Impedance matching networks

Note that each set of analysis/design formulas has two columns labeled "Exact" and "Approximate" The approximate column is valid when the Q_t of the network is ≥ 10 (they are about 10% accurate when $3 \leq Q_t \leq 10$). This type of network is known as a L network because the basic output element looks like a letter "L" turned on its side. Note that because these networks only have two resonant elements you cannot simultaneously design for a specific bandwidth, resonant frequency and impedance transformation ratio; you can only do that by adding reactive components to the network.

Design formulas for RL \parallel C "L" network

Quantity	Exact Expression	Units	Approximate expression when
\Box_o	$\sqrt{rac{1}{LC}\squarerac{R^2}{L^2}}$	Radians/sec	$Q_{t \geq 10}$ $\square \frac{1}{\sqrt{LC}}$
Q_t	$\equiv \frac{\Box_o L}{R} = \Box_o C R_t$		$\Box \frac{1}{\Box_o CR}$
$\Box_o L$		Ohms	$\Box \frac{1}{\Box_{\alpha} C}$
R_{t}	$\frac{1}{\square_{o}C} = \frac{Q_{t}^{2}}{\square_{o}C}$ $= \frac{L}{CR} = \frac{Q_{t}}{\square_{o}C}$ $= R(Q_{t}^{2} + 1)$	Ohms	
	$=R(Q_t^2+1)$	**	1 D C
В		Hertz	$\Box \frac{1}{2 \square CR} = \frac{R}{2 \square L} = \frac{f_o}{Q}$

Design formulas for RC||L "L" network:

Quantity	Exact Expression	Units	Approximate
			expression when
			$Q_t \ge 10$
\Box_o	_ _ 1	Radians/sec	$\Box \frac{1}{\sqrt{LC}}$
	$= \sqrt{\frac{1}{LC \square R^2 C^2}}$		$\Box \sqrt{LC}$
Q_{ι}	1 R_t		\Box_{o}^{L}
	$\equiv \frac{1}{\square_{o} CR} = \frac{R_{t}}{\square_{o} L}$		$\Box \frac{\Box_o L}{R}$
$\Box_o L$	0	Ohms	<u> 1</u>
	$= \frac{1}{\square_{o}C} \left[\frac{Q_{i}^{2} + 1}{Q_{i}^{2}} \right]$		$\Box \frac{1}{\Box_o C}$ $\Box Q_t^2 R = \frac{Q_t}{\Box_o C}$
R_{t}	Ľ	Ohms	Q_t
	$= \frac{1}{CR} = \bigcup_{O} LQ_t$		
	$= \frac{L}{CR} = \Box_o L Q_t$ $= R(Q_t^2 + 1)$		U
B		Hertz	$_{\sqcap}f_{o}$ 1
			$\Box \frac{1}{Q_t} = \frac{1}{2\Box CR_t}$

Design formulas for tapped – capacitor matching network

For
$$Q_t \mid \frac{f_o}{B} \ge 10$$

(1)
$$C \square \frac{1}{2 \square B R_t}$$

(2) $L \square \frac{1}{\square_o^2 C}$

$$(2) L \square \frac{1}{\square_o^2 C}$$

$$(3) Q_t \, \square \frac{f_o}{B}$$

(3)
$$Q_{t} \square \frac{f_{o}}{B}$$
(4)
$$N = \sqrt{\frac{R_{t}}{R_{2}}}$$

$$(5) \qquad \frac{Q_t}{N} \, \Box \, Q_p$$

NOTE: If $\frac{Q_t}{N} \ge 10$, use this value for Q_p and follow the formulas in the left-hand column.

If $\frac{Q_t}{N}$ < 10, follow the formulas in the right-hand column.

Approximate formulas $Q_p \ge 10$	Formulas for $Q_p < 10$
$(6) Q_p = \frac{Q_t}{N}$	$(6) Q_p = \sqrt{\frac{Q_t^2 + 1}{N^2} \square 1}$
$(7) C_2 = NC$	$(7) C_2 = \frac{Q_p}{\prod_o R_2}$
$(8) C_1 = \frac{C_2}{N \square 1}$	(8) $C_{se} = \frac{C_2(Q_p^2 + 1)}{Q_p^2}$
	$(9) C_1 = \frac{C_{se}C}{C_{se} \square C}$

Design formulas for tapped – inductor matching network

For
$$Q_t \mid \frac{f_o}{B} \ge 10$$

(1)
$$C \square \frac{1}{2\square BR_t}$$

(2) $L \square \frac{1}{\square_o^2 C}$

(2)
$$L \square \frac{1}{\square_o^2 C}$$

$$(3) Q_t \, \square \frac{f_o}{B}$$

(3)
$$Q_{t} \square \frac{f_{o}}{B}$$
(4)
$$N = \sqrt{\frac{R_{t}}{R_{2}}}$$

$$(5) \qquad \frac{Q_t}{N} \, \square \, Q_p$$

NOTE: If $\frac{Q_t}{N} \ge 10$, use this value for Q_p and follow the formulas in the left-hand column.

If $\frac{Q_t}{N}$ < 10, follow the formulas in the right-hand column.

Approximate formulas $Q_p \ge 10$	Formulas for $Q_p < 10$
$(6) Q_p = \frac{Q_t}{N}$	$(6) Q_p = \sqrt{\frac{Q_t^2 + 1}{N^2} \square 1}$
$(7) L_2 = \frac{L}{N}$	$(7) L_2 = \frac{R_2}{\prod_o Q_p}$
(8) $L_1 = (N \square 1)L_2 = L \square L_2$	(8) $L_{se} = \frac{L_2 Q_p^2}{Q_p^2 + 1}$
	$(9) L_1 = L \square L_{se}$