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CHAPTER I

Basic Electromagnetic Theory

1.1 Field Eguations

In the homogenecus isctropic mediim the electromagnetic field produced by electric
&S
currents with a volume density J is, wnder the assumption of having a sinusoidal time

dependenﬂe @3‘” gowemeu by the following egquations:

(1a) VxE =« dopl (1d) v -B=0

Y . & - ) K R
(ib) 93323%3 +dJdg . (le) ¢ e Jg= - Juo_
(lel v-D=op

Eﬁ;uations (le) and (1d) follow from the fi.%st two together -wi'th (le) or alternatively the
equatmn of cc:ntmuxty {1=) may be obtained from the divergence of (1b) together with (lc).
Ea,cn fleld vecter is a phasor quantity with real and mp:mary parts in general.

In electrmagnetm theory it is often convenient from a mthemtlcal pcmt of view to
also mmm a fzctltzoua set of magnetic type sources, namely magne‘tm currents of dem-«‘ |
sitj Sm and associated megnetic charge Ppe These sources do »nc.ft exisz: m a phys:t,cal sense
but may, never*theless, be wed’ as equivaient sources to produce a physical field in é. re-
| stricted re_gioh of space. These magnetic type sources may be intrvoduced in vardious ways
as long as the resultant set of médified Maxwell &quatim’*.s still forms a self-consistent

set. The usual scheme is as depicted below:

(2:2) V-§=

(22} v »E= - JuuH - 313 *n

(2b) ¥ x H = juweE + Ee (2¢) 9% - 3_'5 s - ﬁagse
P & 3 = 'ﬁ L a.:0 E: N 3

(2¢) v -D=o, (2£) v o J Juo
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In thiz modified set of field aquatzons a syimmetry between the electric and magnetic fields
exists that is absent in the original set. The utility of this generalization wll}. become

apparent later on. Jm and o, are mathematical entities ard are not related to magnetic

polardization effects in materials.

1.2 Electric and Magnetic Vector and Scalar Potentials |
The set of equations {2) are usually integrated by the introduction of suitable auxil-

, ' R
iary potential functions. When the only sources present are electric ones Je, Pg+ WE TAY

- ghoose

S - - ] :
H = Ver (3)

i

where ﬁe is the electric type vector potential. It is now found that

KN . . '
= - juh - v | (%)

1%

where ¢ e is the electric scalar potential. The potentials are-solutions of

2-& 2& - _ e X v
VR + XA, = - ud, (5a)

2 k2 —-—pe (5b}
v ¢e + k%, =~ < b}

-

where k? = w?ye. Inagaugewhem? -A # Othescalarpotenualnaybeelmmted (this
is possible since Pe is not an independent quantity, being, if fact, given by -V « J ljm,

by enfcmcxng the Lomntz condition

(68)

]
Q

V. Ae + Joueh,

We now hawve



-3 - - .
H=¥lox X (7a)
- = -3 - ‘ -} = -~
E = ~JuA_ + (June) VA = (Joue) [Vx Vx A -udl] (7b)
" . .. R o ‘:s 5 e .
by using (32) and the vector identity ¥ = ¥ A =79 « A - V4 . A sclution to {(5aJ

s
b

in unbounded space filled with a medium with permittivity e and permeadility u is

= s
Alpy = f JE{P*}

e E‘% é? av’ P

field point and R = |r - ¥'}.
A parallel development shows that the partial field noduced by magnetic sources CTm,

P iz given by

Feoelvxh | {%a)
v m
N Q_:,.,vv»i\n 1 . s ,

2 - Jwh 4 2 - { . gl
Hz - JuA # Soue Toue (v xvxA eJmB \ {9b)
- v _ &= .

K Am ?‘ k Am = st (Sc)

with a solution for Km in unbounded space giver by

o
-

" - ,s e & . ~ )
A =g jv J ) & av (9d)

For a derivation of the results (6)-{11) see for example, . Plonsey and R. E. Coliin,
“principles and Applicatifons of Electromagn:tic Fields,” McGraw-Hill Book Co., New York, N.

Y., 1961, pp. 321-325.




1.3 Duality

When electrlc sources only are present th's cur! equations are.
- L e
Y xEe -=Jupl

qu-jwee+.1 +4, njue§'+ (jo!P-l-J)

The tattev squation is obtained by using the relation D =-: E - 3 E +P where P Is
the electric 4‘-!po!e polarization In the dlelectric. TMs equation shows that we oould

W*Vﬁenﬂytﬁink of 'J‘e as ;,.;,.g . equlvalent dipole p&!aﬂzatlon per unit volume

4

{107
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when only megnetic sources are pasent we have

since § z 3 z ,uofff + M), Taus 3 ¢an be replacad by an e:quwaleﬁt mweﬁ.c dipole pulari-
zation souma according o the *ela? ion

A : - ‘ oD
where i; is an equivalent nagnetic dipcle movsent per wnit volume.

We wish to show how 4 sahrtz.m to the problem with magne o sources can bt obtained

from the solution for #):wotric sowrces. This ronstitutes the duality principle.



(22

Congider an electric dipole §e radisting in free space (if a bounded region was con-
sidered we would have to interchange electric and magnetic boundary conditions also) for
which the governing eguations are

ES -
¥ x E= - jupH o

vxfis= jm:ﬁ + j’wﬁe

) ‘ S KN
IfweintmdueenawfieldsE,Hdbthdmlityrelaﬁons

e kY ' ' : ,
Ed = ZH ' » {12a)
Y A ‘ ' ‘

Hd s - YE . . : (12b)

vxH=WxE ﬁ-jwezﬁd‘bjmﬁé

vad,

T
® Juplhy ¥ Jeeh,

™ ' N L& . XY
vxE =~ jmsz’-’ﬁd + juzB, = - JuuHy + JuzPy

But the létter two equations are identinal with the equations for the magnetic source case

'if we introduce for the duality relation between dipole sources
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¥ 2 - ZPe (13)
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The lack of symmetry is due to P being defined as an H like quantity while P, it & D 1ike
quantity. 4

The utility of these duality relations may be appreciated by considering ti: radia-
tion produced by a amell electric current loop. But a small (:.n terme of wavelergh) cur-
rent loop :is equivalent to a magnetic dipole of total moment M (a solenoidal curren has
ro electric dipole m@‘t), equal to I§ where § is the vector area énclosed by the circu-
lating current I. The field from such a magnetic dipole may be obtained fram the colrtion
to the prcblam of radiation by an electric dipole of -total moment ?e. If the field pre.-
duced by B, is E, H, then the dual solution is | |

A Al
4 = 74 (1na)
S s
ﬁd g - YE (1ub)
2 S & ,
¥oPm T u M, = -ZPQ {14c)

; whereﬁd is the source whichlsdual to Fe' Other duality relations also of interest

are
By = saoYPm (15a)
eg = Wy | (15b)
Jm‘? - ZJe {15¢}

hét such a dual field constructed from the dual sources satisfies the set of eqﬁations '
(2) is readily demonstreted by following steps similar to those used to obtain (14aj |

- to (l4e)
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=~ 1.4 Unigueness and Field unmvalerﬂe Principles

A nurber of field equiwlen@e pm’;nciples exist that enables cne to readily express
the electromagnetic field in a given region in terws of egquivalent sowrces placed on the
s;m'fam enclosing the region of interest. We shall present three of these field equiva-
lence principles. The first one to be discussed will be Love's equivaience pr'ine:.--5'.;)3\13.‘!e
The other two equivalence principles to be considered were first given by Sc}':elkumff.%
The proofs are readily constructed by using the unigueness theorem.” " The uniqueness
theorem states that if a solution to Mawwell's equations in a region V has been found such
that the field has the proper singularity at the location of the source, and for which
either the tangential electric field or the tangentisl magnetic field has the specified
values on the clcsed boundary S of ¥, then this solution is unique, i.e., no other solu-
tion exists. |
Unigueness . _

-S-Ie will discuss the unigueness thecrem first. One of the results that is obtained
| by considering conditions whmh will lead to unique solutions are neoes&xaxy and sufficient |
: bomdary econditions in order for a boundary value problem to ) be complately specified.
| Ietﬁimdliibeasolmiento ‘

A <
% ) & . © 8
vxﬁlgnyT—nJ’ ‘?a%:ei—-‘g—'} =

'A.E.H. love, The Integration of the Eguaticns of Propagation of Electric Waves, Phil.
, Trens. Roy. Soc. London, ser. A, Vol. 197 Po. 1-U5, 1901
&
S. A Schelkmmff Field Equivalence ’I‘!wmm Cormm. on ‘Pure andAppl ihth., Vol. 4,
pp. 43-59, June 1951.
,Some Equivalence Thecrems of Electmnagmetms and their

App;.matmn to Fadmtion Préblems, Bell System Tech. J., Vol. 15, pp. 92-112.

ARk

J.A. Stratton, “m.ectrmagnetm Theory ," Meme—Hill Book Corpany Tne. s New York
1941, pp. 4B6-488.
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in @ given region V boundsd by 2 surface 5 . Ve are working in the time domeln so Esﬁ
-3 j; - L. » . . » > SR . G .
H! n and Je are real vector functions of tlme and ¢ . Let .Ez,.ﬁz be another possible

solution to the same equations, i.a.,

) 3E,
.as_“,.,z_..: » .._m-. m“%,_a
VxE,=-u 3T Joor TxH, ==‘..£ e ¥ g
The difference field then satisfies )
| A oE
., 4 Ry a
VxEd 3% Vxﬂdé a%t'
where »
§=-%-% , B =0-0
o a =BT By o HymHmHy | -
He,yy!sh to establish conditions that will make féi and ,de be identically zerc. WYe then

e - ; R . ' e D e g
arrive at a contradiction to the hypothesis that & sacond solution Ee’ Y different from

the first exists and will then be able to conclude that the first solution is the only
sojution to the probiem.

iéniquenesé proofs are usually established by constructing volume Eategrgi's of pes;_fi_'_:fvav
~quantities involving the diﬁ‘e#emé soiution and m!étingfthése to surface integrals, By
choosing boundary conditions that will make the surfaé:é integral vanish we then e'stafb!i;sh,

that 't!ie c'i.ﬁf'ference solution is idmtica! iy zere. AConéléér, ‘

Vo€, xH)=H, UxE~E ov:i"??'
d d” - d d d “id
ﬂumﬁoﬁﬁieaaji‘:

d 2t d 8¢

b a2 2y
S Sl AU LA U S B g
By using the divergence theorem the volume integrai can seAr'étated to a surface %n‘:ég’m_, C

thys.

xR s R Res

=§ (A x Ey) "ﬁdésﬁ ~$ gd" {7 x #‘}?’35 . %36)
s s~ ‘ “
- - 5%{5 iy ]® + elE, [ Dav
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fhe surface Integral will v&msh if we specify as a boundary ccnés%:mn the tangential

'.ompamnts of ei;her E or ﬂ That is

axE =nxE =nwxE, on 'S  Q7a)

“’{E! axE, =axk on S 17a
or : ' : :

> . S0 LS SN .

nxH =nxHy=nxH, o S (17b)

will make either n X E ] or axH 4 Zero on § and heme cause the strface !ategra? m

vau%sh. Here B x Ebt and © x Hbt are known given va%ues fer the tangerztial fields on §

When the surface Integral vanishes we have
KR =2 a2

| f-,-f_.éﬁt.écu(adg + e[y |T)av. = 0

v Sntegrating' from t=0 to ¢ g-ives

- "‘f lul 2. elﬁdl‘z)év = constant - {18) .

To make the constant zero we must speci'?y an !sﬂtiai conéstion at t= 0 . ¥ wergi'\rie' ‘the
value of the field everywhere at t = 0 then Ed(r,t' = &) = }_id‘(r,t =0) = 0 because

=

S0 : A . ‘ :
E and H, = H, at t=0 . Byputting t=0 in (18) we then find that the constani

o
1= 5 1=
must be zero.

e ‘ : L o '-sz_;-\g . )

- Sfnce: the volume Integral of a posfitive quaa'cfty such as . ufﬂdf efE [ 1s zero we
find uhat the boundary cond!t!eﬁs ﬁ?a) or (17b) tcgether wtth tbe !ntt!et conditlon
E(rt=0)=E(r,taa) ‘is gliven _

o - (19)
a ; »3 (r:,t = Q) = Hz(r,t = 0}  §s glven
teadvs: to 3 unique solution. o ' o

To examine un!queness in i:ha freqaency domah we consider’ (*denotes complex conjugate?

phasor)

0.5 h%-x = - it ° } o\
| ViEy x 1 = -l - 5 Ju By
We now ‘dﬁtél’n by similar steps
§(§x‘§£§)«*§§ds=-§s‘i(’x %)ds 7 (20)
s .

—w{(mm Ae-cEL )CLV

13



Note that the. app! lcatzen of the divergence theorem to obiain (20) remm'es that E 4 and
¥ be eontinuous mt:h p:ece-mse continuous First partial derwat;%s within V and on §.

d
The surface mtegral wﬁl vanish If {note that: n points cutwards - From the volume V)

SN S o . v
nxE isgivenon S (212)
N v
nxH is given on S (21b)
iz is also of ’iﬁt"e’#'est to consider an impedance boundary conéitiosi such as
.h . N N . :b . .
PRI ) A @
The 3atter muld be approprtste to a lossy ;aetal!ic surface with z = {t-t»j}/os where 0
is 'the cominctiv ity and 63_ is the skin depth. For an impedam:e \oundary cond!tion it is
clear that E d, tan -Zs n‘x ﬂd,tan also and hence

mxE, " H, =2 “"““"‘“‘dm_ §

(22)
LTRSS
= {" x Ha ) By = Vs Ed,tain Ed.ten’ ,
=¥ ‘ dy tan’
Lat e = e'-je“ and u = g ~ju“ ba ccmplex and assume t.hat an Impedance boundary

cond!t!on ls;spmiﬂed. By separating (20) Into rea! and imaginary parts we o\.a!n

§ 6,1Ey ¢anl 48 + f wlu !2 + E l YV =0 (22)
L
2
-4s, G a,tan 05 * 5 R AR e'!E t =0 ()
where ¥, ». Zy = as + J8,

'!'he ﬂ-rst is the sum of Integrais of positive terms ‘aad_’.cah vanish if und on!y if

gd,tanﬂo on S, EdSHd-éO‘in v
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so an impedance b§hndary condition is seen to lead to a unique sctstio# if any two of
the thres quéntitfés 6 g u'' , &' are not 23:0. When any two of Gs, u“, efl are not
zero then two of the quantities Ed can® ﬁ; » @nd lﬁ; mﬁst'vaaish‘from the first equation
and the second one will show that the remaining third quan&aty must vanish, If G, = e
0_,§e;ause of (2ic) and from (23§) °

= 0  then (23a) shous that Hd =0 .~ Heace: Ea,taa

we then get - Ed'= 0 also.
"If e and w" are not zero‘ahd the b oundary cendit?o§s7€2¥a) or (21b) are lmposed
the surface integra! vanishes and (23) agaln shows that Eﬁ“foud =0 In V. The same

conc?uston,is arrived at if only oae of €' or " Ss diffarent from zero.

The.two cases G = g = u" =0 for Impedance buﬁndary conéstions ané e" = 't e 0
for boundary conditions (zza) or (ZIb) do not yleld untque so?utlans since they permit

difference solutfoas which satisfy respectlve!y the candltions

f ds = mf (a*[ﬁdi -u fﬂ [Z)dv (28a)

351?

tan
wful gl av = af AR - C(24p)

Such soﬂrcevfree solutions are free resonant modes insfdé thg cavity bounded by fhe
surface 5 and woﬁ!d be found to exist only for certain diScrete values of ©, thev
rescﬁéhi ffequencles, In any gtven problem they are eas!ly identified and eliminated
from the particular solution of tnterest and hence the aondltlons (21a), (21b), or (ZIc)

insures untqueness for all practlca! purposes.

If the vo!ume vV is bounded by an interlor closed surféce sl and the surface

S of a sphere of infinite radius that we must impose a radiation boundary condition

[+
on the fields at Infinity. This requires the flald amylitudes to decay at least as

r" as. r tends to inflnity. In homogeneous and !sotroplc media we also require that



E :e; a, g's to order 1/r as « tends to infinlty where Z = ¥u/e and ;; is a

Uﬁit;vgctor'directed radially outward. En thls cese {23a) wiil conta:n the two terms

P> 2 > 2
“i"g tEd,taﬁE ds + ng !Ed,tani ds
® i
along with the volume Fntegral and ;hus shows that ﬁd tan vanishes at inflalty to an

order greater than r o slrace S ‘ -msreases as rz . &imre vihen the surface at Enﬁmitv
is included the Imposition of & rad!adon boundary conatt%oa Is needed to ensure
uniqueness. The particular rad;atfon condition given abcve Is the requirement that t'ﬁe B
Poynting vector be radlally outward dlirected at lnﬂntty and that the total power flow
across - Sﬁ, be finite. The questiqn of unlqueness for sources radiating Into unbounded

space fllled with homogeneous isotroplic media is dtscusts‘edv in Prob. 1.1 .



rizld Equivalence Principies

All of the field equivalence principliss can be understoud in terms of the
following hypothetical problam. Consider a closed surface & which saparate‘;

space into two regions Vl and V,o let sources g 1, » . produce an nrbitmry

* s
1.

field E}, ﬁ; in Vl i.e. we do not specify any bcmldary conditions on El’ .{1
at S so a variety of solutions to ﬂm,}L %maﬁ 1, v X H = mcﬁ' ¥

in %‘1 are pass1ble. Similarly let sources feﬁ’ j;nz produce an arb:ztrary nekl

- Fig. 1.1, Ilh.strgtmn for joining to arbitrary field salutmns across
a common boundary.

§2, ﬁz in Vz.’ The total field will be a uniqtie solution to Maxwell's equations
only if the two solutions are properly joined across the common boundary S.

If we have no surface scurces available then we reguire

¥

s i —
&

xE oen s

&
[
ES )

. A
o= ey

now M, =08 i, on &

i
is
[

B
»

.

But if we permit arbitrary surface sources J o5 ‘Tms then we can keep the fields

in V, and Vz arbitrary as léng as we choose



i

> > 5 LY

JHB T -nx (EZ’ - El) {(25a)
= S5 2 "% . .

Jeg = N X (H2 - H15 | | {25b)

for the smvfaqemnmtsanSassh@minFig. 1.1. These surface cwrents will give the
~ proper discontinuous change in the tangentisl values of the fields as the surface S is
crossed. By choosing varicus possible suiutions for El and ﬁl W can obtain the various
field equivalence principles. In other tords, we can vary the field in ¥ at will without
affecting the field in V as long as we adjust the surface currents scoording to (25).
love's Field Bquivalenoe Principle '

* Consider a closed surface S that separates a homogensous iéatmpic medium into two

regions as in Fig. 12, The exteric: region is vy and comtains 211 of the sources. Thus
the interior region V, is taken to b1 free of all sources. la’jcewise the swface S is taken |
as a aomeé frae surface. The field @q\:ivalenee theorem of love states that “‘Se field in
2 can be obtained from equivalent :leetmc and magnetic currents located on tlx, surface
Sinplaceofﬂxem‘igualaamees. If’theomg:mlmoespmduceafxeldf: H then the
equivaleht sources to be placed or 3 are an electric surface current.

/

N
21 i

. Cala Ak Fo=DS

Jog = AX H gor Fgieow™ {26a)
. . 7)— ?5 h\'j:_: _R-Lg; ;/)\:_,Q'

and a magnetic surface current
- —-— k;
J =Exh (26b)

where R isg unit nowral directed into Vy. Purthermore, these equivalent surface currents
mlmanmfiejsinﬁ\QWMV.m@mws ) )
Tommtheomletthefxeldzi H’EZ szedef‘z_nadasf‘onm



The fielc_l ﬁz, ?!2, as defined suffers a discontinuity in its tangential components according
to the relations

=12

-ka » & =
xtz--Jm-nuE

as the surface S is crossed, therefore, since the field £,, fl,, as defined, satisfies the
| <quired boundary conditions it is the unique solution to the problem of what field is
radisted by the given surface currents. Hence, the bquivalent sources given by (25) will
produce the same field in V, as the original sources do and the field equivilence princi-
ple is established. This is a special case of the hypothetical problem introduced earlier
,wiﬁz‘i‘1=ﬁlao._ o | | 3

Fig. 1.2 Illustration for field equivalence principles
It may seem a bit strange that the equivalent sources placed on the surface S siould
radiate a field into the interior volume V, ard yet not produce a field in tha-éxter—ipr |
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region. A familiar example that illustrates the plausibility of such a result is the
¢lectromagnetic cavity. A totally enclosed cavity with perfectly conducting walls will
support a\ electromagnetic fisld for which AxE=z0 on the boundary and for which
ﬁxﬁ:&e&w!m:}esismelectric&:afacemt‘ﬂwingonﬂmeirrteﬁorswfmof
the perfectly conducting walls. As lung as the current 3% is maintained the interior
field remains unchanged even if the metallic surface is removed. The current J, is thus
an example of & source distributicn that rediates a finite field in the interior wlme
andannllfieldoutszde. |
Schelkunoff's Field Equivalenci Theorems »
Theorem I. With referemetofig; 1.2 let'SagéinsepmtetIzemgion ¥V, containing
themoesﬁﬁnﬁxexegim? ﬁMortoS. MﬁnthéswfaceSismplacedbyaperfect-
lyomdmtingswfacelet.hemgﬁalsowsmv pmd%maaprmazyfxeldE H 0n S
melectﬁcmfaeecmnt-nxﬁmllﬂm metheomstatest}attheomg:mlsoms
'qdlateafieldﬂz,Hz,;m:othemgmnvzwluchisldentma;mtnthatpmdueedbyan
equimmﬂ&hicm'M§ =§x§ on S. Inadditimthectmnf& will rediate a
field!-:l, 1° intoﬁmemgz.mvlsudztimtﬁa El H0+F'l,lsld&nt1caltothefleld
produced by the orizinal sources. Inevalmtingmﬁemszl,al,msz,az,m_sm
fmS;smlmnemszdmdeaaperfectlywndmtmgswface, i.e., it is a surface on
which a current ' xﬁnexistsmly. |
metheomaismadﬂypmwdbyinvddngthemiquenesstheammagain. The field
E'), H'), is rource fres in the region V, while £, i, provide the correct singularities
;t“tigms. Hence the total field §'1+50,H + Hy, satisfiegallthebomﬁazy con-
ditiméinﬁ- In&ddltlon'thefleldcalculat&dfrmJ cnSlmstbeconstrwtedsotl‘tat'
';'; £ nxxﬂamsmﬂenxﬁ?‘-nxﬁ'ls-l = n x ﬁo Oonsequently,s:.menx}:
omcwhilean =J mSthetotaltangmtlalelectmcammgmticfmldsamoom

vtmms ie.ms

’ﬁx(:f:'li»ﬁg)éﬁxﬁz



foct

& kg = - =
na€H1+r§0}-nxﬁ2

Therefore, the specifi&d field Safisfie&: é&_l the required boundary conditione erd, by the
uniqueness theorem, is the unique fi=ld radiated by the original sources. |
'Ihwr'em 2. The uﬁ—’CO"ld field equivalence theorsm is sszentially the dual of Tnsts'_t.m Con-
s:.dev again Fig. 1.2 and le‘t the sources in Vl r'ad.,a'te a field EO H , when the surface 3
is replaced by a perfect magnetic conductor (a Fictitious surfzce which is the duil of a
perfect electric conductor and on wﬁi@h n x H must vanish). Thuson § a megnetic s@a&a
current -i"o x n will flow and B » §0 = 0. The original sources will produce a fieid i.n' Vo
idwtiéal with that produced by an equivalent magnetic cm’vmnt 3 = Eg x placed 1 8
(the magnetic conductor is removed in caloulating the field pmdmed by J ). If :7;
‘mdlates a field ﬁ' iy 1, into the region vy theﬂ EG ¢ E‘iy ?ig + i j0 e idantical ¢, the
field pmdm in V by the mgmal sourves. The proof ig similar to tha"t for theorer 1
wd hence will not be reproduced. |

The abova theorems correspond to choosing &) = B, + B and 1) =,§'lv+'§0 for the
fields in region V, for the hypc‘ehetz.cal ;?mblaﬁn discussed aﬁrli&f &nd the true correct
field is then maintained in V, by placing a suitable current on the boundary S. |

An alternative viewpoint that "zelps to clarify the above theorems is as illows:
Fortheoml‘etthefialdmdla“admtcvzbyﬁwomgnaltouzmsheﬁz,H Wemw'
wish <0 specify an electric current distribution on S that will rediate a field -E .
-H2 into 'V, so that the eombxra‘txm of the criginal sources plus th:.s secondary source
will pmduce a null field in Ve with 'i;he field in V, reduced tv zero the suface just
exterior to the electric surface cﬁmreent may be replaced by a peiv;-:’ectly Gl‘:mm!‘?:};ﬁg' surface
without d:{sttmbing the 'field in "1', But mw the sitvation is the same: a8 “hat postulated
at the beginning of thé theorem so slearly the requived m*t suroe neede? to cancal
the field in .V2 ig -n = ﬁﬂ To restore the originsl problem we st now plawy an elec 5
tric cm'rent 3' sn x ﬁo on S to cancel the mmﬁt placed on S and used togeiier with |

es ;
the original sources to rediate a null field in ¥,. Obviously, if -a x Hy radiatys &

< e
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field -E., ~H,, I V; then J_ 5 nox B, will raediste a field B H,, identicel with that pro-
& . S A

cumed by opigingl sources.

The field equivalence prinmipies given sbove are mathematicsl statements of Huygan's
prinoipie.’

1.8 Further Unigueness Conditions

In addition to ‘s:he boundary conditions given in Sec. 1.% required for unigue sclutions
it is necescary o consider conditions at Infinity for unbounded regions and aiso ocnditions
on the allowed owder »f singulsrity in the solutions near sharp cormers and edges.

?édi&tion Conditions |
Perfectly gareral and complete mathemstical st&temnts of bfonmda;ry mn&i‘tims at in-

finity are not very sasily given because of aoamllcatlms w}m.h can amse when complex
. med:.a such as anisotropic plasma eozmletelv f‘ll s spa.ee: F@r our purposes it m}.l suf-
ficient that the solution cm‘r@apcm to cm‘wd propagating waves with the Poynting vector
_ irected euch that the power flow is redially outwerd at infinity. B
Field Singularities at an Edge of a Conducting Vedge

ﬁgum 1.3 illtna%ré:tes a two dlmnsml conducting weége-of internal ahgle-‘ &.

v B. B. Baker, E. T. Copson, "The Mathematical 'Iheory. of Huygen's Principle," Cxford
Univ. Press, ,.mdm, 19839.

J.A. Stratton, "Electromagnetic Theory," MoGraw-Hill Book Ccmpany Inc., New York,
1941, 3ec.'s 8.13-8.15.
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Tha ond 3 towed, L.e., intersrs . avs Thome that keen o less than 1 o- n.

dong g SRR+ 7 & | N J, £ e PO P S, T I, | - P s . W] s~ i SO x4

Hence, For oz 90% wadpe (0 ¢ 577) we find that o = 172 vhile for a flat infinitelv tron
S s o Y ~ - ey T R PR, | <} P 2 - Fad -1 3 2. - %
migre f8 x 01 we obtain o = L7%7. In both cases the smallest value of n allowed is o o= 3.
i } e T e S P 1 3 e~z
1iie L4 SLAWAYE WATTLSN 8T Lhe eqrs. LAY E

L
T 35w} P, S, et 2 = e PO P,
he nishes since this is related t il . ‘lhe
» 2
= - e - L T - —~3 e LS

surface cimrent parallel to the edps will increase as »  as "L’"zn e@m is apnroached Theso

msult's also zorly to edees coouring in three dimensional problers since the sinpular be-
havior ¢ f the ﬂeldu rear the zdee is determined onlv bv the irmedizte currents and charres

and ‘L:nee a ghort uem*e«n't of a curwvad edrz behaves like the edpe of a two dim s,xq;c:ml sEruc-

The edre cmdl :ion can &lso be 'iewed as a reaquirerent that there be ro net power vadi
#ed from the edee. thus
A ..‘., S
Re ExHr » gS=0
S
where $ is a closed swrface suryounding the ede2 as in Fip. 1.3. Obwviously just as muct

power must enter the region enclosed by S as leaves the rerion because no active sources

are included. The radiation condition forces us to eliminate the Fankel functions from
the soiutions for E_ and H and thus leads to the same conclusions as the eneryry conditicn
does.
1.8 EHeotric Dirole Radiation

Firure 1.4 illustrates a short current element of length 4z << dy. It may be viswed

%8 an ele“ e dimle with a total roment P = - ﬁI hzfw. Since any J%Dl ey cxmvert ﬂus~

+pibution mav be hullt up from elemsntary current sources of this tvpe it is of intes *«-J'f:

v evaiugte the flaid radiated by a qncsr*t, linear curvent element. A rpeneral field fHrom

LA

a1 grbitrarer ourrent distr butmn mav be obtained by mmermsz.‘:xm.
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From a shert linsar current element Tz = Igdze’”" the resuitant vector notential

nreduced at a nwoint r in free space Iis
Ao 5
v

. K )
rTme e omTAA 2. 3 e)hl]
I

n 23-2"
2 - o ”(L--.M iy, '){QJ ¢
The field B is given by T f:—_js ¢ > AP c/;‘ ,D/},

. _ - A7 /2
= V = = - a x VA
B Ae 2, Az
£ N ER 3A N 3A
= - (g oos & - a, sin 8§} 2= -3 sing =
i ©O g R T ¢ 50 ¥ Fn

since A iz a function of » only. Thus we find
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The terms varying as 1/ constitute the far zone or radiation field and account for the power
radiated away from the source. The other terms, varving as 1/r? and higher inverse powers

of r constitute the near zone or induction field. The induction field results in a storape
of reactive enerpy in the rerion of space suri'omd:irxg“the curgent source. The rediation
field gives rise to a resistive term in the imput impedance of an antenna while the near

zome field gives rise to the' input resctance in the antemna impedance.

For a short cuwent element the far zone fields are

-

- 3Inzoészko sin 8 -Ikyr

E& i e iy , v {30a}
B FE

SR : = - — {300

?¢ V{}FS' Yﬂ Z(’ ‘} T L300

= Z H F.oz - 2H L =¥ =0
EG Z{!"¢" rd) = - 2y 13,‘ _ » }P 8

The' radiated power is given by

1 EY > ES ‘1 fi"’i-“ 1 — e . .
P =z Re ExHY « @S = Re | | (EHF* - FE%*r sin ¢ dodg
» '? : Z 7 5 &€ ¢ § 6

S ‘g g
in general. Tor the short owrent radistoe e have
£

I.1. {k.az}?
o 8 ( U P
[ R S/ A WA 2
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The radiation resistance RO for an antennz is defined as the equivalent resistance that
would dissipate an amount of power aqual to that radia*f:ed bv the antenna when the curvent
flowing through this resistance is equal to the antenna input current at the antenna ter—

minals. For the short current radiator we have

1r1*R =P
3 IpTo Rp = Py

and hence the radiation resistanc'z is

(knAz)Z

- s bz (2 ' |
RO-Z(’T-.—SOR (i}}') (32>

When 4z << 1, the radiafion sesistance is very small, Pzwactiéallv this means that the ohmic
resistance of a very short antenna would mmaliv be ruch larger than the mdiation resis-
ce and thus the antenn: efficiencv and pain would be very low. Very short antennas

(compared to a wavelengﬁ) alsd exhibit a larpe reactive term in the input irpedance and
are, therefore, diffiorlt to match to a power source ir order to obtain maximm power trans-
fer. If, for examnle. 4z = 0.013, (a six foot long wire at 200 meters or 1500 Ke.) Ry %
0.079 chms. |

The power radiat:d :m a given directie;n per unit | solid anple is ka measure of the di-
recti\}e properties o' an antenna. For a short current element the power density in a di-
rection sDecifiéd bx the‘cocrdinafes 8, ¢ is 1/2 Re Eﬁﬁf vatts per meter? . The power

density pepr um.t sclid angle is
. %
1/2 Rev?L M,

fhe directivity D is .priyen by



. . e Powsr de: nsity per un:;.t *“M* ¢ anple in dme"'nor« ;
Divactivity = D6, 6 = = o e - - 2
- ty 4 Totzl radiated power averared cver by sterradians

Power density per CL.#': aniid angle €333

= Uy
Total radizted PO

In the present case we have

n
5

D(8, ¢) = D(8) = 3/2 sin® © | (3w)

for the directivitv of a short linear cwrent selement. This is the directivity referred to
an isotronic radiator (an antenna radiating F_ watts wniformly in all directions of Pr/uw
; - t T ,

.

watts per sterradian). The directivity D is sometimes referred to a half-wave lensth dipole

antenna as a reference.

The antenna cain € is defined as

ale., ¢) = Radiated power per unit solid angle in direction 8, ¢
T ‘I'ctal Anput power to antenna fuw

1’

D(e, ¢)  (antenna efficiency) | (35)

Sometimes the words directivity a,nd‘i;rain are used to sipnify the maxirum value of D and G,
e.g., the directivity of a short current element is 1.5 relative to an isotropic antenna.
A plot of D(s, ¢) gives a three dimensional surface referred to as the raciation pat-
tern. For the short current element the radiation nattern is a fipure 8 rotated about the
polar axis as in Fie. 1.5. The E plane bewwidth at the half power points is 90° (beam-

width in plane containing the E wector). The U plane bearmwidth is a full 360°.
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Fip. 1.5. Radiation pattern for a short lincar current element

Marnetic Dipole Radiation

—— b =

-
A smell solenoidal current loop has a total rapnetic dinole moment siven hv IS, The

.....

3

leading term in the multipcle empansion of the field radiated b}? a solencidal current looo

~

may be found from a mapnetic dipole of total moment piven by IS, When the linear dimenzions

LPES

of the loop are very small compared with the wavelsneth this is

i
~h
o

P o 3 2 o £ .
tha ondy sipraficant Teom

in the multipole expansion. Fipure 1.6 illustrabtes a cwrent loop of radius "a” located

o

¢ the oriein. Tts mapnetic dipole ; “"n:ut is Lg‘?a}:’i?.
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Fig. 1.6. A solencidal cwrrent Iloop radisto

Tne field radis &ed by a marnetic dinole i readily found fivm the expressions e thae
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=gltiniving all exmressions for

the fields by -jmyGYUﬁaziaz since the

€28) and {29} where cbtained from an slectriz dipole of moment —'%Iﬁé:::;’m. The curvert I

in the loon is taken eauzl to that in the cwrent
and (1ib) topsther with (28) and {29} are used we

magsnetic dipole in Fip. 1.8 are given by

o~ .
E=- 9 . 2 8 .
1. [N aQ ( 2 + ) sin @
T
* a:f:f -—f}}(’. T jk
fle—Ce 0 128 cose (49
4 . s
b n
T S
- . 35N
- A, 8N g ( LU ]
r 2 g3

The masretic dipocle
'd masnetic fields interchangsd.
the same.

1.7 Radisgtion from Arbitrary Qurrent

filament for convenience. If {lix)

find that the fields radiated bv the

(36a)

(360}

field is the dual of the clesivic dipole field with the role of electric
: _ b

Consequantlv the dirvectivity and radiation patiermn ez

Distributions

=
-

The slectrorapnetic Field radisted bv an arbitrerv current distribution J_ Is readily
- . k,a . .’ e « g s n s (3 o L% o
found in terrs of the wvecior potential !%e. et rospecify ihe Fileld point and ' ospecifv
the source points and let R = v~ '} as in Fip. 1.7. The vestor potential A_{r)
g
e ~ b :"' .
I R=1if-¥"l _
AN .
/ \/ //’ _,./"'"”t’
-
A /
r X...—-// ,/‘/--»..
A ¥
Fir. 1.7, frbitvery current soumes
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s - = ﬂ £ bl . . . .

is given v A (p) = Gy ! Je(z") —5" dv' for a current Jistribution located in free
V - N s

5
‘space. The magnetic field H is riven by
-ﬁk R

Ay = - f J (@) x¥ »-zhpn-dv' (37)

where the curl operator has been brought inside the intepral sipn. The electric field i

given by
BE(r) s o-""— 9 x ¥V xA = ="V x}H
Fotige, e " Jue,
- 1 > e '
= - %E—E ! v v = (\Te x V -‘E‘TFR*‘ ) av

Ifmusethevectorexpansionvx(Exg):';v-§—§V-§+(§'V)K-(i'v)§and
tethatJ{r)isnotarunctmnof weobtam |

-JkgR | ‘ | -JkgR ,
E(r) = m I, [T g2 S+ T @) - W S T av (38)
| ~ikoR | ~SkgR
wheré the term v2 ( 9——~§— ) has been replaced by - 0 e——~§~ since this 1atter flmctmn

is a solution of the scalar Helmholtz equation. The solution ( 38) holés only in the re-
plon external to the volume containing the current source J

In the general case the evaluation of ..he inteprals in (37) and (38) is diffiault to
carry out. In radiation problems three regions of phvsical space are usually distinmished.
The first region is the near-zone field repion for which no peneral apprcximtioﬁs may be
made in the evaluation of (37) and (38) for the fields. The second region is called the
Fresngl region and is the region of physica‘ space between the near-zone regsion and the
far zone or Fraunhofer region. The Fresnel and Fraunhofer resions are charecterized by

2 type of approximations that may be made in fhe inteprands in {37) and (38). Since

the far zone region is the least stringent we will consider it in detail first.



The far zone region corresponds ©o the resion in wideh the radiation field predomi-

nates and hence is the rerion of most inversst in cowection with artennas. The far zone

v.t

region is characterized by the conditions that ¥ Is much sreater than the maximun value of

ve
3 e

b .- 4o - 2 3 -
' and zlso much sreater than the free smace wavelenpgth 23, i.¢., ko »> 1. Using the bi-

-nomial sxpansion we have

R:f;}w‘f {r= +~'3~-zr-z~“*‘2

" ; ¢ i:‘! P > ] ‘ ) N
& [ S -4 ‘:’i - @ = - % PRF N 1
A o - . g, r-1r' ocos P
, & ) - win -3 kg . » ¥ ) r
where ¢ is the angle between r anxd v’ ag in Fip. 1.7. Ve now approxinate
kR Sk (r - & % D)
i1 -0 by i U T
RE re
and obtain
- k - a 't‘) 2 Y
3 (T‘ &r T . ~3k . 'r}k e R
v e “«‘€§P€-—~£-—i}» U sing A 3
¥
T T 2 2 P
-3k, {r - '} -3k, =3kar ik PR
E U i e
{e % } R e Ot a \393
e F
where a q: s a unit vector in the direction of y increasing.
Using this result in (37) gives
2 kg Sk o S L =T
iy - {amt "“ Q -4 e @ 8y
Hs e ,  dglx Jox g, e av {u74)

!
v : -

@

4 i « ¥ S
vion it omey be verified

“7

for the far zone mapretic f:f.eid‘, - To the same order of approxds
ha

‘that in the far zone f’mm €$ Fives

@
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Thus it is seen that in the far zone fisld the relstion between £ and H is that which is

characteristic of a spherical TEM wave. In the evaluation of {30} it is useful to be abie

to transform the components in a spherical coordinate frame to & rectansulsr coordinate

freme and vice versa.
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We now return to a consideration of the Fresnel repior. The usual aporoximations that

are considered in defining the Fresnel region are » »» ', kaz* s> 1 but vith p, ', and g
such that terms in v'2 must be retained in the phase term in the exponeniial. Ve have
= ;f 1 e~ 12 3 ':‘, v 2 ~ IR | Y 2 5 - < . -
Rer .- a, r + 5y L0° - €ar « v'ic] to terms of or’de;» (r'/r}<. Thus in the Fresnel

region the vector notential is given by

;':';k ™ ; . (g . ;s)z "
Hoe G N . ﬁkg{a‘* * ?w,! % ___‘?__2“%- - ?2-"-- ] ‘
[ 30T 7 T oavt (u2)

Ae = D I3

In the evaluation of the field fram Z , terms with amplitudes decreasing faiter than 1/v
are neglected. Thus the assential difference between the approximations involved in the
Fraunhofer and Fresnel resions is only in the phase term in the exponential. There is no
clearly marked boundary between the three regions, i.e. the near-zone. Fresiel, and far
zone regions, since the ranse of r in which the anﬁmxin*atioﬁs outlined abova rav be made
e dependent on the current distribution J ef;'). In the case of radiati;:n from a plane
aperture with a maxirmum linear dimension D the far zone or Fraunhofer recion is commonly
considered to begin for r somewhere bghqean Défig ard 2}32!;&0.* In order to rive a sipnifi-
cant Fresnel region we reauire {kgr"} r'/r to asswe values as laree as severg ¥ radians.

A
Thus we have the condition 1 <z ;g- << 3;:1— in the Fresnel zorne.

0
1.8 Modified lorentz Reciprocity Theorem

Consider a volume V boundad by & surface 3 and containing two possiltle se's of sources

Jel, J ml

permeability and permittivity tensors w and €. In dyadic form u is expressed s

and 3e2" J 9° The medium in V is assumed characterized bw pensral unsymmetyicsl

ff & 2y EA
S. Silwver, "Microwave Antenna ’I‘heum and ’bs g, Molraw-1311 Book Commanv, e,
New York, 1949, KLS Vol. 12, Sec. ’
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and simileriv for . The scaler nroduct of uw with H

dotting the unit vectors immediately adiacent to the

Let the sources J ;. J 5 produce a field I, )
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where the subscript t denotes the transposed

The ewpansicn of ¥ - f?il ¥ Hy - By vy “gives

be the field produced In Vand on S by J_,,
by parmeabiliity and vermittivity

The field E. . H? is &

tensor 1.e. oo
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dot sipn.

in V and on S. This field satisfies

{4is)

d ., whan the rediuwn in V is replaced
tarwars wnich are the transpose

solution of

{46
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The imtepral of Cit'_i) over the vwlume V gives
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aftér ccm@rtirig the vnlmré intepral of the diverpence term to a éurface intepral by means
of the divergence theorem. ’r:qu‘a‘tion (48) is the peneral form of the reciprocity theorem
fér' the electromagnetic fie1a.” | |

If the surface S encloses all of the sowrces the surface intepral on the left hand
side in (48) vanishes. To show this consider the applicatién of (48} to the %ltme bounded
by S and the surface 8, of a Spher'ev of infinite radius. Let the medium have small but |
finite losses. In this case the fields will decrease in amplitude faster than 1/r and hence

on S, the fields vanish. Since there are no sources in the volume bounded by S and S_

R. F. Harr*mpf*'am A J. Villaneuw, ?&PIPQOCAM RELATIONS FOR GYRCGTROPIC MEDIA,
mns., Vol. MIT-6, mp. 308-310, July, 1858.
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the surface inteerrael over S must also be zero. MNow it seems reascnable to assume that the
fields are analytic functions of the loss pararmeters. Hence the surface intecral
{S (f‘lxﬁz—ﬁzxﬁi) . d8
will be an analytic function of the loss parameters. Since tiw interral vanishes for in-
finitely small but finite loss paremeters it rust still vanish s the loss parameters are
reduced to zero in view of tl: analytic proverties of the intesyv..

In the case of isotrori: media the field on S sat:isfies the relation I = - zgr x P
and the intepz\aﬁd (?,3 ® ﬁz - §2 x ﬁl)‘ x S’r vanishes identicallv at infinity iniependent of
anv loss that may be preznt. Note that 2 =V(u7e) in a peneral isotiopic medium.

If there are no soirces ir V we obtain from (48) the generalization of the Lmentz
form of the reriprocity theorvm

. & o o ) D ‘
*Szlxr!?.dss_;js'szxr!l-cﬁ I (49a)
1f e volume V contains all of the sources the peneralized Rayleigh-Carson foss of the

re:ipmcity theorem is «btained

ol R - - - o i} ™ - . &

These relation: arve also valid in isotrbpi;: media, in which case the fields F . §2 are the

fields prodused ly 3e2’ 3,!,2, in the actual medium.



(%]

]
.

{3
.

10.

350.

i
;,a

R, E. Collin, "Fizld Theory of Guided Waves,” McGrew-Hill,
J.A. Stratton, "Flactromagnetic Theory.” MoGraw-ill. 1941,
R. F. Hezrripgton, "Time Harmonic Flectromapretic Fields,” MeBraw-11H1, 1981,

J. Van Pladel, "Flectromasmetis Flelds,” MoGrew-Hill, 1964,

D. 8. Jones, "Thecry of Flectromagnetism,” Macmillan Companv., MNew York, 1984,

FIELD DQUIVALENCE PRINCIPLES

A.E.H. Love, THE INTEGRATION CF THE EQUATIONS OF PROPAGATION OF ELECTRIC WAVES,

* Phil. Trans. Roy. Soc., London, Ser. A., Vol. 197, pp. 1-45, 1901.

S.A. Schelkunoff, SOME ECUIVALENCE THECREMS OF ELECTROMAGNETICS AND THEIR APPLICATTCHN
TO RADIATION PROBLEMS, Bell Sys. Tech. J., Vol. 15, pp. 92-112, 1936.
J.A, Stretton and L. J. Chu, DIFFRACTION THEORY OF ELECTROMAGNETIC WAVES, Phys. Rev.,

Vol. 56 ,pp. 99-107, 1939,

See also References 1 and 3 above. (Ref. 2 gmives a very complete discussion).

IDOE CONDTTIONS
J. Meixner, THE EDGE CONDITION IN THE THEORY OF ELECTROMAGNETIC WAVES AT PFRFECTLY

CONDUCTING PLANE SCREENS, Ann. Physik, Vol. &, pp. 2-9, Sept. 1349.
A.E. Heins and S. Silver, TFE EDGE CONDITIONS AND FIELD REPRESENTATION THEOREMS IN

THE TFEORY OF ELECTROMAGNETIC DIFFRACTION, Proc. Carbridee Phil. Soc.. Vol. 51, po.

|149-161, 1955.

See also Reference 1. Chapter 1, Reference 5. Chapter 9.



L5
13, Obstacier whoss L o1

B Vom 1 2y Ty 2o 3

2 be detersmine Andeose 3

- ER g o ¥ o -«
FTIReTIOYe, The Q1IAS MOments ey L2 datermived "‘V

. = ar B AT el e TR T BN N N A N S S P e o) SR - e % A g
e f {:«l alyveis since the inoident elewiromamnatic fisld is essentislly wnifore

and constant over the extent of the obstacle. We will pive a de etailed treatment for a

-

srail circular disk but similar methods apply to otfer kinds of smail obstacles.

Wwe will also introduce the verdous cross sections® which are used 1o describs 1ie

scattering phencrena. In addition, some important crogs section theorems are doveloread.

j iR

2.1 Seattering by a Small Circular Dis

Assume an infinitely t}.mﬂ rerfectly conducting, disk of radius a iccated st the
T e i e

seipin as in Pig. 2.3,

L

A piane wave is incident along a direction defined by the unit wave normal n, E
PR <k r v . -j‘(()n « B
s L. . EO = constant vector, 1 - -

riv
L1

0 0, v = Li = -~ E
. 5 - . H = % L. = Vel £ fial:
g wuo i, and hence Yﬁn L:;. vhere ‘x’o = Veglug The scattered fiall

iy

w
L
o?%‘
=3 3
x

I T

I T . . B = =02 = = s = &
is E_, E_ and the total field is E=E, + E_, =, #+ . On the disk ng L= 0, 1s PRmMy
3 S 1 s’ 3 s 1 — _...)’ e Iy DVLTIUY

n. ~ B = 0 where n, is a unit vector normal to the disk surface 5. Note that n. x L.
0 0 3
is continuous across the disk but ﬁo * IS is discontinuous by an amount egual to the

e
SN

urrant J that flows on the disk. The scattered field may be sipress noterms of

f:”
st
B
3
t-.-l
;]
Gt
o)
; 3
L
1
]
]
@
el
}e
b
3]



SR

,«
i3
3
:
;

S e
b

k¢

TEDCERITCLAL

afent = ~ 58

L]

2%Dans

by
K ey

rl

ns of

o
iz

.
obitalin

Y

¥ ete.

t

o]

o
5%

Neta

kﬁr
st raspermann G

. @
P 1

«

3
T

i
a

223

F e
K,
A
£

©

TR FAVED

(=)
=

S

the

ile

wh

e

Paeym

2 3 T

T e Rt STR

s

e

e O

i

5.

s
A

md

41:3



(L
o
s
[
S
o @ o -
X [ s Zony
ws (%] v
= 3 e
i L] \
wr [
o
- o3 Bpe
B im
]
5 L
sl .
=
'S .
iy s
> [l
o Soer
>
A st
R
- -
- ety ‘45
A 7% .
2 . ] “ 5 X Thy
s % ey
o [54 d ; &
PR i s - o ) “
N Y ol vd L wv.i.
W e ! ‘
-y = k : i
n .4 - s
% ] i3 A
i bmmmngins, at o 5
- tTEI.-M«J!n Ty
5 B
R ®
]
- "
& \l 5\.}
. i kpe]
$r *
o
(7] .
S e, - ’ < g -v‘t—v
Citsanmntng, ez st r
s

1M

wpean

i




- Lo P - e ¥y, - G, S PO S
leads o 2 rammetic dipole Field, The electric quadeupols dvadic momend of

PN
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PR P 3 e
The oha e O Uhe A=k is

3 4
w=a a N i b EREE S F W - .
D= aa paSt + {az +aa !l wtyipdst
' PR Ky o Ty s e v
o o]
RS 3 .
taa "pas? (2,7}
A, iS v’ “adS
. & o -~ R . S o . o £ -
Consider {r - »'3J + {pr « S’ = L' '*v“(axux fzyify} + v(zwx * ;!;;y}ﬁaxx' + a.}f‘)
- - bl T P wp & 2 ) ¥ 4 5t By loymn
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{ et 1act :{ 12 e o ( 2 ee
P o[« T 4 (v v HP'IdS = juw fax . X' pdSt + Ay | v'pas
js ‘L ¥ '?8
+ (axy + 3 x) L ®'y'pdS'] = juQ - ¥ {2.8)
I R < =
£7 Nl P e v Na ’k
BO "'.‘! 01" o« »
A ) 3 vt by w g A" G o
ﬁ.l—w--§e (l+ﬂk{}r} Q*!Rr**%(? + (2.5}
by .
‘Evaluation of Scattersd Fielde .
A “jkgn ° , >
Assume that the digk is so small that e % 1 on the msk Then we have a

uniform tangreﬁ*:x.e[’ electric field and a mufom noymal map'mstm field appiied to the disk.
This results in an electrie dmole and a magsnetlc dlpo being induced such that 4 the

electric dipole fleld cancels no x E on the disk and the mmwtxc cupole nela canc:e:is
¥ Note that E' = Eo(i—,jkon'r-l-'* ) = B, (1-jkea "’"‘.;.—-.) so second detm s
of order 2“'4 -}tmes the firs? Here ., For a gma//‘gl/gk JB [« so 7’11;@

‘{l.:‘{srt Can Z o f i :,{'-,‘, &, j _?,{1__’} :’,:;?4'. g ,f»»"z,‘\’:
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AO il v | ("r cos 8 ae sin 8’ {2.14)
w 2
ST ) | |
JWEq ¥y R W CFI«:Z’LQ e TO O=(.
T T eLeaaeL Ditowa fou,
T e £ 2 s
2'5{‘//? ( 1*'3ka)oo.f5$ejkﬂp+3 (l‘f‘jkﬂ—ku ) P si,z'aeta’.}kﬁ11
T %p 7re 3 7 ¢ - 3 2 r ° iFe
0 » r : r r Q
%z , . %
‘ (2.13)
2 2 ] jk : "'jk r Y
et ouxhied FcLeDosinge ° . § Aed we (2.18)
0 & o , T o OSCiilaTivG Gb:cwc
: » Dot Mome1
. eima e NNoTE . WIS
To evaluzte the magnetic dipole field from ' ( L )
z = -‘:‘g 1 + 3k0 n “j%r » ' - ; Sym}‘\""/ + a-"zpc“’\j‘:# ™
"3. !‘ _3.‘ T ) o P J@_/'\: f\/\rr‘ ‘“‘;i( = 7
vy T ¥—w-7‘ M Ra + ’ : -;-‘»{‘7’“’)74"
note that gz :;3.% gin 6 sin ¢ %'23 cos @ s:%’mqwfé} ©os ¢ SO
T uM “%ku : -"sk,‘}:i » v
.G 1 - v L PR e . 5 -
Al = { ;f' ¥ e :{j‘&‘e ao3 ¢ 2 cos 8 sin ¢) | (2.17)

Straightforvard substitution in the egustions g,\,:mg‘ the .Lleld from the vector POTEnN ’ual

i
| now yields

I - R N 1 o =
HE P m sy (3% ) sin g minge . H Fra» swe
" - . ; O LT A

B ASTI- D/Fou_.
A DA AT
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(3 }’\ ’.‘k - “ja .-.1"
S , . Lo JRU - S 70 i t) PO
*ia, 008 @sing v a, 008 §F o= L mem - - - O e {2.18)
T T
, | e FIED DAE P
A T N . S s vt e
E=z ——( -~ e 7 g, s ¢ -3, cos 98 sin¢r  Dhoe memEST (2.38)
by T 2 & @
P ;
Tha total far zone scatiered field is thus
Eox L0007 5 - L ain 03, - Mk YA 8 sin ¢ Spe (2.20a)
~ = tx- Sy sa g T mee—mme—— m-—“—-“ - %4 & : fv'.:\. & 13 Rt Yyt & & f
A o<g ©o8 @ 5 siy 8la, Lory &, ous @ sin @ TiE )
= 7 S ’ : Y &=
H, = [Mk,” in ga, + (Mk,” oos ¢ - oFk. sip 63a,t = = 2.2
s = [Mk,™ cos 8 sin by { g ©98 & - of Ky 510 6 ,s%- s Zcr' (2.20D)
et i

The redial component of the complex Poynting v

N Y & G
E, x B = |E Y,
s s} T ! s_§ 0
The powsr flow through a solid angie 42 = gin 3deds is
5 ¥ .
. 1 12 . g . L N 2, e 2
i oy IF i€ sin 9dods = AP = ———p [{MZ2,.%. 1% (cos%s + cos’s sin“e)
2 0'"s § 2%5¢ H] :
— w2, W
s .
W - 2 a7 . oy
, Ky P L 2TZpka . ) ) .
4 { =) sin”8 - i oos & ain 8lsin gdods {2,213
o 5
The differential scattering cross-section in the direction 8, 4 is defined by
dr sf g, $) - , o
alg, §3 = SR ¢ Power dersity in inoident wave per unit area
or
dP (e, ¢}
: g £9 a7
W e Ll S
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Note that o is

Gode gm e -
L Soatisring I0ss

S 4 4
5, = { i ofe, ¢da
inodg
. = A’.ﬁ- ,é(
- total soattered power ,_‘j" ¢ '/,’;}’2? ‘g /’2
= % . e F e &t
incident power density per uwral are 39—~ 2 5 3
J?’::& & o .
e T
?‘*"’%"if ~ &, F, &
defined so that 5 5 o
ap_{#, $) = {incident powsr density per wnit sveade{e, ¢)da.
-

e then 3

d°.7- = by(smOT Ca59&‘§)e[ X&yt 37,)

«"é}'g{x 510 a + oz oaos a

o

N ~3k, (% sin 8, + 2z cos &)
He & ¥.E Cma cos 8 + a sin & jle - =
bs i ﬁ A ~ &y
ne — -~ M
\» (5,;4@-\.;, LCO} &a \> XA A=
> ¢
8, = angle of incidence relstive o 2 axis

fing that
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the direction the incident wawe arrvived from. The actual power density in this direction,

for the particular example discussed above, is 9(a/2, -%/i) times the incident power per

unit area.. The radar crogs-section or echc area or is &finad as the eguivalent iso-

tropic scattering cross-section that would produce the sere back scattered kpmer den-

sity. Thus
o
R - ( )4 k4 )
A A )
or
% n
% bral = - — -
9y ynaf 5 " § } (2.26)
in the present case. Back secattered power density can ke 2pressed by
7 - (op){incident power density/unit arsa)
pBS:::. s Z oo WATL pEP WL e, 2.2
Brp™ : :
2.2 Seattering by a Circular Ajertuwre in zn Inf‘initf Perfectls \,Oazds.h"'i‘luf Plane Screan.
b ‘L%r ‘_'J 1 '

The scattering properties of a cireular sperture in an infianite planﬁ parfec
émting screen is closely relate! to the circular digk problem. In essence the two prob-
lems are duals of each other. The solution for one may be found in terss of the othel

'by using Babinet's p:"&l‘!d{}lS uhich ig based on the duality principle. Ve will derive

» = " e . ] e S 3 3 A ~ Ohl.
the solution from basic principles and xive a discussion of Rebinet's principle darr- o0
‘- L WRIETID Fleld

-

We will consider t"xe electric field anly in Jw diel ——

only in the aperture problem. 'me other field (I{ or E) can be io**‘*%-':} From Maxweil's

aquations.



[ TR F Tt e -, - T
Prosizn &, 18K PUoD.2n

Iet (&) desigmate % ang ¥ components and (z) the =z component. lLet tne

incident field be ziven by

-k (m + yn+ zn )

o % . )
= = (B 3 ¥ ,. Aot
Ei 5 Byt ﬁoz)e s, from z <0 (2.28a)
% Lk (E +8 ;e“'jko(mx+ yny- zz-nz) , from z >0 {2.280)
12 ot’ oz

Note that §ot+ goz is the camstant vector ﬁg introduced earlier and the argument in
 the ezponential is —;}kgﬁ-i% . By symmetry the xy plare can be replaced by a conducting
plane, or by superimposing the two incident fields 1t is seen that on the z=0 plare the

total tm@erstia}. electric field vanishes. Hence the scebtered fleld is zero

A =0 » 220 | (2.2¢

Problem B, Disk Problem

Let the incident fMeld be chosen to have even symmetry, thus

ik (m ¥yt ) from z <0 (2.30m)
# o1, o TG YOGE ) .
Ei 5 '-\got.i- Eez.e - B
. .k f(m#y-m) |
i"31 = %A‘(ﬁo‘b’ g“oz)e °F Y E ., fram 250 : {2.300)
l1et the scattered electric ﬁ;eid be
EQB #gsét(x,y,z) + ﬁsBz(x:,y,z) s 22O : - (2.318)

ﬁsB = ﬁsat{x,y,-z)f- ﬁs&(x,y,-z) ,' z > 0 ‘ - (2.31b)



The total fleld is the sum of the incident plus scattered flelds. The scattered
field must be determined so that E .+ B (x,y,0] vanishes on the aisk. Because
- of the way in which the incident fields have been chosen the total =z c&wment
of the elsctric field is an odd function of z . (n the disk surface we have

= é"‘E

‘on the side z =0 and a charge density equal tc the sameas‘ this on the
side z=0". Onthe z=0 plane cutside the ¢isk p_ = O , of course, and
hence Ep,(%,¥:0) =0 onthe z=0 plae outslle the disk because the total
z e&pment of electric field 1s an odd fuiebion of 2z . Tt now follows, since
(vafl), = Jue E, that the tengentlel component of the megnetic fleld outside the
disk vanishes cn the 2 = O plane. Hence, the plue outside of the disk can be

veplaced by a magnetic wall on which i = O .

Problem C, Disk Problem

Superimpose problems A and B , thus

, -jk {m_+ yn_+ zn_)
Ei = (ﬁm-!' §°z)e o= V!ly 2 , from z< O {2.32a)
- v '
E, =0 , from z>0 (2.32b)

1
For 2z < 0 the scattered electric field is gs {or a small disk. §s is the
‘dipcle fteld evaluated eariler}) and is given by |

5 . R : ' :
E = ﬁaatéxgy,z% ﬁsazm,y‘sﬁ} s B0 : , (2.332)

= ﬁsﬁt(&y,—z}“ ﬁsBz(X;}’:“z}s 220 ‘ (2.33b)
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For z >0 the total feld is % plus the incident field (E + ¥ gD
-,jk (xn + ,my& =, } which propagates into the region z > O since the total
fieid 1s Ei{» s -

Problem &, Aperture Problem

Choose a dusl incident field (the prime deslignates the fleld for the aperture

problem), \
-jk (mm_+ + )
i = %Y(ﬁt Eoz)e o My TyT Hy , from & €0 (2.342)
-3k {xn_+ - _} _ '
I S R et B P W (2.31b)

By symmetry the xy plane can be replaced by an elszctric wall and hence the

scattered field is zero.
H_ =020 ; ' (2.35)

Problem b Ape*’k;m'e Pmblem :
We now choose for incldent fields the i‘@lleﬁin i3

A | e + "'Jkokmif yny"a' mzj s from z <O (2 36a})
Hj'_ Z’-YO(EO’C-I. Eoz)e , :

. -3k (xn ¢ Y7,~37,) :

> o 1 + 2 J o Ay 3’ 3 3. o ,
B =5 Y (Bt Byyle , / » from 2z >0 | (2.360)

By symmetry the aperture can be closed by o megnetic wall. Iet the scattered
field be

= ﬁ t(xaysz) + ﬁ bz‘x"’y Z) s 2<0 {2.37a)
?S = ﬁsbt(‘“’y’ z)+ ﬁ}az{x,yrz} . _z‘> 0 ' (2.37b)

For 2z < 0 we can view the scattering melem'as ttat of an incident fleld en a
screen part of which is gn electric wall and part of which is a magnetic wall,

Thus in the Space Z < O problem B‘is the exact duel of problem b, including a



dual incident field snd dual boundary conditions. Therefore, the total field for
z <0 mrpmbeﬁwsmdbmstbed&zal Hence - '
Ik (=t yn+ =, )

Rb)t;m;al HE:’ +E’Je

-jlc( + -z ) ,
5 Y@f‘f*ﬁ Iy Ty = ot

~gk (= :,-:V z,) | —.}koim; yng= )
y (§&+ Eaz}e Y+ 5 Ya(f'f -E)

+ YQE'EB

f‘rﬁnmichmﬁ:xdﬁhat

jk(m-h-yny-sm}

g

1) =Y §’323“'" ¥ @ot

az z2<90 : | (2.38a)

The plane wave may be viewsd as specular reflection frum the infinite z =0
plme. For z > O we hawe, from {2.37b)
:§k (xn + :my“l- m, )

] .
g:.*.i::‘ ® -Yaﬁsm{x,y,—‘}i- b ﬁsBz X3 2= ¥ ﬁ ¢t L
. 23>0
- (2.38b)
Prcblem ¢, Aperture Problem
Superdimpose preblems 2 and b, thus
-3k {xn_+ yn_+ =) ' ;
» * - : A :

% = Y (Bt Ezle o Ty &, from z <0 (2.392)
fy=0, frm 270 - N £2.35b)
E g 5} ’;"' 3;“6 mgh ) |
BeYE+Y(E -E, - z2<0 (2.40)

T h " mu’./ v{z;o’ﬁ i
f'f = "'Y -“ Bt(x:‘f: ~z}+ ¥ gssz(é DYs‘“z) Y {é *gg }ﬁ Qm gﬁs*gif‘?i( al)

320
> = .l
where £ =B from (2.33). We thwus have a solu'lwn for the aperture problem

]

in ters @f the solution for the dlsk pmbiem.?\?o% 2 Yhat Tiﬂ@ second term

-

n (2.4} cancels the meidertdi=id i o S,
Tis solution is perfsctly general in the sense ‘hat ir B {x,y;z) = ﬁ‘ (x,y,z}

+ B gz,.;,v) is the fleld scattered Ly gn arbitmxy shoed disic in the reglon 2 < 0
““jk Ie’-’r ’
for m incident field @ o § ,)e °  then the fleld scattersd through an sperture fho:
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= tampentisl component of incident magnetic field for the aperture problem. Thus foo

w < 1 the soattered field is a reflected plane wave plue a field rediated by dipoles

N ' - A Y
X e W ™ ~ P £ 4 wsm, = ot - 4 <ol g wp e ey dan . = gt
MUmowom RY L P2 - g g, Bf Jocsted In aperture. For i »+ 0 the field yediated vhwough

[ NSO s i 2 PR SR [ - PUp gl i ey T
trhe apermire 1s a2 dipole £ield but the transverse part of the nagnetic fisld

A

and = corponent of electyic fizld has been changed in sign. Such 2 field would be
radizted by apsrture dipole sources g ’ =

Tha o ?}:**f?ii wroblen mey thus be reducsd simply to that ilivetrated in Fig. 2.5.
We may x procedurs as follows:

:
AN

=N gz 7
-

sce 21l of the wy plare by & perfectiy corducting plane, on this plare

P P &1 E m
For = < {, repia

o, = L m . . _ = = R
slsce sowrces M'/2, P'/2 at the origin, For z » 0, place sowrces -M'/2, -P'/2 at the
» o ' .' oy - e > Lorie com. kg o~ I — ) e ~ - .
origin on the perfectly conducting plane. The two regiors z ¢ U are thereby separated

3

-
o unncundaed.
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do in fact gelt the same fleld as would be radiated by & lpole Bt in an unciosed sper-

tune ilzjt image theory field due to P2 on a conducting slane is the same as field dus

We see that thers are no net dipole sources in the aperture. This is necesszayy
2, 02 N . . -t . . .
PY, MY would be due to magretic curvents flowing on a magnetic wall {disk) and

such currents do mot have any physical significance.

Sometimes it is advantagsous to consider as the exelting fisld for the aperturs

B
“

dipoles the sum of the norwal component of E and the tanrentizl conponarts of d Jdue
+o the incident plane wave and the reflected plane wave. In this case the excitation

fields ave Eﬁ'n, 2H' . . In terms of these the effsctive aperture dipoles ave given by
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This formulstion is convenient in comnection with womgulle nroblems since a wavepulde

$ ; : Y 3 A o = g I U, ~
amode Is the sum of an incddent and & reflscted wave Trom . conduoting surdace.

2

Sege: R. B. oilin, Fleld Theovy of Guided Wave:, Moliaw-Hill, 1380, Chap. 7.
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e i s it 5 3 o, Yy e
. 1 scattered o through apertuye (9 133
TT T Incident power deneity per undt area Reenal

ission cross-section is that eguivalont avea that imtercepts an amount of power

ety

n the incident wave equal o the tofal power transwitted {or scattered) throuph the

related to the total '*eacier:my cross-section for the complimentary

same shape as the aperture opendng in the infinite sereen). A flat

v

sk has ouyrents induced in it thet Flow ordy in the plane of the disk. By symetry it,

Loy

kol

therzfore, scatters identically in hoth the forward and boclward d:wect jons. Hence, the

g

total power scattered by the disk in the forward divection {z » 0) will be 172 %P,. where
-

4

P, ig the incldent power per wilt avea for the mmczmr‘t prane TEM wawe. P, is given by
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For the sparturs problem the incidenmt poisr per unit aresa for the dusl incident
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/e 2%

I’ﬁ‘-%zo o! é’lﬁ‘! r sin 6ded¢
"3‘/2 2r
3%2 j f (18 t! + ! §2)r2 sineded¢

) 2
sinee E' x (H_') '§r= (grxﬁ') . {ﬁ‘)*s ﬁ; since for r very large
%*nﬁji-'ﬁm ﬁw Y(;l + [E,1%) from (2.41). But the
hxtegral gives the total scattered power by the cisx into the haJ.:t‘ space z>0
80 we cbtain '

“i, |
‘Ihe tmsnﬁ.éﬁim cross-section for the aperture equals one halfof' the total

scattering cross-section for the complimentary disk.

2.3 Babinet's Principle | |
Iet the inclident field o a disk located in the z = O 'plané be Ej'_(x,y,z),

ﬁi(x,y,z), ﬁ'cm :z < 0. Iet the scattered jﬁeld in the region z>0 be

‘I?g(x,y,z)',gs('f,‘y,z) For the con@ltnéntary screen let the iﬁcidept field be the

dual fleld | | I |
E;_(x,y,z) = -7 %(x,y,z) s ?i;(x,y,z)v =¥ § (x,y;z)

- and lat the scattared ﬁe.i.d be B! xx,y,z} , H (x y,z) far z2>0. Babinet's

pﬂm@ksﬁMsmw | |

E+z¢=€, , z>0 | (2.k46a)
E-v%-ﬁ‘ . 220 o (2.46b)

That 35, a sultable superposition of the total fields In z > 0 for the two cases

g!ves simp!y Just the lnc!dent fleld, The princ:?p!e is Htustrated in Fig. 2.5 .
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Thus If the scattered fleld for the disk problem. %s known- tife. scattered field for
the aperture problem may be found very rapﬁd!v by Sabﬁnet s pr!ncipte° Hote that

- the eAGStatton in the two cases are, however, duats.

The preof of Babinet‘s prtnctp!e is essentlially that given in the preceed'ng
section. For exampﬁe, rrom {2.31b) and (2. @l) we Find that §'+ Z ﬁ' = ~f from

which . (2 &6a) foliows !mm»d§ate!y by adding 2§ to both.s!des.

L ci _3, -~ —
et ET Lt Es

) Vi -, - -
— Nt i y 4
gu.’f’j/_ "')/o F7THs
3\}). -

avy

Fov §>a E5+Z H5 =-E‘) H}> VE -'..,i/:. . Qg:m/;,?/; Fo these
'+0t Olo'}'a\n Efs 2.46 ' :

Fiy. 2.5, ngwwﬂfw

2.4 Cress Secc:ons

Fer converifence the definltions of a number ef cross sect;ons used In pract!ce
is gzggn“below,; The incident Field Is a piane TEM wave and\ Pi denotes the inclident
power per unit area. Also !et z, denote the propagation vector for the Incident

wave aﬁd § denote the propagat?on vector fer the scattered f?e!d

o(e ¢ ) = differential scattering cross-section = -;—-
i

(power scattered per unit solid angle !n direction
» $)
But O {s a function of both Es and §s so it will be dencted by c(k K S

in general.



‘i
LI seattering oross-gection = ,;;f— {total power soattered)
3
2, : 1
¢, ® ebsorotion CrOBS-SECTLON ¥ - otal power sbsorbzd by scatterer
i

o, = extinction cross-section = 4 4 o
Y &
g = Tadar cross-section = ’4¥5’€3<i= "3%1}
°R.pg © radar bi-static cress-section = Uwwik,, k_}-
R.P G el

U = transmission crosg-section for an aperture

. ’P
=5 (total nower transmitted throush aperture)

i

2.5 Re-g.wmrtv for “‘caﬂem;w

" o

03n51der sourees Jq. and J,., wiich radiate in the presence of a seattering obs tacleq

"" Fﬂ 5 ;' < >'~ ;3;. M/ % ;‘;‘.. &1 ?0 _5:- = } H
Let the Fr'ee space fields radiated by 3 and d, be Fll - Hyyo & wd Eios 1.12 rfe&rectlvely

and let the correspording scattered fields be f’s’i , Hi, and }“S, . H ,- According to the
reciprocity theorem we have
J"“‘ ‘:-"o '*':T dfwr :\h * '.}.- ol S 7 e
;v Jy ¢ (Egp + E A0 ’v Ty« (Egq L;*}av (2.47)



[ 5 - Eavs [T, Egav | | (2.48)
v |

[ 3 CE.av=f 3, - fldv | 7 . (2.49)

-2 Y i > . - a «te -"‘ -t + .
Let J; = as(r - ry) ard J, = as{P - r,) where a is an arbitrary vector. Thus we pet

= . 2 L a >

or

- > -~ e .

Now F (rz) is the scattered field in the clrectim x due to an incident field in the
'd:meciaon k while E €r1) is the scattered field 'in the dlrec*cmn -k. due to an inci-

dent field alonr the direction "ks (see Fip. 2.5}. Fence the relation (2.50) also states

that



> _— 3. - b’ -
- ch - 43(“’%5- \i} (2.54\)

- A - ‘A el " * -
If the points 7y and 1y, are far awy from the soattever the scattered field at thes:

rositions is an outward nropasating spherical TEM wave of the form

& . = ;k, " "
F’sl\r?) = ?(Xi, Q? -~ i'*?" - = :2.5;33
‘ ~Tkgry “{hole\ '

E ) = Pl i) S 8—““,#- (2.52%)
3271 S i ™ 2

where f’ gives the directional characteristics of the scattered field and depends on the
direction the incident firld comes from and the direction in which the scattered field

is viewed. Tﬁesﬁcgyg exp.@:!)ﬂ?_«-r?n?' /ﬂ/&é}/ﬂ/‘/h (2!53) '«f:S - the P "/""9"#’”
factor Sromt the source #o the Scatterer, Thus reciprau'/yyiyes |

Fli,, k) = Fligrk) , | (2.53)

In other words., the position of the sourvce and observer cam be interchanged without af-

fecting the value nf the sc.-éttemd Field which would be measured. For ¢ 391725’2/’ Zation
of this resuld see Problem 2.9,

2,5 The Cross-Section Tasorem
The cross-section theorem relates the extinction cross-section to the arplitude of
the scattered vave in the forward direction, i.e., in the direction ks = ki'

let the wave incident on the scatterer be a plane TFM wave and consider

1pe § (F ~Fyx (H 480 - a8
’1“,‘35g P I T

where S is any surface enclosing the scatterer and dS = ndS with n poirting outward. The
total flux of the resl nart of the comlex Povnting vector throurh S squals the nepative

of the mower ?a abgorbad by the soatterer. Also we have



R+P = PG =-3R (G ETExty7) 7 I
S (2.54)

fJMM SMMW?/A_ / s s
W7/&/fw%~msw,,&¢a .
TB - E(E -k F <k,

- 3 N .? N
E.S - F(kz )vﬁs)'g‘ , /_/s:- y % ) &):)(F
W ” ‘ ; E 2 o =
//z = ‘_g;_)_(_[ - .,I{.xEo‘e_\)k[.a}’
el s

‘..s r ? » N Jo/{, . ...s” # F
+ FX kzkx 0 ) ar e 4 v 'S /S (‘g. 55}
° T

PZCE 2&._2)-/?{1%'{ [ ?*eﬂé P(/-co06)

¥ a...s "j/éa l"‘[//_ 7.4 4
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Cinee » oinourse Yorwe e i evaliate the intesmal by the rethod Of ctetionsre mhase. The
axrvnest ¥orli - ons €) 1s stationary at the woints a(l - Cos 8)/c6 = 0 or sin @ 7 U vhidh
y . - . - Ty g3 -~ B
e 82 0, 5. Thus., the interral becorss esusl in the As r &+ = to 1ts

SOYTESTINLS

value mver srell rerlens zroomd 0 = O.

a. Tor the rovion 8 € 65 where 8 is a0 small that

p)
Ve intesvand has essentiallv its value at 8 = O we pet (note that ¥ - =Jate=002
sinca T+ 4 = M
TKn
© o0 oy o
7 2 > a2 S i I R 7
RY % -~
bt 3 H]
' o 7m  -ik.re?
A A A 2 1 0[ \}mﬁi N “3
+TE, ‘V{ki ki} i po® 2 recode
’ : in¢g - J

where we have renlaoced 1 - oos

3 bv 8- !’ and sin & by 2. Tns value of the intermsl is

essentiallv unchaneed if we make 8y infinite, thus since
e 6a = (2.56)
1
Jﬁ 0 ,
we et
Y, N 1 & -
! e »217 > = Zw
1e. Dre P Py L F 2T
i 2 Un 1K ad '\,kg B!
o SUTRR . =5 ]
T o Yy T Ix"*n “ 9‘(}";. -s')]
- Lo SR I

There is no contribution from

S A -';r,’r( ot
+ gk« T oos 62

n ‘
vanishes. To obtain the latter

the resion around 8 because

8 : [ EY & =
a*vrmac'hee: Fell, »~ F* - F,
: g a

expression we tonk
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“the complex conjugate of the second term and replaced cos & by -1 (note that Re(A+B)
= Re(A+Bt) = Re{A%4B) = Re(A%+B#)) . |
Our final result thus shows that -

v— Re [jt* P(ﬁp [4 )]

.E:-‘- tnag, e F(k,, &) | o (2.57)
This is & usefnl fomu!a in practlce because it enables the tota! extlm:tlon cross-
sectlon to be detem!ned in terms of the amplltude of the scattered wave tn the forward
directlon. } | _

The above result is not an unexpected one for the fol'lowhig' reasoﬁ. The scattered
wave can be thought of as a spectrum of plane waves propagat!ng\‘ln_ all directions away
from the scatterer. The incident wave Is a plane \;'ave propagaﬁ-s‘ng in the‘dlf'eét!on 'i:!.
These Mes‘ with different propagat!dn vectors are orthogonal as regards téta! energy
ﬂdw (mr) o The eota! scattered and absorbed power must show up as a reduced ampn-
tude for the total field In the gﬂrect!on ~ k - ﬁ slnce only In this direction do the 3
ihcl&e&t and scattered waves Interact. Thus the extinction cross-mtton must be re- |
lated to \the amplitude of the scattered wave In the direction II?' The statlonary phase
evaluatlon of the integral for large r showed that the Incident and scatterad waves
interacted only In the directlon k‘ .

since the. transmission cross-section oy for an aperture equals /20, for the
complanentary disk problem and (2.57) !s app! icable to. the latter for 0 =0 (loss-
less disk) then we must also hav:v |

op = = E;g, tmag. 4 - ¥, &) | (2.58)



-27-

2.7 Vsriastional Formulation for Scattering

Ve will consider a ‘two dimensional problem only because of !ts scalar nature.
Consider %n g_nf inlte perfect®y conducting cyllnder {arbitrary cross sectlon) Let
-j -y
#y=Ce | be the incldent z directed electric fisld, K; = ki , r = xi > vi,

and n Is a unit normal to the phase front of the incident plane wave. Let ws(r)

' "‘P‘L | Fig. 2.7 Scattering by a Cylinder
be the scattered electric fleld. The total fleld ¥ 1Is gliven by
b=t e, =Yyt f G(F|F*) J(F*)dst 0 (2.59)

where J 1Is the current induced on the cylinder in the z direction and

Wo 2 ! > ’ -
LR~ Ho(kolr-r‘i) = Green's function = electric fleld radiated at r due

. : - &
to a unit current at ' .

Green's functions will be discussed !ater, for now we win borrow the result
without deﬂvatlon. ’
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. .- - Wit } k r- ﬂ'li) 5=
As P, jr~rf =R » .- riea and G+ - g wk = e
o : + b .Jkﬁ%p '
uwhere K. = k.a_ . Also as ve, 9o+ OF(K; k) = whera f is a function of.

: the ds;aﬁt!on oi" the incident wave and the diractian of the scatte ed wave, The
canszaﬂt c ?s introduced to make the scattered wave anphtude f in the dfrec%:ﬁen

g'rl éu* to a wave Incident atong the directmn a mdep&qécnt of ihe amptitude of -

the i sc:dent piane wave. If © denotes zhe total vailue Qﬁ.; Ez ;fxen

Hogn = (Jung) e h; (jwue)'-"ib' ) = J(#‘)at 3 (2.60)
.since —}m% ﬁ = ¥ x ;zg' = -Zz 3: W: .
| ~ Hence as rwe we oﬁtain
kgt ’..
¥+ Cfa 1/2
s R
 where.
where jE et
18 = - / 7 § o L
vr' : : )
%5/ 3”" g PEe s ds (2.61)
We may Qr- tte
‘ fib" (:)“
') = N
b(r) —— T,
"jt ' -'r -;-,

= E"""-*'-" f-—;—-—- /= ‘hﬂ* § J(r‘)e “s | }dste b, (2.6;;;
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On $ total E, =¥ =0 sowe have

o3s

mu. f—¥~ -Jk, % JK ¥
13':;%"31"'“ Plgagye 5 s
0 ,

5

- WU o T
ujgﬁﬁ(ﬁﬁr?ﬂﬂﬁﬁﬁ’, F=F on s, (2.63)
s .

From this expression we can obtaln a sp!ut!bn—for f that'ié td_ftrst~crder
: tndependent of the current distrlbution J o Such an express!on for f isa
- stationary (or var!at&pnai) formulation. If we multiply by some funct!on g(r )

and inéegrate:bvef S we have

> R )

— ik, °F jk
-0 8 s ) ‘

~-¢¢géguﬁm§%ﬁr?4ny“,

if we evafuated &8f for a change OGg ln g we would find fhat Gf e 0 ° tf we
’change g by 8J (6 Is a sma!% amplitude fuﬁctﬁon of r‘) then the change':5f~.

f!n?-f Is given by

l -+
: k or +jk or“
- 5 P §6e V=0s 0 gudstds
2 ’kb 5 S A

= SRR
é 6§ e Al N g (765 (F1yas s,
5 R
+ +, 2' e ﬁ-pﬁ &
- -'g.g s(r,)cd(f Mg (kg [Fy- 7 [astas,

to first order. This may be rewritten as
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S/ g gt T TS g a(estas,
. 8 8.

- ‘ e ‘ jﬁ 0._r_3 ' :' . -j?é.. 7 : . .
=-§oife ° /A AN PUATA ds, + @ g(r )H ko’?i' Ft])ds Jdst .
4 te EaA o!f |

~For &f to Qanish we require ﬁha* the term in braces { } = G if we compare this tenn:f
~$wsrh the erigina! definition of f(k fk ) i.e. (2.61) and t&e equatton g=0 on S t.e.:'E
}(2 63} we see that if g(r ) wvas the current J (* } on S due to a plane wave !ncsdentb
along "ar ,_i.e. . = W:~ 577 , then the term In braces { } would vanish and
§F =9 . MNote that f(ﬁ fE | f(- s'-k ) which is a statement of the reciprocity

;princﬁp!e.‘ Col!ecttng our resu!ts we have the follow!ng var!at%onal expression for the .

“angle . @35erbd fon function,

K T |
/E j""‘wuwume“ T astas, |
f(ﬁift ) = .0 T ' *’ " »;:  ,_ (2.6%)
) f 2 J‘t"‘z"t)"o Ueplry= «* )¢$3§51

An approximate solut!an for J and J1 when substituted nnto th:s expression wiil lead
to an agcqrate value for f nf the approxemate solution for J and J' Is reasonab!y,

c!ose to the true value.

Zw ' _
The total scattered power P = - %-Re f (E H9§ rde per‘un!t length of cylinder.

This Poynt!ng vector can be evaluated over any contour surroundtng the cylinder. If vie

‘choose a contour Just outs!de the cy!lnder then ¢ - *v, aﬂd (H )

‘tan’s
) -3 S -+ + -+ .
(jung) ol {.e. ~juuH =V x 2y = -azkx-vws and

jﬁmO(Htan ) = 3? X K'\a¢54;n- .
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and
1 -1 =k F al}o :
B me -t -........ 3 : )
P =5 Re 2 (~jumy) * Ce S 45 | (2.65)
_ 1 ¥, o, 3,
e - -°! i . -}
But - Uury) i g = o)™ (gﬁ e = IF) - U)o
Hance S . ~
L w7 R e -k P o : )
u?s,"’-fﬁeﬁgd {r')e ds* + Re gy= 0§e ey dst (2

But the 'é’f!.ﬁa;{ib_f the incident fleld through a closed coni:oqr_ﬁ _}f?-!'-s‘zvei'o, i.e.

o kP, kT
vy grdst=fe k,“n'e dst = 0
g o s R

J-since vifr“;ﬁtegr’a{"i% of § K;"S‘ds‘ is clearly zero. Hence,

s o 3
P =SRedutF)e | ds'=Sfefde | o ds! (2.67)
=y 2. s _ 2 S L
- But !ntégg:rfai? glves (see 2.61))
2 jJikg |
.2 j'ﬂfﬂ}
e 2 | f(k ﬂ? )

, |
= Re[- L. / 0 “3 ’(ﬁ [ B) (2.68)
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o Ck :
The incident nower density = % Cz‘.:'c s % -{K%‘z so the cross-section is given by
o = Re 2(§ - 1}/ 2 £(k,|K.) ' (2.59)
3 kg itTi

If the anple distribution function is defined so that the scattered field at in-

finity is ¥_ = cr{féigﬁgno"’(kar) as r + = then
- 2 _iw/4 . _ b Y
f = /EEE P ad o= p-te PO [K) (2.70)

This is the two-dimensional version of the cross-section theorem (2.57). ( See also.
Morse and Feshback, "Methods of Theoretical Physics,” pp. 1584, vol. 2, MeGraw-Hill,

or levine and Schwinger, Phys. Rev., vol. 75, p. 1#23, 1949, for a similar derivation.)
For two dimensional scattering the cross-section is an equivalent scattering width since

““he scattered vower is evaluated on a per unit length besis.
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PROELEFS

Solve the folicwine scattering problem: Tind the differential scattering cross
section and the total stattering cross sectinon for a small perfectly conducting
sohere, radiuc a << L and located at the origin. The polarizabilities for a

small conducting sphere are o e = &'mas, o = - 21:&3 so that the induced dincle

& - < =2 - . R
moments are P =lg ., M = e H 1 E = tangential comonent of incident electric
field, !' = 21 component of incident magnetic field. In your derivation

ofcranda *etama ande asmmtemsothatvoucansnemahzetothe

case e = Q0 later.(For *ne ,,pLera E'&' and H Lecome ‘“«e atlal

\mctJé’n"‘ '?\QHS). 3 €- ¢
Find ¢ and cr for a dielectyic sphere for which a, = g, s, = bga E-;-—ﬁ.a . How

does og depend on wavelengrth Ag ? The results you will cobtain were obtained by
lord Rayleigh and are referred to as the Rayleiph scattem:r, fomxla,s ouite |

often. The rvesults hsve been used in ca.ccumtmd the wa‘ttemn;s of IM waves by

I3

rain drops.

Sketch ¢ as a function of 6 and ¢ when the incident wave on the conductinp sthere

- .
has E in the z direction only and the divection of ingidence is along the x axis.

m b

[N



3.2.

203'

(a) Oonsicer a sphere with varameters c¢. y. Show that if the sphere is placed in
a uniform static electric field that the induced field outside the snhere is a

dipole field arising from an electric dipele of moment

3 £~ %
P = Usng E:*;’?‘e-a (EOEO)

and placed at th2 opimin. let ¢ terd to infinity and shew that in the limit the

‘total electric field inside the sphere vanishes. Thua, in the limit you pet a,

= l%wa?’ for the polarizability of a conducting sphere.

(b) When the smhere is placed in a uniform mapnetic field Hy show that the in-
duced marnetic field outside the svhere is a magnetic dipole field arising fram a
magnetic dincle with moment

3 M- “04
M= Yera WW&H{)

and located at the origin. Tske the limdt as » soes to zero and show that in this
case the total normal value of H vanishes at r = a. Thus, show that @ = - 2na°

for a rverfectly conducting sphere.

Liyh‘t is randomly polarized with zero correlation between the two perpendicular
polarized components. Consider a rendomly pélarized wave incident on a dielectric
sphere along the x-axis (Problem?l). The incident field will have uncorrelated

z and v commonents of electric fiald with equal mapnitude Eg- | In what directions
is the scattered field ‘oomletely polariied (1inear polarization) and what is the
orientation of the electric field in these directions?

minute and molecules

The scattering of sun light by,dust par'ticlesApmdmes linearly molarized light

looking in a direction pernendicuiar to that from which the sun lipht comes from.

11



Ay,

d.5.

a.6.

This phenomenon iz utilized in photorzophv to ret an enhanced "blue’ sky color
by using a "polarcid” filter vhich is a filter which absorbs one component of a
Tinearly polarized wave and not the perpendicular component. Which component

is absorbed -- the horizontezl op vertical? {see fipure below)

v T /}
:O: Sun
f‘\

. 0 catterers
N S(;\—Hereo\ U ooo 5 t
\@ o 5 .
- B S
-, P 0 o)
’ L&ﬂl«d ‘ > ¢ s o
o 0

Eje. or Caw-efa\ 6

Plan view (locking down onto the earth's surface)

' . ) ._' . . . P .
For Problemgl. verify that o is piven by (2.57). 7 /tis regames Use oF «
h;ﬂher order d’Pprox:'Ina‘hbn ratker Than the 4’1}?0/6" aEpPr 07””797,{'0” .

(Sée sol. For scattered {ield in Stradier ).

Consider an aperture cut in an infinite perfectly conducting plane locatad at

z = 0. A wave is incident on this aperture from the repion z < 0. Shew that
the total tangential magnetic field in the aperture is equal to that of the inci-

dent wave only. What is the value of the total = corponent of electric field in

the aperture?

FINT: Superimpose the solutions for even and odd excitations.
From consideration of the freguency dependence of the scattering from a small di-

" electric sphere exvlain vhy the skv is blue and the sunset -and sunrise anpears red
and orange. Note that smlisht is scattered by air and water vapor molecules as

well as dust particles in the améphare.
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CHAPTER ITI

STURM-LIQUVILLE EQUATION AND GREEN'S FUNCTIONS

In this chaptér we review some of the important properties of the Sturm-
Liouville differential equation. This is followed by a presentation of several
methods of constructing the characteristic Green's function for the Sturm-
Liouville system. Finally it is shown how multi—dimensionai Green's functions
may be found for separable partial differential equations in terms of contour

integrals over the spectrum of the associated characteristic one ‘dimensional

Green's functions.

3.1 Sturm-Liouville Equation

Many of the boundary value problems encountered in connection with the study
of guided electromagnetic waves leads to the Sturm-Liocuville equation. In this
section we will review the basic properties of the Sturm-Liouville system but

without detailed derivation.

The Sturm-Liouville eqguatiocn is of the form

L p(x) B q(x) + ao(x)u(x) = 0 (3.1)

where A 1is a separation constant. In practice both p and 0 are usually
always positive and continuous functions of x . We will consider the propertieé

of this equation when the range in x is finite, say O < x < a .

The solutions to (3.1) are fixed only if certain boundary conditions are

. d
first specified. The three common boundary conditions are ¢ =0 , or Eﬁ-= o)

or ¥ + K %£-= O at x =0, a, where K 1s a suitable constant. Once a set
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of boundary conditions have been specified (one condition at x = O and one at
X = a) then one finds an infinite set of‘solutions b, to (3.1) corresponding
to particular values of XA , say An . The functions wn are called eigen-
functions and the An are called eigenvalues. In all cases the wn form an
orthogonal set of functions over the interval O < x < a . The orthogonality

of the functions may be proved as follows: Multiplying the equation for wn

by wm and vice versa, subtracting and integrating gives

a a dlpm - a len a
[y Pa e a ™= [ (w20 Yoty &

since the term involving g vanishes. Integrating the left hand side by parts

. gives
dy ayp a a 4y 4y ay_ dy
m 'n _ m_n__n_m
Gz "z P 0 é M & & o =
v dv_ | a
TRl g )|, T O A v

When wn and wm satisfy the same boundary conditions, of the type given
av,

earlier, the integrated fterms vanish. For example, if wi + K E§£ =0 at

x =0, a, with i = n, m, then we can write

ay ay dy_ dy ay 4y
m n_ _ny 'm _ _my _'n
VT hhm C Wt mim - W rERE ) &

which clearly vanishes at x = 0, a , When An # Am we conclude that

a
Jouwvy =0 (3.2)
0

n'm.

i.e. the wn form an orthogonal set with respect to the weighting function
o(x) . If An = Am we have a degeneracy but suitable combinations of wn and

wm can be chosen to yield an orthogonal set of functions.
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For example, if ¢1 and w2 are eigenfunctions with degenerate eigenvalues.
a

A, = A.- and f oy ¢ dx # O then we can choose new eigenfunctions E. =Y and
1 2 0 172 1 1
aé = wl+ Cwe and force these to -be orthogonal. This means that the constant C
& 2
is chosen such that f d(wl + Cwlwg)dx = 0 . The new eigenfunctions are now
0

orthogonal but have the common eigenvalue Al . This procedure may be extended

to the case where there are N degenerate eigenvalues with corresponding eigen-

functions.

We will now assume that the wn have been normalized so that they form an

ortho-normal set, i.e.

1, n=m
a

é A (3.3)

The eigenfunctions form a complete set and may be used to expand an arbitrary

piecewise continuous function f(x) into a Fourier type series. Thus let

f(x) = ) a y (x) | (3.4)
n=1

To find the unknown coefficients multiply both sides by o wm , integrate over

0 to a  and use (3.3), thus
a ‘ ©

a
é o fy dx = nzl 8 éic‘wnwmdx =a (3.5)

Our main interest in the orthogonality property of the eigenfunctions is for

the purpose of finding the coefficients in Fourier series type expansions.

3.2 Green's Function G(x, x')

The Green's function is the r~sponse of a linear system to a point source

of unit strength. A source of unit strength at the position x' can be



N

- b -
conveniently represented by the Dirac delta function 6(x-x') which has the

basic operational properties

S(x-x') =0, x #x' (3.6a)
b g(x") s a<x'<bDd
[ g(x)8(x-x")ax = { (3.6b)
a O, x'" notin a-=>bD

where g(x) is any function that is continuous at x' . From an heuristic view-
point we can think of &(x-x') as a narrow rectangular pulse of width Ax and

height 1/Ax , and thus of unit area, in the 1limit as Ax = O as shown in Fig. 3.1 .

AX
‘*4 k_ The Green's function G(x, x') is the solution
1¥_ of the Sturm-Liouville equation when the source
I term or forcing function is a point source of unit
ADC "
strength. The Green's function satisfies the
il > X : :
Y, following equation,
X
Fig. 3.1 Delta Function
d aG
—_—p — + + = - ~x! .
P T (@+2ro)e=-6(x=x") (3.7)

The Green's function must also satisfy appropriate boundary conditions at

x=0,a. We will discuss two basic solutions to (3.7) .

Method I

We may expand G in terms of the eigenfunctions wn » with eigenvalues

Xn , that satisfy the same boundary conditions as G . Thus let G(x, x')

li

z anwn(x) . Substituting in the equation for G gives Z an(k—ln)cwn
n=1 . n=1
{2;13

-8(x-x") since wn is a solution of (T>€3 for A = An . If we now multiply

both sides by wn1’ integrate over O to a , and use (3.3) we obtain



_5..

a a
nzl a (A=A )é o wnwmdx = gm(k—km) = -é wmd(x—x')dx = -wm(x') upon using

(3.6b) to evaluate the last integral. Using this solution for a We obtain

w Y (x) v (x')
olx, x') = - | 254 (3.8)
n=1 n ' :

Note that G has poles at the point A = An . We will make use of this property

later on.

Method 11

§

We note that at all points x # x' the Green's function is a solution of the

homogeneous equation g;-p gg + (q + A0)G = . At x' G must be continuous

~but p %g- must be discontinuous by a unit amount (see Fig. 3.2) . The second

derivative = p--d:g then yields a delta function singularity. If G wa$ not

continuous at x' +the resulting singularity would be of to high an order.

G

_'—,[/ Unit 5‘\’8?

>X " X

X

Fig. 3.2 Behavior of G and its Derivative near x'

Let A¢,(x) be a solution of the homogeneous equation that satisfies the
R e P ossais-

boundary condition at x = 0 . Similarly let B¢ (x) be a solution, linearly
; = F e i ey PR

independent of ¢ , that satisfies the boundary condition at x = a . Thus
P R — i At 3 <“‘“ M g nt bSO _— e T e L N Py

V// let G = A¢l(x) , X %;x' ,and G = B¢ (x) , x Z_x . Continuity of G at

'x'" requires that A¢l(x ) = B¢ (x ) . If we integrate the equation for

X



-6 -
x'+47

G from x'-T to x'+ T and let T > O and note that 1im [ (gtAU)Gdx = 0
> 0 x'=1

since q, @&, and G are all continuous at x' then we obtain

x'
x"+1 + x'+1
lim ] g;p%x(-}-dx=p%xg- =~ [ §(x=x'")ax = -1
T>0x'-1 x! x'-T

In other words pdG/dx evaluated between adjacent sides of the point x' must

undergo a step change as shown in Fig. 3.2 . Hence we have
ag|*+ 1
= Um0 e = 1 1 - ' 1
ax|_, p(xv) B¢2(X ) A¢1(X )
X—

where ¢' stands for d¢/dx . The solution for A and B may be found from
the above two equations and is A = —¢2(x')/p(x')w(x') , B = —¢l(x')/p(x')hkx')
where the Wronskian determinant W(x') = ¢l(x')¢é(x') - ¢i(x')¢2(x') does not

equal zero since ¢l and ¢2 are linearly independent solutions.

Our solution for the Green's function is thus

¢, (x)9,(x")
T p(xW(x") -5 = (3.9)

¢ (x" )9, (x)
Top(x")W(x"')

G(x, x') =

x' < x < a

The Wronskian determinant W will be a function of the parameter A and will

vanish whenever A = An so G will have the poles that are explicitly exhibited

by the first solution (3.8). Although (3.8) and (3.9) are different in form

they are equal.

It is convenient to define the following:

]
n

= the greater of x or x!'

= the lesser of x or x'

el
|
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We can then express the solution for G(x, x') in the condensed form

¢, (x_ o, (x )
1 V< To Vs
' = -
G(X, P ) p(x, )W(X’) (3-10)
which includes both forms given by (3.9) .
Example
We wish to find the eigenfunctions and eigenvalues for the equation dew + Y =0
2
dx

with boundary conditions ¢ =0 at x =0, a . This is a special case with

P=oc=1 and q =0 . A general solution for ¢ is A sin /Ax + B cos /ax . To

make P =0 at x =0 we must choose B =0 . To make ¢ vanish at x = a we

must have sin/A a =0 . Thus /A a=nm , n = 1,2,3,... or )\n = (n'rr/a)2 .
a 2 nrx a :
Hence the eigenfunctions are sin nmx/a . Since f sin = dx = > the normalized
0]
eigenfunctions are /S: sin EIX - d)n .
d2G i 4
We now wish to solve — + AG = -8(x-x"). According to Method I we let
2 . nmx . . . . .
G = Z an 7 sin == . By substituting in the equation for G we find
...l . )

v n2_"2 2 nnx 2
) a (\- =) /= sin —= = =8(x-x') . We now multiply both sides by =
n=1 B a2 a a a

sin m%x ‘and infegrate from O to a and obtain

22 a
mT _ 2 Vs, ITX - _ /z . mmx'
am(k— 5 ) = —/;f §(x-x")sin L & = sin =
a 0]
2 . nmx /2 _. nmx'
2 JasinTy Ja s
Thus G(x, x') = =7 (3.11a)
2 2,2
: n=1 A-nmn /a

We may also use Method IT. We let ¢, = sin /A x and ¢2 = sin VA(a-x) .
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Note that ¢l and ¢2 are linearly independent and satisfy the boundary
conditions at x = 0, &, respectively. The Wronskian determinant wix') =
¢l(x')¢é(x') - ¢i(x')¢2(x') = (sin /A x')[-/A cos /A (a-x')] - /A cos /% x!'
sin /A(a-x') = =/A sin /A a . From (3.10) we get

sin /K.x< sin /X(a—x>)
G(x, x') = (3.11b)

/X sin /A a

Note that sin VA a = O whenever A = (n-n/a.)2 so that this second solution for

G does have the poles at A = n2n2 a2 that are éhown explicitly in the first

solution. A Fourier series expansion of the second solution would yield the first
— T )

solution.
W__—

3.3 Solution of Boundary Value Problems
Let it be required to find a solution to the equation
d ay
= =L 4 + = - .
=Pt (@t ro)p = -£(x) . (3.12)
with either v, %% , or P + K'%% specified at x =0, a . In (3.12) f(x) is
a distributed forcing function. Let G{x, x') be a Green's function that is a

solution of

d aG
2. p—=+ + = =8 (x-x' .
P o (g + \o)G (x-x') ‘(3 13)
We now replace x by x' for convenience, multiply the equation for ¢ by G ,

the equation for G by ﬂ/, subtract and integrate to obtain

a. \' :
[Totx', x) & plx) BED gy & pa) B, (e, x)ax
| ,
a a
= [ - £(x")G(x", x)dx'+ [ p(x')s(x"~ x)dx'
0 0

since the terms involving the factor q + Ao cancel.
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After an integration by parts we obtain

a
pi(x) = [ G(x', x)f(x")ax'+ [G(x', x)p(x' )—MX—

0
aG
-W(X' )p(X') ____(_X__,___)_] - (3.1)4)
. o . ey s a¥
If ¥ satisfies one of the following boundary conditions Y =0 , = =0,
ay R
¥ o+ K‘a;} =0, at eachend x =0 or a , and we choose G to satisfy the

same boundary conditions then the boundary terms vanish and the solution for %V

is simply

a .
v(x) = [ a(x', x)f(x")ax’ (3.15)
0 .

This solution is a superposition of the response from each differential element
of force f dx with G being the response of the system due to a point source

of unit strength. It is the ablllty to represent the solution to a linear system

~~~~~ B i g s

driven by an arbitrary forcing function f(x) by a superposition integral such

\rprcomemseo

as (3.15) that makes the theory of Green's functions of great importance in practice.

P e e U W B IR SR e e gt S
~d
Sometimes the boundary conditions on ¢ may be of the form Kiw + K2 di' = K3

(K1 or K2 might be zero and the Ki may be .different at each end). In this
case we choose the boundary conditions on G in such a way that we can evaluate

the boundary terms in (3.1L) in terms of known quantities. If ¢ is given on

the boundary (K2 = 0) we choose G =0 on the boundary, if %ﬁy is given

N} T

\- day

- 4G  _ . .
(Kl = 0) we choose ax' 0 , and finally if Kiw + Ké dx{# is given we choose
KiG + K2 dx' = 0 on the boyndary. We will 1llustrate the last case exp11c1tly.
(3.4 A\
The boundary terms in (1.1L4) may be written as Z{%} LR ACE 1 ity

(s it nE Bl A
SET eRuiL TO hatle

(x >[—<K1zp vk, ) - %;(Kle + K, dx.)]
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which by virtue of the boundary conditions on ¥ and G Dbecomes the known

Ké a
quantity Ej-p(x')G(x', x) .
2 0]

3.4 Multi-dimensional Green's Functions and Alternative Representations

We have noted that there is more than one representation for a one dimensional
—— )

7 IFouitial W D= fe0ic ¢

Green's function. Also we have noted that the Green's function has poles for

certain values of the separation constant A . These poles are called the spectrum

ey .

of the Green's function.
L it T W P o

for infinite range problems the spectrum is continuous and the Green's function

For finite range problems the spectrum is discrete but

will have branch point singularities instead of poles.

In two and three dimensions there are many different possible representations
for the Green's functions. For this reason we wish to present a unified approach

to multi-dimensional Green's functions.

First we will present a theorem that is useful in constructing two and three

dimensional Green's functions from Green's functions for one dimensional problems.

§i§:§ll. (3‘16)

i— g ! = -
The?rem 1 o3 g G(x, x', A)dx a(x")

where C is a closed contour in the complex A plane that encloses all the

singularities of G(x, x', X) .
= Y (x)v (x')
Proof. Use the form G(x, x', A) = - ———

n=1 A= ln
and Cauchy's theorem to give
® v (x)p (x') w
1 Z ¢ n n _
- = —— A == )y (x)y_(x")
2™ 21 ¢ A-ry n=1 ° n

To complete the proof we show that this equals the right-hand side of (3.16) by
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expanding &(x-x') in terms of a series in the wn . Let &(x=x') = Z Cnxpn(x) .
n=1
a
Multiply both sides by o(x)wm(x) and use (3.3) to obtain Cm = [ 6(x—x')c(x)!bm(x)dx z
) 0

ofx" )y (x') .

Hence
2\
8 (x=x") ot . 517
o) = L gldw (=) (x717)
n=1"
which completes the proof.
a%a
Example. Consider —3 + AG = ~6(x-x') , G=0 at x=0, a .
’ dx .

By using Method II we readily find that

sin /)Tx< sin/x(a—x>)

/A sin /A a

G(Xs x', )\) =

Since G is an even function of /A it has no branch kpoints, its only singularities"

are poles at YAa = nm or A = (mr/a)2 ,n=1,2,3,... . Theorem I gives

1

= - -y !
gﬂngdx 8 (x-x")

= we have sin VA a

where C is the contour shown in Fig. 3.3 . Near An (-E—TL)2

'>\ F.&V\Q sina(/f—/fn+/5\_n)

C _ sin[ (/A - /?Tn)a + nm)

cos nt sin(/A - /)Tn)a

N
Poles aJ[ / + (cos nm) (VA - /)Tn)a

=\ = ‘.’ET)
>\ An'(& A l-kn
= ¢cos nm ——— 3
A+ A

Fig. 3.3

1 2 )‘n
Thus the residue from the term ———————— at the n'th pole is —— =
/X sin /A a T a kncos nm
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= (-1 = The residue expansion of the integral may now readily be found and

® |

is
nmx

. = v 1) 2 gy < sin 2% (a-x_)
503 g Gar= ) (-1) — sin - S

=]

(o4
]
. nmx _. nmx' _. . om
=- ) 2 gin sin =/ since sin = (a—x_)

n=1 &

nwx :
. > : . . . .o
= ~cos nm sin - . The latter series is easily verified to be the

expansion of -8(x-x') in conformity with Theorem I.

We will use the above Theorem to show that multi-dimensional Green's functions
~can be constructed in the form of contour integrals taken over the spectrum of a
product of associated one dimensional Green's functions. The theory will be

developed by means of suitable examples.

Green's Function for Two Dimensional Laplace's Equation

Consider

2
=t
o0x oy

-8 (x-x' )8 (y-y') (3.18)

G=0 at x=0,a 3;y=0,D

Apart from a factor l/eO the function G represents the electric potential

from a 2z directed line charge inside a conducting rectangular tube as shown

in Fig. 3.4 .
Y A 2 2 2 2
Let L =B_2_+3_2_ and L ____8____2_’ L =L2-.

. ax”~ 3y X ox vooay

b °x,Yy
/’f The equation Ly = O separates into two one-dimensional
X i
(/ﬂ/] & equations of the form wax(x) + Axwx =0
Line Charge a/unjg

Fig. 3.4
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and Lywy(y) + Aywy = 0 with Ax+ Ay = 0 provided we assume a solution in

product form i.e. y(x, y) = wx(x)wy(y) . Corresponding to each of the separated

equations there are associated one dimensional Green's function problems of the

form

d2G

Xiac = -8(x-x') , G =0 at x=0, a

2 X X > Tx ’
dx

‘ (3.19)
d2G

+ A G = -§(y-y! G =0 at =0, b

" v = 8Gy') L g y =0,

We will now show that the solution to the original problem (3.18) can be
expressed in terms of the solutions to the simpler one dimensional problems

. (3.19). Specifically we will show that

-1 ,
G(x, x', ¥, ¥'5) = 5p3 g Gelxs x5 A 06 (v, ' »- Ax)dxx
X
= ..__l_. ’ v t
33 2 G x'u= A)G (7, 315 A AN (3.20)
ONLY y

where Cx enclosesﬂthe singularities of GX and excludes those of Gy and
similarly Cy encloses only the singularities of Gy . The formula (3.20)
‘synthesises an appropriate two dimensional Green's function from the associated

one dimensional Green's functions.

To prove (3.20) we only need to show that it is a solution of (3.18).
Clearly G satisfies the correct boundary conditions in view of the conditions

imposed on G_ and G_ at the boundaries. We also have LG = (L + A + L + A )G =
X vy x ‘'x v 'y

1
= - = + A+ L+ ! !
Br] g (LX A Ly Ay)Gk(x, x', AX)Gy(y, ', Ay)dxx

X

_l_ - ! r Y - ' !
- 2TT,j g [ 6(}{ X )Gy(y-9 y H AX} GX(Xa Xy Ax)a(y Yy )]dAX
X
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. + - -x!
upon using (3.19) to replace (LX AX)GX by -8(x-x') and (Ly+ Ay)Gy by

-8(y-y') . Since Cx excludes the singularities of Gy we obtain LG =

2m]

that & = 1 in this problem). In other words the contour integral of Gy is

L ¢ Gx(x, x', Ax)dkx 6(y=y') = -8(x-x")8(y-y') upon using Theorem I, (note
C

zero because no singularities are enclosed by virtue of the manner in which Cx
was chosen. A similar proof holds if we use the form involving integration

around the contour Cy in (3.20) .

We will now illustrate the above procedure by constructing G directly

and then show that the same solution is obtained from using (3.20) and solutions

to (3.19).
d2G,
The normalized eigenfunctions of the equation X 4 Aka = 0 which vanish
dx
5 2
at x =0, a , are //E-sin 2££ a0 =1,2,..., Ax = (EE . These form a complete

set so we may assume that
v 2 . nmx
Glx, x', ¥y, y') = } a (y)e (x) , ¢ = /% sin ==
. n=1 &
When we substitute into the equation for G , i.e. into (3.18), we obtain
2
e an(y) nn)2

Pl 5 - & én(y)]Qn(X) = -6 (x-x")8(y-y")
n=1 dy

We now multiply both sides by Qm(x) and integrate to get

d2a
_m _ mme  _ ' o
5 (a)am o (x")8(y-y')
dy

since the functions @n are orthogonal. We can readily solve this equation

for am(y) according to the Method II given earlier. We find that
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! Vaimg BT s BT e
® (x')sinh — V. sinh S (b y>)

a (y) =
o BT sinh mrb
a a
upon choosing @l = sinh E%X s @2 = sinh %E-(b—y) . Our solution for G is thus
1
o sin 2 gin 2 5inn 20y sinh 2T (b-y.)
2 8 a a < a >
¢ = Z ;17 nrb (3.21)
n=1 sinh =

We could equally well have made the first expansion with respect to y and

we would then have found that

]
o sin 2 sin A sinh 2T ¥ sinh 2T (a-x )
_ 2 b b b < b > /
G = = (3.22)
nm . . nma
n=1 sinh >

We can find yet another form for G by assuming that it can be expanded as

a double Fourier series. Thus let

o] (o]
G= ] ] C_ sin 2 ginp TX
m a b

n=1 m=1

If we substitute this solution into (3.18) we obtain

- T L e lEDZ 4 E5)lsin B gip B o g (ex)s(yy")
n=l m=1

The coefficient Cnm may be found by multiplying both sides by sin E-;—T‘E-sin E%X

and integrating over x and y . The final result is
' |
o ® sin 212 gin A gip B gin T ; N
G = z z ' a a b b 33.243]
= ab 2. 2 N
n=l m=l ELy 4 (ET
a b

We will now show how the different solutions (3.21) - (3.23) are all contained
in the general formulation (3.20). We first need the solutions to the one dimensional

Green's function problems given in (3.19). By using Method II these are readily
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found in the following forms:

sin VA _ x_ sin Vx (a-x))
G, = X _? (3.24a)
/A sin /A a ‘
x x

sin V/A_ y_ sin /A (b-y_)
g = ——_I5 e (3.24b)
¥ YA sin /A_ b
‘ y y

We note that Gk(x, x', Ax) has poles at A _ = (21- »n=1,2,... and that

2
-{(nm/b) . Thus

1 - 3 — ; -
Gy(y, y', XX) has poles when sinv- A, D=0 orat A

we choose the contour C_ as shown in Fig. 3.5 . According to (3.20) we now
have
C N
x G=- 353 ¢ GX(AX)GY(-Ax)dxX

: C
b'd
—-.——-—'_.—'___
w . .t s s .
. The residue expansion of this integral in

Po\es‘ of Poles of
Gy 6 ()

terms of the residues at the poles of Gk(lx)

gives the following solution for G :

Fig.3.5 The Proper Contour CX

o gin 2 x sin 2L (a=x_) sin j nt sin j EIT--(b )
T X, = N J o 33 s

G=- . 07 a . nmb
n=1 =— —=— c¢cos nm sin j —
a 2 a

1

. nmx . nmTx . nmw . nm
® P2gin —— sin —— s —_— sinh — (b~
) = n = inh 2= ¥, 5 (b-v,)
- . . nTb
n=1 nmT sinh =

which is the same as (3.21) .

+The residues may be found by evaluating the derivative of the denominator
with respect to Ax at the poles.
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The contour CX may be deformed into the contour Cy as shown in Fig. 3.6 .

If this is done the integral may be

/,’/ evaluated in terms of the residues
: / at the poles of G (-~A ) which occur
C / 'S C v x
J / oC £ — /b)2 Thi aluati
S /(,__._.4$ o a Xx = —(nmw . 1s evaluation
f‘—"‘*“"“““— would give the same solution as (3.22) .
o
\\~\\J If we construct the solution for
~N
\\\\ : Gy according to Method I we would

obtain (see Egq. 3.1la)

Fig. 3.6 Deformation of Contour

C into C
b'e v :
ol sin m_gy_ sin E%l
Gy(Y5 y's A ) = - Z 2 (3-25)
¥ m=1 Ay - (mm/p)

If we use (3.24a) for Gk and (3.25) for Gy in the formula (3.20) we would
obtain the Green's function solution given by (3.23) provided that we integrate
around a contour CX enclosing the singularities of Gx(x, x', AX) . We leave

the details as exercise 3.L4 to be carried out by the reader.

3.5 Green's Function for Line Source in a Rectangular Waveguide

Figure 3.7 shows a uniform current filament directed along y , at x', z',

in a rectangular waveguide. The current has a time dependence e‘mt and is

not a function of y . This current source will excite TEno modes only. The

vector potential is a solution of

(.?2_.;. _33__ + k2)¢ = -y I 6(x—x')6(z z') (3.26)
8x2 8z2 © c8 '
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> X > 5
Fig. 3.7 A .Line Source in a Rectangular Waveguide

with p=0 at x=0,a and ¥ representing outward propagating waves at- ]zl

approaching infinity. If we solve the following Green's function problem

32 32 2
(= + S— + k)G = -8(x—x")6(z-2") (3.27)
2 2 o)
ax 3z .
G=0,x=0, a
then ¢ = u I (Gand E = -jwu I G . In (3.26) and (3.27) k2 = wzu g = m2/c2 .
. og y o'g o} "0 O
| 32 3% 2
Consider now the homogeneous equation (--—2 + ) + k)G =0 . If we assume
: ox 9z °
G(x, x', z, z') = Gx(x, x')GZ(z, z') we obtain
2 2
3G 3°G
l—-—-}--l-l'- z'+k2=0 so we must have
G 2 G 2 o
X 0ox bA 34
5%G 3%
—X4+2rc¢ =0 , Z4 G =0
X X 2 Z z
ax dz
and '
_ .2
A+ A =k (3.28)
x Z o

From these we can identify the associated one dimensional Green's function problems

to be
B.EGX
2 + A6 = -8(x-x") (3.29a)
G =a,x=0,28
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32G

az; +A6 = -8(z-z") (3.29p)

GZ is outward propagating wave as [zl > @,

We may readily solve (3.29a) by Method I or II. If we use Method I we

obtain (see 3.1la)

nrx'

. nmnx .
sin T sSin

_y 2
n= a N n2ﬂ2/a2
X

Since. the range in z is infinite we use Fourier transforms to solve (3.29b).

We will define G (B) to be the transform of . Gz(z) , i.e.

Fouteniadl, |7 AT £ S IR s e e
STRIGTLY, O1uE Sy /,ﬁ % / LW@i/:Jfﬁmw ;
L THIS 2o a = Bz AT 1T e PR
,Ef:fzcézﬁ— e vgvey uﬂrf// G (8) = fGZ(Z)eJ dz e (3.30a)
v..g)\.gg 1 AH;, L—/’F -0
Then
1 @ s ‘
6 () =1 J& (8)e™9P% ap (3.30b)
Z T o2 5
3 Gz
If we take the Fourier transform of (3.29b) and note that the transform of 5
9z

is —Bgéz (obtained through two integrations by parts) we find that

) I8z _ oI B2
Z 2"
A= 87 (B=VX,)(B+AA))

We wish to consider AZ as a complex variable and so we will arbitrarily choose
that branch of the two valued function VAZ» which has Imag.VAZ < 0. In the

complex B plane éz then has two poles located as shown in Fig. 3.8 . The

solution for G, is given by

we-JB(z—Z') a

[

G ==
! (8=/X_) (8+/3 )
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-jB(z=z")

When z > z' the factor e becomes exponentially small (we write B8

as PB'+jB") in the lower half plane (proportional to e

Hence we can close the
o 1

RL

\

" !
B"(z-z') Litn g < o0) .

contour by a semi-circle of infinite radius in the lower

half plane and eveluate the integral in

T - C -F or terms of the residue at the pole at B = VA_ .
- o ) 5( / Z
‘ *ﬁ} 5 For =z < z' we can close the contour in
: § the upper half plane and evaluate the

z x .
. 3 3,P’ integral in terms of the residue at -/A .
) x .
B - Note that there is no contribution to the
3 VX ¥

5 4 integral from the semi-circles and that a

. # C for
— — negative sign enters when the contour is

273’

traversed in a clockwise sense. We are

Fig. 3.8 Pole Locations in the

Complex B Plane. thus led to the following solution for GZ :
-3/x (z-z'")
- ——g—-e z s, z > 2!
2VAZ :
¢, = o 3 (22
- ——fE: e z s, Z < z'
2vA
Z

which may be also expressed as

-j/x—]z—z'|
G = _—J—e z , all =z (3'31)
2 /%

Note that with Imag./i; < 0 chosen as the branch of the function VAZ that GZ

will tend toward zero as !zl + « for complex AZ . Also note that Gz does

not have any poles but

instead has a branch point at AZ =0 . If we wish to

always remain on the branch for which »/K% has a negative imaginary part then

the angle of AZ in the complex plane must be restricted to -2r to O . This
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may be accomplished by placing a branch line (or cut) along the positive real
axis but an infinitesimal distance above it as shown in Fig. 3.9 . This forces
us to measure the angle of AZ from the positive real axis in a clockwise or
negative sense and hence restricts the angle to the range O to -2m . The
spectrum of GZ is the continuous range of values of Az along the branch cut
(singular line, which if crossed changes the sign of /S;) . This is in accord
with our earlier statement that for infinite range problems the Green's function

has a continuous spectrum.

C omP\ex 7\5 Plane

R yranch Po‘m‘} anclq cmL

> - 1

a/’/ﬁ\/)q

\ ngle of 7\5 i 'negaJrh/e
J

Fig. 3.9 Branch Cut for Gz(z, z', Xz)

We now apply (3.20) to obtain G in the form

1 2
' 1y = _ = ' ' -
G(x, x', z, z') B3 g G, (x, x', A )6 (2, 2", k. - A )ar_
* (3.32)
= -2 6 e (x, x', k2 - A )G (z, 2', A_)dA
onj A ? > 7o z' 7z > Tzl g
Z

Note that when we integrate over Ax that we use the condition (3.28) to express

AZ in terms of Ax and vice versa. In the Ax plane the poles of Gk are at

Ax = (n'rr/a)2 and the branch line for Gz becomes the line along which

2 .
Imag. kg - Ax = 0 . This is the line extending from Ax = ko (branch point)

along the negative axis. The contour Cx is chosen to enclose the poles but

not the branch point at ki as shown in Fig. 3.10a . On the other hand if we
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choose to integrate over Az then the contour Cz is chosen to enclose the

branch cut for Gz but such that the poles of GX s Which now occur when

2 _ 2
kO - Az = (nr/a) or lz

ks - (mr/a.)2 » are excluded (Fig. 3.10b) . If only

the TElO mode propagates then k> m/a  but k< nr/a for n > 1 .

o

\ )\5 Plane
koz"(%n)z k:— (3)2 Pole
2 ' Pol C

KT:(%gF) FOIeS' :222‘ 3

A
k2 +o - o0 >
0 / Br. Pt k? B Lut Oto oo

(a) ()

L A, Plane

Cx

Fig. 3.10 Proper Choice of the Contours CX and CZ

Either of the two prescriptions given by (3.32) may be used for determining

G . If we use the first one then the integral may be evaluated in tefms of the

residues at the poles. We have

—j¢£§-kx z-z" | - . nmx _. nmx'
e

sSin sSin

G=w— @ ¥ 2 2 ax
2mJ c 5 n=l1 A - (n'rr/a)2 X
x avk - A x
o X
1 v 1 nmTx nnx! _Pn,Z-Z',
=1y Loggpmme g, mm (3.33)

a a

n=1l 'n

- /@2 _ 2
where Pn =V (=) - k~ and Imag. r >o0.
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If ko < 31- for n > 1 then the solution consists of the propagating dominant
mode for which Fl = jv’kg - 1r2/a2 plus an infinite number of evanescent or
non-propagating TEno modes. These modes exist on both sides of the source

point at z' . If x' = a/2 then only the modes for n=1, 3, 5, ... etc.

are excited.

If the prescription involving the contour CZ in (3.32) is used then the
solution is expressed simply as a branch cut integral which may be interpreted
as a continuous sum (integral) over the continuous spectrum of Gz in place

of the sum over the discrete spectrum of GX as exhibited in (3.33) .

We could have equally well chosen the branch Imag./kz > 0 and would have
arrived at the same solution. The reader may find it of interest to make this

choice and to show that (3.33) is still obtained for the final result.

The branch point singularity and the considerations that enter into the

choice of branch cut is discussed more completely in Appendix A of this chapter.

3.6 Three Dimensional Green's Functions

The theory presented in the previous sections may be applied to three
dimensional problems also. We will illustrate the case of the scalar Helmholtz

equation in rectangular coordinates. We have

(V24 ki)G = =8 (x-x")8 (y-y' )8 (z-2") (3.34)
The equatiog (V2+ kg)w = 0 separates into three one dimensional equations of
Y _ © 9 ‘ ang '
the form +A¢ =0,—L+2ry =0, +A ¢y =0 with
2 XX 2 vy 2 zZ' Z
ox oy 9z
AL +A_+A =k° : (3.35)
x y z o) ,

Consequently the associated one dimensional Green's function problems are
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2

d Gx
+ A G = ~8(x-x")
dx2 X X
'dQG
+ 2.6 = -8(y-y')
dy° vy
d2Gz
- —c !
5+ AZGZ 5(z-z')
dz

along with appropriate boundary conditions.

(3.36a)

(3.36b)

(3.36¢c)

When (3.36a) - (3.36c) have been solved then the solution to (3.34) is

given by
_l 2
1 1 1Y = (—
G(X’ Ya Z’ X b y b Z ) (21Tj) g g Gx(kx
X 2
2 12 :
Gz(ko - A - Ay)dxxdxy = (553) 2 g Gk(lx)
X Z

G (k2 - A = A )G (x )ax ax
y o X z° z2 Z X 2z

2

= ¢ ¢

em’ o ¢
y "z

Note that there is an integration over two of the Ai

2
Gx(ko - Ay - Az)Gy(Ay)Gz(xz)dAydxz

)6, (Ay)

(3.37)

and that the third X is

expressed in terms of the two being integrated over by means of the condition

(3.35) on the separation constants. The contours Cy

of the Gi with 1i=x, %, z .
2 2 2
(Prx2)e = (B +a @5+ G5+ x
- 7o 2 X 2 ¥y 2
ox oy 9z
1,2 | 2
- —- - ST |
Gy g g [ Gy(ky)Gz(ko A Ay)é(x x')
x 7y

~G, (0, )6, (k-2 -2 )8 (y-3" )-6, (A, )&, (A )s(

enclose only the singularities

The proof is readily developed by noting that

2

- A=A
o = A ApE

— ! -
Z~7 )]dAdiy
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The integral around CX of the first term vanishes while the integral around
C.. of the second term vanishes because no singularities of GZ are included.
The integral of the third term gives =8(x-x')8(y-y')8(z-z') by application

of Theorem 1 twice.

The above technique is applicable in other coordinate systems also. Some

applications are given in the papers by Marcuvitz and Felsen cited at the end

of this chapter.
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APPENDIX A

In this section we will discuss the nature of the branch point singularity
The Green's function of interest is

nmx . nmx'
sin "
dx

that occurs in Sec. 3.5 in greater deal.
sin
a
2 X

given by (3.33) as
-5 Ao |z |

G:..—]—'-:-¢ Jd €
21 o >
X avk - A
o} b 4

where CX is to be chosen as a closed contour that encloses the poles of GX at

AX = (nw/a)2 , n=1,2,... and excludes the singularities of GZ .  The function
Vke -~ A which are
o) x

)
n=1 AX - (nn/a)

= ki because of the factors

has branch point at Ax

G
z
present.
To test if a point is a branch point we consider how /ki - A varies on a
circle centered on ki . If when we make one revolution around kO the function
FA
V’ki - AX does not return to its original value then ko is a branch point.
With reference to Fig. 1 we note that ki - A is the directed line segment shown.
é}»': L " < N
s"wfﬁm
ﬁf
/
g
". BY' P-‘.g ;?A:“:’?
LA Ci m\ e a{ o0

Fig. 2
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When Ax is on the real axis and to the left of kg the phase angle of kg - A

b'd
is zero. As we move Ax clockwise on a circle about ks the phase angle of
ki - Ax becomes negative. After one revolution ki - Xx =p eJe becomes p e_gnJ

and ki - AX becomes v%g-e_ﬂJ = -/p . Thus ki - Ax does not return to its

original value /E and hence kg is a branch point. The contour Cx can be
any closed contour that encloses the poles of Gx and excludes the branch point
k2 . It may be chosen as in Fig. 2 if so desired. The contour Cx may be
distorted in any arbitrary way, as long as it is not moved across a singular point

A

or pole, without changing the value of the integral. Thus the contours shown in

Fig. 3 are fully equivalent to that in Fig. 2 .

Fig. 3

If we are not going to perform the integration directly but will evaluate
the integral in terms of the residues at the enclosed poles the choice of contour

at this stage in the analysis is immaterial.

We now consider the possibility of evaluating the integral direcfly. The
contour shown in Fig. 2 would then be a useful one if it should turn out that the
contribution to the integral over the circle at infinity was zero. We would then
onlylneed to consider the integral along the two radial lines from the branch point

to infinity and along the small circle about the branch point. The integral over
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—jvkz—l [z=-2"]
o o 'x

the circle at infinity will vanish provided the factor becomes\

axponentially small at infinity. This will be the case if Imag fki—l is
—ijg—Ax[z-z'l

negative, say Vki—kx = -jg+a , B >0, for then e will decay

- —r !
like e B’Z z ! . To ensure that Imag. ka—lx < 0 we must restrict the phase

(

angle of V ki—kx to the range -2r to O for all points on the circle at
infinity. This requires that we choose the contour shown in Fig. 4 as reference
to Fig. 1 and the earlier discussion shows. Thus we imagine that we have placed
a barrier or branch cut running from the branch point at ki out to infinity

along the negative real axis. The Greens function may then be evaluated as an

e
o~

e, Cly cle at A

MY

Bv. Cut
ROZ to — o0

T (a) (v)

Fig. 4

integral along the contour shown in Fig. kb . If we change to the variable kz =
ks—kx then this becomes the contour shown in Fig. 3.10b . If the branch cut was
chosen differently the integral over the circle at infinity would not vanish and
since CZ in (3.32) must be a closed contour, and it can not be closed across the
“branch cut, the resultant contour of integration, CZ , would include the circle at

infinity. Thus it is only by a proper choice of branch cut that CZ can be chosen

as in Fig. 3.10b .
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APPENDIX B

NON-SELF ADJOINT SYSTEM

Let L denote a differential operator and consider the equation
Ly + o = £(x) ' (1)

The variable is x where O < x < a . The domain D of the operator L is
the domain of functions ¢ that satisfy certain continuity conditions and

specified boundary conditions. We can define an inner product in more than one

way - for example

a
<¢ 5, v>=[ ¢(x)w(x)ax (2a)
0
or
a
<¢,v>=f ¢(x)p(x)o{x)ax (2b)
0
or ‘
a *
<¢ ,v>= [ ¢(x)¥ (x)dx (2¢)
0

etc. The definition (2c) is used in quantum mechanics (Hilbert space) while (2b)

is used if Eq. (1) has the function o as a factor with A .

Once the inner product has been defined the adjoint operator La is defined
to be that operator which satisfies
<¢, Ly>=<Lo, 9> (3)
If L= La and the domain Da of La coincides with the domain D of L then
L is called 'a self-adjoint operator. Sometimes 0 and Da differ even though
L= La and in this case L is only formally self-adjoint. In practice La is
determined by integration by parts to transfer differentiations on ¢ to

differentiations on ¢ .
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Example
2
d . d
——}22"')‘\!): >¢+J§=O,X=O,a,
ax 2
Y may be expressed in terms of the eigenfunctions of g;%-+ Ay = 0. It is
dx
easily verified that wn = sin nzx -3 n:x cos n:x . If we choose (2a) for the
inner product then
a
é b ¥ dx =0, n Fm .

The domain of L is the domaln of functions which satisfy ¢ + J dw =0 at

x =0, a.

With (2a) as the inner product we have

a .2 a a
<o, Ly>=fo o=ty 2,
0

' 0 dx 0
a .2
_(¢__£ _.i.lp) +Iw%u=<La¢’w>
0 0 &

The integrated terms vanish if ¢ + J Zi O at x =0, a . Hence La = L, since

D= Da also, the operator is self-adjoint.

However, if we choose (2c) as the inner product then
* a a 2

d d * ¥ 4

<o, Ly>= (oD T 4y T A gy

dx dx 0 0 2

&

The boundary terms can be written as

*
[(¢ - ] ‘2') gﬁ?' (u - j ) d¢ ] and vanish if ¢ - -Q-— 0
0

at x =0, a . In this case La = [ but Da # D so the operator is not self-
adjoint. Note that the adjointness properties of an operator is dependent on the
choice of inner product. When an operator is not self-adjoint the eigenfunctions

aré not orthogonal with respect to the inner product used.
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a

With the scalar product (2a) L was self-adjoint and f wnwngx =0, n#m.
0

a
*
With the scalar product (2¢) L is not self-adjoint and this implies f wnwmdx #0
0
for n#m . In a non-self adjoint system the appropriate orthogonality principle

is instead a *
[ ¢, ax=0,n#mn. (3)
0

We may show this as follows: Let ¢n’ un be the eigenfunctions and eigenvalues

of La , then La¢n+ un¢n =0 . Since me+ Am¢m = 0 also we have < ¢n, me > =

*
- = < > = o < > i 3
Xm < ¢na wm > La¢n’ wm M ¢n’ wm if (2c¢) is used for the scalar

- * *
N . ’ > =
product (if (2a) is used replace Am by Am) . If Am # M then < ¢n, wm 0.

The eigenvalues of the adjoint operator are related to those of the original

operator. We have < (La+ un)¢n, ¢ >=0 forall ¢ in D . But this also

* *
equals < La¢n’ y >+ Mo o< ¢n9 > =<9, Ly > + < ¢n’ H Y > = <¢ns(L+un)¢ >=0.
% * ‘
Since ¢n is not zero (L+un)w =0 so B is an eigenvalue of L when (2¢)
is used for the scalar product. When (2a) is used then Hy is an eigenvalue

*
of both La and L . With proper indexing mo= A (or W, = An) .

*
In our example if we use (2¢) for the inner product then ¢n = wn and the
a

*
orthogonality relation is < wn’ ¢m >=0,n#m. But this equals f wn¢mdx =
0

a
/ Y b dx =0 in agreement with the results obtained if (2a) is used for the

0
inner product.

a : .
For the Sturm~Liouville equation we choose L = %-%;-p = +‘§' so the equation

becomes Ly + AP =-§ . We now use (2b) for the inner product. For < ¢, L ¢ >we
get
# 14 _day . g dy d¢-* 2 14 _dd .4
— 3 — —_—— + .
£6¢[cdxpdx+ow]dx [p¢ 3 Pwdx}o+£cw[odxpdx o $1ax

upon integrating by parts twice. If Klw + Kgdw/dx = 0 on the boundary then the

integrated terms vanish if -K1¢ + K2i¢/dx = 0 on the boundary. Hence L = La and

D= Da so the Sturm-Liouville equation is self-adjoint.
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Most people, outside the field of quantum mechanics, use (2a) for the inner
product. We can use this for the Sturm-Liouville equation also if we choose

4 .4 + q as the 6perator L . The orthogonality condition is then expressed

ax P ax
as < ¢n’ c¢m > =0, n#m. In the next section on Green's function we will

follow this convention.

Green's Function

Consider. the Green's function for a self-adjoint system with
LG(x, x') + AG = =8(x-x") ; (&)

We then have < G(x, xi) » LG(x, xé) > - < G(x, xé), LG(x, xi) >
+ 1 < G(x, x1)s Gx, x1) > = A < G(x, x5)s G(x, x7) >
= - < G(x, xi), G(X—Xé) > + < G(x, xé), G(X—Xi) >

But < G(x,xi), LG(x, xé) > = < LG(x, xi), G(x, xé) > for a self-adjoint system

so the‘left hand side vanishes. Thus < G(x, xi), G(X—Xé) > = < G(x, xé), 6(X—Xi) >
or G(xé, xi) = G(xi, xé) ' (5)
i.e. the Greens's function is symmetrical in xi, xé .
 For a non-self adjoint system we consider (4) along with
LaGa(x’ x') + G, = -8(x-x") (6)
We can now write < G(x, xi), LaGa(X’ xé) >+ A <G, G, > =< Gé(x, Xé), La(x, Xi) >

- A< Ga’ G > = - < G6(x, xi), 5(X—Xé) >+ < Ga(x, xé), S(X-xi) >=0

<G, Lg>.

since <G, LG >=<1G, G >
aa 2 Ta a

Hence
' 1y = ' '
G(xe, xl) Ga(xl, x2) ; (1)
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For a non-self adjoint system the Green's function is not symmetrie.

Consider now a linear system
Ly +xyp =7 , (8)
If we solve (4) and make G satisfy the same boundary conditions as ¢ does then

by superposition the solution for ¢ is

' a
¥(x) = - G(x, x'")f(x')ax’ (9)
0

since G(x, x') is the field at x due to a unit source at x' . From (7) we

see that this solution can also be written as

a,
v(x) = =[ 6 (x', x)f(x')ax’ | ; (10)
0 4

If wn,kn are the eigenfunctions and eigenvalues of L , and ¢n, An , those

of L , then
a
wn(x)¢n<x')

G(x, x') = - Z ) (11a)
n n
e (x')o_(x)
v (x')¢ ‘
Ga(x, x') = - g —n-—;\c-—_-%jc—- (11v)
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PROBLEMS
3.1 Make a Fourier series expansion of (3.11b) in terms of the eigenfunctions
2 . nmux s .
o sin == and show that the result (3.1la) is obtained.

2
3.2 Consider the equation é—%-+ Ay = O with boundary conditions ¢ + g%i =0
dx
at x=0 and ¥ =0 at x =a . Show that the eigenvalues are determined by
the transcendental equation tan VX a = 2/A and that the eigenfunctions

(unnormalized) are sin/igx - 2/?; cos/igx , with A, the n'th eigenvalue.

3.3 Consider the lossless transmission line circuit illustrated in the Figure.
The line has inductance L and capacitance C per meter. At the end z = a
-the liné is terminated in a reactance jX while at z =0 it is short-circuited.

At z = z' the line is excited by a time harmonic current generator with output

I ert . Because of the current source at z' the current on the line undergoes
9T

a step change of amount I_ at z' as shown in the Figure. Consequently 52

has a delta function change IgG(z—z') at z' . The voltage is continuous at

z' but its slope, proportional to I , has a step change as shown. The equations

LA -jwLI , . -JwCV + Ich(z-z') . Show that

describing the line are 52 Py

QE%,+ w2LCV = =jwL Igé(z—z') . Find two solutions for V (Methods T and II) .

)4
_ _ = s - _ X 3V X 3V _
Note that at 2z =0, V=0 andat z=a ,V=jXI=- oL 5z °F V+ D 3z 0 -

Note that the poles determine the resonant frequencies.
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V@)
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5+€p

~3

Clw;ge
Tn &V,
/i3

él

3

3.4 Use (3.24a) and (3.25) in (3.20) and integrate around a contour Cx enclosing

-the poles of Gk and show that the solution (3.23) is obtained for G .

3.5 Consider an infinitely long transmission line excited by a current source

I ej wt
g

at z' . Solve

Y4 k% =
(e]

dz2

-Jwk Iga(z—z') by means of a Fourier

transform. Hint: assume that there is a small shunt conductance so that ki =

w2LC(l - JG/wC) and ko
the reél axis.

lower half plane and for

Note that for

1o 23!
ko Jko .
z > z'

z < z!

This will displace the poles away from

the inversion contour can be closed in the

it can be closed in the upper half plane.

the inverse transform can be evaluated in terms of residues.

Thus
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3.6 Consider an axial line source inside a rectanguiar pipe as shown. Find the

Green's function which satisfies: ‘é 4‘
2 2 ¢
3 G . !
é—% + — = -8 (x=x")8(y-y") b (/i"*‘ ®* X,y
ox ay Line Seurce
G = 0 on boundary, Q =<

in terms of a double Fourier series of eigenfunctions for the equation
2 2 ,
(____3 + 24 o =0, ¢ =0 on boundary
2 2 nm’ ‘nm > "nm '
X kN
3.7 Find G for Problem 3.6 in terms of an eigenfu_nction expansion along x
but as a closed form in the y variable, i.e., in the form

G = Z f (y) sinm
n a
n=]1

3.8 Find the Green's function for Problem3.6 in terms of a contour integral of

GX(AX)Gy(Ay) where

32Gx
5x° t G = -80ext)
2%g
3y° * AyG'y = -8(r-y")

Verify your result with that obtained in Problems 3.6 and 3.7 .

3.9 Determine the Green's function of the first kind (G =0 at r =a) for
Poisson's equation for a line source parallel and outside a conducting cylinder
of radius a . Source is at r' > a . Use (a) method of images, (b) expansion

in a suitable set of eigenfunctions.



Chapter &

- Two Dimensional Scattering and Diffraction -

Electrmagtyeﬂé .scattering and diffraction invelving flelds and 'obstacie cross
sections that are independent of one coordinate, say z , can be 'anﬁixiate# as scalar
prabléms.; For three dimensional problems the vector nature of the f feld must be taken

- into account and this compl icates the analys&s.

In this chapter we will consider a rapresentat%ve number of two dimensional scatterinc
and diffraction prob!ems such as scattering by a conducting c.yt mder, diffraction of a
plane w_ave by a ha}f plane, radiation from a pair of parallel p_!ates exclted by a TEM
wave; aﬁd some problems related to surféce waves. " In the course §f the analysi $ a number
of matkémtt’ca! ‘techniques .such as Fourler transforms in the éémpvlex plane, Wiener-Hopf
method, and the: nethod of Steepest Descent (Saddle Point method) for the asymptotic

evaluation of lntegra!s, wlll be introduced.

”er“a'-ﬁBn'F_—_—ﬁ'wae Som’(E ,
Consider an inﬂn!te line source dtrected in the z. directlon and giVen by S(X)S(y)

= 5("er . The Green s function satisf;es '

(v +ko )G~’-—§(x)5<g>-— "é;ﬁ—-’% o)

The mmaiizatiou factor 21rr S s needed to make the source strength equal to unity, i.e.
2w o r
f [ Al ) 8% de d_Y' = |
o o 21\')“
If the source isa unit current source then the vector potem:tal is given by A = /os

and the eiec»tr!c field by E = -ijz = -ju}(OG . Er = 59 =0. l.n_cynndr!cal coordinates

we have -::;—r = +k G = - i;ﬁ . For r#0,6 saltféf'iés .Bessei.*,‘s equation

and the two Independent solutions are " T (R and Y(/ﬁi‘). As Y ->00 we have

T’“"Vn'k olhr-g ))‘ Vrlerﬁ’”‘(k"” /"r)

If the solution is to be an outgomg wave at infinity we must choose G C(T -J )""(//

‘where }/ (/? )") Is the Hankel function of the second kind and order zero. Thus as )“‘9"0 .
-jkF
G"‘C J *51‘ The boundary comiition on & at inf!nlt‘y may be stated as
r
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Y‘m ( ¢ rjk,6) =0 | )

which is the Scamerfeid radiation condition and is equivalent to stat!ng that G nust be
an outward propagating wave at infimty. The constant C must be»found so that G “%as
the proper singu!arity at r=0, For 'réo . 3:,(3?0}’)"’} and \{,'(kof) jtﬂ,},, ,%&f'
Hence G ->-( ‘?:jn ¥ as r-» o . ~We have VzG 2 VG‘ éad consequently

G s(r)
L J WG-TJOdH-k f fcrdedr—'—f f "ded’" =1
in the hmit as a—>0, f G}‘d¢9df=05° 2"f V-VG' rdedr = -}
By using the two dimens iona! form of the div%rgence theorem we get
| G - (*T 26
ff$V=VGdSv~ §Cahd£ 5 e 26
where C is the circle bounding the area S . Buton €, l’ag; " {s constant and hence
21\'?96: --} mtegr‘a‘iing glves 6 = -,2_‘:%}"&' F. By compaiing ‘__t:h!s‘ result with our solutioh
shews that [ ="3/f} s thus S |
_G-:—;‘} H, (Ror) SN (5.3)
. The argdmgnt of -'Hg is kor ‘whére r -Is. the radlal distance avay from the line source.

Thus if the Tine source is located at ' . and the fleld point at T the Green's function

ey g Lk P W k)
s!m:e R - !r-r'l ts the distance ffcm the source point to the f!eld point.
it mli be mstruct!ve to solve the prob!em in rectangu!ar coordfnates also since this
will Iead to an integral representation fer Hztk r) and also pemlt the asymptotic form of
3 for !arge k r to be found. The analysis is facihtated H’ we: assume a small loss !n
the medium, e.g. €= €, Jéo” » SO thau(’ A’ _//f’ “ with /(’ <’<£ . At the end of the

analys!s we can set kg =0, Our baslc equation Is

2 . —
?‘:’x(i 932. + k" = S (=) S(?)
Let ZJ‘ |
| ;4‘5’(@'3/)~ f € ("f)‘/“ (4.5)
» kX
which is the Fourier transform of G with respect o x . Since G>e as-_ g

b']'X"‘* 0 , y finite, the Integral converges unlformty in the strip -k" £ lmag. w< k"

2
~ The Fourier transform of the differential equatiob yields 5y ,9'_{_ (A’ Zd‘z)ﬁ" —-S(y)
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since the terms integrated by parts vanish at !nfinity. For & assume ;;9’1”;“’3 VR4S f %05
,8‘}7 eV&f"—k"" g’y<0,, Continuity at y = 0 gives Ai Az A while the d&sccntmtsity
condition on the first derivative gives 24 ’ % = -]} = -—2,4 /1/'.7_2—

Thus ' L }-&- em)w (4‘5) . :

and T R ‘j«‘d‘?( 1/—'5-7?‘3'

= L darr
G = m[ 2ok o0 (e

where c zs a contaur parailel to the u axis in the strip in which)ﬁ is analytic as

shown in Fig. '&-2. g 'i'he integrand for & is a two-valued funct!on of w because of the

factor w= Ro which occurs. .
v
=k, c
44 . / - ﬂ

Fig. 4-;2 inversion contour for the sreen‘ﬁfﬁﬁéﬂon

We requtre:the?so!utmn to represent mtgoing waves at !nﬂntty and this dictates the

correct bfanch:iof the funct!on te use. wa nmust choose that brencﬁ "for which

the Riemarm surface m the other. These cuts mu

sAince on one sheet Re’[/ zko 0 whﬁe 'lhef,; sheet

2 22 Thus Re YarZhZ

Now w~k==u-v-k‘ K“z-!-ZJuv'-l- '
EEvCH kgzé'o so

2

ven _y' uv = »k' k" for when this holds u™- k'

fié"z) i/ Z e é‘:otzed in Fig. 53,

Is pure 8magtnary. These hyperboi‘
The curves run '_:frcm the branch potnts at *k, and asymptotf‘ , the v axls . As- kg-—%_.ﬁ .
the curves nme ‘in towards the axis as shown by the dashed ' curves tn the ﬂgure. If we |
are on the siaeet of the Riemann surface for which Req/ 1}?2- 0 then we may permit tg,e

point w to move about at will aad as !ong as we do not cross a hmch cut we w?!! aiways
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remair on the same sheet. As soon as a branch cut is crossed we abtam the other branck

of the f‘unctmn, i.e. we pass through the cut unto the other sheei: of the Rizmann surface.

>

Fig. &3 Branch cuts in the w ;itié}:e

I¥ we cross a Cﬁt twlce we will return to our original branch (sheet) On the tdp Sheet,
(whtch ve choose to represent +4} ka ) we have for any w . \:phase w+.4 35! R p‘uase

) 3 el + ' . :
w-ko *5 ‘ where W( 9’ & = pbase k z <- and hence Re 1/ _ —koz . Mong |
the contimtion of the hyperbo!as uv = --k'k" from the branch' potnts and asymptotic to,; ;

in
the u- axis we have imag. w'z—k = 0 . Everywhere e!se,\the cross hatched region shmm

In Fig. 4-’4 we have IVMg /d 2 R" 0)._23 =k > O

Rer?« | v Red 20
Imr“so_k IMFP«"DIJ C

“‘_' ..ml““‘ oy
\\\\\\\ ‘\\ U

| l[]'m' fﬂgﬁz =0 -
‘a\—— Re Vw2 £, ?-':’0 |

Fig. bk

The contour ¢ in the Integral for G must lie in this reglon ia order ta give rise to

outward pro;pa_g’at!ng waves, or attenuated waves.
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Qn 'tha top s’neet of the Riessiam r.aurfaca.wé find thac .fovr x>0 ‘t“@
intngral ovc-::'z:lu. somi-civcle at inf.mi Ty in the loweor balf plana
1';',,“"710 while Tox ‘H"ﬁ the . J.nteg:al over a .;eni.-ci.rcl‘e; in tlw- )
upper Lalf plane vanishas st e Re a\/w’zl?z 70 alx@;y's-. The éon’cour.v
€ can thus ba closed asz ‘{llustrated in :’-‘i.g,4~ 5. Note that since we.
vmust Y‘ema LY on ;.hr. *‘Qo shaet the branch cuts canno® be croswd £C
tha c:ont_om: must be defarmea’ around the cuts. The o;iwinal *ut:ourhl
tan now .,c\ nxnrosaed as a branc.h cut i.ntarral a:.nca *t: vam.f'nm An_ .
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