
-50-
Copyright 1997 F.Merat

Lab Reports

Reports should be in neat, concise form and turned in on time. The best
reports will cover all vital information in detail without excessive verbiage on
unnecessary details. Your report will typically follow the following format:

 Title Page
Contains a typed one paragraph abstract and must be signed by you. The
title page format you MUST use is on the following page.

 Abstract (on the title page)
Explain in a few sentences what the program does. Describe how your
program works and any special features of your program.

 Check Out (on the title page - ONLY IF REQUIRED)
Selected labs may require you to demonstrate how your lab assignment
works. If you are required to demonstrate your program this line will be
used by a Teaching Assistant to indicate that it worked properly.

 Program Description (separate page - ONLY IF REQUIRED)

 • main body of your program
Should include pseudo code or a flow chart (as appropriate, not all
labs will need pseudo code or flow charts), input/output specifications,
memory requirements, register and memory locations used, any
algorithms used. Please cite any references you used for additional
information. The program description should be concluded with a
copy of your program listing; subroutine listings should be reserved
for the description of each subroutine.

• any program subroutines
Should include a flow chart (if appropriate), input/output
specifications, memory requirements, register and memory locations
used, any algorithms used. Please cite any references you used for
additional information.

 Questions (separate page - ONLY IF REQUIRED)
Rather than a formal lab report each lab assignment will be accompanied by
a series of questions which you must answer on a separate sheet. These
questions will be graded and will form a major part of the lab grade.

 Program Listing (separate page - REQUIRED)
You MUST include a copy of your program with every lab assignment you
turn in. This should be an assembler listing which includes the symbol table
for your program.

-51-
Copyright 1997 F.Merat

EEAP 282 TITLE PAGE

Names:

Typed

SIgnature

No laboratory will be graded unless it is signed. By signing this
page you are indicating that this lab and that the work described in
the lab report is your own. Any complaints about grading should
be directed to Prof. Merat or the lab T.A.'s.

TITLE:
__

Abstract:

[] Checked by ___________________________ ______________

-52-
Copyright 1997 F.Merat

 Basic computer operation and organization

From an engineering viewpoint a computer
manipulates coded data and responds to events
occurring in the external world. This is called a stored-
program or von Neumann machine architecture.

• memory - used to store both programs
and data instructions (this is the core of the von
Neumann architecture)
• program instructions are coded data which

tells the computer to do something, i.e.
adding two numbers together

• data is simply information to be used by the
program, i.e. two numbers to be added
together

⇒We need something to decode the memory
and determine what represents instructions
and what represents data

• central processing unit gets instructions and/or
data from memory, decodes the instructions,
and performs a sequence of programmed tasks

Nothing can occur simultaneously or instantaneously
in a computer. Important operations are

• fetching instruction(s) from memory
• decoding the instruction(s)
• performing the indicated operations

This is the basic “fetch-execute” cycle

-53-
Copyright 1997 F.Merat

CPU

MEMORY

ACCUMULATOR

FETCH

DECODE & EXECUTE

EXECUTE
(manipulate
data as
programmed)

Problems with this diagram:
• what memory is being fetched?
• how does the computer tell program instructions

from program data
• what happens when the program needs more than

one piece of data?

Answers:
• put program instructions and data in separate

areas of memory. These don’t have to be well
organized, but do need to be defined and can be
intermixed. Usually program instructions are kept
together.

• Internal pointers kept in special locations called
registers in the CPU keep track of what data and
program instructions are being referenced and/or
fetched.

• The CPU has local storage in special locations
called registers for temporary storage of data
and/or instructions.

-54-
Copyright 1997 F.Merat

Keeping track of what instruction is being executed is
so important that a special CPU register called the
program counter is used to keep track of the address of
the instruction to be executed.

Central Processing Unit
Control

Unit
Arithmetic
Logic Unit Registers

Control unit:
• decodes the program instructions
• program counter which contains the location of the

next instruction to be executed
• status register which monitors the execution of

instructions and keeps track of overflows, carries,
borrows, etc.

RISC reduced instruction set machine
• executes a simple set of instructions very fast

CISC complex instruction set (such as the 68000)
• has a powerful set of instructions which allows

many complex operations to be represented as a
single instruction

Arithmetic Logic Unit
• carries out the instructions decoded by the control

unit
Older microprocessors had special registers called

accumulators which had to be used for math
calculations. Modern microprocessors such as
the 68000 have general-purpose registers and do
not have accumulators.

-55-
Copyright 1997 F.Merat

Memory
• ROM read-only memory

non-volatile → all bits can be read, no bits can
be changed

• RAM random access memory
(not really a good name since almost all memory has random
access capability)

volatile → all bits can be read and/or written

User concern with memory
• large computer usually don’t even think about

memory organization
• mini computer sequence of RAM, how much

RAM, etc.
• micro computer memory constraints on RAM,

ROM. Very limited address space.

Computer memory is always organized in a fixed
manner:

• 16k x 1 bit
• 4k x 1 bit
• 8k x 8 bits typical of small microcomputers

-56-
Copyright 1997 F.Merat

Vertical grid organization of memory:
$000000

$000001

$000002

$FFFFFF

8 bits wide

This diagram represents $FFFFFF = 224 bytes of memory

• Any particular processor will have an x-bit address
capacity:

64k 6502, Z-80, 8085, etc.
640k 8088
16MB 68000
lots 80386, 68030

• memory addresses do not need to be contiguous
• ROM and RAM can be intermixed
• memory does not have to start at $000000 or end at

$0FFFFF

-57-
Copyright 1997 F.Merat

68000 architecture:
power

ground

16-data lines

23 address lines

R/W

clock

special purpose lines:
DTACK*
HALT*
RESET*

interrupt control,
processor status, system
control

IPL2*,IPL1*,IPL0*,
bus arbitration,
synchronous and
asynchronous bus
control

FC2,FC1,FC0

68000 MEMORY

-58-
Copyright 1997 F.Merat

68000’s internal register organization:

data registers:

D0

31 16 15 8 7 0

D1

D2

D3

D4

D5

D6

D7

address registers:

A0

31 16 15 0

A1

A2

A3

A4

A5

A6

stack pointers:
A7 user stack pointer

system stack pointer

program counter:

PC program counter
23 0

status register:

system byte
15 0

user byte
8 7

PC

-59-
Copyright 1997 F.Merat

SOFTWARE ARCHITECTURE:

Fetch-execute revisited:

CPU

MEMORY

ACCUMULATOR

FETCH

DECODE & EXECUTE

EXECUTE
(manipulate
data as
programmed)

Basic fetch-execute cycle:
loop: fetch_instruction
execute_instruction
goto loop.

Program counter:
Because the computer must keep track of instruction locations it uses
the program counter to keep track of the address of the next
instruction to be executed:

loop: instruction_register = fetch_instruction(pc_address)
decode_instruction(instruction_register)
execute_instruction(instruction_register)
goto loop.

Instruction_register is an internal (to the processor) memory location
(register) used to store coded data (instructions).

-60-
Copyright 1997 F.Merat

Instructions are coded data in the following format:
op_code source(s) destination next_instruction
The exact way this information is represented is different for every microcomputer. Present

microcomputers typically code instructions in several somewhat simplified formats

op_code source1 source2/destination
or

op_code source/destination
where source, source1 and source2 identify where any needed data
is to be obtained and the result (if any) is to be placed in a
destination which is also the second source of needed data. For
example, x:=x+y is represented in the first format as
ADD Y X

Add processing to decode instructions:
Our original fetch-execute cycle has now become more complex:

loop: instruction_register = fetch_instruction(pc_address)
decode_instruction(instruction_register)
while extension_flag set do

fetch additional information
update pc_address
end while.

execute_instruction(instruction_register)
update pc_address.
update status register.
goto loop.

Instructions which require more than one computer word to describe
can be indicated by extension_flag and fetched until the instruction is
complete.

The exact manner in which memory locations are represented is
known as addressing and can directly effect the program execution
speed of the computer.

-61-
Copyright 1997 F.Merat

 Basic computer operation and organization

Use hex to represent memory locations as seen by the
microcomputer. Memory can be organized as:

• bytes
address memory

$0 byte 0
$1 byte 1
$2 byte 2
$3 byte 3
$4 byte 4
$5 byte 5

• words
address memory

$0 byte 0 byte 1 word 0
$2 byte 2 byte 3 word 1
$4 byte 4 byte 5 word 2
$6 byte 6 byte 7 word 3
$8 word 4
$A word 5

• long words
address memory

$0 byte 0 byte 1 byte 2 byte 3
$4 byte 4 byte 5 byte 6 byte 7
$8 byte 8 byte 9 byte A byte B
$C byte C byte D byte E byte F

-62-
Copyright 1997 F.Merat

Machine code (stored program execution)

z := x + yhigh level C or Pascal representation
where x,y,and z will represent words in memory

Data:
z is at memory address $1204
x is at memory address $1200
y is at memory address $1202

address memory contents
$1200 0001 0010 0011 0100 $1234
$1202 0100 0011 0010 0001 $4321
$1204 0000 0000 0000 0000 $0000

For some reason we decided to use words (16 bits) for
all operations.

Instructions:

address memory meaning
$1000 3A 38 move a word from $1200

12 00 to D5
$1004 DA 78 add the word at $1202 to

12 02 the contents of D5
$1008 31 C5 move the contents of D5

12 04 to $1204
$100C 4E 40 stop

-63-
Copyright 1997 F.Merat

Coding of an instruction. This is an opcode word as
defined by Motorola for the 68000. See The MC68000
Programmer’s reference Manual.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op
code

size destination source

register mode mode register
first four
bits are
the op
code,
indicates
a move in
this case

size code
01=byte
11=word
10=long
word

Dn = data
register
Abs.w =
absolute
word
Abs.L=abso
lute long
word

how to manipulate data: Dn = data
register
Abs.w =
absolute
word
Abs.L=abso

lute long
word

In this case the $3A38 instruction at $1000 would be
interpreted as a MOVE instruction. (see p.4-116 of the
Programmer’s Reference Manual, current edition)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0

first four
bits are
the op
code for a
move

word
length

D5 data
register

put data
into
register

get data
from
memory
address
(word
length)
which
follows
 EXTENSION
 WORD

word length
address

-64-
Copyright 1997 F.Merat

Disassembly is the interpretation of coded instructions
The instructions we just used are interpreted as:

 $3A38 1200

0011 1010 0011 1000 rewrite as binary
0011 101 000 111 000 regroup into the

appropriate fields: op code,
destination, and source

op code 00XX indicates a MOVE, move data
from source to destination

size 11 indicates word length
destination 101 000

mode 000 indicates to a data register
register 101 indicates to register D5

source 111 000
mode 111 indicates one of several

possible modes: absolute and
PC relative

register 000 indicates that Abs.W is being
used requiring a 16-bit
extension word

⇒ instruction is a word length move of
the contents of $1200 to D5

-65-
Copyright 1997 F.Merat

 $DA78 1202

1101 1010 0111 1000 rewrite as binary
The form of this instruction is different from that of the

MOVE.
The 1101 op code indicates that this is an ADD.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 register Op-mode Effective Address

mode register
op code,
indicates an ADD in
this case

specifies one
of the eight
data
registers

1101 101 001 111 000 regroup into the
appropriate fields: op code,
register, op-mode, and
effective address

op code 1101 indicates an ADD, add binary
register 101 indicates register D5
op-mode 001 indicates word length add of the

form (<Dn>) + (<ea>) → <Dn>
parentheses are used to indicate the contents of

effective address
mode 111 indicates absolute or PC

relative addressing
register 000 indicates that Abs.W is being

used
⇒ instruction is a word length add of the

contents of $1202 to the contents of
D5 with the result being put into D5

-66-
Copyright 1997 F.Merat

 $31C5 1204

0011 0001 1100 0101 rewrite as binary
0011 000 111 000 101 regroup into the

appropriate fields: op code,
destination, and source

op code 00XX indicates a MOVE, move data
from source to destination

size 11 indicates word length
destination 000 111

mode 111 indicates one of several
possible modes: absolute and
PC relative

register 000 indicates that Abs.W is being
used

source 000 101
mode 000 indicates from a data register
register 101 indicates from register D5

⇒ instruction is a word length move of
the contents of D5 to $1204

-67-
Copyright 1997 F.Merat

Your textbook (p.54-55) lists several
common instructions:

MOVE copy 16-bit word specified by the source
into the location specified by the
destination operand

303C <number> MOVE.W #N,D0
33FC <number>,<address> MOVE.W #N,<address>
3039 <address> MOVE.W <address>,D0
33C0 <address> MOVE.W D0,<address>

ADD adds the 16-bit word specified by the
source and the 16-bit contents of the
destination. The result is stored in the
destination:
(<source>) + (<destination>) → <destination>

0640 <number> ADDI.W #N,D0
0679 <number>,<address> ADDI.W #N,<address>
D079 <address> ADD.W <address>,D0
D179 <address> ADD.W D0,<address>

SUB subtracts the 16-bit word specified by the
source from the 16-bit contents of the
destination. The result is stored in the
destination:
(<destination>) - (<source>) → <destination>

0440 <number> SUBI.W #N,D0
0479 <number>,<address> SUBI.W #N,<address>
9079 <address> SUB.W <address>,D0
9179 <address> SUB.W D0,<address>

-68-
Copyright 1997 F.Merat

Example: Chapter 3, problem 25

00010A 303C 000A
00010E 33C0 0000 020A
000114 0679 00C3 0000 020C
00011C 9079 0000 020C
000122 0679 0AF3 0000 020A
00012A 0640 00F8
...

00020A 0036
00020C 03FA

All numbers are in hex. Each line indicates an
individual instruction.

Initially, (D0) = 0000 003B, ($020A)=$0036,
($020C)=$03FA

The disassembled program:

MOVE.W #10,D0 put $A into D0
MOVE.W D0,$020A put the contents of D0

($A) into address $20A
ADDI.W #$C3,$020C add $C3 to the contents

of $020C ($3FA) and put
the result into $20C

SUB.W $20C,D0 subtract what’s in $20C
from the contents of D0
($A) and put the result in
D0

ADDI.W #$0AF3,$020A add $0AF3 to the
contents of $20A

ADDI.W #$F8,D0 add $F8 to the contents
of D0

-69-
Copyright 1997 F.Merat

The detailed disassembly:

 303C 000A
0011 0000 0011 1100 rewrite as binary
0011 000 000 111 100 regroup

op code 00XX indicates a MOVE
size 11 indicates word length MOVE
destination 000 000

mode 000 indicates data register
register 000 register D0

source 111 100
mode 111 any of several modes
register 100 indicates immediate mode,

designated as Imm, i.e. a
constant contained in an
extension word

⇒ MOVE.W #10,D0

 33C0 0000 020A

0011 0011 1100 0000 rewrite as binary
0011 001 111 000 000 regroup

op code 00XX indicates a MOVE
size 11 indicates word length MOVE
destination 001 111

mode 111 indicates any of several modes
register 001 indicates Abs.L, a long word

address requiring two extension
words

source 000 000
mode 000 indicates a data register
register 000 register D0

-70-
Copyright 1997 F.Merat

⇒ MOVE.W D0, $0000 020A

-71-
Copyright 1997 F.Merat

 0679 00C3 0000 020C

0000 0110 0111 1001 rewrite as binary
0000 0110 01 111 001 regroup

op code 0000 0110 indicates an ADDI
size 01 word operation, i.e. one 16-

bit extension word
effective address

mode 111
register 001 indicates Abs.L, requires a 32-

bit longword address, i.e. two
16-bit extension words

⇒ ADDI.W #$C3, $0000 020C

 9079 0000 020C

1001 0000 0111 1001 rewrite as binary
1001 000 001 111 001 regroup

op code 1001 indicates a SUB
register 000 indicates D0
op-mode 001 word operation, i.e.

(<Dn>)-(<ea>)→<Dn>
effective address

mode 111
register 001 indicates Abs.L, requires a 32-

bit longword address, i.e. two
16-bit extension words

⇒ SUB.W $0000 020C, D0

-72-
Copyright 1997 F.Merat

 0679 0AF3 0000 020A

0000 0110 0111 1001 rewrite as binary
0000 0110 01 111 001 regroup

op code 0000 0110 indicates an ADDI
size 01 word operation, i.e. one 16-

bit extension word
effective address

mode 111
register 001 indicates Abs.L, requires a 32-

bit longword address, i.e. two
16-bit extension words

⇒ ADDI.W #$0AF3, $0000 020A

 0640 00F8

0000 0110 0100 0000 rewrite as binary
0000 0110 01 000 000 regroup

op code 0000 0110 indicates an ADDI
size 01 word operation, i.e. one 16-

bit extension word
effective address

mode 000 indicates data register
register 000 indicates D0

⇒ ADDI.W #$F8, D0

-73-
Copyright 1997 F.Merat

The final program is then
If (D0)=$3B, ($20A) = $36, ($20C) = $3FA
MOVE.W #10,D0 (D0)=$A
MOVE.W D0,$020A ($20A)=$000A
ADDI.W #$C3,$020C ($020C) = ($020C)+$C3

= $3FA + $C3 = $4BD
SUB.W $20C,D0 (D0) = (D0)-($20C) =

$A-$4BD = $ FB4D
ADDI.W #$0AF3,$020A ($20A) = ($20A)+$0AF3

= $A + $0AF3 = $0AFD
ADDI.W #$F8,D0 (D0) = (D0)+$F8=

$FB4D + $F8 = $FC45

Math:
000A 0000 0000 0000 1010

04BD 0000 0100 1011 1101
complement 1111 1011 0100 0010
add 1 1111 1011 0100 0011

000A 0000 0000 0000 1010
 -04BD 1111 1011 0100 0011
FB4D 1111 1011 0100 1101
 +00F8 0000 0000 1111 1000
FC45 1111 1100 0100 0101

-74-
Copyright 1997 F.Merat

ADD Add Binary ADD
Operation: (Source)+(Destination)→Destination

Assembler ADD <ea>,Dn
Syntax ADD Dn,<ea>

Attributes: Size=(Byte,Word,Long)

Description: Add the source operand to the destination operand, and store the result in the destination
location. The size of the operation may be specified to be byte, word, or long. The mode
of the instruction indicates which operand is the source and which is the destination as
well as the operand size.

Condition Codes:
X N Z V C
* * * * *

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 Register Op-Mode Effective Address

Mode Register
Instruction Fields:

Register field — Specifies any of the eight data registers.
Op-Mode field —

Byte Word Long Operation
000 001 010 (<Dn>)+(<ea>)→<Dn>
100 101 110 (<ea>)+(<Dn>)→<ea>

Effective Address field — Determines addressing mode:
a. If the location specified is a source operand, then all addressing modes are

allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An,Xi) 110 register number
An* 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC,Xi) 111 011
d(An) 101 register number Imm 111 100

* Word and Long only.

b. If the location specified is a destination operand, then only alterable memory
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — d(An,Xi) 110 register number
An — — Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) — —
-(An) 100 register number d(PC,Xi) — —
d(An) 101 register number Imm — —

Notes: 1. If the destination is a data register, then it cannot be specified by using the destination <ea>
mode, but must use the destination Dn mode instead.

2. ADDA is used when the destination is an address register. ADDI and ADDQ are used when the
source is immediate data. Most assemblers automatically make this decision.

-75-
Copyright 1997 F.Merat

MOVE Move Data From Source to Destination MOVE
Operation: (Source)→Destination

Assembler
Syntax MOVE <ea>,<ea>

Attributes: Size=(Byte,Word,Long)

Description: Move the content of the source to the destination location. The data is examined as it is
moved, and the condition codes set accordingly. The size of the operation may be
specified to be byte, word or long.

Condition Codes:
X N Z V C
— * * 0 0

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 Size Destination Source

Register Mode Mode Register
Instruction Fields:

Size field — Specifies the size of the operand to be moved.
01 — byte operation.
11 — word operation.
10 — long operation.

Destination Effective Address field — Specifies the destination location. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An,Xi) 110 register number
An — — Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) — —
-(An) 100 register number d(PC,Xi) — —
d(An) 101 register number Imm — —

Source Effective Address field — Specifies the source operand. All addressing modes
are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An,Xi) 110 register number
An* 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC,Xi) 111 011
d(An) 101 register number Imm 111 100

* For byte size operation, address register direct is not allowed.

Notes: 1. MOVEA is used when the destination is an address register. Most assemblers automatically
make this distinction.

2. MOVEQ can also be used for certain operations on data registers.

-76-
Copyright 1997 F.Merat

ADDI Add Immediate ADDI
Operation: Immediate Data + (Destination)→Destination

Assembler
Syntax ADD #<data>,<ea>

Attributes: Size=(Byte,Word,Long)

Description: Add the immediate data to the destination operand, and store the result in the destination
location. The size of the operation may be specified to be byte, word, or long. The size of
the immediate data matches the operation size.

Condition Codes:
X N Z V C
* * * * *

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0 Size Effective Address

Mode Register
Word Data (16 bits) Byte Data (8 bits)

Long Data (32 bits, including previous word)
Instruction Fields:

Size field — Specifies the size of the operation.
00 — byte operation.
01 — word operation.
10 — long operation.

Effective Address field — Specifies the destination operand. Only data alterable
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An,Xi) 110 register number
An — — Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) — —
-(An) 100 register number d(PC,Xi) — —
d(An) 101 register number Imm — —

Immediate field — (Data immediately following the instruction):
If size=00, then the data is the low order byte of the immediate word.
If size=01, then the data is the entire immediate word.
If size=10, then the data is the next two immediate words.

-77-
Copyright 1997 F.Merat

SUB Subtract Binary SUB
Operation: (Destination)-(Source)→Destination

Assembler SUB <ea>,Dn
Syntax SUB Dn,<ea>

Attributes: Size=(Byte,Word,Long)

Description: Subtract the source operand from the destination operand, and store the result in the
destination. The size of the operation may be specified to be byte, word, or long. The
mode of the instruction indicates which operand is the source and which is the destination
as well as the operand size.

Condition Codes:
X N Z V C
* * * * *

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 Register Op-Mode Effective Address

Mode Register
Instruction Fields:

Register field — Specifies any of the eight data registers.
Op-Mode field —

Byte Word Long Operation
000 001 010 (<Dn>)-(<ea>)→<Dn>
100 101 110 (<ea>)-(<Dn>)→<ea>

Effective Address field — Determines addressing mode:
a. If the location specified is a source operand, then all addressing modes are

allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An,Xi) 110 register number
An* 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) 111 010
-(An) 100 register number d(PC,Xi) 111 011
d(An) 101 register number Imm 111 100

* For byte size operation, address register direct is not allowed

b. If the location specified is a destination operand, then only alterable memory
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — d(An,Xi) 110 register number
An — — Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An)+ 011 register number d(PC) — —
-(An) 100 register number d(PC,Xi) — —
d(An) 101 register number Imm — —

Notes: 1. If the destination is a data register, then it cannot be specified by using the destination <ea>
mode, but must use the destination Dn mode instead.

2. SUBA is used when the destination is an address register. SUBI and SUBQ are used when the
source is immediate data. Most assemblers automatically make this distinction.

-78-
Copyright 1997 F.Merat

 Running Programs (See Section 3.5.2 of your text)

starting address set by the assembler or the linker.
loading address set by the linker.

Pascal or C
subroutine #1

Pascal or C
subroutine #n

Main Program

loading address

starting address

Order of code in memory
is set by the linker/loader

The Program Counter (PC) MUST be set before you
can run a program.

You can do this in the debugger in several ways:
1. Memory Register @PC=1000h

<You cannot use $1000 in the debugger>

2. Program Step From 1000h
Program Step

You can also automatically set the PC in the assembler
<label> <your code begins here>

rest of your program
end <label>

where <label> is any name you want. It will be used to
set the initial PC value.

-79-
Copyright 1997 F.Merat

Fetch and execute for a simple example:
Initially:

PC

D5

68000 MEMORY

$1000 $3A38

$1200

Fetch:
• Fetch instruction pointed to by PC and move

into internal instruction register (not user
accessable)

PC

D5

$1000

IR $3A38 Not accessable by programmer

• Increment the PC by two bytes (one word due to
bus width)

PC

D5

68000 MEMORY

$1002 $3A38

$1200

IR $3A38

• Decode the instruction. Effective address field
indicates an extension so fetch it.

PC

D5

$1002

IR $3A38

$1200 Up to 4 extension words

-80-
Copyright 1997 F.Merat

• Increment the PC by two bytes
68000

PC

D5

$1002

IR $3A38

$1200

MEMORY

$3A38

$1200

next
instruction

• Execute the instruction
uses address in extension word to fetch ($1200)

• Repeat

-81-
Copyright 1997 F.Merat

You can look up how long it takes instructions to
execute:

• MOVE.W $1200,D5
This has one extension word, addressing
modes are xxx.W and Dn
From Table D.2 in Programmer’s Reference
Manual, Appendix D

Source Destination Clock periods
(read/writes)

(xxx).W Dn 16(4/0)

• ADD.W $1202,D5
From Table D.4 in Programmer’s Reference
Manual, Appendix D

Instruction Size op <ea>,Dn
ADD word 4(1/0)+

Now use Table D.1 to compute the cycles
required to compute the effective address and
execute any fetches

(xxx).W Absolute
short

word=8[2/0]

• MOVE.W D5,$1204
Now use Table D.2 to compute the cycles
required to compute the effective address and
execute any fetches

Dn (xxx).W 12(2/1)

-82-
Copyright 1997 F.Merat

More detailed example:

Assume PC=$100
instruction address machine code mnemonics
1 000100 3039 0000 2000 MOVE.W $2000,D0
2 000106 0679 0012 0000 2004 ADDI.W #18,$2004

program execution
read cycle put (PC) on address bus,

(CPU)
put 3039 on data bus
(memory)
decode 3039, increment
PC to 102

read cycle put 102 on address bus
read 0000 from memory,
PC→104

read cycle put 104 on address bus
read 2000 from memory,
PC→106

read cycle put 2000 on address bus
read ($2000)
pc stays at 106

This is instruction:
MOVE.W source xxx.L destination Dn

From Table D.2, it takes 16 clock cycles (4 reads/0
writes) to execute.

-83-
Copyright 1997 F.Merat

YOU WANT FAST INSTRUCTIONS WHENEVER
POSSIBLE, i.e. NO extension words.

Example:
MOVEQ does not use an extension word.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 source

op code Dn = data
register

8 bit constant. -128 to +127

-84-
Copyright 1997 F.Merat

Section 5.1 The Condition Code Register (CCR)

16-bit status register

Systems information CCR

07815

X N Z V C
01234567

bits function
7,6,5 not used
4 extend bit

retains carry bit for multi-word
arithmetic

3 negative
set to 1 if instruction result is
negative, set to 0 if positive

2 zero
set to 1 if result is 0

1 overflow
set if signmed overflow occurs

0 carry/borrow

NOTE:
MOVE <ea>,CCR only effects CCR
MOVE <ea>,SR effects entire SR
MOVE CCR, only effects CCR

(upper byte is set to all
0’s)

MOVE SR, entire SR

These are word length instructions.

-85-
Copyright 1997 F.Merat

The System Part of the SR

T S I2 I1 I0

89101112131415

bits function
11,12,14 not used
8,9,10 interrupt mask

a priority scheme to determine
who has control of the
computer

13 supervisor
set to 0 if user, set to 1 if
supervisor

15 trace
set to 1 if program is to be
single stepped

Any unused (reserved) bit is always set to zero!
You can always read the entire SR, but you can only
modify the system byte of the SR in supervisor mode.

-86-
Copyright 1997 F.Merat

Examples:
MOVE

X N Z V C

- * * 0 0

always cleared

set according to rules given

not affected

ADD
X N Z V C

* * * * *

CLR
X N Z V C

- 0 1 0 0

always cleared

always set

not affected

-87-
Copyright 1997 F.Merat

Even a MOVE instruction effects the status register
overflow V→0
carry C→0
negative N→* Depends on

number being
moved

zero Z→* Depends on
number being
moved

extend X→- Not changed

MOVE
X N Z V C

- * * 0 0

always cleared

set according to rules given

not affected

Examples:
MOVE.W LENGTH,D1
if (LENGTH)=0 then (Z)→1

MOVE.B #$FF,D1
(Z)→0, (N)→1

How an instruction effects the SR is shown in the
Programmer’s Reference Manual and on the
Programmer’s Reference Card

-88-
Copyright 1997 F.Merat

Examples of status flags (all word length)

Consider an add instruction of the form
ADD.W D0,D3

1510

 15 10

3010

addition of
two
positive
 signed
numbers

0000 0000 0000 11112

 0000 0000 0000 1111 2
0000 0000 0001 11102

Overflow
V=0
Carry
C=0

12610

 3 10

12910

addition of
two
positive
 signed
numbers

0000 0000 0111 11102

 0000 0000 0000 0011 2
1000 0000 0000 00012
(this is -12710)

Overflow
V=1
Carry
C=0

The result 12910 is out of range for a signed 16-bit
number. As a result, the sign of the result does not
match that of the operands and signed overflow
occurrs.

-210

 -3 10

-510

addition of
two
negative
integers
with no
overflow

1111 1111 1111 11102

 1111 1111 1111 1101 2
1111 1111 1111 11012
with a carry

Overflow
V=0
Carry
C=1

The signs match so no signed overflow occurred.

-12710

 -5 10

-13210

addition of
two
negative
integers
with
overflow

1000 0000 0000 00012

 1111 1111 1111 1011 2
0111 1111 1111 10112
with a carry

Overflow
V=1
Carry
C=1

-89-
Copyright 1997 F.Merat

The result -13210 is out of range for a signed 16-bit so
the signs don’t match and signed overflow occurred. In
addition a carry occurred.

12810

 15 10

14310

addition of
two
positive
unsigned
integers

1000 0000 0000 00002

 0000 0000 0000 1111 2
1000 0000 0000 11112

Overflow
V=0
Carry
C=0

12810

 143 10

27110

addition of
two
positive
unsigned
integers

1000 0000 0000 00002

 1000 0000 0000 1111 2
0000 0000 0000 11112
with a carry

Overflow
V=1
Carry
C=1

The same analysis can be applied to subtraction:

SUB.W D0,$1200
where (D0)=$0F13 and ($1200)=$01C8

45610

 -3859 10

-340310

subtraction of
two signed
numbers

$ 01 C8
 + $ F0 ED

$F2 B5

Overflow V=0
Carry C=0

Note that since the result is negative this would be sign
extended if to long word if the instruction length were .L

-90-
Copyright 1997 F.Merat

Simple assembly language example:

PROGRAM 4.1 of text

field#1 field#2 field#3
ORG $1000 ;start program at this

memory location
* CODED INSTRUCTIONS
MAIN: MOVE DATA,D5 ;get first number, use

symbol for it
ADD NEXT,D5 ;add NEXT to D5
MOVE D5,ANSWER ;save result
TRAP #0 ;this will stop the

program, but will not do
what it is supposed to
do

ORG $1200
* DATA DECLARATIONS
DATA: DC $1235 ;put $1235 into location
NEXT: DC $4321 ;put $4321 into location
ANSWER: DS 1 ;reserves one word of

memory
; could also have used
DC.W $0

END MAIN ;stop assembler

NOTES:
1. Program in text uses HEXIN and HEXOUT. These do not work

in our debugger. You will be introduced to their equivalent in Lab
#3.

2. Use of symbols in programs is highly recommended to make
them more readable.

3. Symbol table contains a symbol field, type field, and a value
field.

4. Use of colons (:) following labels is optional if the label’s name
begins in column 1.

5. Use of the semi-colon to begin a comment is also optional.

-91-
Copyright 1997 F.Merat

You can write programs in machine code but that is:
• tedious
• slow
• prone to errors
So, use programs to make process more efficient

source program → assembler → linker/loader
(uses mnemonics for
machine code)

translates
mnemonics
into machine
code;
calculates
addresses,
etc.

references any
system calls;
loads program
into memory

Cross-assemblying is when you assemble on another
machine, say an 80286, using a program to generate
68000 machine code.

Down-line loading is when you transfer object code
between machines. When you transfer your code to
the in-circuit emulator you are downloading.

Example of mnemonic instruction:
MOVE .W D0, D3
op code
mnemonic
for a move

word length from D0 to D3

It would take a great deal of effort to calculate
addresses all the time so a good assembler allows you
to assign names to program locations and constants.

For example,
MOVE.W D5, DATA
instead of
MOVE.W D5,$1200

-92-
Copyright 1997 F.Merat

Section 4.2 of textbook describes program
organization

Labels are implied if they precede a valid instruction
code and begin in column 1. Labels are defined if they
are followed by a colon.

implied:
LOOP MOVE.W D5,DATA
defined:
LOOP: MOVE.W D5,DATA

Comments are implied if they follow a valid instruction
on a line. In some assemblers they must be preceded
by a semi-colon (;) or asterisk (*). Comments are
defined if they begin with a “*” in column 1.

Assembler directives tell the assembler to perform a
support task such as beginning the program at a
certain memory location.

ORG tells the assembler where that section of the
program is to go in memory

END end of entire program (including data). Put
the starting label after the END for automatic
loading of the starting PC.

DC puts a set of data into meory (define constant)
DS reserves specified memory locations

-93-
Copyright 1997 F.Merat

Many assembler directives and instructions can
operate on bytes, words or long words. What is to be
acted on is indicated by the suffix:
.B byte length operations
.W word length operations (almost always

assumed)
.L long word operations
$ indicates a hex number, decimal is assumed

otherwise (Does not work in debugger.)
h follows number in debugger to indicate hex.

Hex constants in debugger must begin with a
number.

preceded an immediate constant
D0-D7 data registers
A0-A7 address registers

Some assemblers will print out a symbol table which
will list all variables, including labels, and their values.

 The EQU directive (F&T, Section 6.3.2)
Directly puts something in the symbol table. Such a
symbol is NOT a label, but a constant! Use EQU to
define often-used constants.

LENGTH EQU $8
MASK EQU $000F
DEVICE EQU $3FF01

can also use the format
LABEL EQU *

which enters the current value of the PC as its value

SET is the same as EQU but you can re-define the
value of the variable later in your program.

-94-
Copyright 1997 F.Merat

XREF tells the assembler/linker that the following
symbol(s) are defined in another program
module (file)

XDEF tells the assembler/linker that the following
symbol(s) are defined in this program module
for use (reference) by another program
module. Described on p.204-205 of F&T.

-95-
Copyright 1997 F.Merat

DATA EQU $6000
PROGRAM EQU $4000

ORG DATA
* TABLE OF FACTORIALS
FTABLE DC 1 0!=1
 DC 1 1!=1
test DC 2 2!=2
 DC 6 3!=6
 DC 24 4!=24
 DC 120 5!=120
 DC 720 6!=720
 DC 5040 7!=5040
VALUE DS.B 1 input to factorial function
 DS.B 1 align on word boundary
RESULT DS.W 1 result of factorial

ORG PROGRAM
main
* PUT TABLE BASE ADDRESS IN A0
 NOP
 NOP
 MOVEA.W #FTABLE,A0 gets $6000
 MOVEA.W FTABLE,A1 gets $1
 MOVE.W #FTABLE,A2 gets $6000
 MOVE.W #FTABLE,D0 gets $6000
 MOVE.W FTABLE,D1 gets $1

 MOVE.W test(A0),D3 test displacement

 MOVE.W #5,VALUE inputto fact is 5

fact MOVE.W VALUE,D5 get input
 ADD.W D5,D5 double for word offset
 LEA FTABLE,A3 get base address
 MOVE.W 0(A3,D5),D6 get result
 MOVE.W D6,RESULT output

 END main

-96-
Copyright 1997 F.Merat

How to run your program:

as68k Example1
Assumes a file with the full name Example1.s is
present. Produces an output Example1.o

This is a two-pass assembler. The first pass reads the entire
program, computes all instruction addresses, and assigns
addresses to labels. The second pass converts all instructions
into machine code using the label addresses.

ld68k -o Example1 Example1
The first file name following the -o is the output file
which will automatically be named Example1.x;
the second file name is the input which is assumed
to be Example1.o

db68k Example1

You must set the PC in the debugger to run your
program. You can do this in the debugger in several
ways:
1. Memory Register @PC=1000h

<You cannot use $1000 in the debugger>

2. Program Step From 1000h
Program Step

You can also automatically set the PC in the assembler
<label> <your code begins here>

rest of your program
end <label>

where <label> is any name you want. It will be used to
set the initial PC value.

-97-
Copyright 1997 F.Merat

 SOME USEFUL DEBUGGER COMMANDS ARE:

Debugger Quit Yes <return> Quits the debugger.

Window Active Assembly Registers <return> Removes the journal
window and shows the
Status Register.

Program Step F rom 1000h <return> Resets the code
window to $1000 and
executes the
instruction at $1000.
Note that only one
instruction is executed.

Program Step <return> Executes the
instruction currently
highlighted. This
command following the
initial Program Step
From 1000h would
execute the instruction
at $1006.

Memory Register @PC=1000h <return> Sets the current value
of the PC to $1000, i.e.
this is the next
instruction to be
executed.

Memory Register @A3=1000h <return> Sets the current
contents of A3 to
$1000. Can be used
for all registers
including SR.

Expression Monitor Value @A1 Continuously displays
the value of A1 in the
monitor window.

NOTE: The @ indicates a reserved symbol such as the name of a
data or address register, the PC or the SR.

-98-
Copyright 1997 F.Merat

COMMENTS ON MC68000 INSTRUCTIONS IN
LAB#2

* These instructions operate on data registers
MOVE.W #$FFFE,D0 ;you will get different

results if you use .L
instructions

ADD.W #1,D0
ADD.W #1,D0
ADD.W #$FFFE,D0
ADD.W #2,D0

* These instructions operate on address registers
LEA $2000,A0
MOVE #$2000,A1 ;this is not an

allowed instruction,
assembler will
automatically
convert to MOVEA

MOVE D0,(A0) ;address register
indirect

If you look at the MOVE instruction, An is not allowed.
You must use a MOVEA which can only have an
address register as a destination. The instruction
MOVEA <ea>,A1
is the only form of the MOVE that can put data into an
address register. The size of the operator can be .W or
.L Word size operands are sign extended to 32 bits
before any operations are done.

The LEA instruction is subtly different than a MOVEA—
it computes <effective address> and puts that into An.
Only a long form of the instruction is allowed.

-99-
Copyright 1997 F.Merat

MOVEA converts addresses into constants
LEA generates position independent

code using PC relative address
modes; better for position
independent code

MOVE D0,(A0) moves contents of D0 into address
location stored in A0

