Lab Work: Questions Due:

FET CHARACTERISTICS, AMPLIFIERS, AND APPLICATIONS

READING ASSIGNMENT: Horowitz, pgs.223-231, 232-234, 240-241.

Abstract:

In this lab you will compare methods for measuring the dc characteristics of an N-channel JFET. The performance of a FET current source will be examined. The common source and common drain amplifiers will be studied.

Part 1 - DC Characterization

In this part, you will use determine your transistor's I_{DSS} and V_P by using the curve tracer and by direct measurement. You can use the curve tracer any time during your lab period, so don't waste time standing in line.

(1) Set the curve tracer to the default drain characteristic settings listed in Figure 1.

CONTROL 13	DEFAULT SETTING *	DESCRIPTION - set so display starts at point labeled 9
12 15	2 mA 2 collector	I_D - drain current per vertical cm. V_{DS} - drain voltage per horiz. cm.
20 17 all others	in 0.5 V NPN default positions	gate voltage polarity inverted V _{GS} - gate voltage increment per step
T. /	1.4.	J.

Figure 1 Curve tracer settings for characterizing FETs

(2) Test the reference transistor to make sure you have the settings right.

(3) Display your transistor's drain characteristics and adjust the controls as needed to get a nice display. ACCURATELY record the characteristics in Table 11.1. Pay particular attention to the slopes of the curves in the resistive and saturation regions.

(4) Set the curve tracer to the default transfer characteristic settings listed in Figure 2.

CONTROL 13	DEFAULT SETTING *	DESCRIPTION - set so display starts at point labeled 9
12 15	2 mA steo gen	I_D - drain current per vertical cm. V_{DS} - drain voltage per horiz. cm.
20 17 all others	in 0.5 V NPN default positions	gate voltage polarity inverted V _{GS} - gate voltage increment per step

Table
Figure 2 Curve tracer settings for measuring the transfer characteristics of FETs

(5) Test the reference transistor to make sure you have the settings right.

SAVE A XEROX OF YOUR DATA FOR LAB #12

(6) Display your transistor's transfer characteristics and adjust the controls as needed to get a nice display. ACCURATELY record the characteristics in Table 11.2. The curve will be a set of points rather than a continuous curve. Pay particular attention to the horizontal (V_P) and vertical (I_{DSS}) axis intercepts.

Figure 1 - Circuit for characterizing FETs

Build the circuit shown in Fig.1/.

Adjust the variable supply so that the DMM reads approximately $1 \mu A$.

Remove the DMM and use it to measure VGS, which is very nearly Vp. Record your results in Table 11.3

Put back the ammeter (DMM), remove the variable supply, and ground point A.

1) Record ID, which is IDSS. The current may slowly decrease due to heating of the transistor, so take your reading quickly. Record your results in Table 11.3.

FETs are commonly used as current sources for circuits found on IC's. Consider the FET current source shown in Figure 2.

(1) Build the circuit of Figure 2. Use your RSB for RD.

(2) Measure I_D for R_D values of 10k, 20k, 30k, 40k and 50k. Record your measurements in Table 11.4.

(3) The constant current should break down when V_{DS} is near -V_P. Take additional data near this breakdown point. Record your data in Table 11.4.

-stout have

Part 2 - AC Characteristics

The value of g_m for the FET is much more variable than β_0 was for the BJT. The gain of an FET amplifier is very dependent on its operating point. Follow these steps to characterize the AC operation of your transistor. You should notice if the CH2 waveform ever becomes distorted.

(1) Build the circuit shown in Fig.2. Connect scope CH1 to point A and CH2 to point C. Adjust the generator to produce a 100 mV_{p-p} 1 kHz triangle wave at point A.

(2) Adjust the generator's DC offset so that point A is at approximately +1.0 V DC.

Use the scope to measure the AC_{p-p} voltage at point C. Record your data in Table 11.5.

(4) Repeat steps 2 and 3 using +0.5 V, 0.0 V, -0.5 V, -1.0 V, -1.5 V, etc. in step 2 until you reach your transistor's Vp.

(5) Set the generator's DC offset so that point A is at +1.0 V DC. Use the DMM to measure the DC voltage at point B. Record your result in Table 11.5.

The FET can be used in the common gate, common source mode, or common drain just as a BJT can operate in the common base, common emitter or common collector modes. The common source amplifier configuration of Figure 2 is usually used for voltage amplifiers; however, when impedance matching or high output power is a consideration the source follower (also called the common drain) configuration is usually employed.

Figure 3 - Source follower

- 4 -Copyright 1988 F.Merat

- Adjust the generator to produce a $100~\text{mV}_{p-p}$ 1 kHz triangle wave at point A. Use the scope to measure the AC_{p-p} voltage at point C. Record your data in Table
- Repeat steps 2 and 3 using 200mV, 400 mV, etc. in step 2 until your signal begins to (4) distort.
- Connect a 1000 ohm resistor between point C and ground. Repeat steps (2) and (3).

The performance of many FET amplifiers can be improved by using current biasing. Modify your circuit to that of Figure 4 which is a source follower with a current source load.

Figure 4 - Source follower with common source load

- Build the circuit shown in Fig.4. Connect the scope CH1 input to point A and CH2 input to point C. Measure the DC voltages at points A and C. Record your measurements in Table (11.7)
- (2) Interchange your FETs, Remeasure the DC voltages at points A and C. Record your results in Table 11.7. (3)
- Adjust the generator to produce a 100 mV_{p-p} 1 kHz triangle wave at point A. Use the scope to measure the AC_{p-p} voltage at point C. Record your data in Table 11.7. 11.7.
- Repeat steps f and s using 1V, 1.5V, etc. in step until your signal distorts.
- Connect a 1000 ohm resistor between point C and ground. Repeat steps (4) and (3).

PLEASE CALL A TEACHING ASSISTANT TO CHECK YOUR DATA BEFORE CONTINUING.

Questions:

1. (a) What values of IDSS and VP were indicated by the curve tracer? (b) What yaters of Day and Vance found (c) What are the values for I_{DSS} and V_P on the data sheet? (d) What is your most accurate estimate of each parameter? Why? You recorded your transistor's drain characteristics using the curve tracer. The slopes of these characteristics in the saturation region are not zero, indicating the presence of an FET parameter called gd. (a) Use your knowledge of the BJT model to draw a FET small signal model which includes gd. Write an equation for gd. $\frac{1}{9a} = \frac{\Delta I_b}{\Delta V_{GS}}$ (b) Calculate the value of gd for each of your curves. (c) Compare g_d at $V_{GS} = 0$ to the data sheet value of g_{OS} . _ using a linear approximate. 3. $\mathcal{O}(a)$ Use your data of Table 11.5 to make a graph of g_m vs V_{GS} . (b) Use your drain characteristics from Part 1 to make a similar graph of g_m vs V_{GS}. (c) Compare g_m at $V_{GS} = 0$ to the data sheet value of g_{fs} . (d) What was unusual about the voltage at B when you used +1.0 V? Why? No question about Figure 4.

Sm = AID $g_m = \frac{\Delta T_0}{\Delta V_{CS}}$ Hint: what was your relationship with Vp? grade - signal transconductance with common sounce amp.

grace = gral v_{GS}=0. 4. Need quastion about Figure 4. $\frac{1}{r_d}$ = slope = $\frac{\Delta I_D}{\Delta V_{DS}}$

- 7 -Copyright 1988 F.Merat

FI	\mathbf{F}	A V	24	13

LAB 11 EVALUATION

NAME (print) GRADE/	CHECKPOINT #1 CHECKPOINT #2	DATE		
With respect to the course material, this lab was: highly relevant relevant not relevant	(pick one)			
This lab was: (pick one) too long long just right short _	too short			
This lab was: (pick one) too hard hard just right easy	_ too easy			
The background material in the lab assignment was: (pick one) too detailed just right sufficient insufficient totally inadequate				
The step by step procedures in the lab assignmen too detailed just right sufficient		equate		
Describe any mistakes made in the lab assignmen	nt.			
Describe anything that just didn't work right.				
Describe how this lab could be made better.				

QUIZ

NOTE:	THE TEACHING ASSISTANT IS TO SELECT BOTH QUESTIONS FROM THE UNDERLINED OPTIONS AT THE SECOND CHECKPOINT
Questic	on #1
	will be the gain (don't forget the sign) from point A to point B in Fig. 11.2 if we ouble the resistance of $R_1/R_2/R_3$?
	The gain will be
Questic	on #2
	will be the gain (don't forget the sign) from point A to point B in Fig. 11.4 if we ouble the resistance of $R_1/R_2/R_3$?
	The gain will be

NAMES:		
* 11 TT	 	

Lab 11 Data

Difficult to head head head VGS: _-3'55 v I_D: Ipss= -11.11 mA, Table 11.3 DC FET characteristics R_{D} I_D mA 10k 0.513 20k 0.415 30k 0,332 40k 0.267 50k 0.530. 91 OOK 0.272 0.249 201c -+ V3 = 0.696 V 1.4x50 my Table 11.4 FET current source characteristics

V @ A	Output Voltage (p-p)
+0.5	1 · 3 × · · · · · · · · · · ·
+0.0	1 0 xsomV
-0.5	10 YJ77my
-1.0	7.9
-1.5	0.8
-2.0	0.7
-2.5	5.6
-3.0	0.44
-3.5	1.1x5my
-4.0	
-4.5	
-5.0	
DC V _{GS} :	
Table 11.5	AC FET characteristics

V_{GATE}: 0:0 V (3:0 V)

V_{SOURCE}: 299 V (3:0 V)

	V _{input,p-p}	$R_{L}^{=\infty}$ $V_{output,p-p}$	R _L =1k V _{output,I}	р-р	
	100mV	10 mV	1.45×50		
	200mV	Jwo m V	145 mV		10
	400mV	360	300 mV	A 100	clinian h
	800mV	3.8x0.2	500 mV	6 10	
,	1.2V	2.1 YOU		Cay 6	V
	1.4V	21.35		3	.6x2=7.2V
Coffer Sy	1.6V	× 1. 53		_	=
10 bester	1.8V	1:7			
		$\frac{\sim 1.8}{\text{rce Follower chara}}$	cteristics		

Original Reversed

VGATE: 6.9mV 6.9mV

VSOURCE: 1.621v 1.523v

	V.	R _L =∞	R _L =1k
	V _{input,p-p}	Voutput,p-p	V _{output,p-p}
	100mV	50 mV	6.3×50mV2
	1.0V	C1.5 V	- C. 3x 0.5
·morl	1.5V	0.75	- 0.3×0.5 (= c/p. dv 7.2 v
59 W	2.0V	1.0	_0.3x
JUNAN OVA	2.5V	1.25	
Signed Signed	3.0V	1,5	<u>c·3x</u>
` V	Table 11.7 Sou	rce Follower chara	acteristics

NAMES:	

Lab 11 Data

Table 11.2

V _{GS} : _		I _D :
	Table 1	11.3 DC FET characteristics
	$R_{\mathbf{D}}$	I_D
	10k	
	20k	
	30k	
	40k	**************************************
	50k	

	to the second second second second	
		
	Table 11.4 F	ET current source characteristics
	V @ A	Output Voltage (p-p)
	+0.5	1994 and the hard plants are account or the state of the
	+0.0	
	-0.5	
	-1.0	
	-1.5	
	-2.0	
	-2.5	400 100 100 100 100 100 100 100 100 100
	-3.0	
	-3.5	
	-4.0·	
	-4.5	
	-5.0	
	DC V _{GS} :	

Table 11.5 AC FET characteristics

	ATE:	
V _{input,p-p}	R _L =∞ V _{output,p-p}	R _L =1k V _{output,p-p}
100mV 200mV 400mV 800mV 1.2V 1.4V 1.6V 1.8V 2.0V Table 11.6 S	Source Follower char	
V _{GATE} : V _{SOURCE} :	Original R	eversed
V _{input,p-p}	R _L =∞ V _{output,p-p}	R _L =1k V _{output,p-p}
100mV 1.0V		
1.5V 2.0V		
2.5V 3.0V Table 11.7 S	Source Follower char	racteristics