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TWO!–!PORT NETWORKS

Up to now, all the circuits covered in this course have been real circuits without complex
reactances and the gain was frequency independent.  These models are useful for general
applications, but are inadequate for r.f. and microwave applications.  This material is a short
introduction to a more generalized small!–!signal description of networks1.

A two!–!port network is simply a network with four terminals which are arranged into pairs
called ports.  In general, there will be an input port and an output port for the networks we will
be interested in.  As shown below this network is characterized by input voltage vI and current
iI while the output is characterized by voltage vII and current iII.  It is common convention to
denote these currents as positive going INTO the network.  These sign conventions are
summarized in the figure below.

Linear Active Network

(LAN)

Ii II
i

Iv
II

v

Most r.f. devices of interest have only three terminals, i.e. transistors; however, this merely
means that our representation for these devices uses one device terminal as common to input
and out.  As we know from our study of amplifier topologies this makes perfect sense.  After
all, each amplifier has a common terminal which was denoted as common, i.e. common base,
common collector, or common emitter.

There are four variables associated with any two port network as shown in the figure above,
two voltages and two currents.  These are our signals.  From mathematics, any two of these
four variables may be picked as independent variables with the remaining two being dependent
variables.  We will be using the roman subscripts to represent total AC!!!+!!!DC parameters.  In
practice, two port parameters are usually used to describe only the ac variables and are denoted
by Arabic subscripts, i.e. i1, v1, i2 and v2, rather than the previously used roman subscripts.
This means that we may write the terminal relationships for an ac two port network as
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These relationships can be expressed compactly in matrix form as

                                      
1A more lengthy discussion of two-port networks (with extensive examples) can be
found in Irwin, Introduction to Electrical Networks.
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leading to the name “matrix parameters” to describe this type of two!–!port representation.

Before relating matrix parameters to transistor parameters let us consider the nature of the
relationship between independent and dependent variables.  For purposes of illustration let us
continue with i1 and i2 as the dependent variables.  However, in terms of real world parameters
i1 and i2 are small signal currents.  Let us write the total (ac!!!+!!!dc) terminal variables as
small letters with Roman subscripts, i.e. iI, iII, vI and vII.  These may be expressed in terms of
the previously defined small signal voltages and currents i1, i2, v1 and v2 and dc voltages and
currents I1, I2, V1 and V2.

i
I
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i
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2
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2
(3b)

In both equations the first term on the right hand side is the steady state (dc) term and the
second is the small signal (ac) term which is assumed to fluctuate about the steady state value.

Note that our earlier matrix formulas are in terms of small signal parameters only.  In general
we can write the input/output relationships for the total (ac!!!+!!!dc) variables as

i
I
 = f(v
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 = g(v
I
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I I
) (4b)

We can recall the Taylor series expansion

f( x+h)  = f(x)  + h
∂h

∂�f( x)  + . . . (5)

where h!!!<<!!!x and perform a Taylor series expansion of f and g in our expressions for iII and
iII
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where the subscript “O” indicates the initial value, i.e. the dc value about which we are going
to do a small signal expansion.  This looks very formidable but let us examine the terms in
light of our definitions of total, dc and ac (or small signal) terminal parameters.  iI!!!-
!!!fO(vI,vII) is simply the total terminal variable minus the dc terminal variable I1, or
mathematically

i
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This can be repeated for the output terminal, or port, to give
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These expressions can be substituted into the small signal expansions (5) to yield

i
1
 = (v

I
- v

I , O
)

∂v
I

∂f
O
(v

I
, v

I I
)
 + (v

I I
- v

I I , O
)

∂v
I I

∂f
O
(v

I
, v

I I
)

(8a)
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The above expressions can be further simplified if we recognize (vI!!!!-!!!vII,O) and (vII!!!-
!!!vII,O) as expressions for the small signal parameters v1 and v2 respectively.  This follows
from the definitions of parameters in Equation (3).  Simplifying Equation (8) we get
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This is exactly the form of our original matrix equation, Equation (2), provided that we
recognize the derivatives as the y!–!matrix parameters.  Making the associations we have
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As can be seen above the y matrix parameters are simply the partial derivatives of f and g with
respect to the independent variables vII and vII evaluated at the initial point (VI,VII).

Referring to Equation (1) we see that each y!–!matrix parameter converts a voltage to a
current; hence, each y!–!matrix element must have the units of 1/Ω, or mhos.  This makes each
y!–!matrix element an admittance which is usually denoted by a “y” and is the reason why this
particular formulation is called a y!–!matrix.  The y!–!parameters are particularly useful for r.f.
circuits.  Up to this point the two port parameters have been treated as mathematical
abstractions.  However, two port parameters are extremely easy to measure in the real world
and can be easily manipulated to give amplifier gain, etc.

In Equation (1) we see that if v2!!!=!!!0, Equation (1) reduces to
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By simply providing a short across the output terminals and measuring the currents i1 and i2
and the input voltage v1 we can measure two of the four y!–!matrix parameters, or
y!–!parameters for short.

y
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y11 is called the input admittance (output port short!–!circuited) and y21 is called the forward
transconductance ratio (output port short!–!circuited).  Similar expressions can be derived for
y12 and y22 provided we short!–!circuit the input port instead.  The results of this are
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where we can now identify y12 as the reverse transconductance ratio (input port
short!–!circuited) and y22 as the output admittance (input port short!–!circuited).  In practice,
y11, y12, y21 and y22 are determined by measuring the terminal parameters with the input and
output ports alternately shorted.

Before continuing with more general two port networks we should attempt to relate what we
have just done to what we know of circuits.  In general, most amplifiers and electrical
networks have three terminals and are characterized by three variables.  (See the previous
discussion of transistor characteristics and biasing.) By choosing one terminal to be common
to the input and output as shown below we can put these familiar amplifiers into a two port
formalism for sophisticated network analysis.  This means that the y!–!parameters just
discussed can be measured by simply sequentially putting an ac short (a capacitor) across the
amplifier input and output terminals of a network and measuring the resulting terminal
voltages and currents.  Careful attention must be given to the fact that the currents were
defined with their sign as being positive going into the two port and negative if coming from
the two port.  The real beauty of the two port formalism is that the parameters are very simple
to measure and the various network parameters such as voltage gain, input impedance, Miller
effect, etc are simply described using the two port parameters.  As we shall see in later sections
the y!–!parameters are a single case of a more general formalism which we shall exploit
heavily in our study of r.f. circuits.

Three-terminal two port network
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MATRIX PARAMETER DEFINITIONS AND CONVERSIONS

During the remainder of the course it will often be necessary to convert a problem specified in
one set of two!–!port matrix parameters to another set.

The two!–!port h parameters are defined below

The corresponding terminal equations are

v
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The two!–!port y parameters are defined below
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v
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The corresponding terminal equations are
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The two!–!port z parameters are defined below

+ +
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The corresponding terminal equations are
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The two!–!port g parameters are defined below
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The corresponding terminal equations are
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The so!–!called T, or ABCD, two!–!port parameters are defined below

2
i1i

2
v1v

A B

C D

NOTE THAT THE ABCD!–!PARAMETERS DEFINE i2 IN THE OPPOSITE DIRECTION
TO ALL OTHER MATRIX PARAMETERS.  The corresponding two!–!port terminal
equations are
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and, in matrix form, as

v
1

i
1

 = 
A B

C D
 

v
2

- i
2

where the negative sign for i2 must be explicitly shown.

To summarize the definitions above, the two!–!port parameter matrices are
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A B

C D

It is very handy to be able to convert from one set of matrix parameters to another for
expediency in combining networks or analyzing networks.  To convert between any two sets
of matrix parameters use the table shown on the following page, MATRICES IN THE SAME
ROW OR COLUMN ARE EQUIVALENT.  For example
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The matrix elements are then explicitly equivalent, i.e.

z
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etc.
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MATRIX CONVERSIONS

To show how the conversion table on the previous page was constructed consider the
transformation from z!–!parameters to y!–!parameters as an example.

In matrix form the y!–!parameter equations are
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Similarly, for z!–!parameters
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Substituting the second set of matrices into the first set

i
1

i
2

 = 
y

11
y

12

y
21

y
22

 
z

11
z

12

z
21

z
22

 
i
1

i
2

One recognizes that the product of the [y] and [z] matrices must be the identity matrix since
the current matrices MUST be identical, i.e.
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1 0

0 1

Multiplying the matrices and equating the resulting matrix elements with the corresponding
elements of the identity matrix we get the following set of simultaneous equations which can
be solved for the y!–!parameters in terms of the z!–!parameters.
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Working with the off!–!diagonal equations (the zero elements)
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Working with the diagonal expressions (the 1's)
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Substituting these results back into our expressions for y12 and y21
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which completes our results.  Note that these expressions are identical to those of the second
column of the first row of the matrix conversion table.
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Example two-part problems:

8. A three-terminal device is described by the following z-parameter equations.
VIN = 250iIN + 5iOUT

VOUT = -100iIN + 25iOUT

Obtain an equivalent circuit for this device.

Re-writing in matrix form.  This is the z-parameter model.
VIN

VOUT

È 

Î Í 
˘ 

˚ ˙ =
250 5

-100 25
È 

Î Í 
˘ 

˚ ˙ 
iIN

iOUT

È 

Î Í 
˘ 

˚ ˙ 

+

-

25Ω

+

-

-100IIN5IOUT

250ΩIIN

VIN

IOUT

VOUT

or draw reversed as

16. The circuit of example 2.17 has rb =200 ohms, b=50, rc=2500 ohms, and re=10 ohms. Find

the voltage gain VOUT

VIN
when a 1000 ohm load is placed across the VOUT  terminals.  Note that the

output current I2  is

-
VOUT

1000
for this load.
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Figure 2.16.  Combination of 2-port networks with common currents.

The circuit is then

We will convert both the upper and lower circuits to z-parameters and then combine them.
for z-parameters

V1

V2

È 

Î Í 
˘ 

˚ ˙ =
z11 z12

z21 z22

È 

Î Í 
˘ 

˚ ˙ 
I1

I2

È 

Î Í 
˘ 

˚ ˙ 

For an open output I2 = 0  and
V1 = z11I1
V2 = z21I1
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By
inspection
z11 =

V1

I1
= 200W

z21 =
V2

I1
=

- 50I1( ) 2500( )
I1

= -1.25 ¥105

if I1 = 0
V1 = z12I2
V2 = z22I2
and
z12 =

V1

I2
= 0

z22 =
V2

I2
= 2500W

For the 10Ω resistor

Z =
10 10
10 10

È 

Î Í 
˘ 

˚ ˙ 

The total admittance matrix is then

ZT =
200 0

-1.25 ¥ 105 2500
È 

Î Í 
˘ 

˚ ˙ +
10 10
10 10

È 

Î Í 
˘ 

˚ ˙ =
210 10

-124990 2510
È 

Î Í 
˘ 

˚ ˙ 

To find the voltage gain we write the network equations resulting from  ZT
V1 = 210I1 + 10I2 (1)
V2 = -124990I1 + 2510I2 (2)
For the output,
V2 = -I2 RL

Using (2) and (3)

V2 = -124990I1 + 2510 -
V2

RL

Ê 

Ë 
Á ˆ 

¯ 
˜ 
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V2 +
2510
1000

V2 = -124990 I1

I1 = -
1 + 2.51
124990

V2 = -2.81¥10-5V2

Substituting this result into (1) and using (3)

V1 = 210 -2.81 ¥10-5V2( ) +10 -V2

1000
Ê 
Ë 

ˆ 
¯ 

V1 = -5.90 ¥10-3 V2 - 0.01V2 = -1.59 ¥10-2 V2

V2

V1
= -62.9
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17. Using y-parameters, obtain the total circuit y-parameters for the circuits indicated by the
dashed lines.  Hint: first find the y-parameters of the two indicated two-port networks, then
combine them to obtain the total network y-parameters.

Rf

gmV1rb rc

+

-

V1

+

-

Vin

+

-

Vout

The solution of this problem is similar to that of problem 16 except  that y-parameters will be
used.

I1

I2

È 

Î Í 
˘ 

˚ ˙ =
y11 y12

y21 y22

È 

Î Í 
˘ 

˚ ˙ 
V1

V2

È 

Î Í 
˘ 

˚ ˙ 

For V1 = 0 :
I1 = y12V2
I2 = y22V2

I2

I1

V2Rf

y12 =
I1

V2
=

-I2

V2
= -

1
Rf

y22 =
I2

V2
=

1
Rf

For V2 = 0:
I1 = y11V1
I2 = y21V1

y11 =
I1

V1
=

1
Rf

y21 =
I2

V1
= -

I1

V1
= -

1
Rf
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Therefore,YR =

1
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-
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For V2 = 0

y11 =
I1

V1
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1
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y21 =
I2

V1
=

gmV1

V1
= +gm

ForV1 = 0

y12 =
I1

V2
= 0

y22 =
I2

V2
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1
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And, therefore,Ytransistor =

1
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1
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Ytotal = Ytransistor +YR =
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È 

Î 

Í 
Í 
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˙ 
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˙ 
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˙ 
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You can also get carried away with two ports algebraically. Consider this problem.

9. Common base transistor configurations are often described in terms of common base y-
parameters: yib, yrb, yfb and yob.  (The b’s in the subscripts indicate that the parameters were
obtained from a common base configuration with the emitter as the input terminal and the
collector as the output terminal.) A common circuit model for the transistor used in this
configuration is shown.  Obtain the y-parameters for this common base circuit.

This is algebraically a very complex problem.  Finding two-port parameters is usually
algebraically complex.

The y-parameters are defined by
I1

I2

È 

Î Í 
˘ 

˚ ˙ =
y11 y12

y21 y22

È 

Î Í 
˘ 

˚ ˙ 
V1

V2

È 

Î Í 
˘ 

˚ ˙ 

to find y11  and y21  short V2 :
I1 = y11V
I2 = y21V1
to find y12  and y22  short V1:
I1 = y12V2
I2 = y22V2
Let’s start by shorting V2  to get:

Using KCL at the common node:
I1 =

V1 - I1re

rb

+
V1 - I1re

rc

+aI1

I1 1- a( ) = V1
1
rb

+
1
rc

Ê 

Ë 
Á ˆ 

¯ 
˜ - I1re

1
rb

+
1
rc

Ê 

Ë 
Á ˆ 

¯ 
˜ 
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I1 1- a( ) = V1
rb + rc

rbrc

Ê 

Ë 
Á ˆ 

¯ 
˜ - I1re

rb + rc

rb rc

Ê 

Ë 
Á ˆ 

¯ 
˜ 

I1 1- a( ) rbrc( ) = V1 rb + rc( ) - I1re rb + rc( )
I1 1- a( ) rbrc( ) + I1re rb + rc( ) = V1 rb + rc( )

y11 =
I1

V1
=

V1 rb + rc( )
V1 1 -a( ) rbrc( ) + re rb + rc( )[ ]

y11 =
rb + rc( )

1- a( ) rbrc( ) + re rb + rc( )

y21 =
I2

V1
= -

V1 - I1re + aI1

V1
= -1+

I1

V1
re - a( )

y21 = -1 + y11 re -a( ) = -1 +
rb + rc( )

1- a( ) rbrc( ) + re rb + rc( )
re - a( )

y21 =
a -1( ) rbrc( ) - re rb + rc( ) + rb + rc( ) re - a( )

1 -a( ) rbrc( ) + re rb + rc( )
y21 =

arbrc - rbrc - rerb - rerc + rbre + rcre -arc -arb

1- a( ) rbrc( ) + re rb + rc( )
y21 =

arbrc - rbrc - arc - arb

1 -a( ) rbrc( ) + re rb + rc( )

y21 = -
1 -a( )rbrc + a rb + rc( )

1 -a( ) rbrc( ) + re rb + rc( )

Now short V1: Using definitions
I1 = y12V2

y12 =
I1

V2

y22 =
I2

V2
(3)

I2 =
V '

re || rb

=
V2 - V '

rc

- aI1 (1)

where the first expression is the lower
resistances, and the second term is the
upper loop
I1 = -

V '
re

(2)
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Substituting (2) into (1) gives:

I2 =
V2 - V'

rc

+a
V '
re

=
V2

rc

- V' 1
rc

-
a
re

Ê 

Ë 
Á ˆ 

¯ 
˜ 

Using (3)

I2 =
V2

rc

- I2 re || rb( ) 1
rc

-
a
re

Ê 

Ë 
Á ˆ 

¯ 
˜ 

I2 1 +
rerb

re + rb

re -arc

rcre

Ê 

Ë 
Á ˆ 

¯ 
˜ =

V2

rc

I2
re + rb( )rc + rerb -arbrc

re + rb( )rc

Ê 

Ë 
Á 

ˆ 

¯ 
˜ =

V2

rc

y22 =
I2

V2
=

re + rb

re + rb( )rc + rerb - arbrc

=
re + rb

1- a( )rbrc + re rb + rc( )

Using (2),

y12 =
I1

V2
=

-
V'
re

V2

Using (1)

I2 =
V2

rc

- V ' 1
rc

-
a
re

Ê 

Ë 
Á ˆ 

¯ 
˜ 

I2 -
V2

rc

= V ' re - arc

rcre

Ê 

Ë 
Á ˆ 

¯ 
˜ 

Solving for - V '
re

:

-
V '
re

= I2 -
V2

rc

Ê 

Ë 
Á ˆ 

¯ 
˜ rc

re -arc

Ê 

Ë 
Á ˆ 

¯ 
˜ 

and substituting into our expression for y12

y12 =

I2 -
V2

rc

Ê 

Ë 
Á ˆ 

¯ 
˜ rc

re - arc

Ê 

Ë 
Á ˆ 

¯ 
˜ 

V2
=

I2rc

re - arc

-
V2

re -arc

V2

y12 =
I2

V2

rc

re - arc

-
1

re -arc

=
1

re -arc( )
y22rc -1[ ]

Substituting for y22

y12 =
1

re - arc( )
re + rb( )rc

1 -a( )rbrc + re rb + rc( )
-1

È 

Î Í 
˘ 

˚ ˙ 

y12 =
re + rb( )rc - 1- a( )rbrc - re rb + rc( )
re - arc( ) 1 -a( )rb rc + re rb + rc( )[ ]

y12 =
rerc + rbrc - rbrc +arbrc - rerb - rerc

re - arc( ) 1 -a( )rbrc + re rb + rc( )[ ]
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y12 =
rb arc - re[ ]

re - arc( ) 1 -a( )rbrc + re rb + rc( )[ ]
=

-rb

1- a( )rbrc + re rb + rc( )


