
-238-
Copyright 1997 F.Merat

STACK FRAMES

The MC68000 provides two special instructions to allocate and
deallocate a data structure called a frame in the stack to make
subroutines easier to code.

general structure of a frame:

SP

FP

local
variables
and
scratch
pad

previous FP

return address

passed
arguments

local storage
original SP

original FP

stack frame

where register An is used as the argument pointer.

LINK An,d 1. put An at -(SP) Example:
decrement stack pointer and put
A0 on the stack.
2. put SP into An Example:
set A0 to point to this value.
3. change SP-d to SP, i. e.
decrement the SP

-239-
Copyright 1997 F.Merat

UNLK An 1. An → SP, change the value of
the SP to that contained in An
2. (SP)+ → An, put that value on
the stack into An and deallocate
that stack space.

Return addresses and passed arguments are always positive relative
to the frame pointer (FP).

SP

FP

local
variables

current FP

next FP

next FP

original FP

-240-
Copyright 1997 F.Merat

Example:
MOVE.W D0,-(SP) ;push parameter #1 onto stack

MOVE.W D1,-(SP) ;push parameter #2 onto stack

JSR SBRT ;jump to subroutine SBRT

SBRT LINK A0,-#$8 ;establish FP and local storage
•
•
•

MOVE.W 10(A0),D5 ;retrieve parameter #1
•
•
•

UNLK A0 ;FP for the calling routine re-established.

Deallocate stack frame

RTS ;return

What the stack looks like during this program segment:

SP after LINK

FP after LINK

local
storage

contents of A0

return address

parameter #2

local storage
for main
program

original SP

original FP

SP after JSR

8 bytes

parameter #1

previous FP

4 bytes

4 bytes

1 word

1 word

SP after UNLK

SP after RTS

FP after UNLK

Note that the FP is stored in A0.

-241-
Copyright 1997 F.Merat

EXAMPLE:
ARG DC.L ;number
N EQU 8 ;8 bytes for output
M EQU 8 ;8 bytes for local variables

ADD.L #-N,SP ;put output area on stack
MOVE.L ARG,-(SP) ;put argument on stack
PEA X ;put address of data table

on stack
JSR SUBR ;goto subroutine
ADDA #8,SP
MOVE.L (SP)+,D1 ;read outputs
MOVE.L (SP)+,D2
•
•
•

SUBR LINK A1,#-M ;save old SP
•
•
•

MOVE.L LOCAL1,-4(A1) ;save old variables
MOVE.L LOCAL2,-8(A1) ;
•
•
•

ADD.L #1,-4(A1) ;change a local variable
MOVEA.L 8(A1),A2 ;get X
•
•
•

MOVE.L OUTPUT,16(A1) ;push an output
•
•
•

UNLK A1
RTS

LOCAL1 DC.L $98765432 ;local variables
LOCAL2 DC.L $87654321
OUTPUT DC.L ‘ADCB’ output value

-242-
Copyright 1997 F.Merat

return
address

X

(ARG)

output
area

return
address

X

(ARG)

output
area

free

local
area

old (A1)

}8 bytes

}4 bytes

}8 bytes

}4 bytes

}4 bytes

}4 bytes

after JSR after LINKbefore anything

free

free

SP

FP

SP

return
address

X

(ARG)

OUTPUT
1

after UNLK

free

SP

OUTPUT
2

X

(ARG)

OUTPUT
1

after RTS

free

SP

OUTPUT
2

-243-
Copyright 1997 F.Merat

Program to compute the power of a number using a subroutine.
Power MUST be an integer. A and B are signed numbers.
Parameter passing using LINK and UNLK storage space on the
stack.

MAIN LINK A3,#-6 ;sets up SP
MOVE A,-2(A3)
MOVE B,-4(A3)
JSR POWR ;call subroutine POWR
LEA C,A5
MOVE -6(A3),(A5)
UNLK A3

ARG EQU *
A DC.W 4
B DC.W 2
C DS.W 1

POWR EQU *
MOVE -2(A3),D1 ;put A into D1
MOVE -4(A3),D2 ;put B into D2
MOVE.L #1,D3 ;put starting 1 into D3

LOOP EQU *
SUBQ #1,D2 ;decrement power
BMI EXIT ;if D2-1<0 then quit NOTE: this

gives us A**0=1
MULS D1,D3 ;multiply out power
BRA LOOP ;and repeat as necessary

EXIT EQU *
MOVE D2,-6(A3) ;C=(D3)
RTS

END MAIN

-244-
Copyright 1997 F.Merat

(D2) 2 bytes
B 2 bytes

*FP→ A 2 bytes
SP→ value of A3

*fixed while the SP changes

-245-
Copyright 1997 F.Merat

Better way.

MAIN MOVEA.L SP,A3
MOVE A,-(SP)
MOVE B,-(SP)
ADD.L #2,SP ;save output area
JSR POWR ;call subroutine POWR
LEA C,A5
MOVE -6(A3), (A5) ;put answer somewhere

ARG EQU *
A DC.W 4
B DC.W 2
C DS.W 1

POWR EQU *
LINK A3,#-6
MOVE 10(A3),D1 ;put A into D1
MOVE 12(A3),D2 ;put B into D2
•
•
•
MOVE D2,8(A3) ;C=(D3)
UNLK A3
RTS

END MAIN

-246-
Copyright 1997 F.Merat

SP→ C save 6 bytes for
B next set of variables
A

FP (in A3)→ previous 4 bytes
FP

return 4 bytes
address

reserved for C 2 bytes
B 2 bytes
A

original SP,FP→

-247-
Copyright 1997 F.Merat

Calling conventions for C or Pascal

Arguments are pushed onto the stack in the reverse order of their
appearance in the parameter list.

Just after a subroutine call:

frame A6
pointer
return

address
4(SP)→ arg 1 ↵8(A6)

arg N
original SP→

If the function begins with a
LINK A6,#
High level language always generates LINK A6,# instructions

All arguments occupying just a byte in C are converted to a word and
put in the low byte of the word, i.e.

offset→
d(SP) A d+1(SP) A

Result, if any, is returned in D0 for function calls.

-248-
Copyright 1997 F.Merat

IT IS THE PROGRAMMER’S RESPONSIBILITY TO REMOVE THE
ARGUMENTS FROM THE STACK.

The C calling sequence looks like this:

MOVE ___,-(SP) ;last argument
•
•
•
MOVE ___,-(SP) ;first argument
JSR FUNCT
ADD #N,SP ;total size of arguments

Subroutine functions:
LINK A6,#N
•
•
•
MOVE ...,D0
UNLK A6
RTS

The Pascal calling sequence pushes arguments in left to right order,
then calls the function. The result if any is left on the stack. An
example looks like this:

SUB #N,SP ;save space for result
MOVE ...,-(SP) ;push first argument onto stack
•
•
•
MOVE ...,-(SP) ;last argument
JSR FUNCT
MOVE (SP)+,... ;store result

-249-
Copyright 1997 F.Merat

Subroutine code:
LINK A6,#N
•
<code>
•
UNLK A6
MOVE (SP)+,A0 ;return address
ADD #N,SP ;total size of arguments
MOVE ...,(SP) ;store return result
JMP (A0)

Symbols defined in assembly routines with the DS directive and
exported using XDEF and XREF can be accessed from C as external
variables. Conversely, C global variables can be imported and
accessed from assembly using the XREF directive.

-250-
Copyright 1997 F.Merat

Miscellaneous comments about subroutines.

Parameter passing via MOVEM (move multiple registers)

If you have a small assembly language program this instruction
allows you to save the values of registers NOT used to pass
parameters.

Example:
SUBRTN EQU *

MOVEM D0-D7/A0-A6,SAVBLOCK
•
•
•
MOVEM SAVBLOCK,D0-D7/A0-A6

where SAVBLOCK is local memory. This is bad practice since
SAVBLOCK can be overwritten by your program.

MOVEM has two forms
MOVEM register_list,<ea>
MOVEM <ea>,register_list

More common to save registers on stack

SUBRTN EQU *
MOVEM D0-D7/A0-A6,-(SP)
•
•
•
MOVEM (SP)+,D0-D7/A0-A6
RTS

MOVEM is often used for re-entrant (subroutines that can be
interrupted and re-entered) procedures.

-251-
Copyright 1997 F.Merat

The MOVEM instruction always transfers contents to and from
memory in a predetermined sequence, regardless of the order used
to specify them in the instruction.

address register indirect with pre-
decrement

transferred in the order A7→A0,
then D7→D0

for all control modes and address
register indirect with post-
increment

transferred in reverse order
D0→D7, then A0→A7

This allows you to easily build stacks and lists.

-252-
Copyright 1997 F.Merat

Six methods of passing parameters:

1. Put arguments in D0 thru D7 before JSR (good only for a few
arguments)

2. Move the addresses of the arguments to A0-A6 before JSR
3. Put the arguments immediately after the call. The argument

addresses can be computed from the return address on the
stack.

4. Put the addresses of the arguments immediately after the call in
the code.

5. The arguments are listed in an array. Pass the base address of
the array to the subroutine via A0-A6.

6. Use LINK and UNLK instructions to create and destroy
temporary storage on the stack.

-253-
Copyright 1997 F.Merat

JUMP TABLES
— are similar to CASE statements in Pascal
— used where the control path is dependent on the state of a

specific condition

EXAMPLE:
This subroutine calls one of five user subroutines based upon a user
id code in the low byte of data register D0. The subroutine effects the
A0 and D0 registers.

RORG $1000 ;causes relative addressing
(NOTE 1)

SELUSR EXT.W D0 ;extend user id code to word
CHK #4,D0 ;invalid id code ? (NOTE 2)
LSL #2,D0 ;NO! Calculate index=id*4

since all long word
addresses

LEA UADDR,A0 ;load table addresses
MOVEA.L 0(A0,D0.W),A0 ;compute address of user

specified subroutine and put
correct caling address into
A0

JMP (A0) ;jump to specified routine
•
•
•

UADDR DC.L USER0,USER1,USER2,USER3,USER4

NOTES:
1. The RORG is often used when mixing assembly language programs with

high level programs. It causes subsequenct addresses to be relative.

2. The CHK is a new instruction. In this case it checks if the least significant

word of D0 is between 0 and 4 (2’s complement). If the word is outside

these limits, a exception through vector address $10 is initiated. The CHK

instruction checks for addresses outside assigned limits and is often used to

implement subscript checking.

-254-
Copyright 1997 F.Merat

EXAMPLE RECURSIVE PROCEDURE USING STACK

DATA EQU $6000
PROGRM EQU $4000

ORG DATA
NUMB DS.W 1 ;number to be factorialized
F_NUMB DS.W 1 ;factorial of input number

ORG PROGRM
MAIN MOVE.W NUMB,D0 ;get input number

JSR FACTOR ;compute factorial
MOVE.W D0,F_NUMB ;save the answer

* SUBROUTINE FACTOR
* PURPOSE: Determine the factorial of a given number.
* INPUT: D0.W = number whose factorial is to be computed
* 0 ≤ D0.W ≤ 9
* OUTPUT: D0.W = factorial of input number
* REGISTER USAGE: No registers except D0 effected
* SAMPLE CASE: INPUT: D0.W=5
* OUTPUT: D0.W=120

FACTOR MOVE.W D0,-(SP) ;push current number onto
stack

SUBQ.W #1,D0 ;decrement number
BNE.S F_CONT ;not end of factorial

computations
MOVE.W (SP)+,D0 ;factorial=1
BRA.S RETURN

F_CONT JSR FACTOR
MULU (SP)+,D0

RETURN RTS

-255-
Copyright 1997 F.Merat

→ 1 subtract 1, equal to zero so pop stack
return

address
2

return
address

3
return

address
4

return
address

5 put D0 (current onto stack)
return

address
original SP→

-256-
Copyright 1997 F.Merat

EXAMPLE
This is a simplified version of TUTOR’s “DF” command. It uses the
stack to display register contents.

START MOVEM.L TESTREGS,D0-D7/A0-A6 ;assign values to
registers

MOVE,L #-1,-(SP) ;put something on stack
JSR PRINTR ;print all registers
MOVE.L (SP)+,D0 ;retrieve it
ADDQ.L #1,D0 ;null it
JSR PRINTR ;print them all again
TRAP #0 ;stop program

SAVESP EQU 60

PRINTR ;data for PRINTREGS
RMSGS:

DC.B ‘ D0 D1 D2 D3 D4 D5’,0
DC.B ‘ D6 D7 A0 A1 A2 A3’,0
DC.B ‘ A4 A5 A6 SP SR PC’,0

; |<---- 55 characters long ---->|
SPACES DC.B ‘ ‘,0 ;2 blanks
CONBUF DS.B 10
ENDLINE DC.B $0D,$0A,0
; data for program
CH DS.B 1

DS.W 1
TSTREG DC.L 1,2,3,4,5,6,7,8,$A,$AA,$AAA

DC.L $AAAA,$AAAAA,$AAAAAA,$AAAAAAA
END

-257-
Copyright 1997 F.Merat

PRINTR MOVE.W SR,-(SP) ;save SR on stack
PEA 6(SP) ;save original SP on stack
MOVEM.L D0-D7/A0-A6,-(SP) ;save all regular

registers
MOVEQ #2,D4 ;D1 counts # of rows in

printout
MOVEA.L SP,A1 ;use A1 to point to beginning

of data
LEA RMSGS,A2 ;use A2 to point to row

headings
MLOOP ;output routine for heading

MOVEA.L A2,A0 ;set pointer to beginning of
header to be printed

JSR PrintString ;output heading
MOVEQ #5,D5 ;output six registers this line

RLOOP TST.W D4 ;tests for SR to be printed
BNE.S NOT_SR ;SR requires special routine
CMP.W #1,D5 ;as it is only word length
BNE.S NOT_SR ;register
LEA SPACES,A0 ;load addresses of spaces
JSR PrintString ;print spaces with no new

line
MOVE.W (A1)+,D0 ;put SR word into D0
JSR PNT4HX ;unimplemented routine to

convert 4 hex digits in D0 to
ascii code for printing

JSR PrintString ;print hex contents
LEA SPACES,A0 ;load address of spaces
JSR PrintString ;print them with no line feed
BRA.S ENDRPL

NOT_SR MOVE.L (A1)+,D0 ;put register contents into D0
JSR PNT8HX ;unimplemented routine to

convert 8 hex digits in D0 to
ascii code for printing

-258-
Copyright 1997 F.Merat

ENDRPL DBF D5,PRLOOP ;decrement register counter,
started at 5

LEA ENDLINE,A0 ;print CR+LF
JSR PrintString
ADDA.L #55,A2 ;increment heading pointer
DBF D4,MLOOP ;goto another line
MOVEM.L (SP)+,D0-D7/A0-A6
ADDQ.W #4,SP ;skip over A7 to point to SR
RTR ;return and restore registers

-259-
Copyright 1997 F.Merat

SP→ D0

D1

0

0

0

0
→

A5

A6

after MOVEM→ original SP ⇐ do this since this is only way to
address save original value of A7

after ADD #4→ SR ⇐ the RTR pops this and the
return return address

address
→ -1 put D0 (current onto stack)

-260-
Copyright 1997 F.Merat

SYSTEMS PROGRAMMING
Covers input/output programming, exception processing, peripheral device
interrupts

Chapter 12 6850 ACIA (Asynchronous Communications Interface
Adapter), 68230 PIT (Programmable Interval Timer)

Chapter 13 Exception processing, i.e. service routines and single stepping
Chapter 14 Exception processing and interrupt processing, concurrent

programming.

Interrupts and exceptions
Instructions that interrupt ordinary program execution to allow access to system utilities
or when certain internally generated conditions (usually errors) occur.

Conditions interrupting ordinary program execution are called exceptions. Usually are
caused by sources internal to the 68000. Interrupts are exceptions which are caused by
sources external to the 68000.

Exceptions transfer control to the program controlling the system (usually a monitor
program or an operating system).

For example,
• user program executes a TRAP instruction for input/output which forces an

exception.

• user program becomes suspended, file input/output is done by monitor
program/operating system.

• user program is restarted where it was suspended.

As a result of any exception, the CPU switches from program execution to exception
processing, services the exception request, and returns to normal program execution.

The MC68000 makes specific provision for two (actually three) operating states:
• normal state
• exception state
• HALTED state - used to prevent unpredictable behavior when a serious system

failure occurs

-261-
Copyright 1997 F.Merat

normal
state

exception
normal
state

exception

exception state

bus or
address
error

any other
call such
as service
routine

service routine
(normal state)

return

HALTed
state

Prevents
unpredictable
behavior when a
serious systems
failure occurs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

T S I I I
0

2 1 0 Z V CX N

system byte user byte (CCR)

Interrupt level
Supervisor mode
Allows a priviledged mode of execution which is essential for
multi-user environment.

Trace
Sets a post-instruction routine into action.

Supervisor mode single-user operating systems and monitor programs, all exception
handling programs normally run in supervisor mode

User mode restricted access to the system environment, useful in multi-user
environments.

-262-
Copyright 1997 F.Merat

The supervisor bit (bit 13 of the status register) is 1 if the 68000 is in supervisor
(priviledged) mode.

There are four priviledged 68000 instructions; all have the entire SR as a destination.
MOVE.W <ea>,SR
ANDI.W #N,SR
ORI.W#N,SR
EORI.W #N,SR

So that the 68000 does not become confused there are two stacks

User mode, S=0 Supervisor mode, S=1

(SP)→

supervisor
stack

user
stack

(USP)→(SP)→

supervisor
stack

user
stack

Bit 13 of the status register is used to toggle A7 between the user and supervisor modes.
USP references the user stack while the 68000 is in supervisor mode.

MOVE.L USP,An
MOVE.L An,USP

are the only instructions that can access the user stack while the 68000 is in supervisor
mode. They are both priviledged instructions and transfer only long words (32 bits).

Examples 13.3
ADDA.L D0,USP ;not a valid instruction

MOVE.L USP,A0 ;valid instruction, puts USP on system stack
MOVE.L A0,-(SP) ;cannot do MOVE.L USP,-(SP) directly

-263-
Copyright 1997 F.Merat

How exceptions are processed:
1. identify the exception • internal (identified by the CPU) -

 caused by TRAP instruction , etc.
• external (identified by specific signal
 pins) - caused by hardware
 assertation

2. save information about the
currently running program

save the status register to a special internal
register

3. initialize the status register (for the
exception routine)

set S=1,
T=0 (typically),
interrupt level for external exceptions

4. determine the vector number (from step 1), each exception type can
have a unique routine. The MC68000
allows 255 such routines and stores their
location (called a vector) addresses in the
first 1K of 68000 program memory. This
area is called the exception vector table .

vector #1 SPECIAL
 for system start-up
vector #2
 •
 •
 •
vector #255

address of exception vector = 4 ×
exception vector number

5. save status register and return
address

push the current PC (return address for the
exception routine) and the saved status
register onto the system stack.

6. set PC to (address of exception
vector), i.e. to correct starting
address of exception service
routine

the exception service routine is typically
user created or part of your operating
system. You are typically responsible for
setting the vector address in the exception
vector table.

7. RTE This is a priviledged insruction (Return
from Exception) and MUST be at the end
of each exception service routine. It pops
the status register and PC from the
supervisor stack. The status register and
PC from the exception routine processing
are lost.

-264-
Copyright 1997 F.Merat

Pseudo code exception processing cycle

identify exception vector number
save present status register to internal CPU register
set status register

begin
set S bit to 1
set T bit to 0
set interrupt level to level of present interrupt
end

Compute exception vector address
* vector address = 4 × exception vector number
Save user information onto system stack

begin
push PC onto system stack
push saved status register onto system stack
end

Set PC to exception vector address

{Execute exception subroutine.}

RTE
* Similar to RTS, pops PC and SR from system stack,

-265-
Copyright 1997 F.Merat

EXCEPTION VECTOR TABLE

vector number (Decimal) address (Hex) assignment
0 0000 RESET: initial supervisor stack pointer

(SSP)
1 0004 RESET: initial program counter (PC)
2 0008 bus error
3 000C address error
4 0010 illegal instruction
5 0014 zero divide
6 0018 CHK instruction
7 001C TRAPV instruction
8 0020 priviledge violation
9 0024 trace
10 0028 1010 instruction trap
11 002C 1111 instruction trap
12* 0030 not assigned, reserved by Motorola
13* 0034 not assigned, reserved by Motorola
14* 0038 not assigned, reserved by Motorola
15 003C uninitialized interrupt vector
16-23* 0040-005F not assigned, reserved by Motorola
24 0060 spurious interrupt
25 0064 Level 1 interrupt autovector
26 0068 Level 2 interrupt autovector
27 006C Level 3 interrupt autovector
28 0070 Level 4 interrupt autovector
29 0074 Level 5 interrupt autovector
30 0078 Level 6 interrupt autovector
31 007C Level 7 interrupt autovector
32-47 0080-00BF TRAP instruction vectors**
48-63 00C0-00FF not assigned, reserved by Motorola
64-255 0100-03FF user interrupt vectors

NOTES:
* No peripheral devices should be assigned these numbers
** TRAP #N uses vector number 32+N

-266-
Copyright 1997 F.Merat

Example 13.4 TRACING

PC instruction
{somewhere in your program}

001FFC MOVE.W D0,16(A0) ;trace service routine at $9000
002000 ADD.W D2,D3

ORG $9000
{code for exception routine}
RTE

The trace exception occurs after instruction is executed. For the purposes of this
example, assume SR after MOVE.W is executed is $8011, i.e.

1000 0000 0001 0001 STATUS REGISTER
C bit
V bit
Z bit
N bit
X bit
no interrupt levels set
user mode is ON
trace mode is ON

Consider pseudo code:
• Identifies exception vector number. For trace, exception vector number =910.
• Saves user SR to internal register.
• Sets new SR (upper bits only 0010 0000 = $20)
• Computes exception vector address (9 × 4 = 3610 = $24)
• Push user PC, then user SR onto system stack.
• Set PC = the contents of the exception vector address = ($24) = $9000
• Executes the trace routine which prints a message to the screen or printer and

then clears the T bit in the user SR presently on the system stack.
• RTE

-267-
Copyright 1997 F.Merat

immediately after the MOVE
instruction is executed

just before executing the
interrupt service routine

after the RTE

SR: $8011*
PC: $002000

The T bit is set indicating that
TRACEing is in effect.

SR: $2011
PC: $009000

In special internal register:
$8011

Notice that lower bits of SR
are not altered by entering
ISR.

SR: $0011*
PC: $002000

* Recall that the exception
routine turned off the T bit.

STACK:

$8FFE

$8FFC

$8FFA

(SP) → $9000

STACK:

$8FFE

$8FFC

$8FFA(SP) →

$9000

$2000

$0000

$8011$8FFA *

* *

* original SR
** original PC

STACK:

$8FFE

$8FFC

$8FFA

(SP) → $9000

-268-
Copyright 1997 F.Merat

HOW DOES THE 68000 START UP?

Hardware sets the RESET input pin (This is caused by circuitry external to the 68000).
This causes a hardware exception which triggers the “reset exception.”

identifies the exception RESET (#0)
no currently running program
initialize the SR S=1

T=0
I2I1I0 = 1112 (interrupts disabled)

determine vector number 0 in this case
save the SR and return address on the
system stack

None, so the return stack must be
initialized:
(supervisor) SP = ($0)

($0)

($4)
reset vector =

set PC to (address of exception vector) PC = ($4)

Example 13.5

Press RESET.
Initialize SR. SR=$2700
Initialize (SP). (SP)=$0500
Initialize (PC) (PC)=$8146
Begin execution of the 68000’s
initialization routine at the starting address
in memory.

The memory (i.e. the RESET vector) in this example looks like:

$06

$05

$04initial PC →

$07

$81

$00

$00

$02

$01

$00initial SSP →

$03

$05

$00

$00

$00

$46

bytes

-269-
Copyright 1997 F.Merat

Single board computers do NOT typically have an operating system. They have a simple
program called a MONITOR which contains exception service routines whose starting
addresses are loaded into the exception vector table at memory locations $8 - $3FF
(remember the RESET vector MUST be in the first eight memory locations). Typically,
the monitor will service key exceptions such as bus address errors, divide by zero, etc.
with specific service routines. All other exceptions are handled by a generic service
routine.

The startup sequence is special and consists of the following:

step action description
1. set the status register to

$2700
sets supervisor bit to 1,
turns trace off, sets interrupt
mask to 111

2. set the Supervisor Stack
Pointer to the contents of $0

SSP←($0.L)

3. set the pc to the contents of
$4

pc←($4.L)

4. start program execution

Example 13.4.2 SYSTEM INITIALIZATION

 Address exception name of service routine
$08 bus error VBUSERR
$0C address error VADDRERR
$10 illegal instruction VILLEGINST
$14 divide by zero VZERODIV
$18 VCHK
$1C VTRAPV
$20 priviledged instruction violation VPRIVINST
$24 trace (single step) VTRACE

generic routine XHANDLE

Typical MONITOR routine:

-270-
Copyright 1997 F.Merat

* MONITOR INITIALIZATION ROUTINE
* ASSUMES RESET VECTOR CONTAINS ADDRESS OF INIT AT $4
STARTSP EQU $8000 ;initial stack pointer

value

* EXCEPTION VECTOR ADDRESSES IN SEQUENTIAL ORDER
VBUSERR EQU $08
VADDERR EQU $0C
VILLEGINST EQU $10
VZERODIV EQU $14
VCHK EQU $18
VTRAPV EQU $1C
VPRIVINST EQU $20
VTRACE EQU $24

* STORE EXCEPTION VECTORS IN THE ADDRESS TABLE

* RESET vector starts here
ORG $5000

INIT LEA STARTSP,SP ;initialize SSP
MOVE.L #BUSERR,VBUSERR ;initialize exception
MOVE.L #ADDERR,VADDERR ;vector table
MOVE.L #ILLINST,VILLINST
MOVE.L #XHANDLE,VZERODIV
MOVE.L #XHANDLE,VCHK
MOVE.L #XHANDLE,VTRAPV
MOVE.L #PRIVIOL,VPRIVINST
MOVE.L #TRACE,VTRACE

LEA $28,A0 ;load rest of the
exception table from
address $28 to $3FC
with starting address
of routine XHANDLE

ABINIT MOVE.L #XHANDLE,(A0)+
CMPA.L #$400,A0
BCS.S TABINIT

MAIN {This is the mini-operating system and is a program that always runs.
It might interpret commands, etc.)
BRA MAIN

* EXCEPTION SERVICE ROUTINES

BUSERR {put code for routine here}

ADDERR {put code for routine here}

-271-
Copyright 1997 F.Merat

ILLINST {put code for routine here}

PRIVIOL {put code for routine here}

TRACE {put code for routine here}

XHANDLE ;prints error message
MOVEQ #0,D0 ;clear D1
LEA EXCEPTMSG,A0 ;load location of

message
JSR PUTSTRING ;print it
MOVE.L 2(SP),D0 ;get return address

from system stack
JSR PUTHEX ;print it
JSR NEWLINE

* FLUSH THE RETURN ADDRESS AND SR FROM THE SYSTEM STACK
ADDQ.W #6,SP ;flush the stack
BRA MAIN ;return to monitor

EXCEPTMSG DC.B ‘UNEXPECTED EXCEPTION AT ‘,0

-272-
Copyright 1997 F.Merat

PROGRAM 13.1 TRAP HANDLER

VTRAP0 EQU $80 ;trap #0 exception address, 12810
VTRAP1 EQU $84 ;trap #1 exception address, 13210

STARTSP EQU $8000 ;initial SP value
STARTUSP EQU $4000 ;initial USP value
MONITOR EQU $8146 ;address of monitor

NULL EQU 0
CONSOLE EQU 0 ;console port

XREF INIT,PUTHEX,PUTSTRING,NEWLINE

* RESET VECTOR STARTS HERE
MAIN: LEA STARTSP,SP ;initial stacks

LEA STARTUSP,A0
MOVE.L A0,USP

MOVE.L #TRAP0,VTRAP0 ;initialize exception vectors
MOVE.L #TRAP1,VTRAP1

MOVEQ #CONSOLE,D7 ;initialize UART specific to ECB
JSR INIT

* start program at address $2000 in user mode
MOVE.L #$2000,-(SP) ;put starting address of user

program on system stack
MOVE.W #$0000,-(SP) ;clear status register
RTE ;start user program

* service routine for TRAP #0. Only a "file read" routine is simulated.
TRAP0:

MOVEM.L D0/A0-A1,-(SP)
MOVE.L USP,A1 ;A1 points at user stack
MOVE.L (A1)+,D0 ;get the operation number
ASL.L #2,D0 ;4 byte index to iocalls table

(multiply by 4 for byte offset)
LEA IOCALLS,A0 ;get base address of table
MOVEA.L 0(A0,D0.L),A0 ;(A0) is address of the routine

* SUBROUTINE PUSHS ARGS OFF STACK
JSR (A0) ;jump to routine
MOVE.L A1,USP ;reset user stack pointer
MOVEM.L (SP)+,D0/A0-A1
RTE

* ROUTINE TO CREATE AND OPEN A FILE ARE PLACED HERE
CREATE:
OPEN:

* READ ROUTINE DUMPS AND PRINTS PARAMETERS ON USER STACK
READ: LEA BYTEREAD,A0 ;get the bytes to read

JSR P[UTSTRING

-273-
Copyright 1997 F.Merat

MOVE.L (A1)+,D0
JSR PUTHEX
JSR NEWLINE
LEA BUFADDR,A0 ;get address of input buffer
JSR PUTSTRING
MOVE.L (A1)+,D0
JSR PUTHEX
JSR NEWLINE
LEA FILENUMBER,A0 ;get the system file number
JSR PUTSTRING
MOVE.L (A1)+,D0
JSR PUTHEX
JSR NEWLINE
RTS

* ROUTINES TO WRITE TO A FILE AND CLOSE A FILE ARE PLACED HERE
WRITE:
CLOSE:

TRAP1: JMP MONITOR ;perform the jump in supervisor
mode

* DATA SECTION
IOCALLS DC.L CREATE,OPEN,READ,WRITE,CLOSE
BYTEREAD DC.B 'BYTES TO READ: ',NULL
BUFADDR DC.B 'ADDRESS OF INPUT BUFFER: ',NULL
FILENUMBER DC.B 'FILE NUMBER: ',NULL

END

-274-
Copyright 1997 F.Merat

THE FOLLOWING PROGRAM IS ASSEMBLED AND LOADED AT ADDRESS
$2000. PROGRAM 13.1 INITIATES EXECUTION OF THE PROGRAM AND
PRODUCES THE OUTPUT BELOW:

ORG $2000
START:
* put input parameters on stack

MOVE.L #3,-(SP) *FILE NUMBER IS 3
MOVE.L #BUF,-(SP) *ADDRESS OF INPUT BUFFER
MOVE.L #512,-(SP) *NUMBER OF BYTES TO READ
MOVE.L #2,-(SP) *READ OPERATION IS 2
TRAP #0 *DO THE READ
TRAP #1 *TRAP #1 RETURNS CONTROL TO

MONITOR WHEN IN USER MODE

BUF: DS.B 512
END

USP → operation number

of bytes to transfer

address of buffer

file #

<RUN>

OUTPUT:
BYTES TO READ: 00000200
ADDRESS OF INPUT BUFFER: 0000201C
FILE NUMBER: 00000003

-275-
Copyright 1997 F.Merat

PROGRAM 13.2 ERROR HANDLER:

VDIV EQU $14 ;divide by zero exception
vector

VTRAPV EQU $1C ;trap on overflow exception
address

MONITOR EQU $8146 ;address of monitor in ROM
NULL EQU 0
RTNADDR EQU 2 ;offset to return address
STARTSP EQU $8000 ;starting SSP

XREF INIT,PUTSTRING,PUTHEX,NEWLINE

ORG $1000 ;program would be started by
MONITOR program

START: MOVE.L #STARTSP,SP ;initialize supervisor stack
MOVE.L #DIVERR,VDIV.W ;initialize exception vectors
MOVE.L #OVRFLERR,VTRAPV.W

* INITIAL ACIA CONSOLE PORT
MOVEQ #0,D7
JSR INIT

* START UP A USER PROGRAM AT ADDRESS $2000
MOVE.L #$2000,-(SP)
MOVE.W #$2000,-(SP)
RTE

* EXCEPTION SERVICE ROUTINES

DIVERR: MOVEQ #0,D7 ;the ACIA is the terminal
LEA DIVMSG,A0
JSR PUTSTRING
MOVE.L 2(SP),D0 ;load return address into D0
JSR PUTHEX ;print return address
JSR NEWLINE
JMP MONITOR return user to MONITOR

* RTE IS NOT DONE HERE. JUST ABORT THE PROGRAM
* PROBABLY SHOULD FLUSH STACK

OVRFLERR: MOVEQ #7,D1
LEA OVRFLMSG,A0
JSR PUTSTRING
JSR NEWLINE
RTE

DIVMSG: DC.B 'DIVIDE BY ZERO: PC = ',NULL
OVRFLMSG: DC.B 'OVERFLOW ',NULL

ORG $2000
START: MOVE.W #$5000,D0

ADDI.W #$4000,D0 ;V will be set
TRAPV

-276-
Copyright 1997 F.Merat

DIVS #0,D0
END

END

THE FOLLOWING PROGRAM IS ASSEMBLED AND LOADED AT ADDRESS
$2000. PROGRAM 13.2 INITIATES EXECUTION OF THE PROGRAM
AND PRODUCES THE OUTPUT BELOW:

<RUN>
OUTPUT: OVERFLOW

DIVIDE BY ZERO: PC = 0000200E

-277-
Copyright 1997 F.Merat

PROGRAM 13.3 SINGLE STEPPING

* CONTROL CHARACTERS
LINEFEED EQU $0A
NULL EQU $00

* EXCEPTION VECTORS
VTRACE EQU $24
VBUSERROR EQU $08
VADDRESSERROR EQU $0C
VILLEGALINSTRUCTION EQU $10
VPRIVILEDGEVIOLATION EQU $20
VTRAP0 EQU $80
VTRAP1 EQU $84

MONITOR EQU $8146

XREF INIT,PUTHEX,GETCHAR,NEWLINE
XREF ECHOFF,PUTSTRING,GETSTRING

* INITIALIZE THE SUPERVISOR AND USER STACK POINTERS
START: LEA $8000,SP

LEA $4000,A0
MOVE.L A0,USP

* INITIALIZE THE EXCEPTION VECTORS
MOVE.L #TRACE,VTRACE.W
MOVE.L #FATALERROR,VBUSERROR.W
MOVE.L #FATALERROR,VADDRESSERROR.W
MOVE.L #FATALERROR,VILLEGAL INSTRUCTION.W
MOVE.L #FATALERROR,VPRIVILEDGEVIOLATION.W
MOVE.L #OUTPUT,VTRAP0.W
MOVE.L #EXIT,VTRAP1.W

* INITIALIZE THE ACIA
MOVEQ #0,D7
JSR INIT
JSR ECHOFF

* START THE PROGRAM AT $3C00
MOVE.L #$3C00,-(SP) ;starting address is $3C00
MOVE.W #$8000,-(SP) ;start program in user mode,

trace on, interrupt level 0
RTE ;start the program

ENDRUN
JMP MONITOR ;return to main monitor

* BUS/ADDRESS ERROR, ILLEGAL INSTRUCTION, PRIVILEDGE VIOLATION,
* TRAP SERVICE ROUTINES

FATALERROR:
MOVEQ #0,D7
LEA FATALMSG,A0

-278-
Copyright 1997 F.Merat

JSR PUTSTRING
BRA ENDRUN ;return to MONITOR

* USER PROGRAM EXECUTING TRAP #1 CAUSES TRAP TO HERE
EXIT: BRA ENDRUN ;return to MONITOR

* USER PROGRAM EXECUTING TRAP #0 CAUSES
* TRAP HERE FOR HEX OUTPUT
OUTPUT: MOVE.L D7,-(SP)

MOVEQ #0,D7
JSR NEWLINE
JSR PUTHEX ;output (D0)
JSR NEWLINE
MOVE.L (SP)+,D7
RTE

* PRIMARY ROUTINE - CATCHES TRACE TRAP, DISPLAYS REGISTERS,
* AND HANDLES PROMPT FOR ANOTHER INSTRUCTION

PROGCOUNTER EQU 2
TSIZE EQU 6

TRACE:
MOVEM.L D0-D7/A0-A6,GENREG.W
MOVE.L PROGCOUNTER(SP),D0 ;get PC
MOVEQ #0,D1 ;get SR as a long word
MOVE.W (SP),D1
LEA TSIZE(SP),A0 ;original value of SP
MOVE.L USP,A1 ;get USP
MOVEM.L D0-D1/A0-A1,REGS.W ;load PC/SR/SSP/USP to

print
MOVEQ #0,D1 ;output to console port
MOVEQ #1,D2 ;allow four registers per line
MOVEQ #18,D3 ;19 entries to print
LEA REGS.W,A1 ;saved registers begin at

ADDRESS(SP)
LEA REGMSGS.W,A0

REGPL: JSR PUTSTRING
MOVE.L (A1)+,D0
JSR PUTHEX
ADDA.L #8,A0
ADDQ.W #1,D2 ;count 4 registers per line
CMPI.W #4,D2
BLE.S NEXT
MOVEQ #1,D2
JSR NEWLINE

NEXT: DBRA D3,REGPL
LEA OPMSG,A0 ;print message about opcode

word
JSR PUTSTRING
MOVE.L PROGCOUNTER(SP),A0 ;get opcode word of next

instruction
MOVEQ #0,D0
MOVE.W (A0),D0

-279-
Copyright 1997 F.Merat

JSR PUTHEX ;print it
LEA PROMPT,A0 ;">>" prompt
JSR PUTSTRING
JSR GETCHAR ;read a character from

terminal
CMPI.B #LINEFEED,D0 ;carriage return, continue
BEQ.S RET
ANDI.W #$7FFF,(SP) ;turn tracing off

RET: JSR NEWLINE
MOVEM.L GENREGS,D0-D7/A0-A6
RTE ;back to user program

REGS:
DS.L 4 ;to contain PC/SR/SSP/USP

GENREGS: DS.L 15 ;to contain D0-D7/A0-A6 at
each trace exception

REGMSGS:
DC.B ' PC = ',NULL,' SR = ',NULL,' SSP= ',NULL
DC.B 'USP = ',NULL,' D0 = ',NULL,' D1= ',NULL
DC.B ' D2 = ',NULL,' D3 = ',NULL,' D4= ',NULL
DC.B ' D5 = ',NULL,' D6 = ',NULL,' D7= ',NULL
DC.B ' A0 = ',NULL,' A1 = ',NULL,' A2= ',NULL
DC.B ' A3 = ',NULL,' A4 = ',NULL,' A5= ',NULL
DC.B ' A6 = ',NULL'

OPMSG:
DC.B LINEFEED,'OPCODE WORD NEXT INSTRUCTION = 'NULL

PROMPT
DC.B LINEFEED,LINEFEED,'>> ',NULL

FATALMSG:
DC.B LINEFEED,'FATAL ERROR HAS OCCURRED',LINEFEED,NULL

ORG $3C00
START: MOVE.L #5,-(SP)

MOVEQ #5,D5
LEA OUTPUT(PC),A3
MOVE.W #$001F,CCR

OUTPUT: MOVE.L #$55553333,D0
TRAP #0
TRAP #1

END

The actual program assembles to:
ORG $3C00

START:
003C00 2F3C 0000 0005 MOVE.L #5,-(SP)
003C06 7A05 MOVEQ #5,D5
003C08 47FA 0006 LEA OUTPUT(PC),A3
003C0C 44FC 001F MOVE.W #$001F,CCR
OUTPUT:
003C10 203C 5555 3333 MOVE.L #$55553333,D0
003C16 4E40 TRAP #0

-280-
Copyright 1997 F.Merat

003C18 4E41 TRAP #1

and gives the following output:
<RUN>
PC = 00003C06 SR = 00008000 SSP= 00008000 USP=00003FFC
D0 = 0000100D D1 = 4000544D D2 = 21FC104D D3 =00000000
D4 = 0000FC30 D5 = 0000002C D6 = 00000006 D7 =00000000
A0 = 00004000 A1 = 0000836C A2 = 00000414 A3 =00000554
A4 = 0000090C A5 = 00000560 A6 = 00000560
OPCODE WORD NEXT INSTRUCTION = 00007A05

>>
PC = 00003C08 SR = 00008000 SSP= 00008000 USP=00003FFC
D0 = 0000100D D1 = 4000544D D2 = 21FC104D D3 =00000000
D4 = 0000FC30 D5 = 00000005 D6 = 00000006 D7 =00000000
A0 = 00004000 A1 = 0000836C A2 = 00000414 A3 =00000554
A4 = 0000090C A5 = 00000560 A6 = 00000560
OPCODE WORD NEXT INSTRUCTION = 000047FA

>>
PC = 00003C0C SR = 00008000 SSP= 00008000 USP=00003FFC
D0 = 0000100D D1 = 4000544D D2 = 21FC104D D3 =00000000
D4 = 0000FC30 D5 = 00000005 D6 = 00000006 D7 =00000000
A0 = 00004000 A1 = 0000836C A2 = 00000414 A3 =00003C10
A4 = 0000090C A5 = 00000560 A6 = 00000560
OPCODE WORD NEXT INSTRUCTION = 000044FC

>>
PC = 00003C10 SR = 0000801F SSP= 00008000 USP=00003FFC
D0 = 0000100D D1 = 4000544D D2 = 21FC104D D3 =00000000
D4 = 0000FC30 D5 = 00000005 D6 = 00000006 D7 =00000000
A0 = 00004000 A1 = 0000836C A2 = 00000414 A3 =00003C10
A4 = 0000090C A5 = 00000560 A6 = 00000560
OPCODE WORD NEXT INSTRUCTION = 0000203C

>>
PC = 00003C16 SR = 00008010 SSP= 00008000 USP=00003FFC
D0 = 55553333 D1 = 4000544D D2 = 21FC104D D3 =00000000
D4 = 0000FC30 D5 = 00000005 D6 = 00000006 D7 =00000000
A0 = 00004000 A1 = 0000836C A2 = 00000414 A3 =00003C10
A4 = 0000090C A5 = 00000560 A6 = 00000560
OPCODE WORD NEXT INSTRUCTION = 00004E40

>>
PC = 00000984 SR = 00002010 SSP= 00007FFA USP=00003FFC
D0 = 55553333 D1 = 4000544D D2 = 21FC104D D3 =00000000
D4 = 0000FC30 D5 = 00000005 D6 = 00000006 D7 =00000000
A0 = 00004000 A1 = 0000836C A2 = 00000414 A3 =00003C10
A4 = 0000090C A5 = 00000560 A6 = 00000560
OPCODE WORD NEXT INSTRUCTION = 00002F07

>>
PC = 00000982 SR = 00002010 SSP= 00007FFA USP=00003FFC
D0 = 55553333 D1 = 4000544D D2 = 21FC104D D3 =00000000

-281-
Copyright 1997 F.Merat

D4 = 0000FC30 D5 = 00000005 D6 = 00000006 D7 =00000000
A0 = 00004000 A1 = 0000836C A2 = 00000414 A3 =00003C10
A4 = 0000090C A5 = 00000560 A6 = 00000560
OPCODE WORD NEXT INSTRUCTION = 000060DC

>>

-282-
Copyright 1997 F.Merat

PROGRAM 13.4 ADDRESS ERROR TEST

CONSOLEPORT: EQU 0
LINEFEED: EQU $0A
NULL: EQU $00
VADDERR: EQU $0C
MONITOR: EQU $8146

XREF INIT, PUTHEX, NEWLINE, PUTSTRING

* INITIALIZE REGISTERS AND CONSOLE PORT
START: LEA $8000,SP

MOVE.L #ADDRERROR,VADDERR.W
MOVEQ #CONSOLEPORT,D7
JSR INIT

* TEST PROGRAM
LEA $1005, A0
MOVE.W 2(A0),$7000 * ADDR ERROR -

DATA REF
* LEA $1001,A0
* JMP (A0) * ADDR ERROR -

PROGRAM REF

* ADDRESS ERROR SERVICE ROUTINE
PROGCOUNTER: EQU 10
STATUSREG: EQU 8
OPCODEWORD: EQU 6
FAULTADDR: EQU 2
STATUSWORD: EQU 0
ASIZE: EQU 14

ADDRERROR:
MOVEQ #CONSOLEPORT,D7
LEA ADDERRMSG,A0

 JSR PUTSTRING
MOVE.W OPCODEWORD(SP),D2
MOVE.L PROGCOUNTER(SP),A0

* GET VALUE OF PC SAVED ON THE STACK AND SEARCH FOR THE
* OPCODE WORD IN MEMORY

-283-
Copyright 1997 F.Merat

AGAIN: CMP.W -(A0),D2
BNE.S AGAIN
MOVE.L A0,D0

* PRINT PC AT INSTRUCTION START
JSR PUTHEX
BSR SPACES

MOVE.W STATUSREG(SP),D0 * PRINT SR
EXT.L D0
JSR PUTHEX
BSR SPACES
MOVE.W OPCODEWORD(SP),D0

* PRINT OPCODE WORD
EXT.L D0
JSR PUTHEX
BSR SPACES
MOVE.L FAULTADDR(SP),D0

* PRINT ADDRESS ACCESSED WHEN THE FAULT OCCURRED
JSR PUTHEX
BSR SPACES
MOVE.W STATUSWORD(SP),D0

* PRINT STATUS WORD

ANDI.L #$1F,D0 * MASK OFF ALL
* UNUSED BITS

JSR PUTHEX
JSR NEWLINE
ADDA.W #ASIZE,SP
JMP MONITOR

SPACES: MOVE.L A0,-(SP)
LEA BLANKS,A0
JSR PUTSTRING
MOVE.L (SP)+,A0
RTS

ADDERRMSG:
DC.B 'ADDRESS ERROR:' ,LINEFEED
DC.B 'PC SR OPCODE WORD ‘
DC.B 'BAD ADD STATUS WORD',LINEFEED,NULL

BLANKS: DC.B ' ',NULL

END

<RUN>
ADDRESS ERROR:
PC SR OPCODE WORD BAD ADDR STATUS WORD
0000091C 00002004 000033E8 00001007 00000015

-284-
Copyright 1997 F.Merat

PROGRAM 13.5 SIZING MEMORY
XREF INIT,PUTHEX, PUTSTRING, NEWLINE

VBUSERROR: EQU $08
NULL: EQU $00
MONITOR: EQU $8146

* INITIALIZE REGISTERS, EXCEPTION VECTOR, AND CONSOLE PORT

START:
LEA $1000,SP * LET STACK GROW DOWN FROM $1000
MOVE.L #ENDMEM,VBUSERROR.W
MOVEQ #0,D7 * OUTPUT TO CONSOLE UART
JSR INIT ;initialize UART
LEA $1000,A0

* ROUTINE TO TEST MEMORY SIZE AND GENERATE A BUS ERROR

SIZE: MOVE.W #7,(A0)+ * WRITE DATA INTO MEMORY
BRA.S SIZE * LOOP UNTIL BUS ERROR

* BUS ERROR EXCEPTION SERVICE ROUTINE

ENDMEM:
MOVE.L A0,D0 * STORE FIRST ADDRESS PAST

* RAM MEMORY IN A0
LEA MSG,A0
JSR PUTSTRING
SUBQ.L #8,D0 * DELETE STORAGE FOR RESET VECTOR
JSR PUTHEX
JSR NEWLINE
JMP MONITOR ;reset the O/S

MSG: DC.B 'BYTES OF AVAILABLE RAM: ',NULL

END

<RUN> OUTPUT: BYTES OF AVAILABLE RAM: 00007FF8

A final comment about address and bus errors is necessary. If an
address or bus error occurs during exception processing for a bus
error, address error, or reset, the processor is halted. Only the
external RESET signal can restart a halted processor.

-285-
Copyright 1997 F.Merat

PROBLEM 13.8
V1111EMULATOR EQU $2C
VTRACE EQU $24
VADDRESS EQU $0C

XREF PUTHEX,NEWLINE

START: LEA $8000,SP
MOVE.L #S1111,V1111EMULATOR.W
MOVE.L #TRACE,VTRACE.W
MOVE.L #ADDRESSERROR,VADDRESS.W

DC.W $FFFF
ORI.W #$8000,SR
MOVE.W D0,D1
ANDI.W #$F000,D1
ANDI.W #$7FFF,SR

MOVE.W #7,$7FFF

PCOUNTER EQU 14

S1111: MOVEM.L D0-D1/A0,-(SP)
MOVEA.L PCOUNTER(SP),A0
MOVE.W (A0),D0
ANDI.W #$0FFF,D0
MOVEQ #0,D1
JSR PUTHEX
JSR NEWLINE
ADDI.L #2,PCOUNTER(SP)
MOVEM.L (SP)+,D0-D1/A0
RTE

TRACE MOVEM.L D0-D1/A0,-(SP)
MOVEA.L PCOUNTER(SP),A0
MOVE.W (A0),D0
MOVEQ #0,D1
JSR PUTHEX
JSR NEWLINE
MOVEM.L (SP)+,D0-D1/A0
RTE

PCADDERR EQU 10
STATUSREGISTER EQU 8
OPCODEWORD EQU 6
FAULTADDRESS EQU 2
STATUSWORD EQU 0
ASIZE EQU 14

ADDRESSERROR:
MOVEQ #0,D1
MOVE.L FAULTADDRESS(SP),D0
JSR PUTHEX
JSR NEWLINE

-286-
Copyright 1997 F.Merat

MOVE.W OPCODEWORD(SP),D0
EXT.L D0
JSR PUTHEX
JSR NEWLINE
MOVE.W STATUSREGISTER(SP),D0
EXT.L D0
JSR PUTHEX
JSR NEWLINE
MOVE.L PCADDERR(SP),D0
JSR PUTHEX
JSR NEWLINE

IDLE: BRA.S IDLE

END

-287-
Copyright 1997 F.Merat

PROBLEM 13.9

V1010EMULATOR EQU $28
VTRAP0 EQU $80
VTRACE EQU $24

XREF PUTHEX,NEWLINE

START: LEA $8000,SP
MOVE.L #EMU,V1010EMULATOR.W
MOVE.L #PR,VTRAP0.W
MOVE.L #TRACE,VTRACE.W

DC.W $A000

ORI.W #$8000,SR
MOVE.W #1,D0
MOVE.W #2,D0
MOVE.W #3,D0
ANDI.W #$7FFF,SR

ID: BRA.S ID

PROGCOUNTER: EQU $14

EMU: MOVEM.L D0-D1/A0,-(SP)
MOVEQ #0,D1
MOVE.L PROGCOUNTER(SP),A0
MOVEQ #0,D0
MOVE.W (A0),D0
JSR PUTHEX
JSR NEWLINE
ADDI.L #2,PROGCOUNTER(SP)
MOVEM.L (SP)+,D0-D1/A0
RTE

TRACE: TRAP #0
RTE

PR: MOVE.L D1,-(SP)
MOVEQ #0,D1
JSR PUTHEX
JSR NEWLINE
MOVE.L (SP)+,D1
RTE

END

-288-
Copyright 1997 F.Merat

PROBLEM 13.11

Specify what happens when the following code segment runs on a 32K system.

BUSERROR EQU $08

START: MOVE.L #BERR,BUSERROR.W ;load bus error
exception vector

LEA $8000,SP ;start system stack at
$8000 (32K)

MOVE.W #7,6(SP) ;put something past
32K - GENERATES
BUS ERROR
EXCEPTION

BERR: ;bus error service
routine

LEA 26(SP),SP ;loads address into A7
which is beyond 32K,
does not causes
EXCEPTION

RTE ;when RTE causes
stack access, the value
of SP causes another
BUS ERROR
EXCEPTION - 68000
HALTS

-289-
Copyright 1997 F.Merat

RISC/CISC Characteristics
(PowerPC) RISC Technology

References:
Chakravarty and Cannon, Chapter 2
Kacmarcik, Optimizing PowerPC Code

Modern programmers use assembly:
• for handcoding for speed
• for debugging

Common features of CISC:
• many instructions that access memory directly
• large number of addressing modes
• variable length instruction encoding
• support for misaligned accesses

-290-
Copyright 1997 F.Merat

Original goal of RISC (developed in the 1970’s) was to create a
machine (with a very fast clock cycle) that could process instructions
at the rate of one instruction/machine cycle.

Pipelining was needed to achieve this instruction rate.

Typical current RISC chips are HP Precision Architecture, Sun
SPARC, DEC Alpha, IBM Power, Motorola/IBM PowerPC

Common RISC characteristics
• Load/store architecture (also called register-register or RR

architecture) which fetches operands and results indirectly from
main memory through a lot of scalar registers. Other architecture
is storage-storage or SS in which source operands and final
results are retrieved directly from memory.

• Fixed length instructions which
 (a) are easier to decode than variable length instructions, and
 (b) use fast, inexpensive memory to execute a larger piece of

code.
• Hardwired controller instructions (as opposed to microcoded

instructions). This is where RISC really shines as hardware
implementation of instructions is much faster and uses less silicon
real estate than a microstore area.

• Fused or compound instructions which are heavily optimized for
the most commonly used functions.

• Pipelined implementations with goal of executing one instruction
(or more) per machine cycle.

• Large uniform register set
• minimal number of addressing modes
• no/minimal support for misaligned accesses

NOT NECESSARY for either RISC or CISC
• instruction pipelining
• superscalar instruction dispatch
• hardwired or microcoded instructions

-291-
Copyright 1997 F.Merat

Fused instructions

Classical FP multiply Classical FP add
1. Add exponents
2. Multiply significands
3. Normalize
4. Round off answer

1. Subtract exponents
2. Align decimal points by shifting

significand with smaller
exponent to right to get same
exponent

3. Add significands
4. Normalize
5. Round

Classical instruction Fused instruction

AXB

Round

C+R

Round/Normalize

AXB+C

Round/Normalize

-292-
Copyright 1997 F.Merat

PIPELINING

A conventional computer executes one instruction at a time with a
Program Counter pointing to the instruction currently being executed.
Pipelining is analogous to an oil pipeline where the last product may
have gone in before the first result comes out. This provides a way to
start a task before the first result appears. The computing throughput
is now independent of the total processing time.

Conventional processing

assemble
chassis

paint body

install wheels
and drivetrain

time 1 2 3

A conventional process would require 9 time units to produce three
cars.

Pipelined processing

chassis

paint

wheels

time 1 2 3 4 5

A pipelined process would require 5 time units to produce the same
number of cars.

-293-
Copyright 1997 F.Merat

INSTRUCTION PIPELINING

We can apply pipelining to the classical fetch/execute instruction
processing. There are three phases to the fetch/execute cycle:
• instruction fetch
• instruction decode
• instruction execute

If we assume these all take one time unit (clock cycle) to execute a
three stage pipeline will look like the following.

fetch I1 I2 I3 I4 I5 I6

decode I1 I2 I3 I4 I5

execute I1 I2 I3 I4

time #1 time #2 time #3 time #4 time #5 time #6

Pipelining is great in theory but what if there is a branch in your code.
You can’t determine the next instruction to put into the pipeline until
the branch instruction is executed. This can cause a hole, or “bubble”
in the pipeline as shown below.

fetch I1 I2 I3 I4 I5

decode I1 I2 I3 I4

execute I1 I2 I3

time #1 time #2 time #3 time #4 time #5 time #6 time #6

Such bubbles represent performance degradation because the
processor is not executing any instructions during this interval.

-294-
Copyright 1997 F.Merat

There are two techniques which can be used to handle this problem
with branches:
• delayed branching (as done by an optimizing compiler)
• branch prediction (guess the result of the branch)

normal branch code delayed branch code
instruction0
instruction1
instruction2
branch
instruction3
•
•
•
instructionn

instruction0
instruction1
branch*
instruction2
instruction3
•
•
•
instructionn

*Delay the instruction originally preceding the branch if it is does not
influence the branch. This can be done by an optimizing
compiler/assembler. The critical issue is how many independent
instructions you have. This is a good technique for pipelines with a
depth of 1-2 processes.

Branch prediction, on the other hand, works by “guessing” the target
instruction for the branch and marking the instruction as a guess. If
the guess was right then the processor just keeps executing;
however, if the guess was wrong then the processor must purge the
results. The key to this approach is a good guessing algorithm.

The PowerPC uses branch prediction. This approach is very good for
FOR and DO/WHILE loops since the branch instruction always
branches backwards until the final iteration of the loop. IF/THENs are
very bad for guessing and are like flipping a coin with a 50%
probability.

Probabilities of branch instructions:

instruction probability of
occurrence

probability of branch

unconditional branch
(JMP)

1/3 1

loop closing (FOR
and DO/WHILE,
Dbcc, etc.)

1/3 ~1

forward conditional 1/3 1/2

-295-
Copyright 1997 F.Merat

branch (Bcc, etc.)

The forward conditional branches are the most difficult to guess. The
worse case is that we will guess 1/3*1/2 of conditional branches
wrong, causing bubbles about 50% of the time..

-296-
Copyright 1997 F.Merat

CISC/RISC tradeoffs
RISC CISC

general very fast, fixed length
instruction decode,
high execution rate

fewer instructions,
size of code is
smaller

of instructions <100 >200
of address modes 1-2 5-20
instruction formats 1-2 3+
average
cycles/instruction

~1 3-10

memory access load/store instructions
only

most CPU
instructions

registers 32+ 2-16
control unit hardwired microcoded
instruction decode
area (% of overall die
area)

10% >50%

RISC cycles
Performance of RISC machine comes from making optimum tradeoff
between instruction set functionality (power of each instruction) and
clock cycles/instruction.

Program_execution_time = num_instructions_executed * CPI *
cycle_time

where num_instructions_executed is dependent upon the pipeline
length, CPI is cycles/instruction, and cycle_time is 1/clock_frequency.

-297-
Copyright 1997 F.Merat

PowerPC (PPC)
This is a relatively new architecture with a lot of potential in technical
applications.

PowerPC evolution
IBM POWER architecture RS.9 1990

RS1 1990
RSC 1991

PowerPC 601 1992 <--supports
POWER
instructions

603 1993
604 1994

? <--first 64 bit PPC’s

-298-
Copyright 1997 F.Merat

How does the PowerPC fit the RISC model?

• General purpose registers — 32 general purpose registers
(any except GPR0 can be used as an argument to any
instruction); 32 floating point registers

• LOAD/STORE architecture — only instructions that
access memory are LOAD and STORE instructions

• Limited number of addressing modes
 (I) register indirect;
 (2) register indirect with register index;
 (3) register indirect with immediate index.

 The branch instructions can be
 (I) absolute; (2) PC relative; or (3) SPR (Special

Purpose Register) indirect.
• Fixed length instructions — All PPC instructions are 32

bits long.
• No support for misalignments — RISC architecture should

not allow misalignments to occur; however, POWER
design considerations requiring emulation of other
machines allows misalignments.

-299-
Copyright 1997 F.Merat

PPC Data Types
type size (bits) alignment
byte* 8 --------
half-word 16 -------0
word* 32 ------00
double word† 64 -----000
quad word† 128 ----0000
floating point
single*

32 ------00

floating point
double*†

64 -----000

* Most commonly used data types
†64 bit PPC implementation

Alignment
Address must be a multiple of data type size. Bytes are always
aligned. Half words must be aligned to even bytes (multiples of 2)
just like in the 68000; Words must be aligned to quad bytes (multiples
of 4); etc.

Order of bytes

Big endian ordering of 0x0A0B
$0A $0B

Little endian ordering of 0x0A0B
$0B $0A

PPC and 68000 operate in bigendian mode. However, PPC has an
option to switch modes.

Big endian ordering of bits in a register:
0 1 2 3 29 30 31

MSB LSB

-300-
Copyright 1997 F.Merat

Super Scalar Implementation

 SuperScalar implementation (independent processing units)
PPC 601 has 3 independent execution units so it can actually
execute multiple instructions in a single clock cycle. Each execution
unit is pipelined. PPC superscalar architecture can execute up to 5
operations/clock cycle.

There are currently two envisioned PPC architectures: 32 and 64 bit.
Only the 32 bit implementations have been produced. The PPC
architecture does NOT include any i/o definitions.

PPC registers are all 32 bits long (except floating point which are 64
bits long)

PPC consists of three independent processing units
1. branch processing unit handles branch instructions
2. fixed point unit also called instruction unit
3. floating point unit does only floating point instructions

There are three classes of instructions to match the processing units:
1. branch
2. fixed point
3. floating point
All these instructions are 32 bits long and MUST be word aligned.

Because of the Load/Store architecture all computations MUST be
done in registers as the operands MUST be loaded into registers
BEFORE they can be manipulated/operated on. This typically
requires a lot of registers.

-301-
Copyright 1997 F.Merat

PPC Registers

Branch processing unit has three main registers:

Link register LR contains return address
from subroutine calls;
contains target address
for a branch*

*subroutines can return with a Branch_to_LR instruction

Count register CTR used for counting loop
iterations; treats as Dbcc
instructions significantly
increasing performance

Counter register CTR holds number of
iterations or a loop; can
be used as the final count
or as a decrementation
counter

-302-
Copyright 1997 F.Merat

Condition register CR is the PPC status register

Condition register has 8 4-bit wide condition code fields.

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31
CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

These fields can be specified as a DESTINATION for results of a
comparison, or as a SOURCE for conditional branches.

CR0 is usually used for fixed point comparisons

LT GT EQ SO

where SO is the summary overflow. A summary overflow is a “sticky”
overflow bit that remains set until reset.

CR1 is usually used for floating point comparisons

FL FG FR FU

FL - floating point less than
FG -floating point greater than
FR - floating point equal
FP - floating point unordered

Fixed point operations with record bit

LT GT EQ SO

LT - negative (<0)
GT -positive (>0)
EQ - zero (=0)
SO - summary overflow

Floating point operations with record bit

FX FEX VX OX

FX - floating point exception summary
FEX -floating point enabled exception summary
VX - floating point invalid operation exception summary
OX - floating point overflow exception

-303-
Copyright 1997 F.Merat

-304-
Copyright 1997 F.Merat

Fixed point processor has most used registers:

32 general purpose
registers

GPR0 - GPR31 32 bits wide in 32 bit
implementations; 64 bits
wide in 64 bit
implementations; used
for all data storage and
fixed point operations

Exception register XER carry, overflow, byte
count, and comparison
for string instructions

-305-
Copyright 1997 F.Merat

SUPERVISOR MODE REGISTERS:
Machine state
register

MSR is processor in 32 or 64
bit mode; are interrupts
enabled; bigendian vs.
little endian mode

Save/Restore
registers

SSRn indicate machine status
when an interrupt occurs
plus information required
to restore state after an
interrupt

Processor verification
register

PVR READ ONLY. Processor
version information.

PLUS LOTS MORE!

-306-
Copyright 1997 F.Merat

Floating point processor is similar to fixed point processor:

32 floating point
registers

FPR0 - FPR31 64 bits wide in all
implementations; 64 bit
registers which are the
source and destination
for all floating point
operations

Floating point status
and control register

FPSCR handles floating point
exceptions and status of
floating point operations;
enable bits for fp
exceptions; rounding bits
to control rounding;
status bits to record fp
exceptions

-307-
Copyright 1997 F.Merat

PPC Architecture
Many RISC processors use a Harvard architecture; the 601 uses a
von Neumann architecture.

Processor

address

data

common data and
instruction cache

von Neumann architecture

Processor

address

data

data cache

address

data

 instruction cache

Harvard architecture

Address translation
Effective addresses on the PPC must be translated before they can
actually access a physical location. Block address translation takes
precedence.

segmented address translation i/o address
virtual address i/o address

physical address

block address translation real address
i/o address

-308-
Copyright 1997 F.Merat

Segmented addressing:

seg
4 bits

Page
16 bits

Byte offset
12 bits

Page
16 bits

select

Segmentation register

Virtual segment id
24 bits

52 bit
virtual address

Byte offset
12 bits

Page table

Real page number
20 bits

Byte offset
12 bits

32 bit effective address

64 bit implementation is VERY different.

Block addressing:
Paged addressing using 4k pages. Block consists of at least 32
pages 128kB up to 65536 pages (256 MB).

The PPC also contains a 64 bit time base register and a 32 bit
decrement register which can be used for timing.

-309-
Copyright 1997 F.Merat

Overall PPC 601 architecture:

branch unit
(pipeline #1)

fixed point
unit

(pipeline #2)

floating
point unit

(pipeline #3)

instruction queue

32 bits 32 bits 32 bits

256 bits

64 bits

MMU

32 bits

instruction
fetch
unit

32 bits 32 bits

cache tags cache data

32 bits 256 bits

memory queue and bus interface

32 bits 64 bits

Address Data

Common
Onchip

Processor
(COP)

COP Bus

NOTE: The COP processor controls built-in self test, debug and test
features at boot time.

-310-
Copyright 1997 F.Merat

CACHE
Cache is a small memory that acts as a buffer between the processor
and main memory. On-chip cache access times are typically 1-2
clock cycles long; access of regular external memory is typically
much longer, perhaps 20-30 clock cycles long.

Basic principle of a cache
Locality of reference - Whenever a program refers to a memory
address there are likely to be more references to nearby addresses
shortly thereafter.

Way cache works
Whenever the main program references a memory location a block of
memory containing the referenced address is copied to the cache.
The idea is that a lot of following instructions will use information from
this cache dramatically speeding up the performance of the
processor.

How good a cache works in speeding up computation depends upon:
1. the design of the cache
2. the nature of the executing code

-311-
Copyright 1997 F.Merat

Cache Design and Organization in the PPC

Processor Size
Instruction/
Data

Associativity Replacement
Policy

Line
Size
(bytes)

601 32K unified 8 LRU 32/64
603 8K/8K 2/2 LRU 32
604 16K/16K 4/4 LRU 32
620 32K/32K 8/8 LRU 64

Notes:
Cache line the block of memory in the cache that holds the

loaded data
Cache tag pointer from a cache line to the main memory
Line Size the number of bytes associated with a tag
Associativity relationship between main memory and the cache.

If any block from the main memory can be loaded
into any line of the cache, the cache is fully
associative. More performance is usually obtained
by limiting the number of lines into which a block
might reside - this occurs because you have a
smaller number of places to look for a particular
address. In a two-way associative memory the
cache controllerwould only have to examine two
tags; in a 4 way four tags; and in an 8-way right
tags.

Replacement When the processor is loading a new block to cache
and all the potential lines are full, the cache
controller will replace an occupied line with the new
data. Common replacement schemes are: first-in
first-out (FIFO), least recently used (LRU), and
random,

Writeback (versus store-through) Refers to how the cache
contoller handles updates to the information in the
cache. In astore-through scheme the stored data is
immediately posted to both the cache and main
memory. In a store-in (or writeback) scheme only
the information in the cache is updated immediately
(the line is marked dirty) and only updated when the
line is replaced in the cache.

-312-
Copyright 1997 F.Merat

Power PC family:
The PPC 601 has three pipelines:

Pipeline #1
(2 stage)

Fetch Dispatch
Decode
Execute
Predict

Pipeline #2
(3 stage)

Fetch Dispatch
Decode

Execute Writeback

or
Pipeline #2
(4 stage)

Fetch Dispatch
Decode

Address
Generation

Cache
(optional)

Writeback

Pipeline #3
(6 stage)

Fetch Dispatch Decode Execute1
(Multiply)

Execute2
(Add)

Writeback

*writeback i(or store-in caching) is what happens when the PPC
updates data in the cache; posting to main memory is delayed until
the line is replaced by the cache unit.

The 603 was designed for portable applications and has four
pipelines
1. branch processing unit (2 stage pipeline)
2. fixed point unit (3 stage pipeline)
3. floating point unit (6 stage pipeline)
4. load/store unit (5 stage pipeline)

It also has dynamic power management which controls the processor
clock so that only units in use are power up.

The 604 was designed for desktop applications and has two
additional integer units giving much improved integer performance. It
is in a 304 pin ceramic flat pack with 3.6 million transistors. It
dissipates 10 watts at 100 MHz and is based upon 0.5µm CMOS
technology.

The embedded versions (4xx, EC403, EC401, etc.) are probably the
most economically important.

-313-
Copyright 1997 F.Merat

MAJOR PPC INSTRUCTION GROUPS
• Branch and trap
• Load and store
• Integer
• Rotate and shift
• Floating point
• System integer

Can add suffixes in [] to modify instructions

Integer instructions
[o] update FP Exception Register XER
[.] record condition information in CR0

Floating point
[s] single precision data
[.] record condition information in CR1

Branch
[l] (all instructions) record address of following instruction in link
register
[a] (some instructions) specified address is absolute

Branch instructions
b[l][a] addr unconditional branch
b[l][a] BO,BI.addr conditional branch

[a] indicates that target address is absolute
BO indicates the branch on condition (nine bits and can get
complicated)
BI specifies which bit of the CR register is to be used in the test

NOTE: PPC assemblers use b instead of %
Example:
b0000y which indicates decrement the CTR and branch if CTR≠0 and
CR[BI]=0.
The y bit encodes hints as to whether branch is likely to be taken.

bcctr [l] BO,BI branch conditional to count register
Often used to count in loops.

bclr [l] BO,BI branch conditional to link register
Used for returning from subroutines.

-314-
Copyright 1997 F.Merat

There are probably at least 8-12 extended versions of each basic
branch instruction.

lbz rT,d(rA) load byte and zero; displacement with
respect to contents of a source register

load load from memory location into target
register

load with update add offset afterwards

load indexed calculate address from two registers

load indexed with update combination of above

store write contents of register to memory

store with update

store with indexed

store indexed with update

-315-
Copyright 1997 F.Merat

Example function that performs 64-bit integer addition

Struct unsigned64
{
unsigned hi;
unsigned lo;
}
#
unsigned64 add64(unsigned64 *a, unsigned64 *b);
#
Expects
r3 pointer to struct unsigned64 result
r4 pointer to unsigned64a
r5 pointer to struct unsigned64b
#
Uses
r3 pointer to result
r4 pointer to a
r5 pointer to b
r6 high order word of a (a.hi), high word of sum
r7 low order word of a (a.lo), low word of sum
r8 high order word of b (b.hi)
r9 low order word of b (b.lo)

lwz r7,4(r4) #r7<--a.lo - load word and zero
load the word (words are 32 bits on
the PPC) into r7, uses r4 as its
source

lwz r9,4(r5) #r9<--b.lo - load word and zero
lwz r6,0(r4) #r6<--a.hi load word and zero
addc r7,r7,r9 #r7<--sum lo, set CA - add carrying
lwz r8,0(r5) #r8<--b.hi - load word and zero
stw r7,4(r3) #result.lo <--r7 - store word
adde r6,r6,r8 #r6<--sum hi with CA - add extended
stw r6,0(r3) #result hi <--r6 - store word
blr #return - branch to link

