9, | Find the charge within a hemisphere of charge whose r,, 0, ¢ ranges are: ro =r, =0, 7/2
=60=0,and 2n > ¢ = 0. Let ro = 0.02 (m) and

@ pv=

3 x 1073
2o

- cos? ¢ (Cm™?);

® py = 3 x1073r? cosQ(Cm_,)

sinf

a, 4-Find the force per unit length on two infinite and parallel lines of uniform and equal p, =
10(uCm™1) but of opposite sign. Assume that the lines are separated 4 (m).

3-8.

3-9.

4-2.

4-3.

4-4.

4-5.

4-6.

For D = (#xy + #2yz — £5xy) (Cm™2), find the number of flux lines that pass through a
portion of the z = 2 plane for which —3 =x=3,0=y=2.

Find the number of electric flux lines that emanate through a spherical surface of radius
r, = b(m), (@ < b < c), centered at the origin, in a D field that has the following distribution:

D=00=r,<a;D=+¢Q104r})(Cm2),a<r,<c;D=0,r,>c

Through the use of Gauss’s law, find the D and E inside and outside a 2 (m) radius spherical
shell, centered at the origin, and possessing a p, = r, (Cm™?) charge distribution.

Through the use of Gauss’s law, find the approximate values of D and E at points very near and
very far from a disc of p, = (1 + r2) (#Cm~2?) in the z = 0 plane and of 1 (m) radius. Let the
near point be (0, 0, 0.001) and the far point (0, 0, 100). Note that the disc appears as an infinite
sheet to an observer at the point (0, 0, 0.001) and as a point charge when at the point (0, 0, 100).

An electron is released, at the origin, with zero initial velocity in an electric field E =28 (Vm™).
Find the expressions for the position, velocity, and acceleration of the electron.

A charge Q = 8 (,L_t_C) is moved by an external force in a field E = #x + §2y. If the charge
moves a distance d{ = —% + 2 (um), find the approximate energy exchanged and indicate if
the energy is given to or taken from the E field.

An electron moves from an absolute potential location of 8 (V) to that of 5 (V). Find the energy
exchanged and indicate if the energy is given to or taken from the E field.

Find the change in kinetic energy of a proton that falls from a potential of 2 (V) to —2 (V) and
indicate if energy is given to or taken from the E field.

Find V,, by integrating over the path ¢’ of Fig. 4-5 in an electric field E = —22yx — §x* when
the points a and b are at (4, 6, 0) and (2, 2, 0), respectively.

Find the expression for V,, about a point charge @ = 4 (uC), at the origin, with the reference
at r, = 100 (m).

The expression for ¥, about a point charge 0 = 2 (#C), at the origin, gives 20 (V) ata radius
of 30 (m). Where is the reference r,?

Repeat Prob. 4-5 by integrating over the path ¢ of Fig. 4-5, a straight line from b to a. Is E
a conservative field ?



4-10.
4-11.

4-12.

4-13.

4-14.
4-15.
4-16.
4-17.
4-18.
4-19.
4-20.
4-21.
4-22.

4-23.

4-24.

The potential difference V;, between r; = 10 (m) and r, = 20 (m) is found to be 50 (V).
Find the absolute potential at r, = 50 (m). Assume the potential field is due to a point charge
at the origin.

Four point charges, Q; = 2(#C), @, = —3 (4C), Qs = +2(uC), and Q4 = +1 (uC) are
located at points P;(0, 0, 0), P,(0, 0, 4), P3(0, 4, 4), and P,(0, 4, 0), respectively. Find the
absolute potentials at: (a) P(0, 2, 2); (b) (0, 6, 0); (c) (4, 2, 2).

For the electric dipole shown in Fig. 4-9(a), find the exact absolute potential along the +z
axis and compare with the approximate values obtained, using the expression assuming r, > d
at the following points: (a) Py(0, 0, 0); (b) P5(0, 0, d/4); (c) P5(0,0, 2d); (d) P40, 0, 10d).
Assume Q = 1 (4C) and d = 0.25 (m).

Set up the integral, ready to integrate, to find the absolute potential at some general point
(x, ¥, z) in free space due to a uniform p, = 2(x"2 + y2), -2 = x' =2, -2=y'=2,z7 =0.
[Hint: Use the building block equation.]

Find the potential difference V,, above an infinite sheet of uniform p, = 2 (#Cm~2) located at
z = 0 plane. Let 5 = 20 (m) and @ = 2 (m).

Find the absolute potential along the axis of a disc in the z = 0 plane, and centered at the origin,
when p; = 2r2 (Cm~2), 0 = r. = b. [Hint: Use the building block concept.]

The expression for the potential difference above an infinite sheet of uniform /?.v,_in thez=0
plane and with reference at z = 0, is found to be V,, = —(3z/€,) (V). Find: (a) E through the
use of the gradient concept for +-z; (b) p, on the sheet.

A potential difference field is found to be ¥ = x2 + y2. Find the E field.

Find E, D, and Py for the following potential difference fields: (a) ¥ = 10x2; (b) ¥ = 2r, sin @;
©) V = (5/r,) cos 8.

For the electric dipole of Example E-11, find the exact expression for E at r, = 0 and compare
with results obtained by using (4.5-26).

From E = —VV,V + D = p,, and D = €,E, show that V2V = — p,/€,, where V2 2V .V
and is called the Laplacian operator. (See Sec. 1.12.)

The absolute potential_in_a given region due to a spherical charge distribution is equal to
(102/€y)r? (V). Find E, D, p,, and Q., within a sphere of r, = 0.5 (m).

For spherical charge distribution of radius r, = 2 (m) and p, = 2r?(Cm™3), find: (a) the
absolute potential for r, = r,; (b) the absolute potential for r, = r,. Plot ¥V for 0 < r, =< 4r,.

A thin spherical shell of radius r, and uniform p, = 1072 (Cm™2) is centered at the origin. If
the total charge is Q = 2 (C), find: (a) r,; (b) the absolute potential for r, = r,; (c) the absolute
potential for r; = r,. Plot V for 0 = r = 4r,.

A coaxial cable, shown in Fig. 4-12, has — p, on the surface at r, and + p, at the surface at r;.
Find: (a) the energy stored per meter length through the use of (4.6-16); (b) show that the
result of (a) will reduce to Wg = 4p.V,; () the p, at r,; (d) the p, at r,.

Conductor

%)

Figure 4-12 Graphical display of a coaxial cable for Prob. 4-24.



ProBLEM 5.4-1 Find the resistance of 100 feet of #12 gauge copper wire. The
diameter of #12 gauge copper wire is 0.00205 (m).

ProBLEM 5.4-2 For the truncated copper wedge ot_’_ Example E-5, find the resistance
between the faces at z =0 and z = 1 when: (a) E = 32; (b) E =24, (c) E =K
(constant)

ProBLEM 5.4-3 If the potential difference bgtween the two conductor faces of
Example E-5 turned out to equal 7/4 (V), find J throughout the material.

ProBLEM 5.8-1 For the cube of Example E-9, find p,; on all faces and pys inside
the cube when: (a) P = £x (Cm™2); (b) P = £(x? + 2) (Cm™?) inside the cube.

ProBLEM 5.8-2 Find the total bound surface charge Q. and the total bound
volume charge Q,; for parts (a) and (b) of Prob. 5.8-1.

PrOBLEM 5.9-1 In the region y > 0, we find €,; = 10, and in the region y < 0,
we find €,, = 4. If E, = 35 (Vm™!) at the boundary, find: (a) D;; (b) E;; (c) D,;
(d) Py; (e) Py; (f) p.s. Assume p, = O at the boundary.

PROBLEM 5.9-2 A boundary between two dielectrics is found at the x = 0 plane.
If #1 material exists for x > O with €,; = 4 and # 2 material exists for x < 0 with
€, =5, and when E; = (22 + 73 — 36) (at boundary), find: (a) D,; (b) P;; (c)
E,; (d) Dy; (e) Py; () Pss- Assume p, = 0 at the boundary.

PROBLEM 5.9-3 Repeat Prob. 5.9-1 for E; = 75 (Vm™1).

ProBLEM 5.10-1 Show that the capacitance of two concentric metallic spheres

20me
r = (g - Let o

be the inner radius of the outer sphere and r, be the outer radius of the inner
sphere.

separated by a dielectric, whose €, = 5, equals C =

ProBLEM 5.10-2 Find the expression for the capacitance per meter length of a
cylindrical capacitor whose cross section is the same as that of the spherical con-
figuration found in Fig. 5-15, with a conducting cylinder placed at the r, = a posi-
tion, a = 0.01 (m), b = 0.02 (m), ¢ = 0.04 (m), and €, = 5€,.

ProBLEM 5.10-3 Find the capacitance of a parallel-plate capacitor whose plates
are separateq 1 (cm) and whose surface area equals 1 (cm)2. Assume air dielectric
and neglect E field fringing. -

5-5. A hollow cylindrical conductor of uniform cross section has an outer radius of 2 (cm) and an
inner radius of 1 (cm). Find the R of 10 (m) of this conductor whgp o= 50 x 107 (Om™1).

5-6.

5-8.

5-9.

If the hollow cylindrical conductor of Prob. 5-5 is plated at the inner and outer radii, with a
thin layer of ¢ = oo conducting material, find: (a) R between the outer and inner radii for a
1 (m) length of conductor; (b) the current that would flow from the inner to the outer surfaces
for a 1 (m) length of conductor when a potential difference of 1075 (V) exists between these
surfaces.

A charge of 1079 (C) is placed on a solid conductmg sphere of 2 (m) radius and centered
at the origin. Under static conditions find: (a) E inside the conductor; (b) p, on the surface;
(c) D, just above the surface; (d) E for r, > 2 (m).

An infinite Iength conducting cylinder of radius r, = 107! (m) is found along the z axis in
free space. If D = 7,107 (Cm~2) just off the conductor, find: (a) p;; (b) p.; (c) E forr, > 107t
(m).

A cylindrical test sample of germanium has a uniform radius r, = 2 (mm) and a length of
3 (cm). If the ends are coated with a thin layer of high conductxvxty material and a voltage of
10 (V) is applied between the ends, find: (a) E; (b) g; () J: (d) R, end to end; (e) I; (f) U,;
(8 Us
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5-10.
5-11.

5-12.

5-13.

5-14.

5-15.

5-16.

5-17.

Calculate the o of silicon, using (5.7-2) and parameters found in Table 5-2.
A thick spherical shell of dielectric is found centered at the origin with an outer radius of &
(m) and an inner radius of a (m). If the dielectric constant is equal to 3 and the polarization
vector

- -5

F=112(%) cmy
find: (a) p.s on both surfaces; (b) g, within the dielectric; (c) Q;; on both surfaces; (d) Qy»;
(e) Qb(tonl)-
Repeat Example E-11 for a cylindrical configuration of the same dimensions, and display
results in a manner similar to those found in Fig. 5-15.
In a sample of dielectric, it is fo_und that P = 2/6m (pCm™2) at a point where £ = 22 (Vm™!).
Find: (a) X.; (b) €,; (o) €; (d) D.

Starting with Maxwell’s first equation V « D= Py (free charge density), show that Gauss’s.

law in D becomes
§ D- . a—; = Qen(l‘ree charge)
s

Starting with €,V « E = py + Pus, Eq. (5.8-3-16), show that Gauss’s law in E becomes

§ E dS— an + Qben
s €o

where Q.. is the free charge enclosed and Q.. is the total bound charge enclosed.
Show that at a dielectric-dielectric boundary
fiyy o (ﬁx — Py = —Psbitota) = Pin — P2a
Show that at a dielectric-dielectric boundary
Ay + (Dy — D) = Dy — Dis

ProBLEM 6.4-1 Two infinite and parallel conducting planes are separated 0.02 (m),
with one of the conductors in the y = 0.2 plane at ¥ = 50 (V) and the other in the
y = 0.22 plane at ¥ = 0 (V). Assume 2, = 0 and € = 5€, between the conductors.
Find: (a) ¥ in the range 0.2 = y = 0.22; (b) E between the conductors; (¢) the
capacitance per square meter.
PROBLEM 6.4-2 Two infinite length, concentric, and conducting cylinders of radii
= 0.03 (m) and r;, = 0.06 (m) are located with axes on the z axis. If € = 5€,,
p, =0 between the cylinders, =100(V) at r, V= 50(V) at r, find:
(a) Vin the range 0.03 = r, = 0.06; (b) E; () D; psatry; (e) capaatance per
meter length.
PrOBLEM 6.4-3 Two infinite and radial planes are separated by a small gap along
the z axis. One of the planes is in the ¢ = O plane at ¥ = 100 (V) while the other
is in the ¢ = /2 plane at V = 0 (V). If € = 2€, and p, = 0 between the planes,
find: (a) Vin therange 0 = ¢ = n/2 (b) E; (c) D; (d) p, at r. = 2(m) on the
plane at ¢ = m/2.
PrOBLEM 6.4-4 Solve for the constants A and B in (54) of Example E-8 and obtain:
(a) eq. (55); (b) eq. (56); (c) expression for p, on 8 = @, (constant) cone.
PROBLEM 6.4-5 Evaluate the constants A4;, 42, A3, and A, in egs. (65), (66), (67),
and (68) to obtain (69) and (70) of Example E-9, where two dielectric slabs are found
between two conducting planes, as in Fig. 5-21.

PROBLEM 6.4-6 For the_ problem of Example E-9, using (58) and (60) show that:
(@) E, = —24y; (b) E; = —24;5; (©) Psliwe = €243;  (d) Pslieo = —€141;

(€) C = €,A35/Vo = €,€,5/(€:¢; + €,{;), which can be placed in the form of
Y8 N
C*%a+a)@mm‘



6-9.

6-10.

6-11.

6-12.

6-13.

6-14.

6-15.

6-16.

Two infinite length, concentric, and conducting cylinders of radii r, and r;, are located on the
z axis, as shown in Fig. 5-20. If € = 5€,, p, = 0 between the cylinders, ¥ = 0 at r,, and
|E| = (—dV/dn) = 400 (Vm™!) at r,, solve Laplace’s equation to find: (a) ¥; (b) E; (c) p,
on both conductors. Note that this is an example of a mixed boundary-value problem formula-
tion.

A two-conductor capacitor is formed in air by two conductors to resemble the wedge of Fig.
6-2. If the range on the cylindrical variables describing the capacitor are 0 < ¢ =< m/4,
1074 =r, =2, 0=z =2, find: (a) the approximate capacitance when zero field fringing is
assumed; (b) the approximate ratio of p, at r. = 1074 to that at r, = 2.

Find the capacitance of a two-conductor spherical capacitor formed by two concentric spheres
of radii r, = 3 (cm) and r, = 0.5 (cm) when the region between the sphere is filled with a
dielectric whose € = 10€,.

The region between the two spheres of Prob. 6-11 is filled with a homogeneous conducting

material whose ¢ = 2(Um™!). When ¥V =0 at r, and ¥V = 0.1 (V) at r,, find through the -

solution of Laplace’s equation: (a) the potential field V; (b) E ; (¢) the current between the two
spheres.

A finite cone above a finite ground plane is formed by allowing #; = #/4 and 8, = #/2 in Fig.
6-3. When the space between the cone and ground plane is filled with a homogeneous dielectric
€ =4¢€, and 0 = r, =< 2, find approximations for: (a) V; (b) E; () ps on both surfaces;
(d) the capacitance between the cone and the ground plane.

Place two cylindrical and concentric regions of dielectric in the two-conductor cylindrical
capacitor of Fig. 5-20. Let region #1 dielectric have an €; = 2€, withinr, < r. < r’ and region
#2 dielectric have an €, = 4€, within r' <r, <r,. If V=0 at r, and V = V, at rs, find
through the use of Laplace’s equation: (a) the potential fields ¥; and V,; (b) E; and E;; (c) the
capacitance of an { meter length.

For the two-dimensional electrostatic problem shown in Fig. 6-7, find: (a) V field; (b) Vaty = 0
and z = b/2 when a = b.

Conductor z V=0
Gap— T l ~—— Gap
= b Py = Y
V= Vy— V="V,
2a
Conductor —| -+— Conductor
€ |————— § ————————]
Ga Ga
P ~.l / p ’
O T
Conductor V=0

Figure 6-7 Graphical formulation of a two-variable electrostatic problem formed
by four conductors of infinite extent in the x direction for Prob. 6-15.

For the two-dimensional electrostatic problem shown in Fig. 6-8, find the potential field V.

V=0 Conductor
Gap 1 > oo
V=V,— P =0
Conductor — b ‘o
V=0
Gap l
\ 3}
y
Conductor

Figure 6-8 Graphical formulation of a two-variable electrostatic problem formed
by three conductors for Prob. 6-16.
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6-17. Discuss how the solution to Prob. 6-15 could be obtained through use of the results of Example
E-10.
6-18. In all our solutions of Laplace’s equation for the potential field, explain why the ¥ solutions are
independent of €.
6-19. In the solution of Poisson’s equation in Example E-11 for a thermionic diode, prove that
Poisson’s equation and the boundary conditions (6.6-2), (6.6-3), and (6.6-4) are satisfied.
6-20. From (5.2-4) and the results of Example E-11, obtain an expression for the electron velocity U
in Example E-11.
ProBLEM 8.3-1 Through the use of (1), Fig. 8-3, and the results of Example 2-E-4,
obtain (9) and (13).
ProBLEM 8.3-2 A current of 2 (A) flows in the configuration shown in Fig. 8-3.
Find H at the rectangular point (4, 5, 0) when: (@)a= —o,b=+oo;(b)a= 0,
b=o0;(C)a=—2,b=+2.
ProOBLEM 8.3-3 If the circular current loop of Fig. 8-5 is shaped into a square cur-
rent loop whose legs are a meters long and parallel to the axes, find: (a) the H
field at the origin; (b) the H field along the -z axis through the use of (14).
PrOBLEM 8.3-4 Through the use of (1), Fig. 8-5, and the results of Example 2-E-6,
obtain (16) and (19).
PrOBLEM 8.3-5 A solenoid is 0.2 (m) long and has a radius of 0.005 (m). If it is
closely wound and contains 1000 turns, find: (a) H at the center through the use
of (21) and (22) and calculate the percent error; (b) H at the ends through the use
of (23) and (24) and calculate the percent error.
8-15. Find the magnetic flux, due to a z-directed filamentary current I, of infinite extent, that flows
through a rectangular cross section defined by ¢ =m22<r,<4(m),and 3 <z<6(m).
8-16. From V x E=0andVx Vf= 0, we found a scalar potential such that E = —VV. Now,
if V x H = 0 in a region where J = 0, can we define a scalar magnetic potential such that
H = —VV,,? Show the mathematical development.
8-17. For _t_he filamentary circulax_r current loop of Fig. 8-5, find: (a) the vector magnetic potential 4,
(b) B through the use of A.
8-18. Prove (8.10-4) through expansion of both sides.
8-19. Prove (8.10-5) by expansion of V(1/R) when

R=[(x—x)2+—y)?+@— )12

ProBLEM 9.9-1 If leg £, of Fig. 9-21(a) and Example E-10 has an air gap of length
£, =2 %1073 (m), find: (a) &; (b) N to produce B, = 1 (Wbm™2) in the gap.
Assume H; = 2000B, and zero fringing at the gap.

ProBLEM 9.9-2 A toroidal magnetic circuit contains an air gap of length £, = 1.5
x 103 (m). If the mean steel length £, = 0.3 (m), the constant cross section
s=6 X 107* (m?2), and NI = 1500 (A turns), find the B, in the steel. Assume
silicon sheet steel (see Fig. 9-23) and zero fringing at the gap. [Hint: Assume B,
values and calculate required NI values with the aid of the magnetization curve.
The correct B, value will require an NI of 1500.]

ProBLEM 9.11-1 Obtain the expression for the self-inductance of the coaxial cable
of Example E-13 through the use of (5) and (6).

ProbLeM 9.11-2  Find the force F exerted on the lower bar of the electromagnet
of Fig. 9-26 when the reluctance of the ferromagnetic circuit is neglected and only
the reluctance of the air gap is considered, N = 1000 turns, [ = 40 (A),s =38
x 1074 (m?), and £, = 2 (mm).
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9-10.

9-11.

9-12.

9-13.

9-14.

9-15.

A coaxial cable of cross section found in Fig. 5-2(a) is filled with a maggetig materia_ul wpo§e
U, = 150. For I =5 (A), r, = 0.01 (m), and r, = 0.1 (m), find: (@) H, B, and M within

the magnetic material; (b) J,» on the magnetic surfaces at r, and r,; (¢) J,, within the magnetic
material. Assume the inner conductor current in the —z direction.

Solve Prob. 9-9 when the magnetic material is found only between the z = 0 plane and the
z = —0.01 plane.

For the magnetic circuit of Example E-10, find B, when N = 300 turns, I = 0.05 (A), and
H, = 200B, (Am~1).

Find the flux in each of the legs of the magnetic circuit of Fig. 9-22(a) when N = 500, I = 10
(A), {; = 0.3 (m), £, = 0.4 (m), ¢, = 0.1 (m), 5, =s; =107% (m?), 53 = 1.5 X 1073 (m?),
and H, = 100B,.

For the magnetic circuit of Example E-10, find the self-inductance when N = 4000 (turns).
Use the results of Example E-10.

A single layer of N, = 200 turns is wound directly on a long solenoid of N L= 1000 t_urns.
Obtain the expression for the mutual inductance M, when g = Mo, the radius of th.e inner
solenoid is @ (m), and its length is ¢ (m). Assume that all the flux of the inner solenoid links
all the turns of the outer solenoid.

ProBrLem 10.4-1 Referring to Fig. 9.7(a), let the length of the bar between the
conducting rails be ¢, and let the velocity be U toward the right. In terms of B, ¢,
U, and R, determine: (a) the emf generated in the complete loop; (b) the power
dissipated in R; and (c) the force required to move the bar.

ProBLEM 10.4-2 A rotating loop has been widely used as a means of measuring
a magnetic field. A 4 (cm) < 8 (cm) rectangular loop of 50 turns is driven at 10,000
rpm by a small motor and the axis of rotation is oriented for maximum ac output
from the loop. If the amplitude of the output voltage in air is 0.21 (mV), what is
the ambient H field at that location?

ProBLem 10.4-3 Referring to Fig. 9-7(a), let the length of the bar bgtween the con-
ducting rails be £, and let the velocity be U,. Find the emf if | B| = B, sin wt.
Assume that R is a very high resistance such that the flux from the current is negli-
gible.

10-3. A single-turn rotating loop having an area of 50 (cm?) and a resistance of 5 (QQ) has its axis

normal to a magnetic flux density of 1 (Wb/m2). Find the average torque on the loop if the
speed of rotation is 5000 rpm.

10-4. A 10 (cm) diameter single-turn circular conducting loop is spinning about an axis perpendicular

10-5.

to a magnetic field at a rate of 10,000 rpm. The short circuit current induced in the loop is
100 (A) rms. If the resistance of the loop is 0.1 (Q), find: (a) the horsepower required to spin
the loop; (b) the average torque on the loop. [1 (hp) = 746 (W).]

A transformer core is constructed of a permalloy having a saturation flux density of 0.75
(Wb/m?2). The primary is to be connected to ¥ = 20 cos 20007t (V). If the primary turns are
not to exceed 1000, what is the minimum core cross-sectional area required ?

ProBLEM 11.6-1  Calculate the skin depth of copper at 60 (Hz) and at 600 (KHz).

PrOBLEM 11.6-2 Calculate the power loss per square meter of wall surface for a
thick copper wall if the entering E field at the surface is 1 (V/m) at 500 (MHz).

ProBLEM 11.8-1 A plane wave is normally incident from air on a semi-infinite
slab of dielectric material, €, = 2.0. If the frequency is 4 (GHz), find: (a) the reflec-
tion coefficient; (b) the standing wave ratio in front of the dielectric slab; (c) the
wavelengths in air and in the slab; and (d) the percentage of the incident power
that is reflected from the interface.

ProBLEM 11.8-2 Sketch the standing wave patterns for the E and H fields for Prob.
11.8-1, indicating the distances of the nearest maximum and minimum from the air-
dielectric interface.

ProBLEM 11.8-4 Find the thickness and dielectric constant for an effective lens
coating near the center of the optical frequency band Assume that €,,,, = 2.34,
and that 4,;; = 4 X 10”7 (m).

ProBLEM 11.8-5 Calculate the thickness for a “transparent” Plexiglass (€, = 3.45)
radome for a radar operating at 10 (GHz).
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11-1.

11-2.

11-3.

11-4.

11-5.

11-6.

11-7.

11-8.

11-9.

11-10.

11-11.

11-12.

11-13.

An E field is given by E = 250 cos (10°¢ — 5x) (Vm™!). Find (a) direction o_f wave travel;
(b) velocity of the wave; (c) wavelength; and (d) complete description of the H field.

Write the expressnon for a sinusoidal plane wave having the E field polarized in the +y
direction, the H field polarized in the —z direction, f = 1 (GHz), and U = 108 (m4~1).

An electric field is described by E = £100 cos (21t ¢ 108 — 3y) (Vm™!). Find (a) the power
density in the wavefront; (b) the dielectric constant of the medium, assuming 4, = 1; and
(c) the wavelength,

The average Poynting vector of an incident wave in air has a value of 10 (mW/cm?). Find the
rms values of the £ and H fields.

Find the skin depth and velocity of propagation of an EM wave in sea water at 10 (kHz),
100 (kHz), 10 (MHz), and 1 (GHz) (see Prob. 11.5-1).

A plane wave at 24 (MHz), traveling through a lossy material, has a phase shift of 1 (rad/m)
and its amplitude is reduced 50%; for every meter traveled. Find o, B, U, and the skin depth.
Also find the attenuation in dB/ft.

A plane wave in air has an electric field of 377 (Vm™1). If the E field is polarized in the +z
direction and the A field in the +y direction, find (a) the direction of power flow; (b) the
average power density in the wavefront; (c) the average power density that would be reflected
from a perfect dielectric having a dielectric constant of 4.

A plane wave is normally incident from a material (&, = 1, €, = 1.5, ¢ = 0) onto a material
(u, = = 3,0 = 0). Find (a) p; (b) S5 (¢) the total E field and total H field at the
boundary in terms of the incident E and H fields.

At a dielectric-to-air interface, the incident & field is 100 (Vm™!), the reflected & field (in phase
with the incident & field) is 50 (Vm™!), and the dielectric constant is 9. Find the amplitudes of
the transmitted & and 3C fields.

If the distance between minima in a standing wave pattern in air is 1.0 (m), what is the fre-
quency ?

A standing wave pattern exists in front of a dielectric surface due to the reflection of a normally
incident plane wave from air. If the standing wave ratio is 5, and a minimum of the E field
exists at the interface, find the reflection coefficient.

The skin depth of a given conductor has been determined to be 1.0 (mm) at a frequency of
1000 (Hz). If the tangential electric field at the boundary between air and the conductor is
100 (Vm™!), determine the amplitude and phase shift with respect to the boundary for a wave
incident from air at a depth of 3 (mm) into the conductor.

A plane wave is normally incident on a conducting sheet. The frequency is 10 (GHz) and the

_skin depth is 0.001 (mm). What is the velocity of the wave in the conducting material ?



6-28 In this chapter, the problem of reflection and transmission of uniform plane
waves was considered in which the waves were incident-normal to the boundary
between two media. It is also of interest to examine the reflection and transmis-
sion of uniform plane waves which are not normally incident. Consider Fig.
P6-28 in which is shown a boundary between two lossless media and a uniform
plane wave which is incident at an angle 8, with respect to a perpendicular line

FIGURE P6-28

to that boundary. The incident electric field &, is shown as perpendicular to the
plane of incidence (xz plane). This is referred to as perpendicular polarization.
The other possibility in which the incident electric field is paraliel to the plane of
incidence (parallel polarization) will be considered in the following problem. It
should be clear that any arbitrary uniform plane wave can be resolved into two
waves, one with parallel polarization and the other with perpendicular polariza-
tion. For the case of perpendicular polarization in Fig. P6-28, write vector
expressions for all of the phasor fields E,, A;, £,, A,, E,, H, in terms of the
propagation constants, 8; = w./m€; and B, = w./u,€,, the intrinsic im-
pedances 7, = \/u,/€, and n; = \/p,/€,, and the angies 6;, 6,, 6,. Determine
relationships between 6, and 6, and between 6, and ; (Snell’s laws). Determine
expressions for the reflection and transmission coefficients.

6-29 Repeat Prob. 6-28 for the case of parallel polarization where #; is parallel to
the plane of incidence. For this case determine an expression for the critical
angle (Brewster angle) at which the incident wave is totally transmitted into the
second medium.



