At this point we turn to the problem of reconciling everything we have devel oped using ray
matrices with awave description of optics. We do this because athough laser beams may
appear to be pencil-like beams of light they are not and only awave description of laser
beams (and optical resonators) will allow usto predict the properties of laser beams.

A spherical wave isthe complex wave radiated by an isotropic point source, i.e., anon-
directional point source. We will restrict ourselvesto a scalar wave description where only
the scalar amplitude of one transverse component of either the electric or magnetic field is
considered. The other components may be found by using Maxwell’ s equations. In this
formalism we may write a spherical wave emitted by an isotropic point sourceat P, as

e—ikr01
G(R)= 1 )
01

where 1, =|i;,| and B isthe observation point as shown below

R

The wavefront of awave such as (1), the surfaces of equal power perpendicular to the
direction of power flow, are spheres; hence, the use of the term spherical waves. [For a
more compl ete description of scalar waves see Goodman, Introduction to Fourier Optics,
Chapter 3 “Foundations of Scalar Diffraction Theory.”]

For those of usthat are interested in such thingsit may be noted that G isthe Green's
function solution of the scalar wave equation in three dimensions, i,e., G satisfiesthe
scalar wave equation (V? +k*)G =—58(R,). [See Collin, “ Scattering and Diffraction
Theory,” EEAP 635 Class Notes]. A wave such as (1) may be visualized as a series of
expanding spheres radiating power away from a point source as shown below.
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The radius of curvature of a spherical wavefront originating from z, will, a z, be
R =z —z,. Asthewavefront propagates from z to z, theradius of curvature increases
from R to R, where R, isgiven by
R-R=2-z (2 _
Let us consider the propagation of aray normal to a spherical wavefront.

\/M "
¢ =
i 2 12

Because we will eventually concerned with laser beams which are very narrow we use the
paraxial ray approximation that

r(z)<<z =z=R(2) (3)
Thisindicatesthat ¢ issmall sothat tang =r'(z) = ¢. From thiswe have
r'(z)= 2
R(2)

or

r(2)
Z)=——+~ 4
RD=7%) 4
At this point we can relate the ray matrices governing ray propoagation to the propagation
of spherical wavefronts.

Recall that
Ll |D C|n (4a)
| |B Alr

or
r,=Ar + Br (4b)
r,'=Cr, + Dr

Using (3) and (4) we can write

rl
—|+B
Rz Ar, +Br, A(rl'] _AR(z)+B
Cr, + Dr;' C(r{}_ b CR(z)+D
rll
Defining R, = R(z,) and R = R(z) we can re-write this result in aform known as the
ABCD law
AR +B

TR+ ®
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which will be important in our understanding of the behavior of laser beamsin optical
systems.

To illustrate the important of this ABCD law we will derive the wavefront transformation
associated with athin lens. The ABCD matrix for athinlensis

1 1
f
0 1
so that from (5)
YR +0
R = ()1R1
-—R+1
iR
or
1 1 1
—==-Z (6)
R R T -
which isvery smilar to the lens law from Gaussian optics
1 1 1
ss § f

In our development of the ABCD law we invoked the paraxial ray approximation. Let us
see how this alters our picture of a spherical wave. From (1)

6(r) =< (7

€
4nR

where we have placed the point source at the origin (F = 0) and R=[r|. Inacartesian

coordinate system

2 2
R=4/x2+y2+22=z\/1+x J;y (8)
z

If we restrict ourselves to the region where x> +y* << 7, i.e., aparaxial ray
approximation, we have the result that

2 2 2 2
Rzz(1+xty =z 2 Y (9)
z 2z
Substituting (9) into the exponent of (7) and using R = z in the denominator we have
ik 24X +Y°
ar)-Let ]
4nz
1 e WS
G(r)=——e e 10
(N~ (10

The result (10) is basically a plane wave of the form e propagating in the +z direction
x2+y?
2z

with asmall transverse distortion given by the e [ j term.

Gaussian Beam Solution of the Wave Equation

Starting with Maxwell’ s equations for homogeneous charge free ledia

—

VxH=¢g=+0E (1)

> |’
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oH

VxE_—uE 2
Taking the curl of (2) and using (1)
. JVxH J92E OE
VXVXE=-u ( X ):—,usatz—uog

Using the identity V x V x E = V(VE) - V’E where VE = 0 since thisis acharge free
media
o J’E JE
V’E= +Uo— 3
pe—7+Ho— ©)
Assuming asolution of the form E(x,y,zt) = Re{ E(x,y, z)e“‘"}, (3) becomes
VZE - ue(la)) E- uo(lw)E 0
V2E + 0?ueE —iouoE =0

V2E + @? ,ue(l— —)E: 0 (4)
we

Define k*(7) = wzue(l— Ii) to allow for gains and lossesin the media. For lasersthe
we

only k() wewill beinterested iniis

K3(F) = k* — Kk,r? )
Substituting (5) into (4) we have the wave eguation
V2E+k2( )E 0 (6)

The Laplacian V> may be separated into transverse and longitudinal parts, i.e.,
VZ=V?+ o _8_2+}i+8_2 (7)

A v

In (7) we are assuming that the solution will be cylindrically symmetric since k() is
symmetricinr. Assume asolution of the form

E=o(x,y,z)e™ (8)
Thisis aplane wave propagating in the +z direction modified by the factor ¢. Substitute
(8) into (7). Notethat this k isnot k(i) but corresponds to the right side of equation (5)

VZE + k?E = V2E+ao’?z +Kk*(F)E
. _| 82 (pe—lkz - y
V2E + K’E (Vzgo) e —(822 ) +K3(F )((pe kz)

V2E+k2I§:Vf<pe“kz+£(8(p e —ikepe "‘Z)+k2( )pe

0z\ oz
V2E + K’E = V2pe ™ + gz(f e _ ik%pe‘ikZ —(ik)*pe™ - ik%oe‘”‘Z +k*(F)pe™

92 ¢ a0 9/
V? —2ik—=——k k =0
o+ 7 i p o +k (Mo
Using (5)
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2°p

el
Vip+ pe 2|k§— K*p + k*p —kk,r’p =0
’p .. Jo
Vip + pe 2|k§— kk,r’p =0
2
Weassumethat ¢ isasowly varying function so that 0:572(5 may be neglected. Then,
Vf(p+—2ik%p— kk,r’o =0 9)

The differential equation (9) will have a solution of the form

: Q)
—isP(2)+——r
oo ]
Substituting (10) into (9) and first explicitly evaluating the terms
. , QA2 » , Q2

—isP(2)+——r - P(2)+—"r
gr—q):—le(z)Zre { ? }:—iQ(z)re { 2 }

(92(/) 1 a(p 1 _i{P(Z)Jr%rz} | 8 —i{P(z)+@r2} .
2. _ Y Y o9 _+ 2 1 aJ > ~
Vo= =re 1 Jm e o)

(10)

—i PZ‘F@rZ i i Pz+%r2
vl }{(—'qu<z)2r<—i)rq<z)}+e e
Cde o e
—2|k§ = -2 k{—IP' (2)—i EQ‘ (z)}e
so that (9) becomes
Vip- 2ik% —kk,r’p = —iQ(2) - r’Q*(2) - iQ(2) — 2kP' (2) - kr’Q (2) - kk,r* =0
(11)

For this equation (10) to be true for all r we may set terms corresponding to like powers of
requa to 0, i.e,

(-Q*(2)-kQ (2)- K )r* =0 (12)
so that Q*(2) + kQ (2) + kk, = 0. Asacorollary of (12) it follows that
-2iQ(z) = +2kP (z) =0, or

P(g=-'22 (13

Let us now simplify the problem by considering only homogeneous media. This means
that k, — 0 in (5) and reduces (12) to the form

Q*(2)+kQ (2)=0 | (14)
This equation may be easily solved by defining Q(z) = % Then,
Q(2)=k SS'((Z? - k(iz((zi))z _ é(s(z)S' (2)-(3(2))’). Substituting into (14)
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8@

$'(2

K s @) ) =0 5

From (15) kzi(—(?: 0 whichimpliesthat s'(z)=0, or
z

S (2) = a (aconstant)

Sz)=az+b
where aand b are constants determined by theinitial conditions. From the definition of s
S(2) ka
Z)= k— =
QA7) (2 az+b
Define
Kk az+b b
Z)=——= =Z+— 16
a(2) 09 a a (16)

Thus, we can write q(z) = z+ g, where g, is q(0). Knowing Q(z) we can use (13) to
find P(z)
[ i

o i
N

Integrating, we get
P(z)=-iln(z+q,)+¢,
where ¢, isaconstant of integration. Let P(0)=0 sothat ¢, =iln(q,)

P(z)=-iIn(z+q,)+iln(qg,) =i In(%) =i In(1+ i) (17)

1 2
ip(2) 59 : .
Notethat as ¢ = e FVe? - P(0) = 0 means that we are setting the phase of our solution

E=gpe™tozeroat z=0. Using (16) and (17) in (10) we may write

e )
p(xy,z)=e (18)
To further smplify this result assumethat g, ispurely imaginary and may be written in the
form

0% =i— (19)
where ®] and A arereal.
7|n[17i£2J Lk
p(xy,z)=e ' ™e A% (20)
oo Az
Az itan m
e_ln[l_lﬂwc%] — e [ ] — wz(z) g (21)
Nz o,
0
I+ 5 %
RON

where we have defined

o= tan‘l[ 122) and
TT

0
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0*(2)= w§[1+( AZZJ }
o}

and used theidentity In(a+ib) =In+'a® +b? +itan (gj i.e.,

202 i1 D (b (b
e—ln(a+ib) _ e—ln\/a +b® +itan (;j _ el ( a +b2] itan™ (;) 1 ettan (;J
A a + b2
( |7rw§] —ikr?z- ke ;rwo
ikr? 7 s
ikr 2 k2 (g5+z inof [ ,_inof 2[ 2, [ 708 ]
e A%+ _ o 2(q0+2)kq6+2] _e 2( P +Z]L e ‘ +[ 2 j
—ikr?z —kr2n03
—|k22erw0 2Z21+0J 22 2 o2 22
e A I N
e 2(q0+z) — e ;L — e z e A o
—ikr? —kr22 —ikr? —r2
_ ike? 2R@ 2ﬂ2w§[1+[/1z2}2] 2R wé[h[hz]zJ —ikr? —ZrZ
e 2(qp+2) —e on —e Twg — eZR(z) 0?(2)
In summary,
ikr? —ikr2  —r2
e 2(dp+2) _ e2R(z) 0?(z) (22)
2 —
where we have used the fact that k = 7” and the definition
70’ )
2)=21+ 9
R z{ ( 2 j ]
Substituting (21) and (22) into (20) we get
(@) | R
o(xy,2)=——"¢€ (23)
W,
and from (8)
2 —i(kz—¢)-r2 %+L
E(X, v, Z) _ 0] (22) e Lo (2) ZR(Z)} (24)
0
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Properties of Gaussian Beams

The solution we have obtained to the wave equation

i 2 1 N ik
E(X,y,z): |EOMG’._|“<Z_¢)_r [wz(z) 2R(z)}
0]

0

D)

is called the fundamental Gaussian beam solution since we assumed a transverse

dependence based only on r?, i.e., =0. [Moreonthislater.] To understand the result

%
(1) we examine each of the exponential factorsin (1).

The parameter w(z) isthe distance r at which the field amplitude is down by % since

2 r?

-r- . . . T o?
7@ isthe only red termin the exponential and e ® ' can be regarded as atransverse
w?(z

amplitude modulation of the beam.

r2

Theterm goingas e *"* ismost easily understood by combining it with the (")
term. Recalling the "paraxial ray" approximation of a spherical wave e (neglecting the

ﬁ amplitude factor) from a point source [see (10), p.62]

ik —ikz—ikM
e =e 2z 2
and comparing it with our expression
—ik[z—fj—ik"z*y2
e k 2R(z)
we see that % is simply a phase shift which we may ignore, e isabasic plane wave
—ik Z+x2+y2
propagating in the +z direction, and e ( ZR(Z)j is somewhat like the "paraxial ray"
approximation of a spherical wave propagating in the +z direction (2) except for theterm
R(z). Recal that R(z) isgiven by

ma? )
R(z):z_1+[ e ] ]

We define z, = ”;?O o that
[ (7Y z
R(z):zl+(?R) }:z+7R ©)
If z>>z, (3) becomes
)~z (4)

In (2) we may interpret the z in the denominator of the second term of the exponentia as
being the radius of curvature of the wavefront. For a spherical wave from a source at the

origin, theradius of curvatureisgiven by R(z) = z. From (4) our expression (3) behaves
like a spherical wave with radius of curvature R(z) = z for z>> z,. This suggests that we
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regard R(z) asthe curvature of the wavefronts of the wave described by (1). The sign
convention for wavefronts is the opposite of that for mirrors and lenses as may be seen
below.

R>0
R<O

Z z

source direction of irection o L
/ propagation propagation

Continuing with our examination of (3) as z— « we seethat R(z) — - so that the beam
wavefronts are initialy planar (R= =) and gradually becomes spherical as z becomes

larger than z,, A suitable picture of what is happening is seen in the drawing below where
the transverse Gaussian amplitude dependence isindicated by the dashed lines representing

the r = w(2), i.e., the e amplitude points.

beam

wavefronts .

.’

I
.#* "€ amplitude points

__________

| z  direction of
‘ = propagation

N amplitude points

The e amplitude lines become straight for z>> z, and the half angle 6 for the cone
formed by these linesin three dimensionsisillustrated above and is given by

Az
N6 = co(z)E nw, _ A
z z 7w,
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2
since 0(z) = w, |1+ (ij - /2 as z>>z,. Thisangle 6 iscalled the divergence
\ yA T,

angle. Since 0 issmall for laser beams (paraxial ray approximation if you prefer),
tan6 =~ 6 and

— @
o,

Theresultisthat, for z>> z., a Gaussian beam has a constant divergence angle given by
(4).
Wereturn to (22), p. 67 in the handout on Gaussian beams
ikr 2 ikr2 2
2(Gp+2) —e 2R(2) w%(2) (5)
i ikr?
We have aready identified e~ *? asa"paraxial" approximation of an outward
propagating "spherical" wave with radius of curvature R(z). In an extension of the
reasoning that led to interpreting R(z) asaradius of curvature we define the complex
radius of curvature §(z) = g, + z or, from (5),
1 1 1 2

i) G+z R2) o (2K

Recalling k= 2% we may write thisin dightly different form as
1 1 1 . A

— == = —1 (6)

42 G+z R2 702
Let us examine how ¢(z) changes as we move along the z-axis from apoint z to another
point z,. Using §(2) = §, + z wehavethat §(z)=0,+z a z=z, and §(z) =G, + 2.
Subtracting, we get §(z,)- G(z) =2 —z, or

4(z)=d(z)+(z-2) (7)

e

Thisis exactly the form of the transformation for spherical waves along the z-axis [Eqgn.
(2), p.60] which is repeated here for comparison.

R=R+(z-2) (8
We now examine the effect of alens upon a Gaussian beam with complex radius of
curvature @, just to the left of the lens. The lens may be viewed as causing a phase
distortion of the incident wave according to equation (10) of Appendix |

iknAO+ikX2+y2
E(xy)=e L E(xY) ©)
where E,(Xx,y) isthe scalar field incident upon the lens from theleft, A, isthe thickness of
thelens, n isitsindex of refraction, f isitsfocal length, and E,(x,y) isthe beam (field)
exiting the lens at the right.




lens:
index of refraction= n>1
focal length = f

ﬂ

incident field resultant field
E(xy) E(x.y)

|

]

If E, and E, are spherical waves we get the result that the lens transforms the wavefront
curvatures R and R, respectively. According to Equation (15) of Appendix | and Eqgn.

(6), p.61, i.e,
it

If E, and E, were Gaussian beams we would have exactly the same result except for
replacing R, by the complex radius of curvature g, and R by ¢,. To show this, let E
and E, be Gaussian, i.e,,

A —ikz—iki

E=A @ (11a)
-~ —ikz—iki

E,=Be **® (11b)

Then, from (9),
- -ikz—iki —iknA0+i|<ﬁ ~ —ikz—iki
E,=Be *%=e Ae %
For the phase of the waves to be continuous at the lens surface we have

1 11 (12)
@ G f
which is the Gaussian beam analog of (10). Inserting (6) into (12) and equating real and

imaginary parts we get é = E - % and 0,(z) = w,(z) at thelens surfaces which agree
with our geometric optic picture of transforming slopes ( R) and not changing aray's
displacement from the optic axis (@). A sketch of beam transformation by alensis shown
below for spherical waves and Gaussian beams.
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-.a.

lens

The solid curved lines represent the wavefront curvature.

It can be shown that for lenses and mirrors equations (7) and (12) will lead to the ABCD
law for Gaussian beams

.~ AG+B

> C§+D

For more complex structures we argue that since R= § yields the Gaussian beam forms of
(8) and (10) it will also yield the ABCD law (13) from Equation (5), p.61.

(13)

Returning to the transformation of a Gaussian beam by alens we note that although such a
Gaussian beam islargely confined near the z-axis it has an infinite transverse extent and
some of the beam power will be lost each time a Gaussian beam passes through a finite-
sized aperture such asalensor mirror. Thispower lossis called diffraction loss and may
be estimated in the following manner. The transverse beam amplitude goes as

r2 r2

e “’ =g o wherewe have dropped the functional notation for @ for brevity. We
define the normalized transverse amplitude distribution ¢ as

21 -5
o= =—e
T W
where the normalization is of the transverse beam power, that is,

f ¢*(r)2nrdr =

where the square of the electric field amplitude ¢ is proportional to the beam power @.
Then, inacircular region of radius a about the z-axis we contain that fraction of the total
beam power

a » r2 r2 a2
a(a) _J, (02 = 4—e_2‘7dr — e | =1 @
D (o) JO <p2(r)27zrdr 0

or
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@) _g_g"r (14)
®

total
Plotting (14) asafunction of a
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|

0% |
|

|

60% '
|

|

|

50% :
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|
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|

|
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|

|

|

Transmitted powrer (5

30% /
20% /
10%

0%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Apertureradius (/o)

Thisresult saysthat if a= @ approximately 86% of the incident power will be transmitted
through the aperture, i.e., 14% power loss. A genera rule of thumbisto pick a>1.5w a
which point 99+% of the incident power will be transmitted through the aperture.
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Gaussian Beam Collimation

. i
_____
.......
___________

L
.-
.-
-

We rather arbitrarily define a collimated Gaussian beam where the spot size hasincreased
by /2 over the beam waist w,, or the beam area has doubled. Beyond these limits the

beam continues spreading nearly linearly with distance and, hence, is no longer aparald or
collimated beam. The beam spread is given by

20\ 2 z ’
® (z)_w0[1+(Z—R] }

2= "%
Up to now we have not associated any physical significanceto zy; it issimply defined as

(0

where

and nothing more.

o) =
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Hence, z, is called the Rayleigh distance or range and defines the collimated beam region.

Focusing to a spot
For a collimated beam of spot size w incident before alens, the lenswill be located a

distance z equal toitsfoca length f behind the focus.

Proof:

If the beam is collimated z < z, and
2

2
R(z)= z[l+%} = z+Z—ZR > 2z,
The beam wave fronts are planar at z=0 and have R(z;) = 2z, hence, R(z;) = 2z, for
|2 < z,. For sometypical numberslike A = 0.5, ®; =17mm
, - rw? _ (3.14)(17mm)’

= = = ~1800m
A 5x107" mm o
The beam transformation by the lenswas given in class as
1 1 1

— =7 «y
@ q f
By itsdefinition
1 1 il
= - )
42 Rz n0*(2)
Substituting this result into (1) we get
1 1 _1 14 1
R nw; R nw’ f
or, equating rea and imaginary parts,
1 1
RTR T ™Mese ®)

i.e., the beam radius does not change in passing through the lens and the wavefronts
transform as spherical waves.

Returning to the problem, if R, theincident beam curvatureisvery large then % << %

snce f istypically on the order of 1 meter or less and (3) becomes
1 1

R, f

Thisisaspherical wavefront converging to apoint adistance f infront of the lens.
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The wavefront leaving the lensis highly curved since f isgeneraly short. This means that

f >> z, sincein the collimated beam waist the curvatures are very planar ( R(z) very
large).

For 99% power transmission through thelens d = 3w or @ :% where d isthelens

diameter. The relationship between w and w, isgiven by
1

22
mn:%@+%]z%f

R ZR
since f >>z,. Solving for @,

Z.0 mwio
a)o = =
f Af
or
A
W, =—
o

The beam waist is w, and the beam spot size d, (86% power point) is defined as
d, = 2w,.
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d, Af Af Af

G _A _ A A
2 7w ﬂ(dj d

3
Then, d, = % Theratio % is known as the f-number of the lensand is defined as

f#:g. For atypical lens f# can beaslow as0.5. Picking f#=0.5and A1 =10.6u (a

CO, laser) we have
d, ~ 2Af #=2(10.6x10°)(0.5) = 10.6y
This shows that we can focus alaser beam as small as one wavel ength across.

Resonator M ode Properties

We can now apply Gaussian beam theory to devel op the basic mode properties of optical
resonators. Let us approach the problem somewhat in reverse by assuming that we have a
spherical Gaussian beam, i.e. assume awaist spot size w, at z=0 and spot sizes w, and
, and radii of curvature R and R, a z=z and z= z,withradii of curvature R and R,
and diameter much larger than @, and w, a z, and z,, we will have trapped the beam

inside the resonator. The beam will be reflected exactly back on itself at each mirror and
will form a standing wave with time-independent spot sizes and radii of curvature.

S \\ 2(00 "/’/
) T b \ _
. ( = }._._.Z_—%E{,_}\/ e
X 7 ’ \\'\ k3

Note that as long as the mirrors are significantly larger than the spot size, the shape of the
mode will dependonlyon R, R, and ¢/ =z, —-z (since z < 0).

The usua problem in resonator design is to assume two mirrors of radii R, and R, and
separation ¢ and find the appropriate beam parameters which result, i.e., find @,, ®,, ®,,
location of the beam waist, etc. We can do this by making use of the relations
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R(2) = z[1+ (%H @
and
w(2) = wo[1+ (Z—ZR)T )

As z and z, arethe distances of the two mirrors from the beam waist at z= 0 we may
write the beam radii as being
2

N

R=Rz)=z+7 (32)
R2=R(22)=22+% (3b)

Each of these equations may be solved by the quadratic formulafor z and z, giving

=R1J_r«/IR2’1—4zR »
7= REIR A (ab)

This set of equations (4) istwo equations in three unknowns (z, z,, z;). Toalow a

unique solution of the problem we use the mirror separation as the third equation
Z,-z=1 (4c)

The algebra of solving (4) isvery tedious and, for those interested, the details of the

solution are found in Appendix |. The solution of (4) isfound to be

: _(-R-!)(R-)R-R-1)
Zz= 2 ()
(2/+R-R)
A word about signsisin order at thispoint. R and R, are the beam curvatures whereas

R, and R, arethe mirror curvatures and have the opposite signsfrom R and R,. The
equation (5) may aso be written in terms of our previously defined stability factors

A

where R and R, are signed quantities and
1-
2= 99 (1-9.9) ©)

(0.+9 - 20,0,)°
From (6) and (11) we may solvefor z and z, as

_92(1_ 91)
=\ %) (79)
“ 0+0,—- 29192
__el-%) ,_, ., (7b)
G+0,— 29192

The mirror spot sizeswill then be given by (2) and (7) as
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2 _ 2 :Q 9% 38

o) =o'(z) n[gl(l—glgz)} &
A e f 8b

“ T {92(1_ 9192):| (8

The symmetrical resonator

L et us examine the behavior of a cavity formed by two mirrors of equal radii of curvature.
To eliminate signs we define the unsigned beam radius of curvature R as R, =—R = R.
Since R isunsigned it will also correspond to the magnitudes of the mirror radii of
curvature. For our purposes (5) is easier to use than (6) so we get

2 = (R=0)(R-1)(2R-1) :£(2R—€) )
(20 +2R)? 4
We can determine the beam waist @, by using the definition of the Rayleigh distance

2
zR:E%Qtoga

2 2
W, = iz (10)

and, from (9), for asymmetrlcal cavity

Al
JZ/E R—— (11)

By symmetry we argue that

2-7= (12)

which, for this case, the spot sizes at the mirrors may be found from (11), (12) and (2) to
be

(13)

If R>> ¢ asinmany practical lasers, equations (11) and (13) become

W, = \ﬁi/ﬁ (14
n\ 2
on=0,= % (15)

Equations (14) and (15) show that the beam spread issmall since o, = w, = @,. It may
also be noted that for a symmetrical confocal cavity where R= ¢ we have the smallest
mirror spot sizes possible in asymmetrical cavity, that is, @, = ®, = +2w,. Thisresultis
developed in Appendix I11.

Example:
Design a symmetrical resonator for A =107 cmwith ¢ = 2 meters.
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If we choose a confocal geometry, i.e., R=/ =2 meters, equation (14) gives the beam
waist as

4 2
0, = /&4{@_&)2 %:\/(10 cm)(2x107%cm)  0.06am
\2 2 2r 2r

and, from (13), we have the mirror spot size as

2
0, =0,= /% 2L:oooi/z:600«520.084cm
2n4£(€_5)
2

Asshown in Appendix 11, thisis the smallest mirror spot size possible for a symmetrical
cavity. Suppose we wanted a larger mirror spot size for some reason. Let us say that we
want o, = @, = 0.3cm and calculate what R must be. First, let us assume R>> ¢ which
will turn out to be a reasonabl e assumption. We may then use (15) to get

1
0.3= O.O6[%Q]4

4
0.06

or

which justifies our assumption that R>> ¢ =2m. Typica gas lasers have mirrors with
radii of curvature of afew meters (2 to 10 meterstypically) for ¢ =1m so that beam waists
and mirror spot sizes tend to be small giving riseto "narrow" laser beams.

Stable resonators

The ability of an optical resonator to lase depends upon its ability to confine radiation
within the cavity. Asan example, consider the symmetrical resonator where

R, =—-R = R. Themirror spot sizeisgiven by (13) as

(16)

The minimum mirror spot size isfound in the confocal symmetrical cavity where R= /.
The minimum spot sizein this caseis given by

= V2 (17)

W, =52
4 min 27[
(See the example on the previous page for where this formula came from.). Theratio of
(16) to (17) is

Gp 1 (18)

a)lizmin 4\/€|:2_ £:|
R R

Plotted as a function of Ii
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We see that the mirror spot size becomesinfiniteas R— (é = 0, plane parallel mirrors)

or R— g (é = 2, two concentric mirrors), Asthe mirror spot size goesto infinity, the

size of the mirrors required to reflect most of the light back into the cavity also goesto
infinity (See p. 74). Obviously we cannot use mirrors of infinite diameter so we say that a
resonator isunstable if the mirror spot size becomesinfinite. By unstable we mean that it
cannot confine light within the resonator.

To determine the conditions under which light will be confined within the optical resonator
we have to consider the propagation of Gaussian beams within an optical resonator. In an
optical resonator a Gaussian beam starting from some point at which the beam hasa
complex radius of curvature §, must, after one round trip of the resonator, come back to
the starting point, with the same radius of curvature g, = G,. |If we know the ABCD matrix
for ray propagation through the system it followsthat ¢, and @, arerelated by the ABCD
law, i.e.,

. Ag+B
= 19
But, for a standing wave to be crested within the resonator, g, = g, or
& A91+ B (20)
Cqg,+D

Thisgivesriseto aquadraticin ¢,
C§ +(D-A)G,-B=0
which may be solved by the quadratic formulato give

-75-



. (A-D)+/(A-D)*+4BC

%= 2C
We then expand the quantity (A— D) under the square root and use the identity
BC — AD =1 (since the determinant of aray matrix is 1) to get

6, (A-D)+/(A+D)* -4

- B - 2C
which we re-write as

. (A-D)+i\4—(A+D)’
e ac o .
The reason for thiswill become apparent when we identify the radius of curvature and
beam radius from this expression. To do thiswe select the solution for @, with the positive
root and invert to get

1 2C

G, (A-D)+i4-(A+DY
Rationalizing the denominator we get
1 (A-D) . |4—(A+D)

-— = —1 3 (21)
o} 2B 4B

But the complex radius of curvature was defined [Equation (6), p.70] as
1 1 .2
—=——i— (22)

o,
from which we can identify
2B
- ] 23a)
R=2"F (239)
ol = 2BA - (23b)
7y4—(A+D)

For the resonator to be stable @, must be real and finite; hence, the denominator of (23b)
must be non-zero and (A + D)? < 4 giving usthe stability condition

(A; D)Z <1 (24)

Thisis basically the same stability condition aswe got for the biperiodic lens sequence
[Equation 14, p.58] where we now recognize R and R, astheradii of curvature of the
Gaussian beam trapped in the optical resonator.
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Stability diagram of an optical resonator
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NOTE: The shading indicates high loss (unstable) regionsin which the stability condition
(24) isviolated.

Higher order modes
The Gaussian spherical wave which we have discussed to this point is only the lowest

order solution of the wave equation. It isalso the solution which will have the lowest
losses for a stable curved mirror cavity; higher order modes are a so possible although, as
we shall se, their diffraction losses will be progressively higher. The reason for thisis
that, while the mirrors are of finite size, the amplitude distribution moves further awvay
from the center of the mirrors as the order increases.

If we no longer assume that % =0 [See Equation (7), p.73 and (8), p.74], i.e., that there

may be atransverse dependence of the beam that is not symmetric about the optic axis we
find that the wave equation is satisfied not only by the spherical Gaussian that we have
examined in great detail, but by all members of the doubly infinite set

'\/EX '\/éy _ig% ikz i (M+n+1)¢
M e i R "
where @(z), §(z) and ¢( )areasbefore, and H_(x) arethe Hermite polynomials given by
Ho(X)= )
H,(x) =
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H,(X) = 4x* -2
If the cavi;tzy has cylindrical symmetry the modes may be described in terms of associated
Laguerre polynomials, i.e.,

‘ 2 k2o
‘ COS/O) -ina ik
Ep[(rleq Z) — EO (O [ \/Er ] LL( 2r j( )e 24(2) e|(2p+£+1)¢(z) (3)

w(2)\ w(2) w®(2z) \ sin’o
Most laser cavitieswill have dight asymmetriesin them (e.g., mirror misalignments,
Brewster angle windows, etc.) which cause mode patterns of rectangular rather than
cylindrical symmetry.

. .1 1 . A
We may re-write (1) using = = ——1——— toget
2 kr2 o
w \/EX \/Ey —T—léi—|kz+|(m+n+l)¢(z)

E_(xY,2)= 0 H H e ® 2R 4
The transverse variation of the eectric field is then of the form

N RC AN 5)

w(z)) "\ 0(2)

A quick graphical consideration of (5) isrelevant here. For ease of drawing we will
assume n =0 so that (5) becomes

&
EmO oc Hm(g)e 2 (6)

where we have defined § = % and are looking at the field distribution only along the x-
0]

axis, i.e., y=0, then

m=0 m=1 m=2 mode number
' . Polynomial, H,,(¢)
’ [l
.......... L —_— ] — =
4 P 4 ‘, ¢
. field amplitude,
L Y K = " ,\‘ _g
__-" “.‘-_ ) \‘ ,' ' " \ Hm(C)e 2
¢ = e 1 ) c

Intensity or power,

212

H.()e ?

The presence of the Hermite polynomialsin (5) [and (1) and (2)] is seen to shift the
intensity distribution further away from the optical axis (£ = 0) in the figure above. The

function w(z) no longer givesthe e—lz power points (é amplitude points). We cannot talk
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about a i amplitude point because as seen in the above figure the transverse amplitude can

become negative for m> 0 and we have no basis for defining the beam size. What is done
isto talk about the intensity distribution (third row in the above figure) which is
everywhere positive. We can now integrate the transverse intensity distribution on a
computer to determine the power distribution of the beam.

1.0 +
. + el mode (mn)
% 0.8 + / / 3
o
T+ €2 41
: :
8 0.6 + 40
© 1 30
S 22
s 047 21
(- 1 20
g 0 o |
8 0.2+
T il
0.0 i i i i i i i I
0.0 1.0 2.0 3.0 4.0

radius (in units of m(z))

The above figure plots the fraction of the total beam power for a particular rectangular mode
(TEM,,,) within acircular cross-section of the beam. Notethat TEM , and TEM,,, are

represented by the same curve because of their symmetry.

The e and e power points are shown to show how the beam "size" isincreasing asthe
mode numbersincrease. It ispossible to define an effective beam size for a particular
mode, say o, = C.,w(z), where C_, isthe e_12 power point as determined from the graph
on p.88. Notethat C,, will be different for different m and n.

Stable resonators constructed with mirrors having radii of curvature R and R, will reflect
higher-order modes as well as the fundamental mode since neither the radius of curvature
nor the spot size depends upon the indices. Lasers can, and frequently, do oscillatein a

combination of higher order modes. We note, however, that as the mode indices increase
the intensity distribution moves farther out on the mirrors and away from the cavity optical
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axis. We can, therefore, control the mode structure by making the mirrors small and, thus,
increase the diffraction losses which the higher order modes experience. In practice, thisis
done by introducing some aperture inside the optical cavity rather than reducing the mirror
size. Theeffect of the apertureisto "dice off" alarge part of the intensity from the higher
order mode than from the low-order pattern.

The beam divergence 6 was defined astheratio of w(z) to z. Thiswas the half-angle of
the cone formed by the ! > power points. Because the intensity distribution shifts further

away from the optical aX|s with higher mode numbers we define the divergence using the
previously defined w,, as

0y (2) _c. (2) - CrmL

z z ON

showing that the beam divergence increases with increasing mode number (C,,, increases
withincreasing m and n, see p.88).

0~

Mode frequencies
To this point we have not discussed the resonance frequencies of Gaussian beam
resonators. To afirst approximation, the validity of which isrelated to the degree to which

the Gaussian spherical waves can be approximated by plane waves, e = e™?, the
resonance frequencies are determined by

9(z)-0(z)=k(z,-z)=k2(=q2r (1)
where k isthe wavenumber (k:%), ¢ isthe cavity length, and g isaninteger. This

equation (1) saysthat the phase shift per round trip is an integer multiple of 2. From (1)
the resonance frequencies are

C
f, = a5, (2

To develop amore accurate expression for the mode frequencies we must use the

requirement that the round trip phase shift experienced by the Gaussian beam must be an

integral multiple of 27, or that the one-way phase shift must be an integer multiple of 7,
i.e.,

9(z)-9(z)=qr 3)
The phase shift go(z) for the TEM,,, mode from (1), p. 86 is
@(2) =kz—(n+m+ 1)¢(Z) (4)
z

where ¢(z) = tan™ ( ] Thus, the resonance condition (3) is

0(z)-0(z)=k(z-2)-(n+m+D[4(z) - ¢(z)|=ar

But, z,—z =/ and k:%:% o that
B (m+n+1) B c
L S ORI ®

Note that (5) specifies the resonance frequencies in terms of the Rayleigh distance, z,, and
the distances of the mirrors from the beam waist, z, and z,. It would be more convenient if
we had an expression in terms of the easily measured cavity parameters /, R and R,. Let

usexaminetheterm ¢(z,) - ¢(z,) in (5).
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cos[q) (z)-¢ cos((/)2 — ¢,) = COS¢, COSP, +Sing,sing,
Since ¢, = tan 1( ) we have
ZR
sing, = 2
NZ+ 7
ZR
Cos¢, =
0 717
and, inasimilar manner,
, Z
sng, =
CoS@, =

ZR
VT + 7
Then, we can write ,
cos(p, — §,) = 2 2% (6)
\/(222 +23)(Z + Z)
using the expressions (6) and (7), p.79, for z, z, and Z3
_ G(1-9,)
(% +9 —29.0,)
92(1_ gl)g
(0 +0:—20.9,)
0.0:(1-9.8,)"

(0. +9 -20.,)
We have from (6), after considerable algebra,

COS(¢2 - ¢1) =499

9,~ 6, =cos*(\/g,) @
The detailed derivation of thisresult can be found in Appendix IV. Substituting (7) into (5)
we have the result

3 (m+n+1) c
fing = [q e cos (Voo )} > (8)

which gives the resonance frequenciesin terms of easily determined parameters.

22=_

2
ZR

or

There are several observations we can make about the mode frequenciesin ageneral curved
mirror cavity:
1. Thelowest order mode, i.e., the TEM,, modes, will not in general have

frequencies corresponding to the smple plane wave analysis which resulted in (1)
and (2). Instead,

foog = [q+ Leos (\/@)]2%

andonly if ,/g,0, =1 do we have
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2. Thereisconsiderable degeneracy in the mode frequencies. Note that the
frequencies of al modesfor which q=k' and (m+n)=Kk", where k' and K" are
constants, are equal.

f00q =q

A word about terminology used to describe the mode structure in alaser cavity isin order.
A laser oscillating at frequencies f ., fq: fing s €C. at the sametimeissaid to be
operating on many longitudinal modes, the longitudina modes being denoted by the
various g vaues, which are usually widely separated in frequency. Theindices m and n
are used to designate transverse modes. Thus, alaser having frequencies f .., f ... €tcC.
issaid to be oscillating on severa transverse modes and a single longitudinal mode. A
single frequency laser will usually oscillate on the lowest order transverse mode, its
frequency will be fy,,.

L et us examine the frequency spectrum predicted by (8) in more detail. The spacing
between adjacent longitudinal mode frequencies (q and g-+1) will be given by

o c
fmn(q+1) - fmnq = ﬂ(q +1- q) = ﬂ = Aflong
showing that the frequency spacing between adjacent longitudinal modesis a constant
given by
c
Aflong = 2_K
The spacing between transverse modes will be given by

cos™(\/a,q, )

T
For adjacent transverse modes, i.e., (M +n') —(m+ n) =1, we have the uniform transverse
mode spacing Af; . s JiVEN by

Af _ cos({a9,)

transverse — TAflong (10)
To illustrate the meaning of (9) and (10) we do an example. Suppose we are considering a

(9)

f fing = Afigng[ (M +1) — (M+ )]

mnq

near planar symmetrical cavity where R>> /. Then, g,=0,=0= 1—%. For é« 1

cos ({0, ) = cos*(g) = cos‘l(l— é) J2

R
Then, from (10),
20

Aftransverse = EAflong (11)

This shows that the transverse mode frequencies are located very near the longitudinal
mode frequencies, i.e.,
Af << Af

transverse long

from (11) and the resulting frequency spectrum is as shown below.
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transverse mode indices ssoaw 822Ny SRR
_ _ Aftrans.\./ersze_—>| e | | =f
longitudinal mode indices ¢ g+l gt+2
- AfIong "

Note that the transverse mode frequencies do not continue indefinitely. Evenif thelaser is
operating in many higher order modes simultaneoudly there will be a maximum transverse
mode TEM ., beyond which the diffraction losses become too gresat to allow lasing in

mnq

these higher order modes.

Consider now the spectrum of a symmetrical confocal cavity. Since R=/¢ wehave g=0
and cos *(g) = cos™*(0) = % From (10)
i
Moo = -2 Aoy =
/4

The resulting spectrum isthen

Af

long
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Note, page numbers for original notes.

Appendix |
Derive equation 4, p. 79

Appendix |1
Appendix |11
Page 81, smallest mirror spot size possible for a symmetrical cavity

Appendix IV
Derivation of equation (7), p.91
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Appendix V
Summary of Basic optical formula

TEM,,_Gaussian beam formulas

E-field solutions of wave equation under ik ikzeio
assumptions E(x,y,2) = E, % e 2
2 wl(Z
1. kz(F) = k2 = (2—7‘:) o2 r2
A’ wo _Ikm_m_lkz+l¢

3 E(x,y,z) = E,—>

2. % =0 (radia symmetry) o(2)
2
8_(5 << 2ka—(p‘
ot ot

Complex radius of curvature §(2): 1 _1 _1 —i A

420 G+z Rz m0'(2)

2

2
Radius of curvature: R(z) = z[1+( =Z+ Z— =zif z>> 7z,
z

R>0
R
source
_Z
source direction of
propagation di rect|0n of
propagation

2
e amplitude beam radius: ©(2) = w, |1+ (zi)
R

2
Rayleigh distance (collimated beam distance): z; = ”i’o

Divergenceangle: 6 = A
o,

for z>> z,
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Transformation of waves

spherica gaussian
Through space R =R +(22 _ 21)
Throughalens | 1 =1 1 1 1 1
R R f G G f
RA>0‘ ’d g y b \ FE>O
R>0 R,>0 _,If'j’ \(\.(__
'aq.\ [ . . ’,/’ qz
I.en.s’
lens
Through optical R - AR +B .~ _Ag,+B
systems CR+D %=cq+D
ABCD Law | [D C|K
e -[o )
r, B Aln

Power transmission of a Gaussian beam of radius (z) through an aperture of radius a
If a=w(z) then 86% of the incident power will be transmitted
If a=1.5m(z) then 99+% of the incident power will be transmitted

Stability of Gaussian beam resonators

For two mirror cavity 0< [1— i}(l— ij <1
R R,
A+D

2
jgl

where A and D are dements of the ABCD matrix

For genera cavities 0< (

Measured in plane from which ray matrix 2B
makes the transformation R = A-D
) 2BA
W] = =
7\4—-(A+D)
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Resonant frequencies of Gaussian beam resonators
m+n+1 _ (o)
fing = {q + (—ﬂ)cos 1(q/glg2 )}ﬂ

transverse mode spacing Af,

A B cos‘l(@ )

transverse —
T

ransverse

A.I:Iong

longitudinal mode spacing Af
_C

long — 2_€

long

Af
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Optical resonators for Gaussian beams
Notethat z <0 and R <0, al other variables are positive.

Pie N
X . N
z=7 =1z,
z=/
R*R -47 R+ R — 47
z = ; R z, = . R

(R-ONR-NR-R-1)_,. 9%1-99)

In general, 7 =
" (20+R-R) (0.+9 - 20,9,)°

V4 b4
Where g =1-—, g, =1- —
R ™ R,
z = _92(1_91) /. — 91(1_92) (=z+/0
gl+gZ_29192 g1+gz_29192
1

1
LA g 2 A o, 2

(02 — (DZ _ 2 1 0)2 _ -~
v=of@)=7 Lzl(l— 9192)} ‘o {92(1— 9192)}

For symmetrical resonators where R isthe unsigned radius of curvature

A R
w, =W, = ;47

For confocal symmetric cavity where R=/

Al
(COO )conf - \/;

(wl)conf = (a)z)conf = (a)())(:onf\/E
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