)]. Depending on the location of the observation
point z along the z axis, this function replicates the sinusoidal variation A cos(w?) observed at z = 0,
except delayed by (z/v,) seconds at the new z. Thus, (z/v,) represents a time shift, or delay, which is a
characteristic of the class of wave functions of the variable (t — 2/v,).
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FIGURE 2.6. Variation in space and time of an arbitrary function f(t — z/v,). The phase
velocity is taken to be equal to unity, i.e., v, = 1 m/s. (a) f(¢ — 2/v,) versus z at two different times.
(b) f(t — z/v,) versus ¢ at two different locations. (c) Three-dimensional display of f(t — z/v,) as a
function of time at different points z;, z, and z;.

but is solely determined by the electrical and magnetic properties of the surrounding
medium.'* When the medium surrounding the metallic conductors is air, the phase
velocity is equal to the speed of light in free space, namely v, = c. The propagation
speeds for other insulating materials are tabulated in Table 2.1.

It is clear from the above analysis that any function of the argument (¢ + z/v,) is
an equally valid solution of [2.7]. Thus, the general solution for the voltage V'(z, f)
is

p

PR AR TP A 4
V(zt) = f <t v,,)+f (t+v> [2.8]

where f*(t—2/v,)and f~(t+2/v,), respectively, represent waves traveling in the +z
and —z directions. Note that f*(-) and f~() can in general be completely different
functions.

4This result will become evident in Chapters 4 and 6 as we determine the capacitance and inductance
of selected transmission lines from first principles. That v, = (LC)™'? does not depend on the geo-
metrical arrangement of the conductors can also be seen by considering the inductance and capacitance
expressions given in Table 2.2, Section 2.7. For transmission lines that do not exhibit symmetry in the
cross-sectional plane, such as the microstrip line of Figure 2.1e, the phase velocity depends in a compli-
cated manner on the properties of the surrounding material, the shape and dimensions of the conductors,
and the operating frequency. See Section 8.6 of S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and
Waves in Communication Electronics, 3rd ed., John Wiley & Sons, New York, 1994.
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TABLE 2.1. Propagation speeds in some materials

Propagation speed at ~20°C

Material (cm/ns at 3 GHz)
Air 30

Glass (3 to 15)*
Mica (ruby) 129
Porcelain (10 to 13)*
Fused quartz (Si0,) 154
Alumina (Al,03) 10.1
Polystyrene 18.8
Polyethylene 20.0
Teflon 20.7
Vaseline 204
Amber (fossil resin) 18.6
Wood (balsa) 27.2
Water (distilled) 343
Ice (pure distilled) 16.8%*
Soil (sandy, dry) 18.8

*Approximate range valid for most types of this material.
**At —12°C.

To find the general solution for the current $(z, f) associated with the voltage
V'(z, t), we can substitute [2.8] in [2.3] and [2.4], integrate with respect to time, and
then take the derivative with respect to z to find

bz, 2. _ /L
9(z,t)—z[f (t v,,) f(”v,,)]’ Zy = o [2.9]

where Z, is known as the characteristic impedance of the transmission line.'> The
characteristic impedance is the ratio of voltage to current for a single wave propa-
gating in the +z direction, as is evident from [2.8] and [2.9]. Note that the current
associated with the wave traveling in the —z direction (i.e., toward the left) has a
negative sign—as expected, since the direction of positive current as defined in Fig-
ure 2.5 is to the right. In other words, since the polarity of voltage and the direction
of current are defined so that the voltage and current have the same signs for forward
(to the right)-traveling waves, the voltage and current for waves traveling to the left
have opposite signs.

5To find $(z, ¢), we can also note that the wave equation [2.6] for the current is identical to equa-
tion [2.5] for voltage, so its solution should have the same general form. Thus, the general solution for
the current should be

o rf-grfed)

Substituting this expression for $(z,¢) and [2.8] into [2.3] or [2.4] yields g* = Z;'f* and
g =-Z'f.
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The characteristic impedance of a line is one of the most important parameters
in the equations describing its behavior as a distributed circuit. For lossless lines, as
considered here, Z, is a real number having units of ohms. Since Z, for a lossless
line depends only on L and C, and since these quantities can be calculated from
the geometric shape and physical dimensions of the line and the properties of the
surrounding material, Z, can be expressed in terms of these physical dimensions
for a given type of line. Formulas for Z, for some common lines are provided in
Section 2.7. Characteristic impedances for other types of transmission lines are given
elsewhere. !¢

The following example illustrates the meaning of the characteristic impedance
of a line. An infinitely long and initially uncharged line (i.e., all capacitors and in-
ductors in the distributed circuit have zero initial conditions) is considered, so there
is no need for the f(¢ + z/v,) term in either [2.8] or [2.9], which would be produced
only as a result of the reflections of the voltage disturbance at the end of the line.

Example 2-1:  Step response of an infinitely long lossless line. As a sim-
ple example of the excitation of a transmission line by a source, consider an in-
finitely long lossless transmission line characterized by L and C and connected to an
ideal step voltage source of amplitude V,, and source resistance R;, as shown in Fig-
ure 2.7a. Find the voltage, the current, and power propagating down the transmission
line.

Solution: Before # = 0, the voltage and current on the line are identically
zero, since the line is assumed to be initially uncharged. At ¢ = 0, the step
voltage source changes from O to V,, launching a voltage ¥'*(z, f) propagat-
ing toward the right. In the absence of a reflected wave (infinitely long line),
the accompanying current $*(z, £) = (Zo)'¥*(z, t), as can be seen from equa-
tions [2.8] and [2.9]. In other words, the characteristic impedance Z, = /L/C
is the resistance that the transmission line initially presents to the source, as
shown in the equivalent circuit of Figure 2.7b. Accordingly, the initial voltage
and current established at the source end (z = 0) of the line are

_ + _ _ VOZO
"Vs(t)—°V(z—O,t)—ZmLRs

and
3. =9t (z=0,0) = Vo
W=TE=AD TR

The propagation of the voltage ¥ *(z, #) and the current $*(z, ) down the line
are illustrated in Figures 2.7c and 2.7d at t = I/v, as a function of z.

16 Reference Data for Engineers, 8th ed., Sams Prentice Hall Conputer Publishing, Carmel, Indiana,
1993.
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FIGURE 2.7. Step excitation of a lossless line. (a) Step voltage applied to
an infinite lossless line. (b) Initial equivalent circuit seen from the source. (c) The
voltage disturbance ¥ *(z, #). (d) The current disturbance $*(z, t).

Note that the flow of a current $, outward from a source producing a voltage
V, represents a total power of Py = %V, supplied by the source. Part of this
power, given by $2R;, is dissipated in the source resistance. The remainder,
given by

ViZo

+ _ ¢+ + _ -
Pline - & (0’ t)oV (0’ t) - \9’:‘/; _(Zo_'l'. Rs)z
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is supplied to the line. Because the line is lossless, there is no power dissipation
on the line. Therefore, the power P}, goes into charging the capacitances and
the inductances'’ of the line, as discussed in connection with Figure 2.2. Note
that as Py, travels down the line the amounts of energy stored respectively in
the capacitance and inductance of a fully charged portion of the line of length
dl are given by 1(C d)¥;* and (L dI)$2.

2.3

REFLECTION AT DISCONTINUITIES

In most transmission line applications, lines are connected to resistive loads, other
lines (with different characteristic impedances), reactive loads, combinations of re-
sistive and reactive loads, or loads with nonlinear current-voltage characteristics.
Such discontinuities impose boundary conditions, which cause reflection of the inci-
dent voltages and currents from the discontinuities, while new voltages and currents
are launched in the opposite direction. In this section we consider the reflection pro-
cess and also provide examples of step responses of transmission lines terminated
with short- and open-circuited terminations.

Consider a transmission line terminated in a load resistance R located at z = [,
as shown in Figure 2.8, on which a voltage of V}*(z, ¢) is initially (+ = 0) launched
by the source at z = 0. Note that for an ideal step voltage source of amplitude V
and a source resistance R;, as shown in Figure 2.8, the amplitude of V;*(z, £) is given
by

\%
¥*(0,0) = __ZB_O_
R, + Z,
l
Ry 9
——AANA—O-
+ + I
S Yo
tep v Zy, 14=1lv, Vo R
source
z=0 z=1
t>0
V7 @
- >ty
V) @) —m————
t>2t
V5 (1)

FIGURE 2.8. A terminated transmission line. The load Ry is located at z = [, while the
source end is at z = 0.

17“Charging” an inductance can be thought of as establishing a current in it.
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In general, a new reflected voltage ¥, (z, ) = ¥,7(l, t) is generated when the dis-
turbance V;*(z, t) reaches the load position at time ¢ = t,;, where ¢, is the one-way
travel time on the line, or #; = I/v,. In order to determine the amplitude of the re-
flected wave, we write the total voltage and current at the load position (i.e., z = [)
att = t} (i.e., immediately after the arrival of the incident wave) as

Vi) = V' (L + V(o) [2.10a]
1., 1,
I(t) = Z)"Vl (@ 1) —Z—;°Vl () [2.105]

Using [2.10a] and [2.10b] and the boundary condition Vi.(t) = $.(t)R. imposed by

the purely resistive termination R;, we can write

e, Way _Wdhdy _ WEn+Ydo
Ry Zy VA Ry

From [2.11] we can find the ratio of the reflected voltage V;~(/, #) to the incident one
V,* (1, t). This ratio is defined as the load voltage reflection coefficient, I,

() = [2.11]

_Wdy _ R-2Z
L=300 " r+2 [2.12]
and it follows that
R. _ 1+IL

The reflection coefficient is one of the most important parameters in transmission
line analysis. Accordingly, the simple expression [2.12] for I} should be memorized.
For lines terminated in resistive loads, I} can have values in the range —1 = I, =
+1, where the extreme values of —1 and +1 occur when the load is, respectively,
a short circuit (i.e., R, = 0) and an open circuit (i.e., Ry = ). The special case of
I'L = 0 occurs when R, = Z,; meaning that the load resistance is the same as the
characteristic impedance,® that there is no reflected voltage, and that all the power
carried by the incident voltage is absorbed by the load. It is important to note that
expression [2.12] for the reflection coefficient was arrived at in a completely general
fashion. In other words, whenever a voltage %,*(z, ¢) is incident on a load R, from
a transmission line with characteristic impedance Z,, the amplitude of the reflected
voltage ¥, (1, 1) is IV, * ([, #), with I} given by [2.12].

The generality of [2.12] can also be used to determine the reflection of the
new voltage ;" (z t) when it arrives at the source end of the line. Having origi-
nated at the load end at ¢ = ¢,, the reflected voltage V™ (z, ¢) arrives at the source
end (terminated with the source resistance R,) at ¢ = 2¢;. At that point, it can
be viewed as a new voltage disturbance propagating on a line with characteristic

'8This condition is referred to as a matched load and is highly preferred in most applications.
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impedance Z, that is incident on a resistance of R;. Thus, its arrival at the source
end results in the generation of a new reflected voltage traveling toward the load.
We denote this new voltage ¥,*(z, t), where the subscript distinguishes it from the
original voltage ;* (z, £) and the superscript underscores the fact that it is propagating
in the +z direction. The amplitude of the new reflected voltage ;" (z, £) is determined
by the source reflection coefficient I';, which applies at the source end of the line and
is defined as

_VOn _R—-2Z

L= Y, (0,1) R+ Z

[2.14]

Thus we have ¥,*(z, 1) = ¥,*(0,t) = [¥,7(0, 1).
Note that the voltage ¥;*(z, t) was created at ¢ = 0 and still continues to exist.
Thus the source-end voltage and current at t = 2t are

Yo(®) = V70, 8) + ¥,7(0,8) + 1,70, 1)

[2.15a]
=10, 01+ I + LIy
30 = L V0, 1) 1 V(0,1 + 1°V"(0 1)
s = 7N BH T = 7 V2
% % Z [2.15b]
1

ZOOVI+(O’ n(1 -Ty + LIy

The newly generated voltage ¥,*(z, ) will now arrive at the load end at ¢ = 3¢,
and lead to the creation of a new reflected voltage ¥, (z, £), and this process will
continue indefinitely. In practice, the step-by-step calculation of the successively
generated voltages becomes tedious, especially for arbitrary resistive terminations.
In such cases, the graphical construction of a bounce diagram is very helpful. We
introduce the bounce diagram in the following subsection.

2.3.1 Bounce Diagrams

A bounce diagram, illustrated in Figure 2.9, also called a reflection diagram or lat-
tice diagram, is a distance-time plot used to illustrate successive reflections along a
transmission line. The distance along the line is shown on the horizontal axis, and
time is shown on the vertical axis. The bounce diagram is a plot of the time elapsed
versus distance z from the source end, showing the voltages traveling in the +z and
—z directions as straight lines sloping'® downward from left to right and right to left,
respectively. Each sloping line corresponds to an individual traveling voltage and is
labeled with its amplitude. The amplitude of each reflected voltage is obtained by
multiplying the amplitude of the preceding voltage by the reflection coefficient at
the position where the reflection occurs.

19The slope of the lines on the bounce diagram (i.¢., d#/dz) can be thought of as corresponding to (£v,) .
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The time sequence of events starting with the first application of the step voltage
at the source end can be easily visualized from the bounce diagram. The application
of the step voltage launches ¥ *(z, ) toward the load. This voltage arrives at the
load end at ¢ = #,, and its arrival leads to the generation of ¥;"(z,t) = I.¥%*(z, 1)
propagating toward the source. This new voltage %™ (z, t) arrives at the source end
and leads to the generation of ¥,*(z, t), and this process continues back and forth
indefinitely.

Once constructed, a bounce diagram can be used conveniently to determine the
voltage distribution along the transmission line at any given time, as well as the
variation of voltage with time at any given position. Suppose we wish to find
the voltage distribution V'(z, f,) along the line at ¢ = #,, chosen arbitrarily to be
2t, < ty < 3t,. To determine V'(z, t;), we mark ¢, on the time axis of the bounce
diagram and draw a horizontal line from #,, intersecting the sloping line marked
137 (z, 1) at point Py, as shown in Figure 2.9. Note that all sloping lines below the
point P, are irrelevant for V'(z, t,), since they correspond to later times. If we now
draw a vertical dashed line through P, we find that it intersects the z axis at z,. At
time 1 = f,, all points along the line have received voltages V;*(z, t) and V" (z, ¢).
However, only points to the left of z, have yet received the voltage V,*(z, f), so a
discontinuity exists in the voltage distribution at z = zo. In other words, we have

W@ +TL+ I z<2
V) = { Tz (1 + 1) 2> 2

Alternatively, we may wish to determine the variation of voltage as a function
of time at a fixed position, say z,. To determine %V'(z,, t), we simply look at the inter-
section points with the sloping lines of the vertical line passing through z,, as shown
in Figure 2.9. Horizontal lines drawn from these intersection points, crossing the
time axis at #;, 1, t3, 14, ..., are the time instants at which each of the new voltages
V¥ (z 1), Vi (2 1), V' (z, 1), Y, (2, 1), ..., arrive at z = z, and abruptly change the
total voltage at that point. Thus, the time variation of the voltage at z = z,, namely
¥'(z4 t) is given as

0 0<t<my

Vi*(2a 1) h<t<t

V(g t) = 4 N (1 +11) nL<t<t
@ Vi (2o )1 + T + II) L<t<ty

Vit (zp DA+ L+ L + LIt <t <is

where V(" (z,, 1) = V(2 1).

A bounce diagram can also be constructed to keep track of the component current
waves. However, it is also possible and less cumbersome to derive the component
line current, $;°(z, £), simply from the corresponding voltage V,*(z, #). In this connec-
tion, all we need to remember is that the current associated with any voltage distur-
bance ¥;*(z, t) propagating in the +z direction is simply $; (z, ) = (Zy")V,' (2, 1),
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whereas that associated with a voltage disturbance ¥, (z, r) propagating in the —z
directionis $;(z, ) = —(Z; ")V (2, 0).

The uses of the bounce diagram in specific cases are illustrated in Examples 2-2
through 2-9.

2.3.2 The Reflection Process

Before we proceed with specific examples, we now provide a heuristic discussion
of the reflection process for the case of a transmission line terminated in an open
circuit.?? This discussion involves the same considerations as the heuristic discus-
sion in connection with Figure 2.2 of the propagation of disturbances along a trans-
mission line in terms of successive charging of capacitors and inductors. When the
voltage disturbance reaches the open-circuited end of the line, its orderly progress
of successively charging the distributed circuit elements is interrupted. Consider the
approach of a disturbance to the end of an open-circuited transmission line, shown in
Figure 2.10a. Figure 2.10b shows the voltage and current progressing together; L,
carries current but L, does not, and C, is charged to the source voltage V, but C,

L, L, L,
—————n P

_I_ _I_ L L Open
CwT CxT G G it o
0
)

——— Vo

(@) 1

() T T T T T

© ©

FIGURE 2.10.  The reflection process. The orderly progress of the disturbances of current and
voltage, propagating initially from left to right, is interrupted when they reach the open end of the
line, leading to the reflection of the disturbance.

OThe qualitative discussion presented herein is based on a similar discussion in Chapter 14 of
H. H. Skilling, Electric Transmission Lines, McGraw-Hill, 1951.
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is not. The voltage on C,, however, causes current to flow through L., and thus
through C,, charging it to a voltage V, (Figure 2.10c).

At the time C, is charged, all of the inductances (including L,) carry the full
current o. The progress of the disturbance along the line cannot continue any more,
since there is no inductance beyond C, to serve as an outlet for current as C, is
charged. As a result, C, becomes overcharged, since the current through L, can-
not stop until the stored magnetic energy is exhausted. Thus, current continues to
flow through C, pntil it is charged® to twice its normal value (2V,), at which time
the current through L, drops to zero (i.e., L, now acts like an open circuit) (Fig-
ure 2.10d).

When L, stops carrying current, the current carried by L, is now driven solely
into C,, doubling its voltage and forcing the current in L, to stop. At the same time,
the voltages at the two ends of L, are both 2V, so that the current through L, remains
zero and the doubly charged capacitor C, stays at 2V,. We now have the condition
depicted in Figure 2.10e, where C, and C, are both at 2V, and L, and L, both have
zero current. This procedure now continues along the line from right to left as the
voltage on the line is doubled and the current drops to zero.

The above described phenomenon can be viewed as a reflection, since the orig-
inal disturbance, traveling from left to right, appears to be reflected from the end
of the line and to begin to progress from right to left. In Figure 2.10e, the reflected
voltage disturbance of amplitude V, travels toward the left, and adds to the previ-
ously existing line voltage, making the total voltage 2Vj. It is accompanied by the
reflected current of amplitude — I, which is added on top of the existing line current
Iy, making the total current on the line zero. Although the front of the current distur-
bance is progressing toward the left, it should be noted that this does not imply any
reversal of current flow. The current originally flowing from the source toward the
end of the line (i.e., $;'(z, #)) continues to do so even after reflection. This current
flows from left to right to charge the capacitances when the disturbance progresses
toward the end of the line, and it continues to flow from left to right as the reflected
disturbance returns, doubling the charge on the line as the voltage is raised to 2V,.

All of these physical effects of charging of capacitors and current flows through
the inductors are simply accounted for by the general solutions for voltage and cur-
rent as given respectively by [2.8] and [2.9] and by the application of the boundary
condition at the termination—namely, that there must always be zero current at the
end of an open-circuited line. The purpose of this heuristic discussion is simply to
provide a qualitative understanding of the reflection process in terms of the equiva-
lent circuit of the line.

2Tt is not obvious why the capacitor would charge to precisely twice its normal value. The circuit model
of Figure 2.10a, consisting of discrete elements, is not adequate for the determination of the precise value
of the reflected voltage, which is unambiguously determined by the governing wave equations [2.5],
[2.6] and their solutions [2.10] as applied to an open-circuited termination, as shown in the next section.
Nevertheless, consider the fact that the amount that the capacitor voltage is charged to is determined
by [ 1dt; thus, with no other outlet for the inductor current, twice the normal current goes through the
capacitance, charging it to twice its normal value.
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2.3.3 Open- and Short-Circuited Transmission Lines

We now consider examples of step responses of transmission lines with the sim-
plest type of terminations, namely an open or a short circuit. The circumstances
treated in Examples 2-2 and 2-3 are commonly encountered in practice, especially
in computer-communication problems; for example, when the voltage at one end of
an interconnect switches to the HIGH state due to a change in the status of a logic
gate. The resultant response is then similar to the short-circuited line case (Exam-
ple 2-2) if the interconnect is a short-circuited matching stub or drives (i.e., is ter-
minated in) a subsequent gate (or another interconnect) with low input impedance
(RL < Z;). Alternatively, and more commonly in practice, the interconnect would
be driving a gate with a very high input impedance (R >> Z,), corresponding to an
open-circuited termination (Example 2-3).

Example 2-2: Step voltage applied to a short-circuited lossless line.
Consider the transmission line of length / terminated with a short circuit at the end
(i.e., R. = 0), as shown in Figure 2.11a. Sketch the voltages %; and ¥}, as a function
of time.

Solution: Initially, the applied voltage is divided between the source resis-
tance R; and the line impedance Z; in the same manner as for the infinite line
in Example 2-1, and at + = 0*, a voltage V;*(z ¢) of amplitude ¥;*(0,0) =
(VoZo)/(Zy + R;) is launched at the source end of the line. The corresponding

Ry VAN
Vo + + +
oVs OVIIZ OVL Re= 0
z=0 z=1
(@)
Ry Ry
+ +
Vs Z 0 Vs R =0
() ©

FIGURE 2.11. A short-circuited lossless line. (a) Step voltage applied to a
short-circuited lossless line. (b) The initial equivalent circuit. (c) Steady-state (final)
equivalent circuit.
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FIGURE 2.12. Bounce diagram for Example 2-2 (Figure 2.11). (a) R, = Z,/3,
(b) Ry = Zy, and (c) R = 3Z,.

current is $;'(z, t) = V{*(z, ©)/Z, and has an amplitude of $;(0,0) = Vo/(Z, +
Rs) = ¥*(0,0)/Z,. The equivalent circuit initially presented to the source by
the line is thus simply a resistance of Z,, as shown in Figure 2.11b. Eventually,
when all transients die out, the equivalent circuit of the line is a short circuit
(Figure 2.11c); thus, the voltage everywhere on the line (e.g., V;, Vi, and V)
must eventually approach zero.

To analyze the behavior of the line voltage, we use a bounce diagram as
shown in Figure 2.12. When the voltage disturbance V' *(z, f) reaches the end
of the line (at ¢t = ¢, = I/v,), a reflected voltage of V'~ (z,1) = —V*(z, 1) is
generated,? since the total voltage at the short circuit (R, = 0) hastobe¥.(f) =
V*(, )+ V-, t) = 0. In other words, the reflection coefficient at the load end
is

_Wdn _0-2%Z _

=g 0%z

-1

22The reflection process at the short circuit occurs rather differently than that from an open circuit as
discussed in connection with Figure 2.10. As the next-to-the-last capacitance (C,) is charged to Vj, L,
begins to carry current; however, C, cannot take any charge, since it is short-circuited. Current flows
freely from L, through the short circuit and into the return conductor (just like the flow of water from
the open end of a pipe), until the charge on C, is exhausted. As a result, the current through L, becomes
twice as much as its normal value (2]o), and the voltage across C, drops to zero. In this way, “reflection”
reduces the voltage from Vj to zero and increases current from I, to 2.
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However, the current $; (z, t) associated with the voltage traveling in the —z
direction is —%¥]7(z, t)/Z,, resulting in a reflected current of Vo/(Z, + R;), which
adds directly to the incident current $; (z, t) = Vo/(Z, + R;) traveling in the +z
direction, doubling the total current on the line.

As it travels toward the source during f;, < t < 2t,, the reflected voltage
makes the total voltage everywhere on the line zero and the total current on the
line equal to 2Vo/(Z, + R,). When this disturbance reaches the source end at
t = 21,, the source presents an impedance of Ry, and the reflection coefficient at
the source end (i.e., I';) depends on the value of R, relative to Z,. For Ry, = Z;, we
have I, = 0, and no further reflections occur, so the voltage on the line remains
zero; in other words, a steady state is reached. However, for R, # Z,, it takes
further reflections to eventually reach steady state, as illustrated in Figure 2.13,
where the time evolution of the voltages at the source end (V;(¢)) and at the center
(Vin(2)) of the transmission line are shown. Note that the load voltage V. (¢) is
identically zero at all times, as dictated by the short-circuit termination. Note
also that the voltage everywhere on the line, including at the center and at the
source end, eventually approaches zero; however, we see from Figure 2.13 that
the particular way in which Y;(¢) and ¥,(¢) approach their final value of zero
depends critically on the ratio Ry/Z,.

Example 2-3: Overshoot and ringing effects. The distributed nature of a
high-speed digital logic board commonly leads to ringing, the fluctuations of the volt-
age and current about an asymptotic value. Ringing results from multiple reflections,
especially when an unterminated (i.e., open-circuited)? transmission line is driven
by a low-impedance buffer. Consider the circuit shown in Figure 2.14a, where a step
voltage source of amplitude V, and a source resistance R, = Z,/4 drives a lossless
transmission line of characteristic impedance Z, and a one-way propagation delay
of t; seconds. Sketch V;, ¥, and ¥, as a function of ¢.

Solution: At ¢t = 0, the source voltage rises from O to V,, and a voltage
Vi*(z, t) of amplitude V;*(0,0) = Z,Vo/(Rs + Zy) = 0.8V is applied from the
source end of the line. During 0 < 7 < ¢,, the line charges as the front of this
voltage disturbance travels toward the load. At ¢ = ¢,, the disturbance front
reaches the open end of the line, and a reflected voltage of amplitude V" (, ¢;) =
[ %* (1, ;) = 0.8V, is launched back toward the source, since I = 1. (In other
words, the total current at the open end of the line remains zero, so we have
S, 0+ 97 () = 0,and thus V;"(l, £) = V{*(l, r) = 0.8V,.) Note that as long
as the source voltage does not change, ¥;*(z, f) remains constant in time and
also constant with z once it reaches the end of the line (z = [) at t = ¢;. Once
V" (z, t) is launched (at ¢ = ), it travels toward the source, reaching the source
end at ¢ = 2t,, after which time it also remains constant and coexists along the

Z3Note that if the input impedance of a load device is very high compared to Z, (i.e., Ry > Z;), R_ can
be approximated as an open circuit. '
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FIGURE 2.13. Step voltage applied to a short-circuited lossless
line. Voltages at the source end (¥;) and at the center (V) of a short-
circuited transmission line for source impedances of (a) Ry, = Zy/3,
() Ry = Zy, and () R, = 3Z,.

line with ¥{*(z, ¢). The arrival of the reflected voltage %¥;™(z, ¢) at the source
end of the line at t = 2¢, leads to the generation of a new reflected voltage
disturbance of amplitude ¥,*(0, 2¢,) = I¥,7(0, 2t;) = —0.48V, [since [ =
(Rs — Zy)/((Rs + Zy) = —0.6] is launched toward the load. Note that ¥,*(z, £) is
now superimposed on top of ¥;*(z, r) and ¥V, (z, 1).
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FIGURE 2.14. Step response of an open-circuited line. (a) Circuit for Example 2-3.
(b) Voltage and current distributions along the line at different time intervals.

This process continues indefinitely, with the total voltage and current on the
line gradually approaching their steady-state values. The voltage and current
distribution along the line is shown in Figure 2.14b for various time intervals.
The variation of the voltage (and thus the current) with time can be quanti-
tatively determined by means of a bounce diagram, as shown in Figure 2.15b,
which specifies the values of the source- and load-end voltages at any given time.
The temporal variations of the source- and load-end voltages and the source-end
current, as derived from the bounce diagram, are also shown in Figure 2.15c.
Both voltage waveforms oscillate about and asymptotically approach their final
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FIGURE 2.15. Step response of an open-circuited lossless line. (a) Circuit for Example 2-3.
(b) Bounce diagram. (c) Normalized source- and load-end voltages and source-end current as a function
of t/t4.

value V, (shown as dashed lines)—the process referred to earlier as ringing.
The source-end current waveform eventually approaches zero, as expected for
an open-circuited termination. For the case shown, the percentage maximum
overshoot, defined as the percentage difference between the maximum value
and the asymptotic value, for ¥ is [(1.6V, — V)/Vo] X 100 = 60%.

2.4 TRANSIENT RESPONSE OF TRANSMISSION LINES
WITH RESISTIVE TERMINATIONS

Our discussions in the preceding section served to introduce the concepts of reflec-
tion at discontinuities in the context of the relatively simple open- and short-circuited



2.4 Transient Response of Transmission Lines with Resistive Terminations Hl 45

terminations. In this section, we study the response of transmission lines terminated
with an arbitrary resistance Ry to excitations in the form of a step change in voltage
(e.g., an applied voltage changing from O to V,, at ¢ = 0) or a short pulse of a given
duration. Step excitation represents such cases as the output voltage of a driver gate
changing from LOW to HIGH or HIGH to LOW state at a specific time, while pulse
excitations are relevant to a broad class of computer communication problems. We
consider two cases of resistive terminations: (i) single lossless transmission lines
terminated in resistive loads and (ii) lossless transmission lines terminated in other
lossless transmission lines. Resistively terminated lines and transmission lines termi-
nated in other lines are encountered very often in practice. In digital communication
applications, for example, logic gates are often connected via an interconnect to other
gates with specific input resistances, and interconnects often drive combinations of
other interconnects.

2.4.1 Single Transmission Lines with Resistive Terminations

We start with a general discussion of the step response of transmission lines with
resistive terminations. Consider the circuit shown in Figure 2.16a where a step volt-
age source (0 to V; at ¢ = 0) with a source resistance R; drives a lossless transmis-
sion line of characteristic impedance Z; and one-way time delay ¢,, terminated in a
load resistance Ry. At ¢t = 0, when the source voltage jumps to Vy, a voltage dis-
turbance of amplitude V;*(0, 0) = ZyVo/(R, + Z,) is launched at the source end of
the line; it travels down the line (during 0 < ¢ < t;) and arrives at the load end at
t = t;, when a reflected voltage of amplitude V;~(l, ;) = I V*(l, t;), where I} =
(RL — Zp)/(Ry. + Z,), is launched back toward the source. Note that V;*(z, f) remains
constant in time (and also with z once it reaches z = [ at¢ = t;), with its value given
by ZoVo/(R, + Zy). The reflected voltage travels along the line (during 7; < t < 21,)
and reaches the source end at ¢t = 2¢,, when a new voltage is reflected toward the
load. The amplitude of the new reflected voltage is ¥,* (0, 2¢,) = I¥,7(0, 2¢,), where
I = (Ry — Zo)/(Rs + Zy). As this process continues with successive reflections at
both ends, the total voltage at any time and at any particular position along the line

R, % Zy, 1y S Ry Fes

Vo

L L
z=0 z=1

(@) ®)

FIGURE 2.16. Resistively terminated line. (a) Step excitation of a lossless transmission line
terminated with a resistive load. (b) Steady-state equivalent circuit seen by the source.
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is given as an algebraic sum of all the voltages at that particular location and at that
time. For example, at ¢ = 4¢,, the total voltage at the center of the line is given by
Vin(4t3) = VT (112, 4t) + V7 (112, 4ty) + V' (112, 4ty) + V5 (112, 4¢y)
= VU2, 41 + T + LI + [T

ZV,
ol "20[1 + I+ LI + LT

where we have used the fact that V,*(1/2, 4t;) = V;*(0,0) = Z,Vo/(R; + Zp); in other
words, as long as the source voltage does not change again, %;* (z, f) remains constant
in time and also is the same everywhere (i.e., at all z) once it reaches the end of the
line z = [l att = t,. Similarly, the total current at the center of the line at t = 4¢, is

Sin(4ty) = 37112, 415) + 97 (112, 415) + 95 (112, 4ty) + $5 (112, 415)

Vv,
=X +OZO[1 -+ L - LTA

In general, since |I.| = 1 and |T}| = 1, we have |¥;,| = |¥;*], so the contri-
bution of new individual reflected components to the total voltage or current at any
position along the line diminishes as t — . The sum of the contributions of the
voltage components traveling in both directions converges?* to a finite steady-state
value for the voltage at any position z, given as

V(z, ) = V" (2, %) + V7 (2, %) + ¥, (2, %) + V7 (z,0) + V5 (2, %) + V57 (z,0) + -
=N (o + I+ LI + LIZ + T2 + T2 + I + -]
= (@)1 + (I + T + -1+ Il + () + A7) + -1}

Aty o 1 I ot oy LTIL
=@ )[(1 —rsrL)+(1 —rsn)] =¥ )(1 —I‘J’L)

This expression can be further simplified by substituting for ¥;*(z, ©) = ZoVo/(Rs +
Zy), IL = (RL — Zo)/(Ry + Zy), and T = (R, — Zo)/(R, + Zy), yielding

v [ R
OV(Z’ oo) - Vss - (Rs ¥ RL>V0

aresult that is expected, on the basis of the steady-state equivalent circuit shown in
Figure 2.16b.

2Noting that [T, | < 1 and using the fact that for |x| < 1 we have

1

l+x+x2+x>+- =
1-x
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At steady state it appears from Figure 2.16b as if the transmission line is simply
not there and that the source is directly connected to the load. While this is essentially
true, the transmission line is of course still present and is in fact fully charged, with all
of its distributed capacitors charged to a voltage V and all of its distributed inductors
carrying a current V/Ry . If the source were to be suddenly disconnected, the energy
stored on the line would eventually be discharged through the load resistance, but
only after a sequence of voltages propagating back and forth, reflecting at both ends
and becoming smaller in time (see Example 2-5).

We now consider three specific examples. Example 2-4 illustrates the step re-
sponse of a resistively terminated line, whereas Example 2-5 illustrates the process
of discharging of a charged transmission line. Example 2-6 illustrates the pulse re-
sponse of a resistively terminated line.

Example 2-4: Step response of a resistively terminated lossless line.
Consider the circuit shown in Figure 2.17a for the specific case of R, = 3Z, and
R, = 9Z,. Sketch V;, ¥, %;, and $ as a function of ¢.

Solution: Based on the above discussion, an incident voltage %,*(z t) of
amplitude V{*(0,0) = Z,V,/(3Zy + Z;) = Vy/4 is launched on the line at
t = 0. When this disturbance reaches the load at ¢t = 1,, a reflected voltage
V" (z, t) of amplitude V" (I, 1;) = [ V;*(l, ts) = Vo/5, where I} = (9Z, — Z,)/
9Z, + Zy) = 4/5, is launched toward the source. The reflected voltage ar-
rives the source end at ¢+ = 2¢,, and a new voltage ¥,*(z t) of amplitude
V51 (0, 2t;) = I\V,7(0, 21;) = Vo/10, where Iy = (3Zy — Zy)/(3Zy + Zy) = 1/2,
is produced, traveling toward the load. At ¢ = 3t,, a voltage ¥, (z, ¢) of am-
plitude V,~(l, 3t;) = TL.¥,*(l, 3t,) = 2Vy/25 is launched from the load end,
traveling toward the source, and so on. The bounce diagram is shown in Fig-
ure 2.17b. The source- and load-end voltages and the source- and load-end
currents are shown in Figure 2.17d. The steady-state circuit seen by the source
is also shown in Figure 2.17c.

Example 2-5: A charged line connected to a resistor. Consider a trans-
mission line that is initially charged to a constant voltage ¥'(z, £) = V, (such as the
steady-state condition of the circuit in Example 2-3), as shown in Figure 2.18a. At
t = 0, the switch is moved from position 1 to position 2. Analyze and sketch the
variation of the source- and load-end voltages %; and %; as a function of ¢ for three
different cases: (a) Ry, = Zy/3, (b) Ry, = Zy, and (c) Ry, = 37Z,.

Solution: Before ¢+ = 0, the steady-state condition holds, and %;(0") =
WNO) = Vi = Vy and $(07) = $(07) = I, = 0. At t = 0, the switch
moves to position 2, which causes both ¥; and J; to change immediately. The
change in the source-end voltage ¥; (and the source-end current ;) can be in-
terpreted as a new voltage disturbance ¥*(z, f) (and a new current disturbance
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Step excitation of a resistively terminated lossless line. (a) The circuit

configuration. (b) Bounce diagram. (c) Steady-state equivalent circuit seen by the source.
(d) Normalized source- and load-end voltages and source- and load-end currents as a function

of t/t,.
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FIGURE 2.18. Discharging of a charged line. (a) A charged line connected to a resistor R,
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3 (z 1)) launched on the line from the source end. The amplitude of this new
voltage ¥;*(z, £) (and the new current 9] (z, 1)) is determined by the change in
% (or in %) between t = 0™ and ¢ = 0%, namely,

¥*(0,0) = %(0") —¥(07) = V(0") — Vo
and
$7(0,0) = $,(0%) — $(07) = $,(0")
Using the new boundary condition at the source end imposed by R, namely,
V,(0*) = —Ru9,0%) = —Ru9(0,0) = —RuV,7(0,0)/Z,

we can write

¥170,0) ZoVo

+ = - 1 —_ + = -

V7 (0, 0) R Z Vo = ¥,7(0,0) Rot 7o

Note that the negative sign in the source-end boundary condition ¥%; = —Ro5;

is due to the defined direction of $,, with positive current coming out of the
terminal of positive voltage. At ¢ = t,, the new voltage disturbance reaches
the open end of the line, where a reflected voltage ¥,™(z, 1) with amplitude
Y,~(, ts) = ¥;*(I, 1) is produced, traveling toward the source end. Att = 2¢,,
¥, (z, t) arrives at the source end, and a reflected voltage ¥, (z, f) with ampli-
tude ¥;+(0, 2,) = T¥,7(0, 2t) = (R — Zo)V, (0, 2t)/(R2 + Zo) is launched
back toward the load. This process continues until a new steady-state condition
is reached, when the line voltage eventually becomes zero. Figures 2.18b, ¢, and
d show the bounce diagrams for three different values of Ry;, namely Zo/3, Zo,
and 3Z,. Figures 2.18e, f, and g show the variation of the source- and load-end
voltages for all three cases as a function of time 7.

Example 2-6: Pulse excitation of a transmission line. A high-speed logic
gate represented by a pulse voltage source of amplitude 1V, pulse width 200 ps, and
output impedance 900€) drives a load of 25{) through a 100} line, as shown in
Figure 2.19. Assuming a lossless line with a one-way delay of #; = 400 ps, sketch
the voltage waveforms Y;(¢) and ¥, (¢) at the two ends of the line.

Solution: Ats = 0, an initial voltage pulse ¥;*(z, t) of amplitude ¥;*(0, 0) =
VoZo/(Rs + Zo) = 100 mV is launched at the driver end of the line. The front
of the 100 mV pulse reaches the load (at z = I) at ¢ = 400 ps, and a reflected
pulse of amplitude V;~(l, ;) = [ V;*(l, t;) = —60 mV starts traveling back to-
ward the driver. Both pulses ¥;*(z, ¢) and ;" (z, t) exist at the load end for a
period of only 200 ps, adding up to a total voltage of 40 mV. The reflected
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FIGURE 2.19. Pulse excitation of a transmission line (Example 2-6). (a) Circuit diagram.
(b) Bounce diagram. (c) Distribution of voltage along the line at different times. (d) The source- and
load-end voltages as a function of time.
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pulse arrives at the driver end at + = 800 ps and launches a pulse of ampli-
tude V,*(0, 2¢,) = I'\¥,7(0, 2t;) = —48 mV back toward the load end. The two
pulses ¥, (z, t) and V,*(z, ¢) exist at the driver end only for 200 ps, totaling to
a voltage of —108 mV. This process continues on, with the pulse amplitude re-
duced by 40% and inverted at the load end and reduced by 20% at the driver end
each time. Figure 2.19b shows the bounce diagram, and Figure 2.19¢ shows the
snapshots of the voltages along the line at various time intervals. The variation
with time of the driver- and load-end voltages are also shown in Figure 2.19d.

The Transmission Line as a Linear Time-Invariant System In some cases
it is useful to think of the transmission line as a linear time-invariant system, with
a defined input and output. For this purpose, the input %;,(f) can be defined as the
voltage or current at the input of the line, while the output ;. () can be a voltage or
current somewhere else on the line—for example, the load voltage ¥ (¢) as indicated
in Figure 2.20.

Note that since the fundamental differential equations ([2.1] and [2.2]) that gov-
ern the transmission line voltage and current are linear, the relationship between
Vin(2) and Vou(?) is linear. In other words, for two different input signals V;,, and %,
which individually produce two different output signals V;,,, and V., the response
due to a linear superposition of the two inputs, Vi,,,, = a1V, + a2V, is

OV;) = alov;un + aZOVout;

uty .2

Since the physical properties of the transmission line (L, C, #;, Z;) do not
change with time, the relationship between ¥, (¢) and ¥, (¢) is also time-invariant. In

'R Zootyl s

o

+ +

oVin(t) = ‘Vs(t) °Voul(t) = VL(’) Ry,
—_— (a) — —
Vin® = V0,0 =V(® Transmission Voutl® = VD= V()
line system
®)

FIGURE 2.20. The transmission line as a linear time-invariant system.
The input ¥;,(¢) to the system can be defined as the line input voltage ¥;(#),
whereas the output ¥,,.(¢) could be any voltage or current of interest anywhere
on the line, such as the load voltage V().
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other words, if the output due to an input ¥, (f) is Vou, (¢), then the output due to a
time-shifted version of the input, namely ¥, (¢ — 7), is simply a similarly shifted
version of the output, namely Vo, (f — 7).

As with any linear time-invariant system, the response of a transmission line to
any arbitrary excitation signal can be determined from its response to an impulse
excitation. In the transmission line context, an input pulse can be considered to be
an impulse if its duration is much shorter than any other time constant in the system
or the one-way travel time ¢, in the case of lossless lines with resistive termina-
tions. In most applications, however, it is necessary to determine the response of
the line to step inputs, as were illustrated in Examples 2-3 through 2-5. For this
purpose, it is certainly easier to determine the step response directly rather than to
determine the pulse (or impulse) response first and then use it to determine the step
response.

Treatment of a transmission line as a linear time-invariant system can sometimes
be useful in determining its response to pulse inputs, as illustrated in Example 2-7.

Example 2-7: The transmission line as a linear time-invariant system.
Consider the transmission line system of Figure 2.21a, the step response of which
was determined in Example 2-4. Determine the load voltage YV (¢) for an input exci-
tation in the form of a single pulse of amplitude V,, and duration 0.5¢, (i.e., Vix(f) =
Volu(®) — u(t — ta/2)]).

Solution: For the circuit of Figure 2.21a, it is convenient to define the input
signal to be the excitation (source) voltage and the output as the load voltage, as
indicated. As shown in Figure 2.21b, the input pulse of amplitude V,, and dura-
tion #,/2 can be viewed as a superposition of two different input signals: a step in-
put starting at ¢ = 0, namely ¥}, (#) = V,u(?), and a shifted negative step input,
namely, Vi, () = —Vou(t — 1,/2), where u({) is the unit step function, u({) = 1
for{ > 0, and u({) = 0for{ < 0. The output ¥, (#) due to the input ¥, (f) was
determined in Example 2-4 and is plotted in the top panel of Figure 2.21c. Since
the transmission line is a linear time-invariant system, the response ¥, (f) due
to the input ¥, (¢) is simply a flipped-over and shifted version of ¥, (), as
shown in the middle panel of Figure 2.21c. The bottom panel of Figure 2.21c
shows the superposition of the two responses, which is the desired pulse
response.

Note that our solution of this problem using the linear time-invariant system
treatment was simplified by the fact that the step response of the system was
already in hand from Example 2-4. Note also that the pulse response in the case
of Example 2-6 could also have been determined by a similar method. However,
one then has to first determine the step response, and whether or not the system
approach is easier in general depends on the particular problem.
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FIGURE 2.21.  Pulse response of a transmission line. (a) The line configuration and source
and load impedances. (b) The input pulse of amplitude V,, and duration #,/2 is represented as a
superposition of a ¥, and ¥, . (c) The response is computed as a superposition of the responses
due to the individual step inputs. Note that ¥, (f) was already computed in Example 2-4.
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2.4.2 Junctions between Transmission Lines

We have seen that reflections from terminations at the source and load ends of trans-
mission lines lead to ringing and other effects. Reflections also occur at discontinu-
ities at the interfaces between transmission lines, connected either in cascade or in
parallel, as shown, for example, in Figures 2.22a and 2.23a and as often encoun-
tered in practice. For example, consider the case of the two lossless transmission
lines A and B (with characteristic impedances Z,, and Zs) connected in tandem
(i.e., in series) as shown in Figure 2.22a. Assume a voltage disturbance of amplitude
Vi (z, t) (with an associated current of $,(z, t) = V|5/Za) to arrive at the junc-
tion between lines A and B (located at z = [;) from line A at t = #,. A voltage
Via(z t) of amplitude Vi, (1), to) = Tag¥5(l}, 1) reflects back to line A, where the
reflection coefficient I'yp is given by Iag = (Zop — Zoa)/(Zos + Zoa), since line B
presents a load impedance of Zyg to line A. In addition, a voltage V{(z, ) of am-
plitude Vi5(;, to) = JasVia(l), 1) is transmitted into line B, where Jjp is called the
transmission coefficient, defined as the ratio of the transmitted voltage to the incident
voltage, i.e., Tap = Vi5(l;, to)/Vi5(l;, t). To find Jap, we apply the boundary condi-
tion at the junction, which states that the total voltages on the left and right sides of
the junction must be equal:

Vialj to) + Viall), o) = Vig(l), 1)

yielding Jap = 1 + I'ap = 2Zpp/(Zyp + Zya). The transmission coefficient Jap rep-
resents the fraction of the incident voltage that is transferred from line A to line B.
Note that depending on the value of the reflection coefficient, the transmitted voltage
can actually be larger in amplitude than the incident voltage, so that we may have
J.p > 1 (in those cases when I'yg > 0).

Similarly, if a voltage disturbance %5 (z, t) of amplitude ¥V 5 (I}, t;) (produced by
reflection when ¥} (z, r) reaches the end of line B) arrives at the same junction be-
tween A and B from line B at ¢ = #,, a voltage V,}(z, ¢) of amplitude V3 (I, ;) =
a5}, 1) reflects back to line B and a voltage ¥, (I, t) = JpaViz(l), 1)) is trans-
mitted into line A, where I's, and Jg, are given by

Zon — Zop
Taa = =-T
P ZwtZw ™

220 _ Zoa
T = 1+ Ty = =2 = Z%g,
. M ZatZe  Ze

The following two examples are both associated with junctions between transmission
lines.

Example 2-8: Cascaded transmission lines. Consider the transmission
line system shown in Figure 2.22a, where a step voltage source of amplitude 1.5 V
and source resistance 50() excites two cascaded lossless transmission lines (A and
B) of characteristic impedances 50() and 25¢) and lengths 5 cm and 2 cm, respec-
tively. The speed of
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FIGURE 2.22. Cascaded transmission lines. (a) Circuit diagram for Example 2-8. (b) Bounce
diagram. (c) Source-end voltage ¥; and load-end voltage ¥, as a function of z.
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propagation in each line is 10 cm-ns™'.* The second line (B) is terminated with a
load impedance of 100£) at the other end. Draw the bounce diagram and sketch the
voltages V;(¢) and VL.(¢) as functions of time.

Solution: With respect to Figure 2.22a, we note that /; = 5 cm and [ =
7 cm. Att = 0% voltage V;%(z t) of amplitude ¥;%(0, 0) = 0.75 V is launched
on line A. This voltage reaches the junction between the two lines att = #;, =
5 cm/(10 cm/ns) = 500 ps, when a reflected voltage V;(z, #) of amplitude
Vialj ta) = TasVin(l), ta) = (—1/3)(0.75) = —0.25 V, and a transmitted
voltage Vi§(z ) of amplitude Vi5(l), ts1) = TasVin(lj tar) = (2/3)(0.75) =
0.5 V are created. The reflected disturbance arrives at the source end at
t = 2t;; = 1nsandis absorbed completely since I, = 0. The transmitted wave
reaches the load att = t,, +14,, = 700 ps, and a reflected voltage ¥ 5(z, t) of am-
plitude ¥,5(1, 700 ps) = [ V;5(, 700 ps) = (0.6)(0.5) V = 0.3 V is launched
toward the source. This reflected disturbance arrives at the junction from line
B att = ty + 2ty = 900 ps, and reflected and transmitted voltages Vy5(z, £)
and ¥,,(z, t) of amplitudes respectively V5(1;, 900 ps) = I'ga¥V 5(l), 900 ps) =
(1/3)(0.3) = 0.1V and ¥,,(l;, 900 ps) = TpaVi5(l;, 900 ps) = (4/3)(0.3) =
0.4 V are launched respectively toward the load and the source. The continua-
tion of this process can be followed by means of a bounce diagram, as shown in
Figure 2.22b. The source- and load-end voltages are plotted as a function of #
in Figure 2.22c.

Example 2-9: Three parallel transmission lines. Consider three identical
lossless transmission lines, each with characteristic impedance Z, and one-way time
delay t,, connected in parallel at a common junction as shown in Figure 2.23a. The
main line is excited at = 0 by a step voltage source of amplitude V, and a source
resistance of R, = Z,. Find and sketch the voltages V;(¢), VL,(¢), and V1,(¢) for the
following two cases: (a) R.; = R, = Zy and (b) Ry = Zp and Ry, = .

Solution: For any voltage disturbance ¥(z, t) of amplitude V; arriving at the
junction from any one of the three lines, the parallel combination of the charac-
teristic impedances of the other two lines acts as an equivalent load impedance
at the junction. Once a voltage is incident at the junction, a voltage of amplitude
V, = T;V: = (Zo/2 — Zy)Vil(Zo/2 + Zy) = —V/3 is reflected and a voltage of
amplitude V, = J,;V; = (1 + I'})V; = 2V,/3 is transmitted to both of the other
lines. Note that the reflection coefficient at the junction is denoted simply as I';,
because all of the transmission lines are identical and the reflection coefficient at
the junction is thus the same regardless of which line the wave is incident from.
For the circuit shown in Figure 2.23a, the bounce diagram and the sketches of
voltages V;, V1.1, and V], for both cases are shown in Figure 2.23b and c. When
Rui = Ry, = Zy,only one of lines 1 and 2 is shown in the bounce diagram, since

25Note from Table 2.1 that 10 cm-ns~! is approximately the speed of propagation in alumina (Al,0s), a
ceramic commonly used for electronics packaging.
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FIGURE 2.23.  Three transmission lines connected in parallel at a common
junction. (a) Circuit diagram for Example 2-9. (b) Bounce diagram and the variation of

the % and ¥y = ¥, = . voltages as a function of t for R, = Riz = Z. (c) Bounce
diagram and the variation of the ¥;, ¥;.,, and %, voltages as a function of ¢ for Ry, = Z; and
Ry = oo,
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what happens on the other is identical, as seen in Figure 2.23b. When R;; = Z,
and Ry, = o, only line 2 is shown in the bounce diagram in Figure 2.23c, since
no reflection occurs on line 1.

2.5

TRANSIENT RESPONSE OF TRANSMISSION LINES
WITH REACTIVE OR NONLINEAR TERMINATIONS

Up to now, we have studied only transmission lines with resistive terminations. In
this section, we consider reactive loads and loads with nonlinear current-voltage
characteristics.

2.5.1 Reactive Terminations

Reactive loads are encountered quite often in practice; in high-speed bus designs,
for example, capacitive loading by backplanes (consisting of plug-in cards having
printed circuit board traces and connectors) often becomes the bottleneck when high-
speed CPUs communicate with shared resources on the bus. Inductive loading due
to bonding wire inductances is also important in many integrated-circuit packaging
technologies. Packaging pins, vias between two wiring levels, and variations in line
width can often be modeled as capacitive and inductive discontinuities. The capac-
itances and inductances of these various packaging components can range between
0.5 and 4 pF and between 0.1 and 35 nH, respectively.?

For transmission lines with resistive loads, the reflected and transmitted voltages
and currents have the same temporal shape as the incident ones and do not change
their shape as a function of time. For a step excitation, for example, the reflected
voltage produced by a resistive termination remains constant in time, as discussed
in preceding sections. However, in the case of capacitive or inductive terminations,
the reflected and transmitted voltages and currents do not have the same temporal
shape as the incident ones. The terminal boundary condition at the reactive termi-
nation must now be expressed as a differential equation whose general solution can
be exceedingly complicated, whether the solutions are carried out in the time do-
main or by the use of Laplace transformation. We illustrate the basic principles by
considering a line terminated at an inductance, as shown in Figure 2.24.

When the traveling disturbance ¥;*(z, r) (taken in Figure 2.24b, c as a constant
voltage V) and its associated current $;f (z, r) (taken in Figure 2.24b, c as a constant
current Iy = Vo/Z,) first reach the end of the line, the inductive load acts as an open
circuit, since its current cannot change instantaneously. Thus the disturbance is ini-
tially reflected in the same manner as an open circuit, the terminal voltage jumping

2%See Chapter 6 of H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison Wesley,
Reading, Massachusetts, 1990.
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OVT= VO
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Z

(@)

Vi=Vy

$1=1Iy=VylZy

(b)
VO + V; (Z, 3]

:// $1(@z, 1)

©
FIGURE 2.24. Reflection from a purely inductive load. The source
is assumed to be matched (i.e., no reflections back from the source) and to
supply a constant voltage V. The distributions of the voltage and current
are shown at two different times: (b) immediately after reflection when the

inductor behaves like an open circuit, and (c) later in time when the inductor
behaves as a short circuit.

to 2V, and the terminal current being zero, for that instant (Figure 2.24b). However,
since a voltage of 2V, now exits across the inductor, its current builds up, flowing
more and more freely in time, until it is practically equivalent to a short circuit.
At steady state, when the voltage across the inductance reduces to zero, the current
through it becomes 21, (Figure 2.24c), similar to the case of a short-circuit termina-
tion (see Example 2-2).

Between an initial open circuit and an eventual short circuit, the voltage
across the inductive load goes through all intermediate values, and the reflected
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voltage changes accordingly. To determine the analytical expression describing the
variation of the voltage across the inductance, we need to simultaneously solve the
transmission line equations (or the general solutions dictated by them, namely [2.8]
and [2.9]) along with the differential equation describing the boundary condition
imposed by the inductive load as

ds.(t)
dt

For a general incident voltage ¥,*(z, 1), the load voltage ¥, (¢) and current $,(¢) are
given by

W@ =V 4+
Yy vVl
Zy Zy

where the location of the load (i.e., the inductive termination) is assumed to be at
z = 1. We thus have

@ =9 A+ 9y =

VAL +Y7 () =L

d (°V1*(l, n_WaQ t))

dt Z Zy
or
avvrdy | Zog. ., . _dVWAY _ Zo,.,
ar + 'Zolfl Ly = TER f% (2]

which is a differential equation with ¥, (/, 7) as the dependent variable, since V;*(/, ¢)
is presumably known, it being the incident voltage disturbance arriving from the
source end of the line. The right-hand side is therefore a known function of time, and
the equation is simply a first-order differential equation with constant coefficients.
Note that we assume the source to be either far enough away or matched, so that
the voltage %™ (z, t) does not reach the source end and generate a reflected voltage
V5" (z, t) before V™ (I, t) reaches its “steady-state” value (nearly zero in the case when
Vi*(z,t) = V, as shown in Figure 2.24c).

To study the simplest case, let us consider an incident voltage with a constant
amplitude V, (i.e., ¥;* (I, 1) = V,) launched by a step source reaches the inductor at
t = 0. The above differential equation then simplifies to

dvi ({0 + Z ZyVo
dt L L
The solution of this first-order differential equation is?’
V(1) = =Vo + Ke @

OVI—(I' t) = -

*"The solution can be found via Laplace transformation or as a superposition of the homogeneous solution
and the particular solution; the validity of the solution can be shown by simply substituting it into the
differential equation.
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where the coefficient K needs to be determined by the known initial conditions as
they relate to ¥}~ (I, t). At the instant of the arrival of the voltage disturbance (¢t = 0),
the current through the inductance $.(t = 0) = 0, and we thus have the incident
voltage fully reflected, or ¥, ([, = 0) = V,. Thus, we must have K = 2V,. The
solution for the reflected voltage is then

oVi_([, t) = _V() + 2V0€_(Z°/L)t

which varies from its initial value of V| to an eventual value of —V,, as shown in
Figure 2.24c.

In Examples 2-10 and 2-11, we illustrate two specific cases of reactive loads,
in which relatively simple time-domain solutions are possible and provide useful
insight.

Example 2-10: Lossy capacitive load. Consider the transmission line sys-
tem shown in Figure 2.25a where a step voltage source of amplitude V, and source
resistance R, = Z; excites a lossless transmission line of characteristic impedance
Z, and one-way time delay ¢, connected to a load consisting of a parallel combina-
tion of Ry, and C. Find and sketch the source- and load-end voltages as a function
of time.

Solution: Atz = 0, an incident voltage ¥,*(z, t) of amplitude V;*(0,0) =
Vo/2 is launched at the source end of the line. This disturbance reaches the ca-
pacitive load at ¢ = ¢,, when a voltage V;"(z, ¢) of initial amplitude ¥;"(J, #,)
reflects toward the source. For ¢ = ¢,, the total load voltage %;(¢) and current
J1(¢) are given by
@) =NAaLH+Y Ay
Wiy _ Wi
Z Z

where V*(I, 1) = ¥/7(0,0) = V,/2. These two equations are related by the
boundary condition imposed by the load; that is,
TL(®) dVi(r)

R. +G dt

Substituting the first two equations into the third equation yields
avi (Lo [RL+ZO] - [RL_ZO
+ =

dt R Z,C, e R.Z,Cy

which is a first-order differential equation for %™ (f). Note that in deriving it,
we have used the fact that the incident voltage is constant in time, so that
d¥Vi*(l, t)/dt = 0. The solution of this first-order differential equation can be
found by noting that ¥;*(l, f) = V,/2 and by writing the general solution as

on_(l’ t) =K, + Kze—[(RL+Z))/(RLZOCL)](f—td)

@) =9 L+ 9711 =

$() =

]%*(l. )
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FIGURE 2.25.  Step response of a capacitively loaded line. (a) Circuit
diagram. (b) Time variation of the source- and load-end voltages.

in which case the constants K; and K, can be determined by using the initial and
final conditions. Note that the reflected voltage must vary exponentially from
—Vi*(d,t)att = t;t0 (Ry — Zo)Vy* (I, )/(RL + Z,) for t — . We thus have

R.—Z _ 2R
R.+2Zy R +2

¥4, = ¥, ,)[ e—[(Rw&)/(RLacL)](r—m]
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which is valid for t = ¢,. This behavior can be understood as follows: When the
incident voltage reaches the capacitive load at¢ = ¢,, the capacitor Cy is initially
uncharged and acts like a short circuit, resulting in V,"(/, t;) = =V;*(, ;) =
—Vo/2. However, at steady state the capacitor is fully charged and acts like
an open circuit, resulting in V;7(, ) = (R, — Zo)V;*(l, ©)/(RL + Zy) =
(R — Zy)Vo/[2(RL + Zy)], as expected. Note also that the time constant of
the exponential variation is 7 = Ry ZyCi/(R. + Zy) = R Cy, where Ry, is the
Thévenin equivalent resistance,” as seen from the terminals of the capacitor.
Substituting V,”(, t) into VL(¢) yields

RV, _ _
Ve (f) = | — o (RAZVRZACON10)
1) R + Zo[ ¢ ]

valid for t = ¢,. When the front of the reflected voltage reaches the source end
att = 2t,, itis completely absorbed, since the source end of the line is matched
(i.e., Ry = Z,). The voltage at the source end is given by ¥(¢) = ¥,*(0,¢) =
Vo/2 for t < 2t,, and

RL [ 0 — -
Vi(t) = ———[1 — [(RL+Zo)(RLZyCLN(t—21a)
() R+ Z [ e ]

is valid for ¢t = 2t,. Sketches of V;(¢) and V.(¢) are shown in Figure 2.25b.

Example 2-11: A lumped series inductor between two transmission
lines. Microstrip transmission lines on printed circuit boards are often connected
together with bonding wires, which are inherently inductive. In this example, we
consider a typical model for such a connection, namely a lumped series inductor
between two different transmission lines. The measurement of the bonding-wire in-
ductance is considered later in Example 2-16. Two microstrip transmission lines hav-
ing equal line parameters of L = 4 nH-(cm)™! and C = 1.6 pF-(cm) ! and lengths
15 cm and 10 cm are connected by a wire represented by a series lumped induc-
tance of L, = 5 nH, shown in Figure 2.26a. The end of the shorter line is matched
with a 50€) load, and the circuit is excited at £ = 0 by a unit step voltage source
of Ry = 50(). Find and sketch the variations with time of the source and load end
voltages. Assume lossless lines.

Solution:  Using the given line parameters L and C, the characteristic imped-
ance and the phase velocity of the microstrip lines can be calculated as

_ L [ 4x10®
L=\~ 1.6><10-12‘50Q

Z1n this case being simply equal to the parallel combination of the load resistance Ry and the charac-
teristic impedance Z, of the line.
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FIGURE 2.26. A lumped series inductor between two different transmission lines. (a) Circuit
diagram. (b) Time variation of source- and load-end voltages for Example 2-11.

and
1 1
JLC  J4X10-° %X 1.6 X 10-12

Therefore, the one-way delay times of the two lines are respectively #;; =
15cm/(12.5cm-(ns)™') = 1.2 nsand 7, = 10 cm/(12.5 cm-ns™!) = 0.8 ns, as
indicated in Figure 2.26a.

As in the previous example, at ¢+ = 0, an incident voltage %;*(z, ) of am-
plitude ¥;*(0,0) = 0.5 V is launched from the source end of the line. Note
that the amplitude of this incident voltage remains constant in time, as long
as it is supplied by the source. When this disturbance arrives at the junction at
t = t;; = 1.2 ns, the uncharged inductor initially acts like an open circuit (i.e.,
it resists the flow of current), producing a reflected voltage ¥}~ (z, #) of initial

= 12.5 X 10° cm-s™*

Vp =
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amplitude V{"(I}, ts1) = Vi* (L, tsy) = 0.5V, the same as one would have if the
two lines were not connected. Current flows into the second line through the
inductor as the inductor charges exponentially and eventually behaves like a
short circuit at steady state. The following equations apply for ¢t = ¢,;:
_ d$na(t

W0+ 90 = Y + 900 = LD 4 79,40
where V|*(I;,£) = 0.5 V and ¥, (¢) is the voltage at position A, at which the
impedance seen looking toward the load is Z, = 50(). We also have

VWdvy) _ Vo
Zo Zo

where J,q4(f) and V,4(?) are, respectively, the current through and the voltage
across the inductor, as defined in Figure 2.26a. Substituting the second equation

Fina() = I, ) + I (1) =

into the first yields

a1 | 220,
which is a first-order differential equation for ¥, (1, t). The solution of this equa-
tion is

OVi—(lb t) - OV1+(lln tdl)e—(ZZ)/Lw)(t—tdl) — 0.58_2)(1010(‘_1'2)(10_9) A%

which is valid for + = ¢;; = 1.2 ns. Note that we have used the fact that
¥ (i, ts) = 0.5 and that the reflected voltage varies exponentially from
Vi ta1) = Vi*(l, t5) at t = t;; (when the inductor initially behaves like
an open circuit) to zero at t — oo (when the fully energized inductor eventually
behaves like a short circuit). The time constant of the exponential variation is
T = Ly/Rm = 50 ps, where Ry, = 2Z, = 100} is the Thévenin equivalent
resistance as seen from the terminals of the inductor.

To satisfy the boundary condition at the junction, and noting that the induc-
tor Ly, is a lumped element, the current on both sides of the inductor must be the
same. Thus, the inductor current $;,4(¢) can be written as

Vit tar)

1 — ¢~ QZILt~ta)
Z [ ]

Ind() = Iy, ta) + $7 (1, D) =

whichis valid fort = #,,. Att = t;, atransmitted voltage ¥, (z, 1) = Zo$7(z 1)
is launched at position A on the second line, where $; (z, f) = $inq(2). Therefore,
the transmitted voltage V. (z, ) can be written as

Vi (z 1) = ZoSa(®) = V¥, ta)[1 — e~ C&/MN—ia)]

valid for t = 1.
The voltage V,} (z, ) arrives at the load end at t = 4, + £, = 2 ns, where
it is completely absorbed, since R, = Z, = 50€). The load voltage is given by
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01,

V(@) = Vi, 1) = VT (L, ta)[1 — e~ /L=l +1a))]
= 0.5[1 - e—2x10‘°(t—2x10'9)] \V/
valid for t = (4 + t4,) = 2 ns. Note that ¥;* (I}, t51) = 0.5 Vforz = t,, since
the incident voltage remains constant unless the source changes. Similarly, the

source-end voltage is given by V;(t) = ¥,*(0, ) = 0.5 V fort < 2t;,, = 2.4 ns
and

Vi) = N0, 0)[1 + " A2 = (5[] 4 g 210024107y

for t = 2t;; = 2.4 ns. Sketches of the time variations of source- and load-end
voltages are shown in Figure 2.26b.

In the preceding two examples we used time-domain methods to determine the
step response of transmission lines with terminations or discontinuities involving re-
active elements. The basis for our analyses was the simultaneous solution of [2.10],
describing the transmission line voltage and current, together with the differential
equations that describe the terminal voltage-current relationship of the reactive load.
These time-domain solutions were tractable partly because the excitation voltage
was a simple step function and also because the reactive discontinuities that we ana-
lyzed involved only one energy storage element (i.e., a single capacitor or inductor).
When the input voltage function is more complicated, or when the reactive disconti-
nuity involves more than one energy storage element, it is often easier to use Laplace
transform methods to determine the response of the line. We demonstrate the use of
the Laplace transform method in Example 2-12.

Example 2-12: Reflections due to inductance of resistor leads. Con-
sider the transmission line system shown in Figure 2.27, where the source volt-
age amplitude increases linearly from zero to V, over a time® of ¢,. The output

R=Zy z=0 Zyt; z=1 )

Vo + + T=1L1/(2Z,) |
L L= ? :

Vs T P\ =L/

=L,/(2Z,)
R.= 2 |
= - l
—_?_— —i—- — '
= - = - ty 41, t

@ (b)

FIGURE 2.27. Reflections due to inductance of resistor leads. (a) Circuit diagram. (b) Time
variation of the reflected voltage ¥~ (J, ) for the case R, = Z,.

2Note that #, is not exactly the rise time discussed in Section 1.1, which was defined as the time required
for the signal to change from 10% to 90% of its final value.
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resistance of the source is Ry = Z;, while the transmission line having a charac-
teristic impedance Z, and a one-way time delay ¢, is terminated in a reactive load
consisting of a series combination of R; and L; . Find an expression for the reflected
voltage at the load [i.e., ¥, (/, #)], and determine its maximum value for Ry = Z,.

Solution: From Figure 2.27 we note that, starting at ¢ = 0, an incident volt-
age is launched at the source end of the line, given by

VO = S [ute) ~ ¢ =ttt — 1)
where u(-) is the unit step function. The Laplace transform of this voltage wave-

form is

Vol—e™

o‘7‘1+(S) = % 2

This incident voltage propagates to the load end, and no reflected voltage exists
until it arrives there att = ¢,. Fort = t,, the total load voltage and current % (¢)
and $.(¢) are given by

W@ =NAdy+Y% A1)

5.0 = 5@+ 5@ = 20D T LD

Zy Z
and are related by the boundary condition imposed by the load,
as.(1)

V@) = SR + L a1

Substituting the first two equations into the third equation yields

avy-(, ¢ - avi*(, ¢
L S U (T R AL

y + (R — Zo)Vy* (1, £)

Note that unlike the case of Example 2-10, the derivative of the incident voltage
is not zero, since V;*(J, t) is not constant in time during the time interval ¢, =<
t = (t; +¢,). To solve this differential equation for the reflected voltage V;~(l, 1)
using the given functional form of ¥;*(J, £), we can take its Laplace transform,

(sLy + R + Zo)¥,7(s) = (sL. + R — Zo)¥* (s)

where °I7f(s) is the Laplace transform of ¥;*(l, £). Using the previously noted
form of V}*(s), we then have

sLL+RL—Zo][Z91——e""]_[s+(RL—Zo)/LL][Xgl—e“"]
sLy + R+ Z,||2t, &2 T s+ (RL+Zo)/LL|2t, 82

T (s) = [
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which can be expanded into its partial fractions as

o K, K, K,
Go(s) = — v K Ky
R A A

where the coefficients are

VOZOLL V() RL - ZO
K = - E ee————— = ee——
sk Rz ™ KT nRa
Taking the inverse Laplace transform® yields
- _ Vo ZoLy L, (RL+Zo)iLy ' — o~ (RL+Zo)(t' =t )Ly r_
W= Prrapli-e Ju(t) +[1-e ' = 1)}
Vo RL - Zo ! ! — ! —_ ! —
+ %R 7, ['u(®) = (' — t)ut’ — 1,)]
where ¢' = t — ;. Note that the solution for ¥,~(, ¢) is valid only for ¢ = ¢,, or
t' = 0.

A practical case of interest is that in which R, = Z,. When a microstrip is
terminated at a matched load resistance to avoid reflections, the nonzero induc-
tance of the resistor leads may nevertheless produce reflections. To determine
the maximum reflection voltage due to the inductance of the resistor leads, we
substitute R, = Z, in the solution for ¥,~(/, ) to find

Vo L
5, 47,

The time variation of ¥;~(/, ¢) is plotted in Figure 2.27b, showing that the re-
flected voltage rises and falls exponentially with a time constant of L/(2Z,). The
maximum reflected voltage occurs at # = ¢, + £, and is given by
- VoL . —czmn
V& D)lmax = 7 420[1 e ]

Note that in practice the maximum reflected voltage can easily be measured—
for example, by using a time-domain reflectometer (see Section 2.6.1), from
which the value of the inductance L; of the resistor leads can be calculated,
since Z, and ¢, are known in most cases.

Wiy = {[1 — e7CRINDYy (s — 1) — [1 — e PNy — 1, — 1,)}

30We use the following Laplace transform pairs:

—bs
—~att-b) 05 _ €
e u(t —b) & P
e—bs
(- bu(t - b) & 7

where a and b are constants.
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2.5.2 Nonlinear Terminations

Up to now, we have considered responses of transmission lines with linear sources
and linear loads, and we have analyzed reflections using the simultaneous analyti-
cal solution of the transmission line voltage and current expressions together with
the load characteristics. In some high-speed digital circuits, both the sources (driver
gates) and loads (receiving gates) can have nonlinear current-voltage characteristics.
This is particularly the case for transistor-transistor logic (TTL) and complementary
metal oxide semiconductor (CMOS) logic gates. In cases where transmission lines
are terminated in or driven by nonlinear loads, a graphical technique known as the
Bergeron method?! is quite useful.

The Bergeron graphical technique can be applied to transmission line circuits
that involve linear or nonlinear devices. It provides the same basic information as
the bounce diagram (voltage and current versus time) but with fewer calculations. It
relies on a graphical means of describing the reflections on the transmission line. The
graphs involved in using this approach can become quite complex, especially if reac-
tive elements are present. Also, the graphical technique requires accurate knowledge
of the current-voltage characteristics of the nonlinear devices.

To illustrate the graphical methodology before we apply it to a nonlinear load, we
consider in Example 2-13 the step response of a simple transmission line terminated
in a linear resistive load.

Example 2-13: Graphical solution of the step response of a resistively
terminated lossless line. Consider a transmission line with a characteristic
impedance of 1002, driven by a 1 V step source with source resistance of 25(), and
terminated in a 300() load, as shown in Figure 2.28a. Use the graphical Bergeron
method to analyze the effects of reflections on the source- and load-end voltages and
currents.

Solution: We start by plotting the current-voltage characteristics of the
source and load ends (i.e., $; versus ¥; and $ versus V), using the same
set of axes. At the source end we have

Vs = Vo — R = 1 — 259

which is a straight line (referred to as the source-end line) with slope —1/R =
—(1/25) S, as shown in Figure 2.28b. At the load end we have

Yo = R = 3004,

31L. Bergeron was a French hydraulic engineer and developed this graphical method in 1949 to study
water hammer waves in pipes. For an English translation of Bergeron’s original work see L. B. J.
Bergeron, Water Hammer in Hydraulics and Wave Surges in Electricity, John Wiley & Sons, Inc., New
York, 1961. The use of this method in high-speed digital switching circuits was initially suggested in
1968. See R. S. Singleton, No need to juggle equations to find reflection—just draw three lines, Elec-
tronics, pp. 93-99, October 28, 1968.
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FIGURE 2.28. Bergeron method applied to a line terminated with a linear resistor. (a) Circuit
diagram. (b) Current versus voltage characteristics at the source and load ends are shown as heavy
lines. The lighter lines are lines with slopes of +[Zy]~! and —[Zo]~! in units of mA-(V)~!, or mS. The
intersection points of the lighter lines with the source- and load-end current-voltage characteristics
represent respectively the values of the source- or load-end voltages at the corresponding times.

(c) Enlarged view of the rectangular dashed-line region in (b). (d) Steady-state equivalent circuit.

which is also a straight line (the load-end line) with slope 1/R. = (1/300) S,
as shown in Figure 2.28b. These two straight lines, sometimes also refeired
to simply as the “load lines,” define the relation between current and volt-
age at the source and load ends. At ¢ = 0, a voltage ¥;* is launched from the
source end. This voltage disturbance is accompanied by its associated cur-
rent given by 9 = [Z,]7'¥* = [100]7!%;*. The relationship between $;}
and V" is another straight line with slope [100]~! S, shown as the line seg-
ment OA in Figure 2.28b. Noting that at ¢ = 0, ¥, = ¥}* and ¥, = $, the
intersection of the line OA with the source-end line at point A determines
the amplitude of the initial voltage and current launched at the source end
of the transmission line. This intersection point essentially is the solution of
the two linear equations describing the source-end voltage and current, with
the resultant voltage V, = ¥(+ = 0) = ¥;* being what we would have if we
simply divided the applied voltage V|, between the source resistance and the
characteristic impedance of the line. The resultant voltage and current values
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can easily be read from point A in Figure 2.28b as ¥;* = V, = 0.8 V and
I = I, = 8 mA, respectively.
Att = t,, when the voltage disturbance reaches the load end of the line, a
reflected voltage ;™ is generated, which is accompanied by its associated cur-
rent $; . Namely, we have

$7 = -1 > S =L =)

which represents a straight line passing through point A and having a slope
—[Zo]7! = —[100]71, if we now view the axes in Figure 2.28b as J; versus V.
The intersection of this straight line (shown in Figure 2.28b) with the load-end
line (i.e., ¥, = 300%,) at point B determines the values of ¥y and 9 at¢ = t,,
which can easily be read from the graph as V.(t = 1) = V)" + ¥~ = Vp =
1.2Vand $.(t = t;) = 97 + 9] = Iy = 4 mA, respectively. The value of Vi,
at t = t, for example, can in turn be used to determine the amplitude of the
reflected voltage as ¥;” = (Vo — V") = (1.2 - 0.8) = 04 V.

The reflected disturbance ¥, (z, f) reaches the source end at ¢ = 2¢,, at
which time a new voltage ;' is created, accompanied by its corresponding cur-
rent $; = [Zo]7'V,*. Noting that at ¢ = 2t,, we have

V=YK Y = VeV
=9+ +9 =L+,

the relationship between $; and ¥;* can be rewritten as [Z,]'(%; — Vp) =
(9, — Iy), representing a straight line passing through the point B and having
a slope [Zo]™' = [100]' S, as shown in Figure 2.28b. The intersection of this
straight line with the source-end line (¥; = 1 — 25%;) at point C determines
the values of $; and ¥; at ¢t = 2t;, which can be read from Figure 2.28b as
9 =9 +97+ 9} =1Ic = L.6mAand¥;, = V" +V,7+%," = Ve = 096V,
respectively. From the value of %; at ¢ = 2t,, one can determine the amplitude
of the reflected voltage V;* = ¥;(t = 21;) — Vg = 0.96 — 1.2 = —0.24 V.

We can continue this procedure by drawing a straight line with slope
—[Zo]7"! passing through the point C and find its intersection with the load-
end line at point D and from there read $, and ¥; values at¢ = 3t, to be 2.8 mA
and 0.84 V, respectively. A straight line with slope [Z]~! passing through the
point D can then be drawn to intersect the source-end line at point E, repre-
senting 9, and V; values at ¢ = 4¢, of 3.52 mA and ~0.912 V, respectively.
The process continues in this manner until both the source- and the load-end
voltages and currents converge to the steady-state values as determined by the
intersection of the source- and load-end lines. At that point, we have V; = ¥,
and ¥, = 9., the transmission line is charged to its final voltage Vs = 0.923 V,
and the source and load ends are essentially connected together, as shown in the
steady-state equivalent circuit shown in Figure 2.28d.

The graphical technique illustrated in Example 2-13 is not particularly needed
when dealing with transmission lines with linear terminations. However, it becomes
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very useful for cases in which the source or load terminations are nonlinear. In Ex-
ample 2-14, we consider a transmission line terminated by a diode, which in general
has a nonlinear current-voltage characteristic.

Example 2-14: A nonlinear termination. Consider a transmission line
with characteristic impedance of 5S0() driven by a 0.7 V step voltage source with
an internal impedance of 25() and terminated by a diode, as shown in Figure 2.29a.
The diode has a current-voltage characteristic given by

S = L~ 1)

where 1, is called the saturation current, given as I, = 107" A, and V7 is the ther-
mal voltage, having the value Vr = 26 mV at room temperature. Use the graphical

R,=25Q 9 S
> o}
V=07V + +
Vs Zy=50Q, 1, Y
(@)
10 i S =—40V +28 s I = Iolexp(V/Vp) - 1]
9 1 Slope = +[Z,]™! Slope = —[Z,]"!
87 J/ 4 \ Slope = +[Z,]™! s
| _
E 6 E 3 js
| s
R 5
s 4l . s 5l
31 Slope = —[Z]™!
24 14
14
Y 0.2 04 0.6 0.8 0.6 0.65 0.7 0.75 0.8
Ve, VLV) V. VLV)
() ©

FIGURE 2.29.  Step response of a line terminated in a nonlinear load. (a) Circuit
diagram. (b) Current-voltage characteristics on the source- and load-ends are shown as heavy
colored lines. The lighter lines are lines with slopes of +[Z]~! and —[Z,]~". The intersection
points of the lighter lines with the source- and load-end current-voltage characteristics represent
the values of the source- and load-end voltages, respectively, at the corresponding times.

(c) Enlarged view of the region around the steady-state point (i.e., the intersection of the
source- and load-end current-voltage characteristics).
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Bergeron technique to determine how long it will take for the circuit to reach steady
state. Neglect the charging effects of the diffusion capacitance of the diode.

Solution: The solution of this problem can proceed in a manner quite sim-
ilar to Example 2-13, except that the current-voltage characteristic of the load
is nonlinear instead of a straight line. Following a procedure similar to that in
Example 2-13, we first plot the source-end current-voltage characteristic, which
is a straight line given by ¥, = 0.7 — 259, and then the load-end characteristic
(i.e., the nonlinear diode equation) on the same graph, as shown in Figure 2.29b.
Att = 0, the voltage V;* and its associated current $; = [Z,]~'V;* are launched
from the source end of the line. Since at t = 0 we have ¥; = ¥|* and %, = 9],
the relationship between $;* and V|* is a straight line given as ¥; = 50%; with
aslope [Zo] ' = [50]7! S, which is plotted on the same graph. The intersection
of this line with the source-end line is denoted by A, as shown in Figure 2.29b.
The coordinates of point A can be read from Figure 2.29b as I, = 9.33 mA
and V, = 0.467 V, which are also the values of the incident current and associ-
ated voltage disturbances $;* and V", respectively. Next, we draw a straight line
with slope —[Z,]™! = —[50]! passing through point A and find its intersection
with the diode characteristic, which is denoted as point B, as shown. The coordi-
nates of point B are approximately given by Vg = ¥.(¢t = t;) = 0.7519 V and
Iy = 9.(t = t;) = 3.63 mA, respectively. Using the value of ¥ (¢,), the ampli-
tude of the reflected voltage can be determined as ¥}~ = V.(z;,) —V;* = 0.285 V.
We then draw a straight line with slope +[Z,]™! and passing through point B and
find its intersection with the source-end line at point C, where we have V¢ =
0.657 V and Ic = 1.73 mA. This process continues until we reach the intersec-
tion point of the source-end line with the diode characteristic approximately at
time ¢t = 4¢; and at point E, which is indistinguishably close to the intersection
point of the source- and load-end current-voltage characteristics. Thus, in this
particular case, it takes approximately 47, units of time for the circuit to reach
steady state. At steady state (i.e., + — ), we have ¥; = ¥ = 0.6912 V and
¥ = $ = 0.3514 mA.

The accuracy of the Bergeron plot technique depends heavily on the accuracy of
the current-voltage characteristics of the nonlinear devices, which are usually pro-
vided in terms of their typical values by the device manufacturers. Nevertheless,
in spite of potential inaccuracies in device characteristics, the graphical Bergeron
plot method is a powerful technique for gaining insight into the response of a line
terminated by a nonlinear device, for example to estimate the approximate duration
of ringing effects. Finally, it should be noted that the graphical method is entirely
suitable to circumstances where both the load- and the source-end current-voltage
characteristics might be nonlinear. Such cases may arise in high-speed digital appli-
cations, since both the driver gates and the receiving gates are inherently nonlinear
transistor devices, especially when used in on/off modes.
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2.6

SELECTED PRACTICAL TOPICS

In this section, we discuss two selected practical topics, namely (a) time-domain re-
flectometers, and (b) the effects of source rise time. We also briefly comment on tran-
sients on lossy transmission lines. A brief discussion on time-domain reflectometry
and two associated examples serve to introduce this simplest and most direct method
of measuring characteristic impedance of a line, the nature of its termination, and
the presence of discontinuities on the transmission line. A discussion of source rise
time effects is necessary because up to now we have primarily (except in Exam-
ple 2-12) considered responses to ideal step function excitations. In most practi-
cal applications, the sources used and the outputs of driver gates have finite rise
and fall times.

2.6.1 Time-Domain Reflectometry

In practice, it is often necessary to make a number of measurements on a given
transmission line system to characterize its transient response. The quantities that
need to be measured include the nature (capacitive, inductive, or resistive) of the
load termination, the characteristic impedance of the line, the maximum voltage
level at which the line can be used, and others of a more specialized character.
A time-domain reflectometer®? (commonly abbreviated as TDR) is an instrument
which is used to test, characterize, and model a system involving transmission
lines and their accessories. In general, it consists of a very-fast-rise-time (typi-
cally less than 50 ps) step pulse source and a display oscilloscope in a system that
operates like a closed-loop radar, as shown in Figure 2.30. The source produces
an incident step voltage, which travels down the transmission line under investi-
gation, and the incident and the reflected voltages at a particular point (typically
the source end) on the line are monitored by the display oscilloscope using a high-
impedance probe. The output impedance of the step source is typically well matched

- to the nominal characteristic impedance of the line to eliminate reflections from the

source end.

The most common use of time-domain reflectometry involves the measurement
of the characteristics of an unknown load termination or a discontinuity on the line.
The former application is illustrated in Example 2-15 for resistive loads. A discon-
tinuity on a transmission line could, for example, be a point of breakage on a buried
coaxial line, an unwanted parasitic capacitance on an interconnect, or the inductance
of a bonding wire between two interconnects. The latter case is illustrated in Exam-
ple 2-16.

32B. M. Oliver, Time domain reflectometry, Hewlett-Packard Journal, 15 (6), February 1964.
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FIGURE 2.30. Time-domain reflectometry. Essential components of a typical
TDR system.

Example 2-15: TDR displays for resistive loads. A TDR system (repre-
sented by a step pulse source of amplitude V, and output impedance R, = Z) is
connected to a transmission line of characteristic impedance Z, terminated with a
resistive load Ry, as shown in Figure 2.31. Three TDR waveforms monitored at the
source end are shown for three different values of R, . Find the load resistance R,
for each case.

Solution: The initial value (immediately after the application of the step in-
put) of the source-end voltage %;(0) is equal to

Y0) = ¥*(z = 0,0) = % 02V

from which the amplitude of the step voltage is found to be V, = 0.4 V. At
t = 1 ns, the reflected voltage arrives at the source end and is completely ab-
sorbed. So

Y(1ns) = V*(0, 1 ns) + ¥,7(0, 1 ns) = ¥;*(0, 1 ns)(1 + I)
where I, = (R. — Zy))/(R. + Z,). For R, = Ry, we have
0.2(1 +1Iy) =0.1
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FIGURE 2.31. TDR displays for resistive loads. (a) A TDR system connected
to a transmission line terminated with an unknown load resistor R. (b) R, = Ry,.
(©) RL = Rz (d) R = Rys.

from which [, = —0.5, yielding R.; = Zy/3. Similarly, we find R, = Z, and
RL3 = 3Z0

A simple summary of the TDR waveforms observed at the source end for purely
resistive, capacitive, and inductive terminations is provided in Figure 2.32. Note that
the case of a resistive termination was discussed in the preceding example, while a
simple inductive termination was discussed in Section 2.5.1 and in connection with
Figure 2.24. The result for the capacitive termination case corresponds to that of
Example 2-10 for R, = oo.

We now illustrate (Example 2-16) the use of the TDR technique for the mea-
surement of the value of a reactive element connected between two transmission
lines.

Example 2-16: TDR measurement of the inductance of a bonding wire
connecting two transmission lines. Consider a bonding wire between two mi-
crostrip interconnects (each with characteristic impedance Z,) on an integrated cir-
cuit board, as shown in Figure 2.33a. To measure the value of the bonding-wire
inductance L., the circuit is terminated with a matched load (Z,) on one side and
is excited by a matched TDR system (i.e., Ry = Z;) at the input side, as shown in
Figure 2.33b. The TDR waveform V() measured is shown in Figure 2.33c, which
is similar to Figure 2.26b (Example 2-11). Determine the value of the bonding-wire
inductance in terms of the area under the “glitch” seen in the TDR waveform.
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FIGURE 2.33. Measurement of bonding-wire inductance using a TDR system.
(a) Actual circuit configuration. (b) Equivalent transmission line circuit model. (c) Measured

TDR waveform.

78



2.6 Selected Practical Topics ml 79

Solution: In principle, the bonding-wire inductance L,, can be determined
from the curvature of the glitch by accurately fitting an exponential function.
However, a more accurate method is to determine L,, from the area under the
curve, which can be measured more accurately. Following an approach similar
to that used in Example 2-11, it can be shown that the source-end voltage is

Vo
2

70 [1 + e @/L-22)] ¢ = 21,

0<t<2ty
V(1) =

To find the area A under the glitch, we integrate (V;(¢) — V/2) from ¢t = 2, to

t = oo

Vo _ . Vo [* _ : LyVo _ 1" _ LV
A= J —e (2Zo/Lw)(t—2ta1) dt = _J e (2Zo/ L)t dr = - =29 (2Zy/ L)t -
2t 2 0 4Z0 0 4ZO

where t' = t—2t,,. Therefore, the bonding-wire inductance L,, is given in terms
of the area A as

_ 4Z,A

L, Vs

A simple summary of TDR signatures of purely resistive or purely reactive dis-
continuities on a transmission line is provided in Figure 2.34. The signatures of dis-
continuities involving combinations of reactive and resistive elements are dealt with
in several problems at the end of this chapter.

2.6.2 Effects of Source Rise Time

Up to now, as we considered the consequences of propagation time delays that result
from transmission line effects, we assumed that the excitations are ideal step sources
that rise and fall instantaneously, with rise times and fall times (¢,, #,) being iden-
tically zero. In practice, however, driver devices possess finite rise and fall times,
which can be comparable to delays due to propagation effects. As discussed briefly
in Chapter 1, the ratio of the source rise time and the one-way time delay (along a
transmission line) can often be a useful determinant of whether or not lumped analy-
ses are applicable. For example, a trace of length [ on a printed circuit board behaves
mostly in a lumped fashion as long as 7, and t; > 6¢,, where t; = I/v, is the one-way

- propagation delay of the signal on the trace. However, for high-speed drivers (small
t, and ;) or longer trace lengths /, the trace behaves like a transmission line, or a
distributed circuit. Example 2-17 illustrates the relationship between signal rise or
fall time and the one-way time delay along a printed circuit board trace.
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FIGURE 2.34. TDR signatures produced by simple discontinuities. Source-end TDR
voltage signatures for shunt or series purely resistive, inductive, and capacitive discontinuities.

In terms of excitation by a step voltage source of amplitude V, and source resistance R;, the TDR
voltage waveforms shown are drawn for V, = 2 V and R, = Z,, and one-way travel time ¢, from
the source to the disconuity. (This figure was adapted from Figure 6 of B. M. Oliver, Time domain
reflectometry, Hewlett-Packard Journal, 15(6), pp. 14-9 to 14-16, February, 1964. ©Hewlett-
Packard Company 1964. Reprinted with permission.)

Example 2-17:  Rise time versus one-way time delay. A digital integrated
circuit chip with 1 ns rise and fall times drives another chip with a very large input
impedance (100k(2) through a microstrip trace with characteristic impedance 60(},
a phase velocity of 20 cm/ns, and length 6 cm on a printed circuit board. Does the line
need to be terminated (at a matched impedance) to reduce transmission line effects
(such as ringing)?

Solution: Comparing the rise and fall times of the driver with the one-way
propagation delay along the trace (i.e., #; = 6/20 = 0.3 ns), we find t, = t; =
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3.33t,, indicating that transmission line effects may not be neglected.** Accord-
ingly, it might be useful in this case to terminate the line with a 60( resistive
load to eliminate reflections and possible ringing.

We can also examine the interplay between ¢, and ¢, from a more quantitative
perspective. When the length of a transmission line is short enough so that #,/¢, is
large, the shape of the output waveform (i.e., the voltage at the end of the line)
strongly depends on the finite rise time of the source signal. To see this, consider that
it is possible for a new component voltage to arrive at the load or source positions be-
fore the previous voltage rises to its final value; for example, ¥, (z, ) could arrive at
z = 0 before the input voltage has risen to its full value. In such cases, the temporal
variation of the total voltage or current at any position along the line can be found by
summing all of the component voltages ¥, (z, ) and V;*(z, 1), i = 1,2,3,...,eachof
which, as mentioned before, exists for all time after its generation. As an example,
consider the circuit of Example 2-3, where the source was considered to be an ideal
step voltage source with a rise time ¢, = 0. We now assume that the same circuit,
shown again in Figure 2.35a, is driven by a source having a finite rise time* ¢, # 0,
such that the source voltage changes linearly from O to V, in ¢, seconds. Note that
we have chosen R, = Z,/4. Att = 0, a voltage of V}*(z, t) given by

[ ZoVa ] _ (o.svo)
— =t =1
OVI+(O, t) — (I;SO; ZO)tr tr
LU >
m = 0.8V, t=1,

is applied from the source side of the line. This voltage reaches the open-circuited
end of the line (z = I) att = t,, and a voltage ;" (z, ¢) of amplitude given by

0.8V,
t,

r

L1 = (

0.8V, t=t+1t,

N o= )(t—ta) LsStst+t,

reflects toward the source, since I} = 1. This reflected voltage arrives at the source
end of the line at ¢ = 2¢,, and a new voltage V,*(z, t) of amplitude given by

0.48V,

r

Fso‘/i_(o’ 1 = _(
—0.48V, t=2t+1t,

Y00 = )(t —2) 2y St =2+t

3Note that, as mentioned in Chapter 1, a rule-of-thumb criterion for interconnects between integrated
circuit chips is that lumped analysis is appropriate only if #,/t, > 6, and inappropriate for #,/t; < 2.5,
with the applicability and the required accuracy being the determining factors in the intervening range
(2.5 <t,/t; < 6) depending on the particular application in hand.

34Note that ¢, is not exactly the rise time discussed in Section 1.1, which was defined as the time required
for the signal to change from 10% to 90% of its final value.
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FIGURE 2.35. Effect of source rise time. (a) Circuit diagram for a transmission line
excited with a step source of amplitude V, and rise time ¢, and terminated with an open
circuit at the load end. (b) The individual component voltages at the load end (top panel) and
the load voltage Vi (r) (bottom panel) versus time for z, = 2¢,. (c) The individual component
voltages at the load end (top panel) and the load voltage ¥.(¢) (bottom panel) versus time for
t, = 4t4.

reflects toward the load, since I, = —0.6. At ¢ = 3¢4, a new reflected voltage
¥, (z, t) of amplitude given by

0.48V,
V(L) = LY e = _<_—t,_2)(t -3t) 3, =t=3t+t

—-0.48V, t =3+t
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is launched toward the source. This process continues indefinitely, with the total volt-
ages and currents gradually approaching their steady-state values. The top panels of
Figure 2.35b and 2.35c show the individual contributions of the various component
voltages V;*(z, t) and V;~(z, t), where i = 1,2, 3, ..., that are generated as a result of
reflections at both ends of the line, for two different rise times, ¢, = 2¢; and z, = 4¢,.
Note that since I, = 1 and thus ¥."(l, 1) = V;*(l, 1), the quantity actually plotted
in the top panels of Figure 2.35b and 2.35c is 2¥,*(J, £). The bottom panels show
the time variation of the total load voltage, as determined by the summation of the
component voltages. Shown in dashed lines in the lower panels are the load voltage
waveforms predicted by a simple lumped analysis (i.e., neglecting transmission line
effects). Note that ¥, (?) is simply the superposition of all the component voltages at
z = I, namely V;*(l,t), fori = 1,2,3,....

It is clear from Figure 2.35b that for t, = 21,, the output voltage waveform is
substantially different from that expected based on a lumped treatment (i.e., by ne-
glecting transmission line effects or in effect assuming that [ = O or #, = 0), shown
for comparison as a dashed line in the lower panel of Figure 2.35b. For the case of
t, = 4t,4, however, the load voltage variation deviates only slightly from the lumped
case, as shown in Figure 2.35c. For larger values of #,/t,, V; (¢) are even more similar
to that predicted based on a lumped assumption, and transmission line effects can be
neglected for these applications.

2.6.3 Transients on Lossy Transmission Lines

At a qualitative level, losses on a transmission line lead to distortion of the informa-
tion being transmitted. Distortion is defined as the change in the shape of the signal,
as a function of distance, as it travels down the line. For example, a signal that is
in the form of a rectangular pulse at the beginning of the line does not retain its
rectangular shape as it propagates further; a steplike change in the input voltage is
rounded off when observed at points further down the line. The distortion is a result
of the fact that the general solutions of the transmission line equations for the lossy
case (R, G # 0) are no longer in the form f(¢ — z/v,). In Chapter 3, we shall see
that the phase velocity v, for sinusoidal signals, which is independent of frequency
on a lossless line, becomes a function of frequency for lossy lines. If we imagine a
transient signal (e.g., a pulse) at some point z = z; to consist of a superposition of
its Fourier components, each of these components travels to a new point z = z; ata
different speed. In addition, each frequency component is in general attenuated by
a different amount. Even if there were no reflected pulses (i.e., an infinitely long or
a matched line), the differently attenuated and time-shifted sinusoidal components
of the signal at z = z, do not add up to reconstruct the original shape of the signal
atz = z;.

The treatment of the propagation of transient signals on lossy lines is a diffi-
cult problem, generally requiring extensive analyses using Laplace transformation
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methods or numerical time domain solutions.*® The special case of RC lines (i.e.,
lines with L = 0 and G = 0), which represents most on-chip interconnect struc-
tures and some thin-film package wires that exhibit small inductance but significant
resistance, can be treated analytically.*

2.7

TRANSMISSION LINE PARAMETERS

We have seen in previous sections that the response of a lossless transmission line
to a given excitation depends on its characteristic impedance Z, and the propagation
speed v, (or the one-way travel time ¢, = I/v,), which in turn depends on the line
inductance L and capacitance C per unit line length. The response of lossy lines is
additionally influenced by the values per unit line length of the series resistance R
and shunt conductance G. In general, the values of these transmission line parame-
ters depend on (i) the geometric shapes, physical dimensions, and proximity of the
two conductors that form the line; (ii) the electromagnetic properties of the material
surrounding the conductors; and (iii) the electrical conductivity of the conductors and
the frequency of operation. In later chapters, after we have introduced the governing
electromagnetic equations, we will discuss methods by which the line capacitance,
inductance, resistance, and conductance per unit length can be defined and deter-
mined from basic principles. In the case of the common transmission lines shown
in Figure 2.36, we will be able to find convenient analytical expressions for the line
parameters. For other, more complicated, structures R, L, C, and G can be either

Two-wire
Coaxial 75

Parallel plate

FIGURE 2.36. Cross-sectional view of three common uniform transmission lines.
Expressions for the circuit parameters L, R, C, and G for these coaxial, two-wire, and
parallel-plate lines are provided in Table 2.2.

3 As an example, see F. Chang, Transient analysis of lossy transmission lines with arbitrary initial po-
tential and current distributions, IEEE Trans. Circuits Syst.—I: Fundamental Theory and Applications,
39(3), pp.180-198, March 1992.

%See H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley, 1990; and

A. Wilnai, Open-ended RC line model predicts MOSFET IC response, EDN, pp. 53-54, December
1971.
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TABLE 2.2.  Transmission line parameters for some uniform two-conductor transmission
lines surrounded by air

Coaxial Two-wire Parallel-plate*
d dy 1.26a
-m~! el Jhadii IR
L (unH-m™) 0.21n(b/a) 0.4ln[2a + (2a) 1} 5
55.6 27.8 8.85b
-m~! Pt
€ (pF-m™) In(b/a) 2 a
In 4 + 4y 1
2a 2a
_ 4.15x 107%(a + b)./f 8.3 % 1078./F 5.22x 1077 /f
R(Q-m™) b e 7V NJ
ab a b
-4 -4 -4
G (S-m-Y) 7.35 X 10 3.67x10 1.17 X 10~%b
In(b/a) 2 a
In 4 + 43 1
2a 2a
2
Zo () 60 In(b/a) 1201n 4 + 4y _ 1 377a
2a 2a b

*Valid for b > a.
**For polyethylene at 3 GHz.

evaluated using numerical techniques or measured. Parameters for many different
transmission lines are also extensively available in handbooks.*’

Expressions for L, R, C parameters and for Z, for the common uniform transmis-
sion lines shown in Figure 2.36 are given in Table 2.2. The characteristic impedances
(Zy) provided are for lossless lines (i.e., Zy = /L/C). In Table 2.2, we have assumed
the transmission line conductors to be made of copper and the surrounding medium
to be air. Note that the parameters depend on the geometric shapes and the physi-
cal dimensions of the lines (d, a, and b). The line capacitance C and characteristic
impedance Z, for the case when the surrounding medium is a nonmagnetic* material
other than air can be derived from those given in Table 2.2 by using the propagation
speed v, for these media as given in Table 2.1. Specifically we have

c? v
[Clmateriat = 2 [Clair and [Zo]materias = p[ZO]air
vp c

where c is the speed of light in free space, or ¢ = 3X 108 m-s~*. The line inductance L
remains the same, since it is governed by the magnetic properties of the surrounding
material.

3"Reference Data for Engineers, 8th ed., Sams Prentice Hall Computer Publishing, Carmel, Indiana,
1993.

3%Magnetic properties of materials are discussed in Section 6.8. In the transmission line context, all
materials can be considered nonmagnetic except for iron, nickel, cobalt, a few of their alloys, and some
special compounds involving mixtures of magnetic materials with barium titanate.
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TABLE 2.3. Relative conductivities of metals versus copper

Material Relative conductivity Material Relative conductivity
Aluminum 0.658 Silver 1.06

Brass 0.442 Sodium 0.375

Copper 1.00 Stainless steel 0.0192

Gold 0.707 Tin 0.151

Lead 0.0787 Titanium 0.0361
Magnesium 0.387 Tungsten 0.315

Nickel 0.250 Zinc 0.287

The series resistance (R) is inversely proportional to the electrical conductivity
of the particular metal that the conductors are made of, with the values given in
Table 2.2 being relative to that of copper. The physical underpinnings of electrical
conductivity are discussed in Chapter 5. For now, it suffices to know that it is a
quantitative measure of the ability of a material to conduct electrical current and
that the values of conductivity for different materials are tabulated extensively in
various handbooks (see Table 5.1). A brief list of conductivities of some common
metals relative to that of copper is provided in Table 2.3. The series resistance R is
proportional to the square root of the frequency because of the so-called skin effect,
which results from the nonuniform distribution of electrical current in a metal at
higher frequencies, and which is discussed in Chapter 8.

With air as the surrounding medium, the shunt conductance G = 0, since air is
an excellent insulator and leakage losses through it are generally negligible. In the
case of other surrounding media for which leakage losses may not be negligible, the
value of G depends on the geometrical layout of the conductors (as do the values of
C, L, and R) but is more strongly determined by the loss properties of the insulating
medium surrounding the conductors and is, in general, a rather complicated function
of the frequency of operation. Table 2.2 provides a representative expression for G
for polyethylene as the surrounding medium at an operating frequency of 3 GHz.
High-frequency losses in insulating materials are discussed in Sections 7.4 and 8.1.

Examples 2-18, 2-19, and 2-20 illustrate the use of the formulas given in
Table 2.2 for selected transmission lines.

Example 2-18: Television antenna lead-in wire. A student measures the
dimensions of a television antenna lead-in wire made of two copper wires. The diam-
eter of the wires is found to be ~1 mm each, while the spacing between the centers of
the conductors is ~0.7 cm. Assume the conductors to be surrounded by air, although
they might in fact be held together by some plastic material. Determine the values
of the line parameters and the characteristic impedance at an operating frequency of
200 MHz.
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Solution: We can directly use the formulas given in Table 2.2 for the two-
wire line. Noting that d = 0.7 cm and 2a = 1 mm, we have

B d Y o
L= 0.4111{z + /<%) 1} = 1.05 pH-m

C = 278 = 10.6 pF-m™"

d d\y
hll:%'i' (i;) -1

3 %X 1078/
R = 8.3 X 10 a200>< 106 ~ 2350-m"!
2
Zy = 1201n i+ i —1|=316Q)
2a 2a

Note that the characteristic impedance of this line is quite close to 300(), within
the tolerances of the measurement. Indeed, the household television lead-in line
is usually referred to as a 300-ohm line. Note also that G = 0 for this wire, since
the leakage losses are negligible.

Example 2-19: Coaxial line. A coaxial line consists of inner and outer con-
ductors made of copper and having radii of a = 0.65 mm and b = 2.75 mm, the
space between the conductors being filled with air. The line is to be used at 1 GHz.
Find the values of the distributed parameters and the characteristic impedance of
this line.

Solution: We can directly use the formulas given in Table 2.2 for the coaxial
line:

a

L= 0.21n<b ) = 0.289 pH-m™"

C = 556 = 38.5 pF-m™’

(2

-8
g o 15X 12b @+b) 15 -5 s0m-!

)

Zy = 601n(§)= 86.5Q)

Note once again that G = 0 for this air-filled coaxial line.
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Example 2-20: RGS58/U coaxial line. RG58/U is a commonly used coaxial
line with an inner conductor of diameter 0.45 mm and an outer conductor of inside
diameter 1.47 mm constructed using copper conductors and filled with polyethylene
as its insulator. The line is to be used at 3 GHz. Find the line parameters (i.e., R, L,
C, G, and Z;). Note from Table 2.1 that the propagation speed for polyethylene at
3 GHzis v, = 20 cm-(ns)™! = 2 X 10* m-s~.

Solution: We use the expressions provided in Table 2.2, except for the mul-
tipliers needed for C and Z, to correct for the fact that the filling is polyethylene
rather than air. Note that we can also use the expression from Table 2.2 for G,
since it was also given for polyethylene and for 3 GHz. We have

_ 415X 107%(0.45 + 1.47) X 1073/3 X 10°

R - - =~ 6.6Q)/m
(0.45 X 107%)(1.47 X 107%)
1.47
L=02In (&E)" 0.237 pH/m
c?\ 55.6 3}V 55.6
a 0.45
-4
G = I X107 o1 %10 S/m
(L4
0.45
Zo = (ﬁ)soln(l-’)= 47.40
c a

Note that the value of Z, is close to the nominal 50-ohm impedance of this coax-
ial line. Note also that the difference between 47.4€) and 50} is within the
range of accuracy (i.e., two digits after the decimal point) by which the physical
quantities were specified (e.g., the radii of conductors, the value of v,, etc.).

2.8 SUMMARY
This chapter discussed the following topics:

= Transmission line parameters. A transmission line is commonly character-
ized by its distributed parameters R (in {}/m), L (in H/m), G (in S/m), and
C (in F/m), whose values are determined by the line geometry, the conduc-
tivity of the metallic conductors, the electrical and magnetic properties of the
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surrounding insulating material, and the frequency of excitation. Formulas for
calculating R, L, and C are provided in Table 2.2 for coaxial, two-wire, and
parallel-plate transmission lines surrounded by air. Formulas for G are also pro-
vided in Table 2.2 for the same lines surrounded by polyethylene.

Transmission line equations. The distributed parameters of the line are used in
an equivalent lumped-circuit model to represent a differentially short segment
of the line. Using this model as a basis, the transmission line equations are de-
rived from Kirchhoff’s laws in the limit where the length of the line segment
approaches zero. The differential equations governing the behavior of voltage
and current on a lossless (R = 0 and G = 0) transmission line, and the wave
equation for voltage derived from them, are

AM. —Lﬁ 2 2
az at - ¥ _ Lcejﬁ
9 C(ﬂ/‘ 0z or
gz ot

Propagating-wave solutions, characteristic impedance, and phase velocity.
The general solution of the transmission line equations leads to mathematical
expressions for voltage and current along the line that are wave equations in
nature, depending on both distance and time. These are

= (= £ -lr+ £
°V(z,t)—f(t v,,)+f (t+v)

p

o gl - )

where Z, is the characteristic impedance of a lossless line, which is defined as the
voltage-to-current ratio of a single disturbance propagating in the +z direction
andis givenby Z, = /L/C. The characteristic impedance is one of the most im-
portant quantities that determine the response of a transmission line, and its value
is tabulated for most practical transmission lines. Formulas for calculating Z, for
three different types of lines (coaxial, two-wire, and parallel-plate) are provided
in Table 2.2 for lossless transmission lines surrounded by air. The velocity with
which waves on a transmission line propagate is called the phase velocity and
is given by v, = (LC)™"2 For a lossless transmission line, the phase velocity is
determined by the properties of the material surrounding the transmission line
conductors and is equal to the speed of light in free space (¢ = 3 X 10® m/s) if
the conductors constituting the line are surrounded by free space or air. For uni-
form transmission lines, v, is a constant, regardless of the shape of the voltage
(or current) signal traveling down the line. Values of v, for selected materials
are tabulated in Table 2.1.

Transmission lines terminated in resistive loads, reflection coefficient.
Transient response of a lossless transmission line to step or pulse excitation
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involves reflections from discontinuities along the line or from loads at its ter-
mination. Reflection effects are described in terms of the reflection coefficient
T, defined as the ratio of the reflected to the incident voltage at a given point.
The reflection coefficients at the load and source ends of a transmission line are

given by
R.— 7
L= —+—+= d
L R+ 7 Load en
_ Rs —Zy
I, = R+ Z Source end

where Ry is the resistance terminating the load end of the line, the line’s char-
acteristic impedance is Z, and R; is the source resistance. In the special case
of a matched termination, we have R, = Z, so I'. = 0, and thus no reflection
occurs from the termination. Similarly, when R; = Z,, Iy = 0, and no reflection
occurs from the source end. In general, when a voltage disturbance is launched
from the source end of a transmission line (e.g., due to a step change in input
voltage), a sequence of reflections from both the load and source ends of the line
occurs. The process of multiple reflections from the load and source ends of a
transmission line can be described using a bounce diagram.

s Transmission lines terminated in reactive or nonlinear loads. To determine
the transient behavior of lossless lines terminated in reactive or nonlinear el-
ements, it is necessary to solve the differential equations that determine the
voltage-current relationships of the terminations subject to the appropriate ini-
tial conditions. For reactive loads, the reflected voltage due to a step excitation
is no longer a simple step function but, in general, varies continuously at a fixed
position with respect to time depending on the nature of the reactive termina-
tion. For nonlinear terminations, a graphical approach known as the Bergeron
plot can be used to find the voltage and current following each reflection, using
the known current-voltage characteristics of the nonlinear device.

2.9 PROBLEMS

2-1. Open-circuited line. Consider the circuit shown in Figure 2.37, with an ideal unit step
source connected to a lossless line of characteristic impedance Zy = 50} having an
open-circuited termination at the other end. Assuming a one-way propagation delay

Zo, 4

£ f _ FIGURE237. Open-

_ = = circuited line. Problem 2-1.
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t=0
509, 0.5 ns
—0
+
3V VLS R,
i FIGURE 2.38. Resistive loads.
= = = Problems 2-2 and 2-4.

2-2.

2-3.

2-4.

2-5.

across the line of #;, use a bounce diagram to sketch the voltage % (¢) versus time for
0 =t =10t.

Resistive loads. The circuit shown in Figure 2.38 consists of an uncharged transmis-
sion line connected to a load resistance Ry.. Assuming that the switch closes at ¢t = 0,
sketch the load voltage ¥.(¢) over the time interval 0 < ¢ =< 3 ns for the following
load resistances: (a) R, = 25(), (b) R, = 500, (c) R, = 100Q.

Ringing. The transmission line system shown in Figure 2.39 is excited by a step-
voltage source of amplitude 3.6 V and source impedance 15¢) at one end, and is ter-
minated with an open circuit at the other end. The line is characterized by the line
parameters L = 4.5 nH-(cm)~}, C = 0.8 pF-(cm)", R = 0, G = 0, and has a length
of I = 30 cm. Sketch the load voltage V. (r) over 0 = ¢ = 10 ns with the steady-state
value indicated.

Discharging of a charged line. For the circuit of Problem 2-2, assume that the switch
has been closed for a long time before it opens at ¢ = 0. Sketch the load voltage % (¢)
over 0 = ¢ = 3 ns for the same three cases.

Pulse excitation. The circuit shown in Figure 2.40 is excited by an ideal voltage pulse
of 1 V amplitude starting at # = 0. Given the length of the line to be / = 10 cm and
the propagation speed to be 20 cm-(ns) ™!, (a) sketch the voltage at the source end of

R,=15Q Zy v, 1=30cm

AN o
+ + +

36V ¥, ¥,
0 _

_t { FIGURE239. Ringing.
- = Problem 2-3.
Z, = 75Q
R.=0

FIGURE 2.40. Pulse

- excitation. Problem 2-5.
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2-7.

R=2, Zo, ty
+
A VL
0 Ry =100 Z,

_T_ i FIGURE 2.41. Pulse

= excitation. Problem 2-6.

the line, V;(#), for an input pulse duration of 10 ns; (b) repeat part (a) for an input pulse
duration of 1 ns.

. Pulse excitation. The circuit shown in Figure 2.41 is excited with a voltage pulse of

amplitude A and pulse width #,. Assuming the propagation delay of the line to be #4,
sketch the load voltage Vi (¢) versus ¢ for 0 = ¢ < 10z, for (a) t,, = 24, (b) t,, = 14,
and (c) t,, = t4/2.

Observer on the line. A transmission line with an unknown characteristic impedance
Zy terminated in an unknown load resistance Ry, as shown in Figure 2.42, is excited by
a pulse source of amplitude 1 V and duration #,, = 31,/4, where ¢, is the one-way flight
time of the transmission line. An observer at the center of the line observes the voltage
variation shown. (a) Determine Z; and Ry. (b) Using the values found in (a), sketch
the voltage variation (up to ¢ = 4t,) that would be observed by the same observer if
the pulse duration were t,, = 1.5¢,.

. Cascaded transmission lines. For the transmission line circuit shown in Figure 2.43,

sketch Y(¢) and V. (f) over 0 = ¢t < Sns.

<6

R, = 100Q ctr
AAA

_ 1v +

t,=3t,/4 0 Zo. 1,12 v, Zo, 1412 R
Ve
05V F————-
03vViF-————=f—————————— -—-
t/td
1 1
0.5 1.0 125 15 20 225

FIGURE 2.42. Observer on the line. Problem 2-7.
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R,=50Q
s 50Q, 0.5 ns 75Q, 0.5 ns o
+ +
|Y
¥
0 _L

I'—o P2

g d

FIGURE 2.43. Cascaded lines. Problem 2-8.

2-9. Time-domain reflectometry (TDR). A TDR is used to test the transmission line sys-
tem shown in Figure 2.44. Using the sketch of ¥;(r) observed on the TDR scope as
shown, determine the values of Zy;, /;, and R;. Assume the phase velocity of the waves
to be 20 cm-(ns) ™! on each line. Plot Vg (¢) versus t for 0 < t < 4 ns.

2-10. Time-domain reflectometry (TDR). TDR measurements can also be used in cases
with more than one discontinuity. Two transmission lines of different characteristic
impedances and time delays terminated by a resistive load are being tested by a TDR,
as shown in Figure 2.45. (a) Given the TDR display of the source-end voltage due to
a 3-V, 1004 step excitation starting at t = 0, find the characteristic impedances (Zo,
and Zy,) and the time delays (z,;; and #4,) of both lines, and the unknown load Ry.
(b) Using the values found in part (a), find the time and magnitude of the next change
in the source-end voltage ¥;(¢), and sketch it on the display.

2-11. Time-domain reflectometry (TDR). Consider the circuit shown in Figure 2.46. The
two line segments are of equal length /. Assuming the propagation speeds on the two
lines are equal to 15 cm-(ns)~! each, find Zy;, Zy,, Ry and [ using the TDR display of
the source voltage V;(¢), as shown.

Zo, |y Zgp=15Q

R, R =75Q

V0

05V ————I_
-==0375V

1ns t
FIGURE 2.44. Time-domain reflectometry. Problem 2-9.
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EOOQ Z)l’ ta 202' In

Vi@
125V
15V v -
| |
1 |
3 75 t (ns)

FIGURE 2.45. Time-domain reflectometry. Problem 2-10.

Zow 1 Zon |

1 1o

582V

3V 36V

wn e

10 t (ns)
FIGURE 2.46. Time-domain reflectometry. Problem 2-11.

2-12. Multiple lines. For the distributed transmission line system shown in Figure 2.47,
sketch the voltages V;(¢), V2(¢), and V3(¢) versus ¢ for 0 = ¢t < 7t;. Assume the one-
way propagation delay to be #; on each transmission line.

2-13. Digital IC chips. Two impedance-matched, in-package-terminated Integrated Circuit
(IC) chips are driven from an impedance-matched IC chip, as shown in Figure 2.48.
Assuming the lengths of the interconnects to be 15 cm each and the propagation veloc-
ity on each to be 10 cm-(ns)~!, do the following: (a) Sketch the voltages %;; and Y,
for a time interval of 10 ns. Indicate the steady-state values on your sketch. (b) Repeat
part (a) if one of the load chips is removed from the end of the interconnect connected
to it (i.e., the lead point A is left open-circuited).

2-14. Multiple lines. For the distributed interconnect system shown in Figure 2.49, and for
Zoy = Zyp = 509, find and sketch the three load voltages V;(f), ¥5(¢), and ¥3(¢) for a
time interval of 5 ns. Assume each interconnect to have a one-way time delay of 1 ns.
(b) Repeat part (a) for Zy; = Zg, = 25Q.



120Q 120Q

FIGURE 2.47. Multiple lines. Problem 2-12.

50Q, 15cm 100Q, 15 cm

1002, 15 cm

FIGURE 2.48. Digital IC chips. Problem 2-13.

00 A 500 B s00 C 500

FIGURE 2.49. Multiple lines. Problem 2-14.
95
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Ry=15Q 60, 2 ns
+ Line A

FIGURE 2.50. Reflections due to mismatches. Problem 2-15.

2-15.

2-16.

Reflections due to parasitic effects. The circuit shown in Figure 2.50 consists of a
low-impedance driver driving a distributed interconnect system that was intended to
be impedance-matched, with Z, = 120€). An engineer performs some tests and mea-
surements and observes reflections due to parasitic effects associated with the two in-
terconnects terminated at the 120() loads. Assuming that the effective characteristic
impedances of these interconnects (i.e., taking parasitic effects into account) is such
that we have Z, = 80() instead of 120(), find and sketch the voltages V() and ¥5(¢)
for 0 = ¢t = 12 ns, assuming the one-way time delay on each interconnect to be 2 ns.
Comment on the effects of the mismatch caused by parasitic effects. Assume the initial
incident wave launched at the driver end of the 60£) line to be V;* = 4 V.

Parallel multiple lines. The transmission line system shown in Figure 2.51 con-
sists of three lines, each having Z; = 50() and a one-way propagation delay of
1 ns. (a) Find and sketch the voltages V;(f) and Vy(¢) versus ¢ for 0 < ¢ =< 10 ns.

50Q 50Q, 1 ns

FIGURE 2.51. Parallel multiple lines. Problem 2-16.
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FIGURE 2.52. Optimized multiple
lines. Problem 2-17.

(b) Repeat part (a) when the open-circuited ends are terminated with a load resistance
of 5002 each.

Optimized multiple lines. The transmission line system shown in Figure 2.52 consists
of an ideal step source of amplitude V,, and output impedance Ry connected to two
identical parallel lossless transmission lines terminated by equal resistive loads Ry.
The parameters of the lines are L = 2.5 nH/cm and C = 1 pF/cm. (a) Calculate Z and
v for the lines. (b) For Ry = Zy/2, Ry, > Zo, and line lengths of [, = 1.5/; = 30 cm,
sketch the voltages V;, V1, and Vi, versus ¢ for the time interval 0 < ¢ < 7.5 ns.
(c) Repeat part (b) if the line lengths are optimized to be /; = I, = 25 cm each to
minimize ringing effects, and compare with the results of part (b). )
Optimized multiple lines. A multisection transmission line consists of three lossless
transmission lines used to connect an ideal step source of 5-V amplitude and 6€) output
impedance to two separate load resistances of 66{) each, as shown in Figure 2.53.

FIGURE 2.53. Optimized multiple lines. Problem 2-18.
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Ry=160Q

Zoys lg Zoy Uy Zoz: 1y

+ + +

Vi V2 VL & R =50Q

1 £

FIGURE 2.54. Multiple lines. Problem 2-19.

2-19.

2-20.

2-21.

All three lines are characterized by line parameters L = 364.5 nH-m ™', and C =
125 pF-m~'. To minimize ringing effects, the line lengths are optimized to be of
equal length. If each line length is / = 40 cm, sketch the voltages V; and V1, versus
t for 0 = ¢ = 20 ns, and comment on the performance of the circuit in minimizing
ringing.

Minimizing ringing on multiple lines. The three-section equal-delay lossless trans-
mission line system shown in Figure 2.54 is to be designed to minimize ringing effects
at the load due to impedance discontinuities along the transmission path. For a step
source of 5-V amplitude and 160€) source impedance and a load impedance of 50(2,
one design consists of three lines with Zy; = 148Q), Zp; = 200Q), and Zp; = 69Q).
Assuming a one-way time delay of ¢, = 250 ps for each of the lines, sketch the volt-
ages Vs, 1, V>, and ¥ versus t for 0 = ¢ =< 1.5 ns, and comment on the performance
of the design.

Charging and discharging of a line. For the transmission line system shown in Fig-
ure 2.55, the switch S is closed at ¢t = 2¢, (where ¢, is the propagation delay of each
line) after the switch S is closed at ¢ = 0. Find and sketch the voltage V1, versus ¢ for
0=t =6t

Digital IC interconnect. The circuit shown in Figure 2.56 consists of a logic gate
driving another logic gate via a 50( interconnect. At ¢ = 0, the driver output voltage
switches from LOW to HIGH state. The Thévenin equivalent of the driver gate at its
output at LOW and HIGH states can be approximated respectively as a —1.67 V or a
—0.85 V voltage source, each in series with a 7() resistor. The input impedance of the
load gate can be approximated by a very large impedance (say, 50 k{2). Assume the
signal delay and the length of the interconnect to be 200 ps-(in.)"! and 6 in., respec-
tively. (a) Sketch the voltage at the load end and comment on the performance of the
circuit. (b) Connect an additional terminating network at the load end as shown. Select
Rr = 50Q and V1 = -2V and repeat part (a).

t=0
15Q 6092, ty 609, ty
—O

5 & .
Sy

t=21,

1V 60Q VL

60Q

<

FIGURE 2.55. Charging and discharging of a line. Problem 2-20.
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6 in.
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gate 50Q + gate
@ T
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Driver
gate 50Q

(d)

FIGURE 2.56. Digital IC interconnect. Problem 2-21.

Digital IC interconnect. A circuit consists of one logic gate driving an identical gate
via a 1-ft-long, 50Q) interconnect. Before ¢+ = 0, the output of the driver gate is at
LOW voltage state and can simply be approximated as a 14{} resistor. At ¢ = 0, the
output of the driver gate goes from LOW to HIGH state and can be approximated with
a 5-V voltage source in series with a 14} resistor. The input of the load gate can be
approximated to be an open circuit (i.e., R, = ). Assuming that a minimum load
voltage of 3.75 V is required to turn and keep the load gate on, (a) find the time at
which the load gate will turn on for the first time. (b) Find the time at which the load
gate will turn on permanently. (Assume a signal time delay of 1.5 ns-(ft)~! along the
interconnect for both parts.)

Terminated IC interconnects. The logic circuit of Problem 2-22 needs to be modified
to eliminate ringing. Two possible solutions are to terminate the line in its characteristic
impedance at either the source (series termination) or receiver (parallel termination)
end. Both of these circuits are shown in Figure 2.57. (a) Select the value of the termi-

| Driver Load
gate gate

1ft
| Dnver
50Q gate

FIGURE 2.57. Terminated IC interconnects. (a) Series termination.
(b) Parallel termination. Problem 2-23.
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Rp=50- R, 1ft A 11t B 1ft
l > 50Q 50Q 50Q c ' >

Driver
gate
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[: 1ft A 1ft B 1ft
50Q 50Q 50Q
Driver
gate
(b)

FIGURE 2.58. IC gate interconnects. (a) Series termination. (b) Parallel termination.
Problem 2-24.

nation resistance Rt in both circuits to eliminate ringing. (b) Compare the performance
of these two circuits in terms of their speed and dc power dissipation. Which technique
is the natural choice for a design to achieve low-power dissipation at steady state?

2-24. Digital IC gate interconnects. A disadvantage of the series termination scheme in
Problem 2-23 is that the receiver gate or gates must be near the end of the line to
avoid receiving a two-step signal. This scheme is not recommended for terminating
distributed loads. The two circuits shown in Figure 2.58 have three distributed loads
equally positioned along a 3-ft-long 50() interconnect on a pc board constructed of FR4
material (take v, = 14.3 cm-(ns)~!). Each circuit uses a different termination scheme.
Assuming the driver and all the loads to be the same gates as in Problem 2-22, find
the times at which each load gate changes its logic state after the output voltage of
the driver gate switches to HIGH state at ¢+ = 0. Comment on the performance of both
circuits and indicate which termination scheme provides faster speed. (Use some of
the data provided in Problem 2-22.)

2-25. Open-ended stub. An electrical engineer is assigned the task of designing the circuit
in Problem 2-24 that has the parallel termination scheme. After the design is complete,
she performs some tests and measurements on the circuit. Noticing some peculiar ef-
fects in the test results, she decides to check the design. She realizes that she used a
4-ft-long interconnect, where the extra foot extends beyond the farthest element away
from the driver and is not terminated at the end (i.e., an open-circuited stub). (See Fig-
ure 2.59.) Does this open stub affect the overall performance of the circuit? Explain.

Ry =50Q

A B
1t 1t 500 s 1ft
O
50Q 50Q Th =C_ 50Q
Open-ended

Driver stub
gate

FIGURE 2.59. Open-ended stub. Problem 2-25.
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Digital IC circuit. For the digital IC circuit shown in Figure 2.60, the driver gate goes
from LOW to HIGH state at t = 0, and its Thévenin equivalent circuit (including the
series termination resistance) can be approximated as a 5-V voltage source in series
with a 50€) resistor. If the time delay for all interconnects is given to be 2 ns-(ft)~,
find the time(s) at which each receiver gate changes its state permanently. Assume
each load gate to change state when its input voltage exceeds 4 V. Also assume each
load gate to appear as an open circuit at its input. Support your solution with sketches
of the two load voltages V; and ¥, as functions of time for a reasonable time interval.
Two driver gates. Two identical logic gates drive a third identical logic gate (load
gate), as shown in Figure 2.61. All interconnects have the same one-way time delay
t4 and characteristic impedance Z,. When any one of these driver gates is at HIGH
state, its Thévenin equivalent as seen from its output terminals consists of a voltage
source with voltage Vj in series with a resistance of value Ry, = Z,. At LOW state,
its Thévenin equivalent is just a resistance of value Ry = Zo. The input impedance of
the load gate is very high compared to the characteristic impedance of the line (i.e.,
Zin > Zy). (a) Assuming steady-state conditions before both driver gates change to
HIGH state at ¢ = 0, sketch the load voltage %} as a function of time for0 =< ¢ < 7¢,.

2 ft 1ft

-[> 50Q 100Q rb

¥
Driver gate _

151t 1000 I

+ v, -

1

FIGURE 2.60. Digital IC circuit. Problem 2-26.

Zyty Zy,ty
+
o Load

Driver L gate

gate 1 Zonty

Driver
gate 2

FIGURE 2.61. Two driver gates. Problem 2-27.
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2-29.

2-30.

2-31.

5V

What is the eventual steady-state value of the load voltage? (b) Assume steady-state
conditions before t = 0 to be such that driver gate 1 is at HIGH state and gate 2 is at
LOW state. At¢ = 0, gate 1 and gate 2 switch states. Repeat part (a).

Capacitive load. For the transmission line system shown in Figure 2.62, the switch is
closed at t = 0. Each of the two transmission lines has a one-way time delay of 2 ns.
Assuming both transmission lines and the 5 pF capacitor to be initially uncharged, find
and sketch the voltage V() across the resistor R;.

Inductive load. The circuit shown in Figure 2.63 consists of a voltage source of am-
plitude 5 V and a source resistance of 50Q) driving a lossless 50€) transmission line
having a one-way time delay of 3 ns terminated with an ideal inductor of 25 nH. The
circuit has been in steady state for a long time with the switch at position A. At¢ = 0,
the switch is moved to position B. (a) Find the mathematical expressions and sketch
the voltages at the source and load ends of the line. (b) Repeat part (a) for the case
of the same line terminated with a 25 nH inductor in series with a S0£) resistor.
Unknown lumped element. The transmission line circuit has an unknown lumped
element, as shown in Figure 2.64. With the source-end voltage due to step excitation
measured to be as plotted, determine the type of the unknown element, and find its
value in terms of the shaded area A.

Unknown lumped element. The following circuit consists of two transmission lines
of characteristic impedances Zg; and Zj, connected with an unknown lumped series
element, as shown in Figure 2.65. The circuit is excited by a step source of amplitude
Vo and a source resistance Ry = 50(), starting at ¢+ = 0. The source-end voltage is
observed as a function of time, as shown. (a) Assuming the second line to be terminated

1009, 2 ns 50Q, 2 ns -
R, = 100Q } ¥, 5pF

FIGURE 2.62. Capacitive load. Problem 2-28.

t=0
50Q A 50Q, 3 ns

\

L=25nH

VL L=25nH

50Q - 50Q

il
1|

(@) ®)

FIGURE 2.63. Inductive load. Problem 2-29.
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Zy, 1) Zo tpy
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Vy@®

Vy/2

2ty t

FIGURE 2.64. Unknown lumped element. Problem 2-30.

Zo1 Zo

o— ? o

Unknown
lumped element Zy

Vol2 |

Vold

t t (ns)
FIGURE 2.65. Unknown lumped element. Problem 2-31. Both ¢ and ¢, are in ns.

with R = Zy, at the far end, determine Zgy;, Z,, the type (e.g., inductance, capaci-
tance, resistance) of the unknown circuit element, and its value (i.e., nH, pF, or ).
(b) Find and sketch the voltage across this element.

2-32. Capacitive load. Two transmission lines of characteristic impedances 75£} and 504}
are joined by a connector that introduces a shunt resistance of 150€) between the lines,
as shown in Figure 2.66. The load end of the 50() line is terminated with a capacitive
load with a 30 pF capacitor initially uncharged. The source end of the 75¢) line is
excited by a step function of amplitude 3.6 V and a series resistance of 75(), starting
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2-33.

2-34.

ty=6ns tpp=2ns

75Q ZOI=7SQ ZYZ:SOQ ;-—.—_._______I
o I

+ 1= !

1| 300F |

150Q ¥ H 1000 :
oo e :

| |

- I

= 1= = I

| |

. ;

Load
FIGURE 2.66. Capacitive load. Problem 2-32.
ty=6ns ty=2ns
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FIGURE 2.67. Discharging with a capacitive load. Problem 2-33.

att = 0. Assuming the total time delay of each line to be #s; = 6 ns and t5, = 2 ns,
respectively, find and sketch (a) the voltage Vi.(t) at the load end of the 50} line and

(b) the voltage V;(¢) at the source end of the 754} line.

Discharging with a capacitive load. In the circuit shown in Figure 2.67, the 3.6 V
source voltage is shorted by a switch at t = 0, after being connected to the circuit for
a long time. Find and sketch the source- and the load-end voltages V() and VL.(2).

Inductive load. Two transmission lines of characteristic impedances 50€ and 75(} are
joined by a connector that introduces a series resistance of 25() between the lines, as
shown in Figure 2.68. The load end of the 75() line is terminated with an inductive load.
The inductor is initially uncharged. Find and sketch the voltage ¥, . First determine the

initial and final values and accurately mark all points of your sketch.

50Q 50Q, 5 ns 25Q 75Q, 5 ns __Load __

FIGURE 2.68. Inductive load. Problem 2-34.
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FIGURE 2.69. Step excitation. Problem 2-35.

100Q t,, =500 ps t;,=1ns 100Q

VA0 o
+ +
Su(r) 100Q 100Q =Su(t)

©

FIGURE 2.70. Capacitive load excited by two sources. Problem 2-36.

2-35.

2-36.

2-37.

2-38.

Step excitation. The circuit shown in Figure 2.69 is excited by a step-voltage source
of amplitude 5 V and source resistance R; = 27, starting at ¢ = 0. Note that the
characteristic impedance of the shorted stub is half that of the main line and that the
second segment of the main line is twice as long, so its one-way time delay is 2,.
(a) Assuming the load to be an open circuit (i.e., a very large resistance), sketch the
load voltage ¥1.(¢) versus ¢ for 0 = ¢ =< 11¢,. (b) Repeat part (a) for the case when the
input is a pulse of duration ¢, = 4¢,.

Capacitive load excited by two sources. For the transmission line system shown in
Figure 2.70, find the mathematical expression for the capacitor voltage ¥.(¢) and sketch
it for £ > 0. Assume the capacitor to be initially uncharged.

Two sources. For the circuit shown in Figure 2.71, sketch the voltages ¥;; () and V;,(¢)
for0 =t = 7t,.

Nonlinear termination. Consider a 50(), 2-ns transmission line used to connect a
driver logic gate to a load gate. At = 0, the driver gate switches from LOW to HIGH
state and can be modeled at HIGH state with an output voltage of 5 V in series with an
output impedance of 10€}. The load gate has a nonlinear voltage-current characteristic
represented by

S = 0.35(1 — 7P
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FIGURE 2.71.  Two sources. Problem 2-37.

2-39.

2-40.

2-41.

2-42.

where $ is in A and Y, is in V. Use the graphical Bergeron technique to determine
approximately the time it would take for the circuit to reach a steady state.
Nonlinear source. A circuit consists of a driver gate connected to a load gate via a
50(), 2-ns transmission line. At ¢ = 0, the driver gate switches from LOW state to
HIGH state. The output of the driver at HIGH state has a nonlinear voltage-current
characteristic represented by

I =85-%)— (5 -N%)

where ¥ is in mA and % is in V. The load gate has a very large input impedance (~10
MQ). Use the graphical Bergeron technique to (a) sketch the load voltage %} versus
t and (b) determine the approximate time it takes for the circuit to reach steady state.
Assume the line to be uncharged at t = 0.

Effects of source rise time. Consider a lossless transmission line trace excited by a
voltage source with output impedance 12.5€) at one end and terminated by a short
circuit at the other end. The characteristic impedance, the propagation delay, and the
length of the trace are equal to 50€2, 80 ps-(cm)~!, and 25 cm, respectively. The source
voltage increases linearly from zero at # = 0 to an amplitude of 5 V at ¢ = ¢,. (a) Find
and sketch the source end voltage of the trace if the source rise time ¢, = 1 ns. (b) Re-
peat part (a) for ¢, = 250 ps.

Effects of source rise time. Consider a step voltage source of 3 V amplitude, 1 ns
rise time, and 25} output impedance connected to a transmission line with Z, = 50}
characteristic impedance and C = 1 pF-(cm)™! line capacitance terminated with a load
resistance Ry, >> Z,. Find and sketch the voltages at the two ends of the transmission
line for a line length of (a) I = 5 cm, and (b) / = 50 cm. Compare the results and
comment on the difference.

RG 8 coaxial line. A student buys an RG 8 low-loss coaxial cable from Radio Shack
for a VHF antenna project. He looks up the specifications of the RG 8 coax in the Radio
Shack product catalog and finds out that its characteristic impedance is Z, = 50 Q, its
velocity factor is v,/c = 0.66, and its line capacitance is C = 26.4 pF-(ft)~!. He then
cuts a portion of this coax and measures the diameter of the inner conductor and the
outer diameter of the dielectric to be approximately 2 mm and 7.5 mm, respectively.
Using these values, find or verify the values of the unit length line parameters L, C,
R, and G and the characteristic impedance Z, of this cable at 100 MHz. Note that
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the dielectric inside RG 8 coax is polyethylene and that the leakage conductance per
unit length of a polyethylene-filled coaxial line at 100 MHz is approximately given by
G = 1.58 X 1073/ In(b/a) S-m~".

Two-wire line. Calculate the per-unit-length line parameters L, C, R, and G and the
characteristic impedance Z, of an air-insulated two-wire line made of copper wires
with wire separation of 2.1 cm and wire diameter of 1.2 mm at a frequency of 200 MHz.

. Distributed capacitive load. A transmission line system consists of a driver gate,

a transmission line trace, and a load gate. The transmission line trace is [ = 25 cm
long and is characterized by the trace parameters L = 2.46 nH-(cm)~! and C = 0.984
pF-(cm)~!. The driver output resistance is 20Q) for driving a HIGH-to-LOW signal
and 25Q) for a LOW-to-HIGH one, and its driver output voltage is between 3.5 V (at
HIGH state) and O V (at LOW state). The load gate has a very large input resistance
of ~50 M(}. Consider the case when the driver changes from HIGH to LOW state
at t = 0. (a) Sketch the voltage at each end of the trace by using a bounce diagram.
Neglect the fall time of the output voltage of the driver gate. (b) Repeat part (a) for
the case in which the same circuit has an additional total load capacitance of Cp =
15 pF that is uniformly distributed along the length of the trace, and comment on the
difference. (Hint: Combine the load capacitance Cy, with the line capacitance C as if
the combination is the new “effective” line capacitance of the trace.)



