Mathematical Appendix

1. Delta Function

| For our purposes we will define the Dirac delta function by the operational

properties
§({x-x') =0 , x # x' (1a)
X2
.waxWHxﬁw'=Yu)’xl<X<x2 (1b)
X 0 , x not in Xy~ x2

for any function f(x') which is continious at x'= x . If f(x') =1 we obtain

X
Lz S(x-x")dx' =1 if X <X <X, and zero otherwise.

If we take a Fourier transform of &(x-x') we obtain

. . © -0 -' ‘
Fs(x-x') = [ e ™5 (x-x")dx = e "™ (2)
The inverse transform relation is

[+ <]

g(x-x')

_ 1 ¢ jwx _-jwx!
= Zﬂ-i e e dw

1 jwix=x") | |
-5l =X g o (3)

©

which is a useful operational expression for &(x-x') . An heuristic proof of (3)

H -y} H -y ! .
is based on the following Tlimw %?-_{ Jwlx=x )dw = Tliww %-3L$T£§§T§—) which
can be shown to have the properties expressed by (1b) .

A unit source localized in space-time can be represented by
'++ -
§(x-x")8(y-y' )8 (z-2")s (t-t') = 8(r-r")S(t-t") (k)

where &(r-r') is an abbreviation for the product of the three one dimensional

spatial delta functions. In an orthogonal curvilinear coordinate system u,, U,, Us
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h, we have

with metric coefficients h', hz, 3

6(u]- ui) 6(u2- ué) 6(u3- ué) (5)

s (31

hl h2 h3

Division by the hi is required since the volume element dV = h]h2h3du]du2du3

and we require

3 6(u-u,)
[§(F-F)av' = 1= T ——" h.du, o (6)
v Vo=t N ,
X2

Often we have to evaluate integrals of the form [ 6&[g(x)-p(x')]dx' . Let

ul(x) du'
u' = p(x') and then dp/dx' = dufdx' so we obtain J slg(x)-u']l —F—r =

A , ut(x.) dp/dx

1

]
dp/dx!

- u'=g(x)=p(x") .

ExamEle

Let p(x') = x'2 , g(x) = ax>+ b . Then g(x) = p(x') can be solved for x!'

u'(x,)
2 [
to give x' =V ax2+ b and f 8[g-p]dx' = : provided x' = ax2+ b
u'(x]) 4 ax2+‘b

is within the interval X to Xy « Otherwise the value of the integral is zero.

Reference
The above heuristic use of the delta function can be made rigorous by means
of distribution theory. An excellent reference is A. H. Zemanian 'Distribution

Theory and Transform Analysis', McGraw-Hill Book Co., 1965;
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Fourier Transform in the Complex Domain

Contour Integration

Consider a function f(x, y) = f(£) of the complex variable Z = x + jy .

f is analytic at all points at which it has a unique derivative. This means
f(Z2+A2) - £(2)

that 1im A7 must be independent of the direction of AZ in the
AZ->0 '
. . ' df u Y
complex plane (see Fig. 1) . If we choose AZ = Ax we get 7=t ax

where we have written f = u(x, y) + jvix, y) . If we choose AZ = jAy we get

3y 4
/A
-7 Z
- X
Fig. 1
%;-=.l-§2—+ XN For df/dZ to have a unique value we thus see that
J 9y 3y :
u_dv  du_ v
which are called the Cauchy-Riemann equations. It may be shown that the Cauchy-

Riemann equations are also sufficient to guarantee that f(Z) be analytic.

Cauchy lhtegral Formula
Let f(Z) =u + jv be analytic within and on a closed contour. Then we can

show that § fdZ =0 where C is arbitrary (see Fig. 2) . To show the validity
c .

of ihis result consider a vector R = g*Ax(x, y) + a A (x, y) and use Stokes'
> - Y 3A  3A
law to get § A-d2 = [ V x Rd§ or § (Ad+Ad) =] (—L - —X)dx dy . We have
c S C X X Yy S ax oy

§ fdz =0 (urjv) (dx+jdy) = § (udx-vdy) + ¢ (vdx + udy) . In the first integral
C c : C C .



Fig. 2
= - . . 3 (-v) du
let u=A, v=-A and apply Stokes' law to obtain § (udx-vdy) = [(———= - —=)dxdy =
X Yy c S Ix ay
0 because §§-= - %%- from the Cauchy-Riemann équations; To show that the second

ihtegral vaniShes let v = Ax and u = Ay and apply Stokes' law again.

-

Consider now f(Z) = g(Z)/(Z-ZO)n where g is analytic inside and on C and
Zo is inside C . Consider a modified contour that includes a circle Co around
the singular point Zo as in Fig. 2 . Then within and on C + Co f is analytic

- and hence

¢ fdz=0=¢ fdz +§ fdz

C+C C C
o o

since the integral along the cut is traversed twice in opposite directions and

vanishes. Thus we have

6 fdz = § —3—dz = -§ —I-— 47

7.9 n _: n
c c (Z zo) co (z zo)
jo . |8
- On Co s Z-Zo = pe  , dZ =-jpe” db6 , hence
- ZTrg(Z)jpeJedﬁ
§ fdz = [Lof
c 0 (ped”)

But g is analytic at Z, and we can choose p so small that g(2) N g(Zo) every-

where on Co . Thus
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§ faz = g(z )50 ™" [t - i n (8)

Residue Theory

Consider a function f that has a pole of order n at Z This means that

o
near Zo , f behaves as constant/(Z-Zo)n . The function g = (Z-Zo)nf(Z) will
be analytic at Z, - A Taylor expansion about Z, gives g(z) = g(ZO) +

1 - 1 " - 2 ' .
g (Zo)(z Zo) t5r g (Zo)(Z Zo) + .... Hence we can write

LN "z, "(z)) o"(z)(2-2)
Y + + + ...,
~ »(z_zo)n_ (n=1)1(z-2) = n! (nt1)1

The coefficient of (Z-Zo)-] is gn-](Zo)/(n-l)! and is called the residue in
the series expansion of f(Z) , the latter being called a Laurent series. We now
see that if we form the contour integral of f(Z) about any contour C enclosing
Zo we get

§ f(z)dZ = 2mj (residue at Zo)
C ,

21§ dn—l'(z-z ) (2) (9)
" Tt 4] o

Z
o
since only the term involving (Z-Zo) ], gives a non-zero result. In general,
if f has many pole singularities within C we get
§ fdz = 2] I (residues of f within C) (10)
¢ _ .

The other type of singularity commonly encountered is the branch point
singularity which arises in connection with multi-valued functions. For example
f = VZ has a branch point at Z =0 since if we evaluate f on a small circular
contour C enclosing Z =0 we find that after going through an ang]e 2r  that
f becomes -f , i.e. F(pesz) = -f(p) . The contour integration theory given

above must be modified when f has branch points. However, we will not discuss

these modifications here.
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Let f = g(Z)/h(Z) where g is analytic at z, - If h has a zero of
order one at Z_ then f has a pole of order one. The residue at Zo is given

by» residue = 1lim %%é% (Z-Zo) . By L'Hospitals' rule the limit is given by
Z"*Zo

{d[g(Z-Zo)]/dZ /(dh/dZ)} at z, or [(Z-Zo)g'+ gl/h' = g(Zo)/h‘(ZO) which is a

convenient formula for the residue in this special case.

Fourier Transforms in the Complex Plane

Let f(t) be of exponential order at t = + = ,

Ot
i.e. f(t) < 't a5t + o
| ~ot
f(t) <e®t as t>-w
Define f, (t) = f(t) , t >0 fo(t) = f(t) , t <0
=0, t<0 = 0 ,t>0

, o -
Let F (W) =Ff(t) = [e e (dt = [ e f ()dt , w=w+ o .
% sivee S8 15 DEFIMEN our T & 2o

The integral is uniformly convergent for all w in the lower half plane o < oy
and defines an analytic function in the lower half plane, i.e. F+ is analytic

Tq recover f we use the inversion formula

for < =a
o +

o
_ g .
Felt) = g [ Foed™ aw
+ ; A
The contour C+ must be chosen to be parallel with the w gxis in the lower

half plane ¢ < -a, for the following reasons (see Fig. 3):

+
jo A
Ca,t?o
= d+ > w
> >C
Y . * ZCw t<0
F+ analg‘HC / :

Fig. 3
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For t <0, eJWt becomes exponentially small in the lower half plane. Thus

F eJWtdw =0 . Hence [ jwt
+ F.e
.+

OV

dw can be replaced by a contour integral

¢ F+eJWtdw . But to obtain f_(t) =0 for t< 0 we see that the above
C,+Go .
integral must vanish and hence C+ must be chosen so that F+ is analytic

within C++ C,. For t>0 wecan close the contour in the upper half plane
. _ 1 jwt, o _ . . .
to obtain f+ - %E'f F+ eJWtdw = o7 ¢ F+ e dw = j I (residues of F+ in

upper half plane). The contour C+ can be distorted in any arbitrary manner

as long as it is not moved across a singularity of F+ .

The transform of f_ is handled in a similar way. Thus (see Fig. L)

-0 - jwt | jwt
F_(w) = [f_(t)e at , f_ = j’.?f F_(w)e’ dw
-0 C

o b E analytic
\ |
c_ | Coo, t 20
o >
J
Co t<O
Fig. b

If o, and o_ are such that both F, and F_ have a common strip

+
in which both are analytic then we can choose C+ = C_=C which is a common
. . : . . T S jwt
inversion contour as in Fig. 5. Then f =f + f_= 5?'f F, e dw +
c :
+

2T

1 3 : . )
5;'{ F_ ertdw =1_ F eJWtdw where F = F++ F_o.
- ¢



F_ analytic pio

11/1!!//\17/r1\//// /;//////76’
~

VAR £. 4.

LIV T <=,

Strip
4 .
\ E m’m/yf/c
Fig. 5
Eample 1
Let f(t) = o Jklt] . then
© . -jkt-jwt |
_ —jkt-jwt, _ e _ 1
Fe=]e ] o i iy o B

eJkt-_]wt 0 1

0o . . '
= Jkt=jwt - _
CIE AR 1 o Bt = SR A

A common inversion contour C can be chosen as in Fig. 6 by deforming C+

and C_ without crossing the poles at w = -k for F+ and w=k for F_
. _ 1 jwt _ I P B I
Then we can write f = zﬂg'e F(w)dw where F = F,.+ F_ jq;ﬁz ;FE?
=2k

jwP- K2y



Ao P analylic 35
Pok!e O‘F F T (-
Y | R
* > W * >0)
[~k > Pole of F_
C+
, io
Fy analytic A
LN . o
NG R C
Fig. 6
Example 2
. ' 0 _ _
Let f(t) = e'Jkt , F+ = ﬂv]v-k—k)_ as before, but F_ =_°f° e Jkt e JWtdt
1
The inversion contours are illustrated below in Fig. 7 .
Ao Ao
POle >C~
>— >~ &} © >
PN Pole
Ct+
fio
Con
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We can deform C+ and C_ into the common contour C as shown plus the

1 jwt 1 jwt
contour Co around w = -k . Thus f = -2—"-{; (F++ F_)e'l dw + -2—1T£ F_eJ dw

0~

L+
o+

+ -;-?f F eJWtdw . The integrals along C cancel and those along C0+ and
C

o1 1 jwt, . jwt _
Cyp. combine to give T g TOrkT € dw = residue of e’ /(wtk) at -k
o

which equals e"Jkt . Thus in the complex Fourier transform theory a simple

pole shows up in the transform of e"Jkt instead of the delta function

276 (wtk) = [ e-Jwt_Jktdt which occurs if w is treated as a real variable.

-0
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Asymptotic Evaluation of Integrals by the Saddle Point Method

The saddle point method or method of steepest descents is a gene-
ralization of Rayleigh's method of stationary phase for the asymptotic
evaluation of certain types of integrals that commonly occur in diffrac-

tion and radiation problems. A typical integral is

- o Jhrrcos(P-0)
7= | gy ke cos(#-6)

C

where C is the contour illustrated below. The method consists of
. » deforming the contour C into
! -jk,r cos(¢-8) will be

which e

.

exponentially decreasing at a

? a steepest descent contour along
!

i

!

i

! C A maximum rate. The major contri-

B
|

//// - bution to I will then come from

— Tf/ -5

2 /'/ Tr/l 3“/2

- : contour along which F can be

a short portion of the transformed

/ . represented by a simple series

;! , ' can be evaluated term by term. The

first term turns out to be the

dominant one.

We will consider two important cases, (l)'F(¢) has no singularity in
the near vicinity of the saddle point, (2) F(¢) has a simple pole near the

saddle point.

expansion and such that the integral



12

Case I, F(¢) analytic near saddle point

Let f£(¢) = —jkor cos(¢-6). The saddle points are the values of ¢
for which df/d¢ = 0. We have g%- = jkor sin(¢-0) so ¢ = O is a saddle

point. A complex function such as f can have no maxima or minima and

hence the statlonary points are saddle points. Near the saddle point a

frJ/ = J,(,,y}”‘,r(¢ C”) + - -

Taylor series expansion gives fﬂ

since the first derivative vanishes. Let ¢“'63 f G’

-~

I . .
Then ¥ 7 -I}DA ~ J"'*”j) 6'()92{[ kcf ~ _g,n,&y/.
1f we deform C into the steepest descent contour SDC passing through the

saddle point 8 in such a direction that . 15 4 ¢IF'(7 51/7 Z‘V;:/-

£(9) —JR,r ‘ka"f"/z

the exponential term e becomes e e . For kor

very large the exponential term decreases very fast and for e > el becomes

negligible. For k r large enough ?l ié so small that F(¢) is well approx1-
kP2 5w

mated by Fe) fu f P Thus I ~u /:{9) Jkorzf oFf @J /‘ZIF

.m?

/ L jn/4

n since d¢ = e d¢ in quadrant 1 and
i C A SDC ¢ g !
! ; .
- , ]ﬂ/4 dP in quadrant 3, and where we
e R
S (™ 'R Y‘f’ /2
/ have equated - e e )
e P §

(N i K2 fi iy RypY2
/ +£ e e cf‘g to Zfe e ° dp

i

fa]

Because of the rapid decay of the exponential we can approximate

j e-\\lfz/zd? by jooae—novf“/o b = (™/2 k, r)

with the error S‘ ~Rorf’ /Z ds) vanishing as r - ® . Hence
'Y

.

1/\,2\-‘(9)

SR T T+ A\
i)
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. 1 ) ) RN
When F(¢) = ;~vwc obtain the asymptotic value of the Hankel £

2 : , . ca -
HO (kor), which is : ~~JAOI ) HA4

careful analysis is required. Very near the saddle point

general the SDC contour is spec1f1ed by the condltlon Imag.

Thus Imag. [ jk r cos(o- 6+3n) + jk r]— jk r [1 - cos(o0-9) coshn]
. - ) T Rl" -
Along the SDC e!_mp): (,JR f‘u,up -6) - e.) o -R, Y‘sm(cr e)snn}, 'l

ﬂt this point it is convenlent to change varlables accordlng to
-~ ) ! fr/4_ . d)"" N )
L = ;zj[ tos(p-0) = I} .O. a‘)-— :Ze ';' G,
- ] «l ‘ Y - - LR ) - N
L~ = - F’ e }_ e -+ (U):]

We then have A -y .
‘ du = eJ' &cos ¢'~;§c}d’

‘and our 1ntegral becomes

SRS R
} (M ) = e P

-
M
L‘\’L,..m»v-\

where C is the SDC consisting of the real u axis in the w pléﬁé

(4 zuej ). Wenow expand FGw) (1-3w’/0) /2 in a taylor

series about the saddle point w = 0.  Thus let
. N

Fle) (36 % ‘)’-l/z = >0 a w"

n=o

where q - i dj_\-— [F’(’LJ (l“’ 2/4) -2 ]\

"Nl dee? w=0

Usihg the result

-Lorur/z o, N+l . | ' )
(2 Var 1:3:5-7-- (2n-1)
e (& o

{épd'noting‘that terms involving odd powers of w integrate to zero we get

S




! ‘ it
YV Yy L SR A £ |
L=¢ > oa (-.'f:_ I7(n+t)
. < £l /A r _
=0 [

where I' 1is the gamma function.

In the above evaluation of I it was assumed that the Taylor serles

-4/5 ”
expansion could be used for all w, i.e. that /,(&r)(/y/,f/'i) = Z,» d &/
. o ) 7i =0 :

converges for all w. Actually the fuhction has branch points at w = + 2¢-j

and F may also have singularities. However, for kor sufficiently large the
crror made in u ing this Taylor scrics cxpanSion for all w can be shown to
be exponentially small. (see B. L. -an der Waerden, "On the Method of

Saddle Points", Appl. Sci. Research, vol. 2B, pp. 33-43, 1950).

As an example we have
! 'J'Z-rj”Z; D B 28V )

Hin)= 7 ¢ /. € (- 2/4) .
. S, =2 Fwe oz w A Ly
But (isemzy) T = /r R 2 J% i &gl

hence we obtain

/z 5 1ﬁftf@%]‘vA\f q 57 ,_.+_—]
Ll e F— o ——— S
FhCa) o~ biz € $X /Iy 4 750613

which is the standard asymptotic expansion of the Hankel function. Note
that this form could not be obtained from the approximate method presented

first since in that case we had
=] SR
J;_.,J% ~2 Y2
2 ¢ 009

and only the first term is obtained since F(¢) is a constant.

// (A)
)
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Case II, F(¢) has a pole near saddle point

In some problems F(¢) may have a pole very close to the saddle point,
in addition the parameters involved in the problem may be such that the
pole can be made to coincide with the saddle point. 1In the w plane it is

therefore of interest to consider the case when F(w) has a pole at w0 and

w_lies very close to the saddle point at w = O. If we write
ge SO0 O RGE) R wh
ST == Ay ere
bioyw oy b1y WG Vi W-i,
o b (to-; ) Flw)
W 2l

is the residuc of F(w) at the pole v, then
o Hw) R{wy)
Flow)= —= ' =

1 . : N IR
L 15w a (-8 W Iyes"/4

is analytic at w_. The asymptotic evaluation of
g (0 RoV 23/
- LT LY/ -y o
[~ e VA hw) e de~
i ’ e .

may be carried out according to the method outlined under Case I. The

original integral , . .
_ e "RO}'L’"Z/Z
. = } R(vl“’ré ) -J ko" *) ’r/‘]’ c - S
I= I‘. T | 5 where 11: -w[—__”-..»;:r.‘f-‘ € —_— cw
S Vinwds oo LT-27

. ) . K va 2

is thus split into two parts. The integral 1 = we e KoV //1: ,
| P-J, du-
. S AR P

involved in I_ can be evaluated exactly. The original contour C and

2
the SDC in the ¢ plane and w plane are illustrated below.



Miv

\‘*o ey be heire alsg

¢ Plane S w Plane

The cowtour C may or may not cross the SDC contour depending on the value

of 8 . In the ¢ plane we show a SDC labelled SDC' corresponding to the
saddle point 6'." The contour C' in the w plane is then the contour C
o . 4 g |
since the mapping 4~ = 2€& sin 7% depends on 6.
2

Initially we will assume that the point W is not crossed in deforming

C into the SDC. Then if Imag. w >0 we have
B /[;)o ’2»2‘:/2 ‘ ) — . , .
e BT )] Iy 70
1, = jire [/,,_ er-f(]}’ wlwy ) Imag, Wy 2 O.

‘where the error function erf x 1is given by

N 2 8 -ti_’. . ) ‘
evt X = T S e ot . ‘Fer Toag, W, <C
. 4 o
we have . kv z /7 ‘ ) .
. o '..' b2 Sy i v C R - :}
Ip =gt e [klfeé(\]\;} Lua)
=-jie ” eric (J\'%"* 1"0) , Amag. W, <0

Xz
e - 2 .0 -
where ertc X = ]-— erfoc ::i'__fe t dt is the complement of the error
Tl
X

function. When Im. w = 0 the Cauchy principal value is taken to give
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. ,~"'Abi‘héezz » jrjf B ’
lf’ ~Jne er*;[‘(\]]/_%‘il ‘Zc;)/~ .f}’)m’j, o, =c

!

Consider now what happens if Wy is located such that C crosses w
when it is deformed into the SDC contour. If Im. W > 0 initially then
‘ ' Sy Y PSRy '
when C crosses W, we must add a term .Ni’iqj Al ol ¢ /?

to Ip (see Figure and note that the integral around W is in a clockwise

AJV'  direction.) If Im. w, < 0 then we must
I . -k r w2/2 .
A4 ! add a term 21j e o 'O to I_ since
¢ APWe | - p
- \\"m : - - . . .
't:i:%_.,_wi:m anmM,”?,;::me,u the integration around v will now be
=P : -
; in the positive sense. For the original
integral along C we now have the following
i
results.
__¢-"’//‘ \i\*\‘ Wo -~
B i e S S e e
- - AN
SO LT
c

’\; Ror “'\i 7‘—/4-
&
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-for C not crossing thevpole or Im. wo > 0 and C crossing the pole when

it is deformed into the SDC.

k \‘url/%‘ T
o n° erf (Jl ‘%"'Awo) ; I'mag. W, =

(3) g = I, 1tymA e
c .

Note that we may write Ip in the form

. ) .
0 —RWVW T2 R w2 : _2 =
(TN ke (T de
’ : 7. - e e
P 'T-OO ’L(,;-(:U.o d[‘)*' 1 /) o a,__u,o
The first integral is analytic at W, and equal to
, DY ] ‘
L k‘)\ we /2 {'( _kor _.) '
J nme. | <l J E’" Z“'b while the second integral has the value
o0 T Tpeag, wo > O
dw o, . W,uj C
- - O ) Innag. W T 0
-R -k '

~ ’jﬁ, Imag. w, <O

and accounts for the discontinuous behavior of Ip as a function of wo.

Method of Stationary Phase

Thé'méthod of stationéry phase for finding asymptotic values of
integralé is closely re‘ated to the method of steepest descents. Td
explore this relationship wé will examine the behavior of f£(¢) in the
vicinity of a saddle point more closely. ‘The integral of concern is of

. _~(
the form I = JC‘F.(¢)€ g ¢)d

¢ where C is a given contour in

‘the complex ¢ = ¢ + jn plane.
Saddle points occur when 3f/9¢ = 0. Let 6 be a particular saddle
point and consider g(¢) = gl + jg2 = £(¢) - £(0). ‘_Near the saddle point

g has the form
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§Cm=geor v g'(o)(9-6)+ 4 9"co) (p-6)s -- = L 6"(0) ($p-6)

ginca g(8) and g'(8) are zero. Let e ejw be the polar form for the
- - i, 2 254

variable ¢-6. Then ﬁ&‘i) = :?l: ‘3 l(@) s,} e

SO we can write
@ = i(j“ 2 cos 2 g = L gl 52 -",A 20
123 F - ) 2 2 g f Sih L

where g" has been assumed to be real. There is no loss in generality

in assuming g" real since if it is complex we have g" = |g"|e]Y and vy

can be absorbed in the angle &) by. choosing a new origin (i.e. x axis
orientation) for -
The contours 9, = congt‘ are orthogonal to the contours 9, = const.

because of the Cauchy—Riemann'equations
929;.9%2 28 . _ 99,
, Jdo 2n ' an o0
If we assume g" to be real and positive then 9, is positive in quadrants
=W < T 3W 'y 6
= Ly A
n 2 + 7T 4
and negative in the remaining quadrants. Also 9 increases in magnitude

away from the saddle point and hence rises in the quadrants

N, T 3 N . :
- to 2 ang 22 2.0 ; i i
A P Py to 7 ar‘xd falls in algebraic value in the othe;

two quadrants. Thus if 9; is viewed as the elevation of land around the

saddle point it has the topological features assqciated with a saddle

as shown in the Figure. c . . 5‘)‘?2})@5‘} /—,7559,,
, » = Const, by -
Jil A « 4 <0 / ﬁl contours _ .R‘fl’
4>0 320
|
. f X
2 >
5\ ql<° o i Y
~ j e
SDC sudile Fealures

af 7 around €
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Note that fhefe is a steepest descent path through the saddle point
along which 91 increases negatively as fapidly as possible. Along
this path the contours 9, = cost. are cut at right angles so the path
has the direction of V_(j = e__gi ‘rJ‘ ?_91
I 20 1]

and coincides with a g2 = consy. contour (g2 = 0 in this example).

If the contour C can be deformed into a steepest descent contour it

£(¢)

is clear that e decreases rapidly along this path because it equals

1,2
-5 9P
e along this contour.

Exactly. the same discussion can be applied to the function 9,-

Thus the paths of steepest ascent and descent for gé occur along the lines

‘79 = - Td 2 = 6 - const. contour. The latter paths are
2 0 91 S

located at 45° with respect to the corresponding steepest ascent or

descent paths for 9; - Along a steepest descent path for g, our integral

would become » ":J LN S}:
I = ‘Y Fp)e % df’
SDC
'g'cr ‘32 )

The argument can now be made that because of the rapid variation in

phase of the integrand the major contribution to the integral comes from
a small region near the séddle point. FHoweVer,vthis argument can be
replaced by a different one, namely showing that the contour for the above
integral can be deformed into a stéepest descent contour for 9 ipstead
of 9, and value of the integral justifiea on the basis that it agrees

with what is obtained by integrating along the SDC for 9y
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Thus the method of sﬁationary phase can be justified in terms of the more
intuitively clear arguments used in the standard method of steepest descents
by shifting the contour of inteération. In deforming these contours any
contributions from residues of poles swept across must be properly added

on. Alsovthe paths at infinity connecting the deformed contours must be
consideréd. ﬁéually these do not give a‘contribution. The contour yielding
the maximum rate of change of phase is given exactly by

Re [ Fip)- Fre)] = o

fof all values of ¢.
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A.b. Infinite Products and the Gamma Function

Let f(2) be an integral function, i.e., a function with no singularities in the finite
complex z plane.  The logarithmic derivative of this function is then a meromorphic -
function, i.e., & function whose only singularities are poles. Let f(z) /f(2) have simple

s e e poles at z = z, with unit residues. The partial-fraction expansion is

'@ _ f’(Z) L+ Z ( 1
z - Zn Zn

e J@ Gy _
Integrating with respect to z from 0 to z gives
o _ 1@ z ( 2 —z , , , R
In s [0 =L e+ (n + ) ,
—— . or . f(z) = f(o)e[/l(o)lj(o)]; H (l — =} etisa

which is the inﬁnite-product expansion of the integral function f(z). When f(z) is an
even function f.(z) of z, f,(0) equals zero, and we get

5@ =10]] (1 - ;1)

i Consider the function cos z, which has zeros at z = nr + x/2 = (n + ¥)». Using
the general formula gives the following infinite-product expansion:

cos z = no[l _(T——}_-Z_;ZT-?’] | .

ne=

Similarly the infinite-product expansion of (sin z)/z is found to be

! ‘ sm*-‘z”(l——;&?’)

. ne=l1

i Gamma Function
|

The ganuma function is defined by the following integral:

re) = fo' e-u du

The integral defines an analytic function of z for all z for which the real part is posi-
tive. An equivalent definition of the I' function is the following infinite-product

representation:
-2 ()T

e

R
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. where v = 0.57722 and is Euler's constant. The infinite-product representation
e, T T defines T'(z) as an analytic function throughout the complex z plane, except in the
vicinity of the negative-real axis, where I'(z) has simple poles. The following useful
properties of the gamma function have been established:
. P+ 1) = zI'(z).
. T(n 4+ 1) = n!, n an integer.
. P(34) = xkh, -
UG + 1) = ().

0 BN

5. T~ ) = E H (1 -3 e

» 6. As z— , the n.symptotxc value of I'(z) i3 (2r)Merinsz—lee—s+1 valid for all 2z
: " except in the region of the negative-real axis, where I'(z) has polesat z = 0, —1, -2,
: 1 . . . etc. From (5) an asymptotic expansion valid for z on the negative-real axis

may be found.
7. For z finite and jy| very lurge, |1'(z 4 jy)| ~ (2 )|y Vie—wlulizgrs,

E xample |
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Introduction

In this article the main features of the eigenfunction expansion of
the electric field is reviewed along with its relationsﬁip to the electric
field Green's dyadic. Various representations for the Gréen's dyadic are
éresented and their inter-relationships pointed out. For many problems
the eigenfunction expansion method provides the most useful solution for

the field and gives immediately considerable insight into the basic

physical properties of the field. For waveguides and cavities the eigen-

function expansion method is by far the preferable way to solve most problems
involving current sources and wave scattering.
We also point out in this review the great amount of unity that

exists among the various results on Green's dyadics as presented by

A brief historical review of past difficulties and

'

different authors.

misconceptions that prevailed are also discussed along with cqmments on
probable reasons why some of theée misunderstandings were perpetuated
and finallyvresolved.

Some basic but important mathematical relations for Green's functions
are summarized in Appendix I and provide a basis for the'resolution‘of some

of the apparent but non-real differences in various solutions for Green's

functions presented in the literature.



Direct Vector Potential Method

. + '+ 0 (3 » K3 .
Consider a system of currents J(r) contained within a finite volume

Vl as shown in Figure 1. The electric field is a solution of

VxVxB-k®B=-juu 3
o = quo (1)

and must satisfy appropriate boundary conditions. For currents radiating
into free space this is the radiation condition at infinity.
- .
A well known standard method of finding E is through the use of the

vector potential. The relevant equations are:

>
- . ed A :
E = - Jjwo (A + sz ) ' (2a)
K .
o]
2 2, > >
v+ = -
( ko)A R J ‘ (2b)
Ar) = Dl J(xY) ar (2¢)
- 47R uo * ¢
Vl
where R = I;-;'l. More often than not the integral (2c) cannot be

evaluated analytically and so must be evaluated numerically. Thé
integrand is a fﬁnction of both ¥ and ;'. Consequently for every
different observation point ; the evaluation of the integral must be
done. .In order té obtain a reasonably complete map of the electric field
in space a great deal of numerical computation must be carried out. This
large collection of numerical data, along with field amplitude plots
which may also be computed, is often hard.to interpret for its phyéical
content as regards the basic properties of the electric field produced

by the given system of currents. The eigenfunction method to be discussed



Fig. 1 The system of currents in v1
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Fig. 2 The contours C, in the k plane



next overcomes many of the short comings of this classical solution
based on the use of the vector potential and the set of Eguations (2)

given above.

Eigenfunction Expansion Method

In the eigenfunction expansion method the electric field is des-
cribed in terms of a sum of propagating vector eigenmodes or waves.

These discrete vector modes can be obtained from the solutions ane of

the scalar Helmholtz equationl,
2 2
+ =
(Vv ko) ang 0 (3)

In spherical coordinates the appropriate solutions to (3) are

m cos
= = 4
¥ o ¥ Pn(cosﬁ) cin mé z (kor) (4)

where P: is an associated Legendre polynomial, the even (odd) functions
(e,0) in&olve cos m$é (sin m¢), zn(kor) is a spherical Bessel function, and
j is a shorthand summation index standing for a particular combination of
n,m,e,o .‘ For outward propagating spherical waves zn(kor) is the spherical
Hankel function of thé second kind hi(kor). For inward prépagating waves

z 1is the spherical Hankel function hi(kor) of the first kind while for
standing waves z, is the spherical Bessel function jn(kor). We will use
superscripts (+) to designate the use of hi and hi respectively and no

superscript to mean that jn is used.

The Hansen vector wave functions are obtained from the Wj as follows:

M. = Vxa krtV, (5a)



> >
k N = V x M, (5b)
-> .
L, = VY (5¢c)

The ﬁ. and E. functions have zero divergence and are called solenoidal
or transverse while“ij has zero curl and is called irrotationél or
longitudinal.+ These vector wave functions satisfy the homogeneoﬁs
equation obtained from (1) by setting 3 =o. |

In the region r > b where b is the radius of the smallest sphere
that will enclose the volume V. the electric field is solenoidal and can

1

be represented as a sum of outward propagating solenoidal modes in the

form

E@ = ] (c. M +a, ﬁ;) \ - (6)

where the c. and d. are suitable amplitude coefficients. This repre-
sentation, once the amplitude coefficients have been found, immediately
provides a great deal of physical insight into the nature of the field.
The ﬁ; functions have only 6 énd ¢ components énd are thus TE waves.

>+ . .
The N, represent TM waves since they have a radial component (note that

>+ >+ . . .
v x Nj = k M, so the magnetic field will be transverse. The various

Mt N t multipole fields, f le M. N
. waves represen mu lpo e le s, or eXampie ]_l(’ ’ llQ’ 10

J ' 3
. . . . . o+
are fields radiated from x, y, and z directed electric dipoles, Mlle

>+ o>+ . . .
Mllo ‘ MlO are fields radiated by corresponding magnetic dipoles. Each

mode rddiates a fixed amount of power independent of the presence of the

+The origin of the terms transverse and longitudinal is discussed in
Appendix II. : )



other modes. The total radiated power is the sum of that contributed
by each mode. It is these properties as well as others that enables one
to obtain considerable information about the field using the eigenfunction
expansion (6), information that is much more difficult to deduce from the
direct solution based on the‘Qector potential. We will also see later
on that the amplitude coefficients cj and dj do not depend on the observa-
tion point ; so only one computation is needed for each coefficient. When
the coefficients have been determined an analytical expression for the
field everywhere outside the source region is obtained.

Inside the source region the field is not solenoidal so the Ej
functions must also be included. Furthermore dn any spherical surface
r < b the currents in the region 0 to r produce outward propagating waves
at r while the currenté in the region r to b produce inward propagating
waves that are reflected at the origin to produce standing waves. Thus
the expansion within the source region is more complex than that given
by (6). The appropriate expaﬁsion wiil be given later.

The determination of the amplitude coefficients by means of a Fourier
series type of analysis can only be carried out in a simple way provided
the eigenfunctions are mutually orthogonal. The required set of mutually

orthogonal vector eigenfunctions are generated from the scalar functions’,

¥v.o(k,7) = P° “°Sme 5§ (kr) (7)
j n sin n

In (7) k replaces the ko'in (4) and is treated as a continuous eigenvalue

parameter. From these scalar functions corresponding vector eigenfunctions

are obtained using the relations shown in (5). We then can show that

27T e ©
-+ - . 2
J J J L, - Mk sinb d6 d¢ r dr = 0O
o ‘0 ‘0 7



or in general

- > > > - -> -> -> ->
f L, - Mi dr = J L. - Ni dr = J N, - M, dr = 0 (8)
v v v 41

The normalization integrals are
2

> > Eomn (n+m) !

L, - L, dr = <-k') = - k-k*
JV 3 Lj r Qnmé(k k') 2n+l (n-m) ! 6 (k=k") (a)

> > - - > ->

j M, « M, dr = J N. « N. d&r = n(n+l)Q §(k-k") : (9b)
v J J v J J nm

In (8)Vj may be equal to i and k may be the same in both functions. In
(9) one ‘function has k and the other has k' as the eigenvalue parameter.
Also in (9) €om = 2 for m = 0 and equals 1 for m > 0 and §(k-k') is the
delta function.

The solution for E described by (1) is obtained by letting
E = j Y(a, T, +c, M +ad, N)dk (10)
0 3 33

The sum over the continuous spectrum of k values is an integral. When

this expansion is substituted into (1) we obtain

® 2 > 2 2 > -+ . -+
J a ) [-a.k_ L, + (k“-k)(c M, + d.N)] = -jup_ J (11)
0 3 Jo 3 o J 3 J 3 o

> > 2> L - >
since V x Lj =0, VxV x Mj =k Mj and similarly for Nj' We can now
‘ ] > -> - > ) > >, .
scalar multiply by Lj(k',r), Mj(k‘,r) and Nj(k',r) in turn and use (8)

and (9) to obtain the amplitude coefficients aj, cj and dj. This is a

. >
straightforward procedure and yields for the E field the solution



> ~Jup
J a [ I ° — ] [ﬁj(k.}’)f

- -> > < ->
M,(k,r') « J(r'")dr’
0 3 n(tlQ  (k“-k7) v J

Nk,2n - JEnar - 2 2o 3 f
J k2 J e 'V

° (12)

+ 'ﬁj(k,}’) fv i’j<k,?') - J(Ener )
At this point the solution does not look like that given earlier by (6).

A considerable amount of manipulation of (12) is required to reduce it‘to
the simple form given éarlier. The steps to be followed are outlined
below but many of the details are not included.

We should also comment on the validity of taking the curl curl
operation term by term and interchanging the order of summation and doing
the volume integral on a term by term basis to obtain the aj, cj, and dj
from (11). 1In general suffiqient conditions are known that will allow
these interchanges. But sufficient conditions are not necessary condi-
tions so there may be circumstances where known sufficient conditions are
violated yet the interchange in ﬁhe order of summation and differentiation

or integration may still be allowed. When the current satisfies a HSlder

condition, i.e., positive constants o and B exist such that”,
> >
ki (13)

then the interchange is allowed. However, not all current systems that

we might wish to consider satisfy a HOlder condition, the violation
usually occuring at the boundary of Vl where 3~might be assumed to be
finite and non-zero. 1In such cases it is necessary to check that the
electric field given by (12) satisfies Maxwell's equations, in particular
* that the normal component of EOE at the boundary of V1 has a discontinuity
in accordance with Gaugs' law and with the surface charge density ps given

> . .
by jwps = ; « J on the boundary of Vl. It should also be kept in mind



that like any Fourier series, an eigenfunction expansion converges in

the mean square sense and at points of discontinuity converges to the.
average value. These problems do not arise for physical current systems
but do arise from our mathematical modeling of physical current systems
when we artificially postulate currents that have non-zero normal components

on the boundary of V For any reasonable system of currents the series

1"
solution given by (12) is convergent and well behaved and various simpli-
fications may be carried.out on a term by term basis. This is because

the coefficients a.,, c., and dj decrease rapidly in value with increasing

j so that the field is well approximated by a finite number of terms.

=
Helmholtz Theorem and Simplication of Solution for E

Physical insight into the possibility of simplifying the solution
(12) for E may be obtained from a consideration of Helmholtz's theorem.
-
Helmholtz's theorem states that a vector field such as J may be split

into its solenoidal and irrotational parts by means of the following

formulas4,
> > VeI o n-d
J(ry = -V [ JV B a— dr ~ §S IR ds"' ]
1 1
xJ +x3 -+
+ V. x [ V J dr' - L ds' )} , r in V_ , (14a)
v 4TR s 4mR 1
1 1

3(;) = 0, ¥ not in vy (14b)

- .
On an individual basis the solenoidal part Js obtained from the curl opera-

+ . I3
tion and the irrotational part JI obtained from the gradient operation are,

>

N .
in general, non-zero outside Vl' Yet outside V1 we have Js = - JI so that
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these two distinct types of vector fields may cancel identically in certain
regions of space. A similar cancellation may be expected in the solution
for E, that is, outside the source region the 25 terms might be cancelled.
If the ﬁ. and fs functions are examined it will be found that they
have the same 8 and ¢ dependence and are not orthogonal with respect to
integration over 6 and ¢ only. 1Indeed it is this property that enables
the part of the seriés~solution involving the Ej functions to cancel the
contribution from the f. functions outside the source region and also to
cancel most of the fﬁ contribution within the source region.
The first step in the simplification of (12) is to perform the

N ‘
integral (sum) over k. For the Mj functions this involves an integral

of the form

ax (15a)
0 k2 - k2
o]

2, . -
Jw k Jn(kr) jn(kr )

while for the ﬁs and Zj_functions an integral of the form

3 (kr) §_(kr®
1 Jn(r) Jn(r)
2 2

0 “x° -k
(o]

dk (15b)

occurs. Actually in some terms derivatives with respect to r and r'
occur but these may be brought outside the integral. The integral is

evaluated by converting it to a contour integral. We first replace

jn(kr’) by % [hi (kr') + hi (kr')1 . When k approaches zero jn(kr)

2 . - .
behaves like (2kr)nn!/(2n+l)! while hi' (kr') behaves like + j 2(2n)!/

n!(2kr')n+1 . Thus the product jn hi'z has a first order pole at

— +1 . 1 2
k.= 0 with a residue + 3 rn/(2n+l)(r')n . But in the sum hn + hn
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this pole term is cancelled. If we make use of the circuit relations

hi(-kr') = ¢"J0T hi(kr') and j_(-kr) = eI 3, (kr) we can write

-0 O

-]
. 1 . - . . . .., _ . : 2 ,
fo Jn(kr) hn(kr Yak = Jo jn( kr)hn {-kxr') dk = I_w]n(kr) hn(kr ) dk

50 in place of (15b) we have

. e : 2, .,
1im [ Jn(kr) Jn(kr') 1im -n o0 Jn(kr) hn(kr )
n+0 33 dk = o { + 3 3 dk ] =
n k -k —o0 n 2(k - k)
o (o]
w0 R 2
Jn(kr) hn(kr') o
P [ >3 dk (16)
- 2(k —ko)

Note that in this conversion it is the Cauchy principal value, denoted by
the symbol P, that must be taken in order to get the original pole can-
cellation that had occurred from the sum hi + hi . In the conversion of
the integral in (15a) the Cauchy principal value is not required since
the integrand has a k2 factor in the numerator which cancels the pole

at k = 0.

The principal wvalue integral.in (16) may be written as a contour

integral plus or minus one half of the pole contribution, thus

® 3 (kr) hi(kr")
P f n n

2 2

dk = f ( )dk + mj (Residue at k=0) (17)
k -k c+

[e) —

where C+ are the contours shown in Figure 2. Either contour may be

used. The integrand in (17) is well behaved at infinity so the contour
]

may be closed by a semicircle in the lower half comdlex k plane for r < r'.

When r > r' the role of r and r' in (17) is interchanged and the contour

is closed again in the lower half plane. The integral is evaluated using residue
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theory. By this means we find that (1l5a) gives

L 2
f Jndn X =3k, 2
LT s TER g o oy .

while (15b) gives

. ,
i3 . e
n-°n =im . 2 i <

J dk = j (kr)h (kr.) - (16b)
2.2

0 K-k’ Ho RO R e gkl ™

The k = 0 pole contribution is the zero frequency or static radial
eigenfunction. The notation r, and r, means the following:
r. o smaller of r,r'

r, . greater of r,r'

The functions described by (16) are continuous at r=r' with discontinuous
first derivatives. A second derivative with respect to r or r' results

in a delta function term. For example

£ P rn—l
i 4 < < + (2 HEXD (17)

dr, dr> r n+l r n+2 r2

The relations given by (16) may be used to evaluate the integrals
over k in the solution (12) for E. In the contribution from the Nij

- > > - >
functions a delta function &(r-r') occurs in the aeae and a¢a¢ terms

from the residue contributions at k = i-ko and also from the residue

term at k = 0 since these terms involve

d rj (kr) dr'j (kr')
n n
dr dr’
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L) -+ .+ » .
However, these delta function terms cancel. The arar contribution
>
a a

functions do not produce a delta function but the 2y

from the ﬁ.ﬁ
33

L3 —’ ‘+ £ 0 .
contribution from the Lij functions is found to contribute a delta

function term which is

4 \ os cos ,
j(‘m’lo jv dr Z -k2 0 sin me sin mé
1 J o “nm
7 8(r-r') > - ,
2 r2 arar I(xh)
Jwu Jwy
= = f aa_ - 3(r) &(r-rnar' = ° 23 - 3ID (18)
K v rr k2 rr
o) 1 [e}
since
m m ,
z E z ™ Pn(Cose) Pn(cose ) cos i cos ng' = 5(6=0")8(d~0")
n=0 m=0 e,0 Qnm sin sin 51n6A

’ > >
All of the remaining residue contributions from the Lij terms at the

> >
k = 0 pole are cancelled by the residue contributions from the Nij

terms at the k = 0 pole. The simplified expression for the electric

field becomes

E(X) = -3 L M (k_,1) M.(r Z')- J(xnar
)= SIS L 2% a(mel)o 3o 5 ¥o,
O nm v
1
+ N (k7 J Yok ') - J(x9dr' ),  not in VvV, , (19)
J ' v J O, 1
1

Inside the source region the integral over V1 is split into an

integral from O to r plus an integral from r to b. 1In the first integral
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. >+ > > -> >+
the functions M. (k r) M.(k 1r') and N, (k ;) ﬁ.(k ;') are used while
J O, 3 Oy ] O, O,
in the second integral the functions ﬁﬁ(ko ;) J(k ;') and ﬁ,(k ;)
! Ol ] r’

>+ >
N,(ko r') are used. In addition the contribution
’

Jwu

o > = > >

> aa + J(r) mast be added.
X rr

[)

Inside the source region the eigenfunction expansion of the electric
field involves both outward propagating spherical waves as well as
spherical standing waves. The amplitudes of these wa?es are dependent
on the observation coordinate r and hence must be computed for each value

Jwu

. - . _) -)
of r of interest. Of course, the additional term 20 Jr(r)ar must be

k
o

included. Outside of the source region the amplitude coefficients are

not dependent on r so only one comput;tion is needed. It is also seen
that explicit dependence of the field on the Ej functions can be eliminated
by cancellation coming from the ﬁj functions. The only remaining contri-

. e . . . jmuo > >
bution from the Lj functions is the simple > Jr(r)ar term.

o
The whole procedure for finding the eigenfunction expansion of the
electric field can be organized in a systematic way by introducing the

Green's dyadic which is discussed next.

Electric Field Green's Dyadic

The eigenfunction expansion of the electric field can be expressed

in the form

B(D) = -jou J G (£,T) - J(xndr’ (20)
° Jy. € .
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where ée is called the electric field Green's dyadic. From (12) we

see that one representation for ée is

e gj‘(k,;)gj 0,F o+ B 0D, E L., DI (k2 :
G =[ a J I L — -2 1
0 j n(n+l) @ (k°-k%) 2o

Another representation for ée is obtained from the simplified solution
>
for E, which is equivalent to evaluating the integral over k in (21) on a

term by term basis, and is

> > > -> > > > > > >
. M., (k ,r)M, (k r') + N. (k r)N, (k ") a a
- _ =j= jo ' o jo o, jo o, jo o, rr > >
Ce = ! ~ - 6(r-r') (22)
e 2k - 2
) n(n+l) Q k
nm [}
where the notation
- -> > >
M. (k 1x) = M.(k x) , r <r'
jo o, ] O,
_)..f_
= M.(k ), r >r'
]l o,
—)..*.
ﬁ, (k xr° = M.(k "), r'>r
JO O' J oI

> ->
= Mj(k r') , r'<r
1 3 +
and similarly for Njo' has been introduced.

The use of (21) and (2?) in (20) to find E>will be defined to mean term
by term integration over ?' so as to yield the same results as given
by (12) or (19). The connection between the twobrepresentations (21) and
(22) is closely related to two fundamental methods for solving a Green's
function problem and is discussed in Appendix I.

A number of interesting properties of the Green's dyadic as given

by (21) can be deduced. The Green's dyadic is the solution of the equation
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2 - -
(VxVx-k“)G =18&(z-z") (23)
o' e
where I is the unit dyadic. The scalar Green's function go = Z%E

which is a solution of Poisson's equation

2
vy o= - 5(2-2") (24)

can be expanded in an eigenfunction series and it is then found that

© > >
L., L, 1
f a —4—L == v g (25)
o x%9 X
O "nm o]

© > > &> > > >
= o2 I o e B e R
I 8(x-x') = dk [ + ] (26)
0 } n(n+1)Qnm Qnm
Since
>
J I68(r-x') « J(r")dr' = J(r) (27)
v

the use of (26) is another way of splitting a vector field into its

solenoidal and irrotational parts. We may use (26) to eliminate the

> > : - .
L.L. terms in (21). Thus another representation for Ge is

) 2 > > > =
k° (MM, + N.N.)
= J 3 i3 I - T+,
G, = & [ 55 5 I 8(r-r") (28)
0 j kT (k“-k7) n(n+l) Q k
(o] o nm (o]

In this form the expression for ée represents

G =L [vxG -7T8E2ZN (29)
e 2 m
(e}

=
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Professor C. T. Tai used this form and carried out the integration over
k to obtain the representation given by (22) above.5 In this evalua-
tion there is no pole at k=0 because of the kz factor in the numerator.
One final representation for Ee will be given but there are’many |
other possible forms ébtained by carrying out partial summations of.the

series. We may regroup the terms in (21) into the following arrangement:

© e > o> -+ >
- M.M., + N.N, + n(n+l)L_ L, k2 N ‘
G, = j a« § [ 2 JJ 3 1J > L.I. 1 . (30)
0 i n(n+l) Q@ _ (k“-kx°) | S
nm @] [o]

i > > -JkoR 2
In this form the last group of Lij terms represents - V V' e o /(4nkoR)

while the first group of terms is the eigenfunction expansion of I e_J OR/4ﬂR.
Consequently (30) is the eigenfunction expansion of the usual free space

Green's dyadic

-jk R
G = (-1 vy e % (31)
e k2 41R
(@]

For the type of problem being discussed here the representation (22),
first derived by Professor Tai, appears to be the most compact and
useful form. It yields directly the spherical wave expansion formulas
given by Wood for use in parabolic reflector analysis.
. > e . . = : s s
At points r # r' the series expansion for Ge converges to a finite
- 3 3 N . + -+ ‘
value given in closed form by (31). At the singular point r = r' all
of the series diverge. A partial summation, such as integration over k,
allows one to represent part of the Green's dyadic as an explicit delta

function but the remaining series are still divergent at the singular
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point. Some of these series diverge more rapidly than the series repre-
sentation for the delta function so the delta function singularity is not
the dominant one. The divergent character of the series expansion of Ee
is of little consequence in practice since ée is used in a term by term

. . >, . = > > .
integration over r' involving the scalar product Ge *+ J(r') and the

resultant series is a convergent one.

Waveguides and Cavities

For waveguide problems the natural way to represent the electric
field is in terms of propagating and evanescent waves. For cavities an
expansion of the field in terms of the resonant modes of the cavity is the
preferred representation. Any other method is both more cumbersome and
lacking in physical insight.

The most convenient representation for ée in a waveguide is a form
analogous to (22) for free space. The series part is a discontinuous
residue series made up from the TE and TM normal waveguide modes. The
remaiﬁing part is the residual contribution from the Ej functions in the
source region and has the form - gzgz 6(;—;‘)/k§ where z is along the
axis of the‘waveguide.7'8'9 Many other representations are possible with
various delta function terms exhibited in explicit form but the above is
often the most useful one in practice (there are exceptions, such as
occurs for a bifurcation problemwhere an alternative form is more useful.)

The electric field in a cavity and also the electric field Green's
dyadic can be expanded in terms of the resonant eigenmodes of the cavity.
For a simply connected cavity with a single surface the solenoidal and

irrotational modes are described by the following equations.lo
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2 2. =
(V" + kn) B = 0 o v (32a>
VeE = 0
n - (32b)
- > .
n x En = 0 on s (32c)
LF =V
afn = V¥ (33a)
2 2, . _ 4
(Vv + o) b =0 (33b)
>
vV x Fn = 0 (339)
wn =0 on s (334)

: =% . . =S ‘
The solenoidal modes En and irrotational modes Fn are mutually orthogonal.

I1f we assume that the modes are normalized then we readily find that

> > > > > > >

_ Z En(r)En(r') Fn(r)Fn(r')
G = [ o - —————] (34)
€ n k2—k2 k2

n o} O
- > > > > > > )
I 8(xr-r') = ) (EE +FF) (35)

n n n nn

These expressions are analogous to (21) and (26) for the free space
problem. For a cavity the most important feature of (34) is that it shows
that whenever ko is close to one of the resonant wave numbers kn that mode
is excited with a very large amplitude relative to that of the other modes.
In this circumstance the field in the cavity can bé approximated by this
one single mode alone. . This provides a great simplification. In practice

the kn' which are obtained for the loss free cavity, must be replaced by

k
n

I S
1z ¢ ¢ 20_ * 20, Yk,

-1 .
1 +9" -39 ]
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where Qn is the Q of the n'th mode. For a microwave cavity Qn is typi-
cally greater than 1000 so the amplitude of the n'th mode when k = k
may be 1000 times or more than that of any other excited mode.

ée for a cavity may be rep?esented in many other forms as well. If

>
we -use (35) to eliminate the Fn functions we find that

2 > >
k EE = -+ >
- _ n nn- I §(r-r')
G = 2.2 2. 2 (36)
n k (k -k7) k
o' n o o}

which is analogous to (28) for the free space problem. This particular
representation was discussed by Rahmat-—Samii.ll The sum in (34) and (36)
is a triple sum. If the series is summed over one set of indices the
result is a discontinuous double series plus a reduced delta function
term. For example, in a rectangular cavity if the modal series repre-

senting the z dependence is summed the delta function term left over is

_;zgz G(r—r')/kj . This is the form presented by Tai and Rozenfeld12

and is identical to that given by Rahmat-Samii even though the form is
different.+ Tai and Rozenfeld also give the solutidn in the form (34).
A technique for carrying out the modal sum is described in Appendix I.
The solution presented by Tai and Rozenfeld is analogous to that given
in (22) for the free space problem. The solution presented by Rahmat-
Samii has the useful feature that it shows explicitly the resonance

factor ki-ki which can be readily modified to account for the finite Q
of the mode. 1In the solution given by Tai and Rozenfeld the resonance

manifests itself by the vanishing of a Wronskian determinant and hence

some additional algebra is required to extract the solution at a resonance.

+Johnson T. H. Wang has shown that the two solutions are identical for a
rectangular cavity. The author is grateful to Dr. Wang for sending a pre-
print of his paper in which this equivalence is demonstrated.
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In the 1imit as ko approaches kn the n'th term in Tai and Rozenfeld's
solution becomes continuous and passes over to the n'th eigenfunction
or cavity mode of Rahmat-Samii's solution. This feature is also discussed
in Appendix I.

For a cavity the Green's dyadic can be expressed in forms analogous
to (21) or (30) and the gngn contributions can be identified with the

expansion of V V'go or V V'g where 9 and g are scalar Green's functions

and satisfy

2 > >
v 9, = - 8(r-x')
go = 0 ons
7% + kDg = - 8(EEY)
g = Oon S

in the cavity. Thus there is a great similarity as regards the basic

composition of the free space and cavity Green's dyadic. A similar

correspondence holds for the waveguide problems also.

Principal Volume Integration Method

>
If the solution for E as given by (20) is interpreted to mean the

limit of an improper integral, i.e.

lim . f - > > >
-Jjwu G « J(r")dr' (37)
VO+O o V-V e
o
>
=r

-
where VO is a small volume excluding the singular point at r' = , it

does not give the correct electric field inside the source region. The
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reason is that ée contains a point singularity at g' = ; which is excluded.
Van Bladel showed that if Vo was a spherical volume then E(;) is given by
(37) plus an additional term jmuo 3(;)/3k§ which is non~zero only within
the source region.13 Xaghjian generalized this result to allow Vo to be

an arbitrary shaped volume and obtained a correction term of the form

. - ‘ > 2 -
quo L - J/ko where L depends on the shape of Vo, thus14

> > . lim J S T . 35
E(r) = Jwm, Vo+o V_VO Ge Jdr' + Jwn g (38)

The volume integral converges non-uniformly and this is why L depends
on the manner in which the limit is taken.f Yaghjian also showed that L
is the classical depolarization factor associated with a volume VO.

The motivation for Yaghjian's analysis was to cast (20) into a form
that could be evaluated on a computer by keeping VO small but finite.
This computational procedure is useful for free space problems using
the explicit closed form solution for ée given by (31). However, when
the eigenfunction expansion of ée is used one does not want to use (38)
since it implies that the eigenfunction series should be summed first.
But this is contrary to the purpose of using the eigenfunction expansion
in the first place which was to develop the solution for E(;) as a series
of modes. 1In this latter case we can integrate each term in the expansion
of ée over the whole volume which is a much simpler procedure and has no
computational difficulties associated with it.

-jk R
If the V'V' e © /4TR is evaluated explicitly in the vicinity

-> -> . . .
of the point r = r' and this expression is used in a volume integral that

+ . . . =
Any of the eigenfunction expansions for Ge given earlier may be used in

> > .
(38) to find E(r). However, the limit must be handled with care because
of the non-uniform convergence.
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includes the singular point different result; are obtained depending
on how the integration is done. This procedure however, is not a
correct one since it does not include the contribution from the v
term at the singular point itself.

The above featuré along with the fact that E(;) is not given by the
limit of the impfoper integrél in (37) has led some author's to conclude

that the integral
- > > ->
j G +« J(r'")dar' (39)
v €

. o s
has no meaning. The desire that E(r) should be given by the limit of an
improper integral comes from classical potential theory where such limits
for the scalar and vector potentials are appropriate. However, since ée

. 3 . 3 13 = ‘-)‘-)
1s the solution to a differential equation for a source I §6(r-r')
which has no place in a classical theory there is no a priori reason to
<> > . .

expect or even require that E(r) be given by the limit of an improper
integral, which of course it is not. This then leaves the interpretation
of the meaning of (39) open. One approach is to define (39) in an opera-
tional sense. For example, when ée is given as an eigenfunction expansion
we can define (39) to mean term by term integration. This is a valid

. s e, e - 3 . - . ‘+‘+
operational definition since it gives the correct expansion for E(r).

++ 3 0 . .

We note that E(r) as given by (38) is also an operational method since
it carries the rule that L is changed in accordance with the shape of VO,

and such a rule does not belong to the classical definition of the limit

of the improper integral.
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Another definition for (39) is that the integral of the

-jk R
[V'V!' e ° /4TR ] - 3(;') term is to be done by parts, which avoids

the need to know the value of the derivatives at the singular point itself.
This definition is a natural one when ée is viewed as a distribution.
Distribution theory provides a mathematical framework within which
entities such as delta functions and singular gquantities such as ée

can be handled inraccofdance with specified rules in a non—ambiguqus way.
Even though distribution theory provides a meaning for the integral in (39)
the actual numerical evaluation still requires some regularization pro-
cedure if integration by parts is not done. A suitable regularization
method has‘been given by Lee, Boersma, Law, and Deschamps and generalizes
the formula (38) obtained by Yaghjian in that it allows Vo to be of any
size without any error being incurred.16 Although (38) and its more
general version as given by Lee et al are interesting and useful in their
own right many author's still prefer to integrate the V'V' term by parts
to obtain an expression that can then be evaluated numerically on a

computer.

A-well known example that illustrates some of the above comments is

the function V2 gt Since the solution to Poisson's equation

o = - 8(Z-Tv)

is the function 1/4TR we see that the differential equation reguires

> > o R -+ ->
equals - 6(r-r'). In the vicinity of the point r = r’

2
‘that v anR

+An excellent but brief summary of distribution theory may be found in
Appendix 6 of Reference 19.
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it is easily verified that V2 Z%E = 0. If this value is used in

a volume integral over a region including the singular point the result
is zero which is not in accord with the differential equation. For this

. 2 ,
case we must interpret V Z%E as having the value - 6(;-;‘) at the

singular point. We also note that

where V_ excludes the sindular point. The interpretation of v? Z%E

as being equal to - 6(;—;') is outside the domain of classical analysis.

The operational equivalence is established by integration by parts, e.g.

1im -+ 2 1 > lim 1 1 -
vV +0 J plr) V' g dr = v—»o[ (Ve oV og) -V Voglar
o v o
o o i
lim 1 > lim [ 1 -
T v >0 § PV IR s =y 50 J VeV R &
o S o} \Y ;

+ 3
The surface integral gives - p(r') and the remaining volume integral

e . .
vanishes with VO as long as Vp is bounded at r’ 1In view of this opera-

L

tional equivalence it seems reasonable to assume that a function such

as VV Z%E- should be interpreted in a similar way. through an integra-

tion by parts, thus avoiding the need to séecify the value of'ﬁhe deri-

vatives at the singular point itself.
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A Brief Historical Review

In the early history of waveguides it was established that the normal
modes were E and H modes. For many years it was generally thought that
these comprised a complete set for the expansion of an arbitrary field
in a waveguide. There are many examples of author s discussing the
expansion of arbitrary fields in waveguides in terms of E and H modes

17,18,19,20
only.

In these, as well as in other treatments, the problems
of interest centered around scattering by metallic obstacles or the fields
radiated by arbitrary sources outside the source region. The question of
the field within the source region was not examined and it is only within
the source region that the E and H mode expansion fails to be complete.
Morse and Feshbach discuss a Green's dyadic for the vector Helmholtz
equation in a rectangular waveguide and give one expansion that includes
. . . . 21
a contribution from longitudinal modes. They do not treat the vector
wave equation (23) correctly (Ref. 21, p. 1783, p. 1876) or discuss when
the longitudinal modes might be needed. These same author's (Ref. 21,
p. 1781) give expansions for the transverse and longitudinal parts of
. . - _) + . -
the dyadic source function Ié(r-r') and imply that each part is zero
-'). -+ . . 3 . .
whenever r7#r'. This interpretation is incorrect and erroneously led
to the conclusion that the longitudinal modes only contribute within the
source region. The conclusion is not in agreement with Helmholtz's theorem
and resulted in the incorrect treatment of the vector wave equation noted
above. Johnson, Howard, and Dudley gave a discussion of this point in
their paper on the Green's dyadic singularity.
. - 13 . + - .
Stratton in his classic book indicates that the L and N functions
23 . .

are not orthogonal. However, he does not integrate over r which, as

Tai has shown, is necessary to achieve orthogonality. Morse and Feshbach
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do not discuss the orthogonality of the f, ﬁ, and N functions in spherical
coordinates for the free space problem. They do, however, give an expan-
sion for the Green's dyadic for the vector potential and state that for
the eléctromagnetic case the longitudinal part will usually disappear

(Ref. 21, p 1875). The lack of orthogonality between the f and ﬁ functions
with rgspect to 6 and ¢ integrafioné suggests that perhaps the former are
not needed. We now know that the ﬁ functions cancel much, but not all,

of the f function contriﬁution to the field.

In viewAbf thé existing ambiguity as regards the need for the longi-
tudinal modes.it is not surprising that Tali developed expansions for the
Green's dyadiés in his book which included only the M and N functions.

It is interesting to note that in the evaluation of the k integral for

the contribution from the § functions, Tai missed the pole contribution

from k'= 0 (Ref. 2, p 173). 1If this pole contribution had been identified

Professor Tai would have been alerted to the need for the f functions.
After the publication of his book Professor Tai discovered the need

-> .
for the L functions although he approached the problem from the relation

- - - >
ki Ge = V x Gm - I 6(;—;') and thus avoided having to deal with the L
functions.explicitly.5'7 The author also discovered independently the

lack of incompleteness for the E and H modes in a waveguide at about the

same time. However, a much earlier (but unknown to the above authors)

contribution to the field expansion in waveguides which was complete

. 24 .
was given by H. J. Butterweck (the author is indebted to Georg Karawas
for bringing this reference to his attention).

The complete expansion of the field in a cavity underwent a similar

period of controversy during its development. The results of various
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investigations over a period of years finally culminated in a definitive

paper on the subject by Kurokawa (this paper contains references to

many of the earlier contributions). In retrospect it is surprising

that the results of the investigations on the eigenfunction expansions
for cavities did not influence the work on expansion of fields in wave-

guides and the general theory of Green's dyadics until much later.
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APPENDIX I

Some Mathematical .Properties of Green's Functions

The basic equation encountered in the solution of boundary value

problems is the Sturm-Liouville equation

d d g(x)

—_— —_—l + = - -y !

ax p(x) dx + [a(x) A o(x)]1g(x) §(x-x") (1)
Let the interval of interest be 0 < x < a . For simplicity we will
assume that g(0) = g(a) = 0. There are two fundamental ways of solving

(1). The normalized eigenfunctionswn associated with (1) satisfy

d dwn
apa+<q+oln)wn=0 (2a)
ra » 1,n=m
J wn wm o dx = Gnm = 0,n#m (2b)
0
g (0) = v (a) = O (2¢c)
n n
In terms of these
Yo(x) ¢ (x")
glxy) = - ) — = (3)
n A=A :
n

The second way to solve for g is to let
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where ¢l satisfies the boundary conditions at x = O, @2 satisfies the

boundary conditions at x = a. The constants Cl and C2 are found such

that g is continuous at x = x' and
p(x) == = - 1

as obtained by integrating (1) over a vanishingly small interval centered

on x'. It is found that

¢l(x<) ¢2(x>)

I T T T oW (4)
where W 1is the Wronskian determinant
de(x") d(bl(x')
Mot Gy T ) T )

It is easy to show that p W equals a constant. The two solutions Ql and
¢2 are linearly independent whenever W # O.

The character of the Green's function is determined by its spectrum.
The spectrum is the set of discrete poles A = An exhibited in (3). The
solution given by (4) has the same spectrum since W has simple zeroes
whenever A = An. The sum of the series in (3) is given by (4). As A
approaches An , 9. and ¢2 become linearly dependent and in the limit

1

as ) approaches Xn the function g given by (4) becomes - wn(x) wn(x')/

(A—ln) i.e., both solutions have the same residue at the pole A = An.

The above properties may be used to develop various representations
of multi-dimensional Green's functions, to perform the sum over a set of

eigenfuctions, and to demonstrate the equivalence between various repre-

sentations of Green's functions.
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It is known that multi-dimensional Green's functions can be
synthesized from products of related one dimensional Green's functions
for each coordinate variable by means of contour integration over the

2 . ‘ . .
~ spectra. 6,27,28,29 This synthesis procedure leads automatically to

various alternative representations.
As a concrete example consider the radial Green's function problem

for a spherical coordinate system, namely:

dg
d 2 n 2.2 _ ,
ar r = - n(n+1)gn + kor gn = =-8(r-r") (6)

By using Hankel transforms the eigenfunction expansion method gives

® j_(kr) j_(kr') ' ® j (kr) j_(kr")
g, = % f 2 5 2“ Klax = %- [ n n k2ak (7
0 k%-k —» 2k (k-k )
(e} (e} (o]

In (7) k corresponds to An and ko corresponds to A so this equation is

analoguous to (3). The closed form solution analogous to (4) is

R 2
gn = —jkojn(kor<) hn(kor>) (8)

In (8) the Wronskian determinant was

2
dh (k r'") dj (k r')
~ y o L ke 2o . L1
Jn(kor ) dr' hn(kor ) dr’ . , 2 (9)
jkor

The solution (8) may be found from (7) by contour integration. When

ko = 0 we get the zero frequency Green's function given by

oo

g = = Jo 3, (k)3 (kr)dk (10a)
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and
n

r
<

g =
n (2n+l)r>n+l (10b)

Many of the tedious manipulations used to construct different repre-
sentations of Green's functions can often be greatly simplified by using
the above results obtained from the general theory. In particular we

note that the differential equation (6) can be written as

& 2 D o [n(n+l) - k°rllg - S(r-r") (11)
O n .

so clearly a second derivative of 9, generateé a delta function.

The usefulness of the above relations in summing series will be
illustrated in connection with the spherical cavity problem. For the
M functions the radial functions are jn(kr) and the bounaary conditions
at r = a are jn(ka) = 0. This determines a set of eigenvalues

kni' i=1,2,3,..... . The normalized eigenfunctions for (6) for this

problem are

jn(knir)
by T 31/2 (12)

a :
5] Jn(knia)

One solution for 9, is thus

< 2jn(knir<) Jn(knir>)
g = - ) 3 3 (13)
n i=1  a’[3'(k_.a)]” (k“-k_ %)
n ni o ni
The closed form solution is
jn(kor<) [Jn(koa)yn(kor>) . yn(koa)Jn(kor>)] (14)

gn T ko 3 (k_a)
n o
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Note that the denominator equals zero when ko = kni' Equation (14)

is the sum of the series in (13). We can demonstrate the equivalence
by finding the residue of (14) at k_ =k ., . As k_approaches k_, the
o ni o ni

. , . . 2
denominator becomes (Taylor series expansion with respect to ko about

k2, )
nl

. ") = 4 a ! 2 2 L
Jn ( ) a) ]n(knia) + 2kni Jn(knia) (ko kni) *

Hence (14) approaches the value

. . 2
j (k_.xr )jn(knir>) 2kni Yn(knia)

nl <
50 7 ' 2 2
i (k_, -k .
a Jn( nla)(ko nl)
By using the Wronskian relationship
! ! 1
In n Yn]n - 2.2
k r
o
: ; . 2 2,' -
which for k =k ., r = a, gives Y = - (k_.a j ) we see that
o ni n ni n

'2]n(khir<)3n(knir>)
99 7 T 3 v 2 2 2
a (]n) (ko—k

{15)

ni)
which is the same as the ith term in (13).

. > >
The same procedure may be applied in connection with the N and L

—’ .
functions in a spherical cavity. For the N functions the boundary

-+ .
conditions are d rjn(kr)/dr = 0 at r = a while for the L functions

Jn(ka) =0 .
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In the paper by Tai and Rozenfeld12 it was indicated that the sum
over the index i could not be done so as to express ae for a spherical
cavity in terms of a discontinuous series plus a delta function term.

As shown above the general theory of Green's functions does give a
method for summing the series to obtain a closed form solution involving

a function with a discontinuous derivative at r = r' .
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APPENDIX II

A three dimensional Fourier transform of the equation (23) for

Ge gives
> >
- - 2 - 2 2 2 - = - iKer'
(K xR x k1) +G = [(K°k*) T-KR] .6 =1ek'T (1)
o e o} o e o
where ée is the Fourier transform of ée'
We now assume that the inverse operator is
> > - - 2 - -
Ak k +B I and use (Ai’i’:raz)'[(kz-ko)x—i'i] = I
to find A and B. We then obtain
: ;i ¥ ¥ s
o = lm 5 - 533 1 2)
k -k k (k -k)
o o o)

We now group the terms into transverse and longitudinal components

=
relative to k , thus

2 = > o> > i
= k= I-k k k k jkexr'
6 = "5 235~ 237)° ~ 3
(k -k )k k k
o (o]

The first part is transverse and has zero divergence while the second
part is longitudinal and has zero curl. This is the origin of the
tefminology transverse and longitudinal used to describe solenoidal
and irrotational vector fields. it is not difficult to show that the

inverse of (3) gives the free space solution (31).
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