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Abstract

Multicasting is an effective method to guarantee scalability of data transfer. Multicast applications
range from the relief of Internet hot spots to healthcare alert systems. Much research has focused on
isolated data management issues that arise in a multicast environment, including our previous work
on caching, scheduling, indexing, hybrid schemes, and consistency maintenance. This paper discusses
the integration of these research contributions and the transition to a working software distribution that
provides the middleware support of a data management layer to applications. Our middleware is flexible,
can be shared across applications, and operates on top of existing and upcoming implementations of
multicast protocols. The middleware benefits distributed applications with a uniform, efficient, scalable,
and state-of-the-art support for critical data management functionality.

1 Introduction

In a multicast environment, a single source sends data items, which are then replicated within the network

infrastructure to reach a large client population. Therefore, multicast is an effective method to guarantee

scalability. We believe that a fundamental question in middleware technology is how to support multicast

environments. In this paper, we describe a unified middleware platform for multicast-based data dissem-

ination, report on the current implementation, discuss our preliminary evaluation of this technology, and

describe the associated research issues.

A major objective is to transparently provide applications with data management services such as

caching, scheduling, and consistency maintenance. In turn, those services are enabled by an underlying

multicast transport. The middleware frees application developers from the details of the underlying mul-

ticast transport and from the need of implement in each application a common set of data management

algorithms. Furthermore, the middleware unifies and extends state-of-the-art data management methods and

algorithms into one software distribution. Its flexible and extensible architecture is built from individual

components that can be selected or replaced depending on the underlying multicast transport or on the ap-

plication needs. As a result, established and novel techniques from data management will be more generally

available to developers of scalable applications in multicast environments.

�This work has been supported in part under NSF grants ANI-0123929 and ANI-0123705.
yDept. of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260. E-mail: panos@cs.pitt.edu
zElectrical Engineering and Computer Science Department, Case Western Reserve University, 10900 Euclid Av., Cleveland,

Ohio 44106. E-mail: vxl11@po.cwru.edu. URL: http://vorlon.cwru.edu/�vxl11/.
xDept. of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260. E-mail: kirk@cs.pitt.edu

1



1.1 Multicasting

Broadcasting and multicasting are the natural methods to propagate information in media such as shared

Ethernet [43], wireless links, including satellites [43] and short-range wireless [43], and optical networks,

ranging from cable modems to high-throughput database systems [11]. In all those media, broadcasting

is the primary mode of operation for the physical layer [43]. Broadcasting is used by several companies,

including Hughes Networks and PanAmSat, to perform content delivery and to support Web browsing with

satellites for home-based dishes or for access providers.

In wired networks, multicasting is an effective method to guarantee scalability of bulk data transfer.

Multicasting has applications ranging from the support of Content Delivery Networks to the relief of Internet

hot spots, such as during the last national elections [47]. Millions of clients attempted to access news sites

during the evening of Election Day, overwhelming these servers, and resulting in long delays to retrieve

documents. While the servers were contacted by millions of clients, most clients were interested in nearly

the same data. In this scenario, a single server could have served all such requests by multicasting the

hot data items to the interested clients. A substantial amount of research has been devoted to the design

and implementation of multicast protocols in wired IP networks, including IP multicast [17, 26], reliable

multicast [24, 58], and end-to-end multicast [13]. Those approaches will almost surely result in the diffusion

of multicast in the Internet, and, in the case of application level solutions, they can be efficiently implemented

regardless of the willingness and support of service providers or of the backbone infrastructure.

1.2 Data Management Issues in Multicasting

Multicast communication raises many data management issues and problems that either do not arise in

unicast communication, or that obviously require different solutions than the standard methods used in

unicast settings. Some of the issues are:

Document selection. What is the appropriate dissemination method for each document?

Scheduling. How frequently and in which order should documents be multicast?

Consistency. How should the system support currency and consistency for updated contents?

Cache Replacement. How to best manage client-side caches?

Indexing. How to best use indexes to reduce client waiting and tuning time?

1.3 Middleware for Broadcast Data Dissemination

The outline of our architecture is shown in Figure 1 (the transport layer is any one of the protocols that is

available independently of the middleware, and the objective of the transport adaptation layer is to enable the

middleware to interact with different types of multicast transport within a uniform interface). The approach
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Figure 1: Our middleware data dissemination architecture, and its relationship with the application and
transport layers.

has the benefit of unifying several algorithms and techniques from data management, such as caching or

scheduling into one software distribution. As a result, established and new methods from data management

will be more generally available to application developers. An integrated approach has highlighted gaps in

the state of the art and led to new research problems and solutions. In particular, the middleware has exposed

the performance and functional trade-off between existing data management algorithms and existing or

proposed multicast protocols.

The two motivating example applications of our middleware are a scalable Web server and a healthcare

alert system. In the next section, we elaborate on them in an integrated fashion. In Section 3, we discuss the

middleware building blocks. In Section 4, we discuss the transport adaptation layer of our architecture. In

Section 5, we outline multicast push scheduling for layered environments.

2 Motivating Application: Healthcare Alert System

In this section, we give a complete example of a scalable application that can exploit the multicast middle-

ware. It is a healthcare alert system, called RODS1 (Real-time Outbreak and Disease Surveillance) that has

been developed by the Center for Biomedical Informatics at the University of Pittsburgh [20, 56].

The RODS system is a public health surveillance system deployed since 1999 in Western Pennsylvania

and since December 2001 in Utah for the Winter Olympic Games. The core of RODS is the health-system-

resident component (HSRC) whose function is data merging, data regularization, privacy protection, and

1RODS URL: www.health.pitt.edu/rods.
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communication with the regional system. HSRC receives HL-7 ADT (admission, discharge and transfer)

messages from over 45 hospitals and clinics within Utah State and Western Pennsylvania, operating under a

trusted broken arrangement. These large data volume of raw data (about ten thousands records per day) are

stored in a database and from there are disseminated for further analysis.

Typically, users or applications request consolidated and summarized information as in OLAP (On-

line analytical processing) business applications. For example, queries often involve joins over several

large tables to perform a statistical analysis, e.g., computing daily percentage of patients with a particular

prodrome in a region for one month period. Also, currently RODS displays spatial-temporal plots of patients

presenting with seven key prodromes through web interface.

RODS can use the multicast middleware to support the collection and monitoring of data needed for

the assessment of disease outbreaks as well as the dissemination of critical information to a large number

of health officials and other authorized personnel when outbreaks of diseases are detected2. Interestingly,

RODS has the functionality of a Subscription/Publisher server and exhibits all the requirements of a highly

scalable Web server as described in the work of Almeroth et al. [5]. The objective of the Web server

application is to scale to a large user (client) population, and scalability will be accomplished by using the

multicast-based middleware.

In the middleware, the server can disseminate data by choosing any combination of the following three

schemes: multicast push, multicast pull, and unicast push. In multicast push the server repeatedly sends

information to the clients without explicit client requests. (For example, television is a classic multicast

push system). Multicast push is an ideal fit for asymmetric communication links, such as satellites and

base station methods, where there is little or no bandwidth from the client to the server. For the same

reason, multicast push is also ideal to achieve maximal scalability of Internet hot spots. Hence, generally

multicast push should be restricted to hot resources. In multicast pull, the clients make explicit requests

for resources, and the server broadcasts the responses to all members of the multicast group. If multiple

clients request the same resource at approximately the same time, the server may aggregate these requests,

and only broadcast the resource once. One would expect that this possibility of aggregation would improve

user perceived performance for the same reason that proxy caches improve user perceived performance,

that is, it is common for different users to make requests to the same resource. Multicast pull is a good fit

for “warm resources” for which repetitive multicast push cannot be justified, while there is an advantage

in aggregating concurrent client requests [5]. Traditional unicast pull is reserved for cold documents. The

end-user should not perceive that Web resources are downloaded with a variety of methods, as the browser

and the middleware shield the user from the details of the multi-tier dissemination protocol.

In the RODS system as well as in a general Web server application, the document selection unit pe-

riodically gather statistics on document popularity (in other applications, the notion of Web document is

2In this paper, we are not elaborating on any security aspects of the system.
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replaced by the concept of an application data unit (ADU) [24]). Furthermore, in the RODS system, the

document selection can be influenced by epidemiological data. For example, during a winter period when

Influenza outbreaks typically occur, prodrome daily data on Viral, Respiratory, Diarrhea, Rash, Encephalitis

registrations are useful for detection of Influenza outbreaks. Once statistics have been collected, the server

partitions the resources into hot, warm, and cold documents.

When a client wishes to request a Web document, it either downloads it from a multicast group or it

requests the document explicitly. In the former case, the client needs to find on which multicast address

the server transmits hot resources. Multicast address determination can be accomplished with a variety of

schemes including explicit http request followed by redirection to the appropriate multicast address, hashing

the URI to a multicast group [5], using a well-known multicast address paired to the IP address of the origin

server in single-source multicast [26], or application-level discovery in the case of end-to-end multicast. The

server also broadcasts an index of sorted URIs or URI digests which quickly allows the client to determine

whether the requested resource is in the hot broadcast set [28, 35, 54, 3]. On the whole, the client determines

the multicast group, downloads the appropriate portions of the index, and determines whether the resource

is upcoming along the cyclic broadcast.

If the request is not in the hot broadcast set, the client has the option of leaving the multicast group

(although is not forced to do so), makes an explicit request to the server, and simultaneously starts to listen

to the warm multicast group if one is available. If the page is cold, the requested resource is returned on

the same connection. If the page is warm, the clients waits on the warm multicast group until the requested

resource is transmitted [5]. The multicast pull scheduling component resolves contention among client

request for the use of the warm multicast channel and establishes the order in which pages are sent over that

channel [18, 1, 51].

In multicast push, the server periodically broadcasts hot resources to the clients. The server chunks

hot resources into nearly equal-size pages that fit into one datagram and then cyclically sends them on the

specified multicast group along with index pages. The frequency and order in which pages are broadcast is

determined by the multicast push scheduling component. Pages are then injected at a specified rate that is

statically determined from measurements of network characteristics [5]. Alternatively, different connectivity

can be accommodated with a variety of methods: the multicast can be replicated across multiple layers

[9, 12, 55], it can be supported by router-assisted congestion control [40], or it can use application-level

schemes in end-to-end multicast [13]. Client applications can recover from packet loss by listening to

consecutive repetitions of the broadcast [5] or pages can be encoded redundantly with a variety of schemes

that allow the message to be reconstructed [12]. Upon receipt of the desired pages, the client can buffer

them to reconstruct the original resource and can cache resources to satisfy future request [34, 39]. The set

of hot pages is cyclically multicast, and so received pages are current in that they cannot be more than one

cycle out-of-date. Furthermore, certain types of consistency semantics can be guaranteed by transmitting

additional information along with the control pages [49, 44].
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3 Multicast Middleware Building Blocks

3.1 Multicast Pull Scheduling

In multicast pull, clients make explicit requests for resources and the server multicasts its responses. If

several clients ask the same resource at approximately the same time, the server can aggregate those requests

and multicast the corresponding resource only once. Multicast pull is appropriate for “warm” documents

that many, but not most, clients are interested in. There are many reasonable objective functions to measure

the performance of a server, but by far the mostly commonly studied measure is average user perceived

latency, or equivalently average flow/response time, which measures how long the average request waits to

be satisfied. In traditional unicast pull dissemination it is well known that the algorithm Shortest Remaining

Processing Time (SRPT) optimizes average user perceived latency although current web servers use FIFO

out of fear of starving jobs. This may perhaps change as it was recently shown in [25, 6] that all jobs,

regardless of length, should prefer SRPT to FIFO if the distribution of lengths is heavy tailed, as is the case

when job length is proportional to Web resource size [14].

In multicast pull dissemination, it is not too difficult to see that it is impossible for a server to construct

online a schedule that minimizes average user perceived latency. The situation is trickier for the server in

multicast pull data dissemination than for unicast pull data dissemination, since the server needs to balance

the conflicting demands of servicing shorter files, and of serving more popular files. Even worse, it is shown

in [19] that it is not even possible for a server to construct a schedule with bounded relative error. However,

in the input distributions for which it was to be impossible to guarantee bounded relative error, the system

load is near peak capacity. This makes intuitive sense as a server at near peak capacity has insufficient

residual processing power to recover from even small mistakes in scheduling. In [30], it was suggested that

one should seek algorithms that are guaranteed to perform well if the load of the server is not near peak

capacity.

To date the only algorithm with a performance guarantee for low loads is Broadcast Equipoise [19].

Broadcast Equipoise broadcasts each file at a rate proportional to the number of outstanding requests for the

file. Broadcast Equipoise guarantees average user perceived latency at most a constant times optimal if the

load on the server is at most ���.

Ideally what one would like is an algorithm that guarantees good performance with loads up to ���. One

difficulty of obtaining such an algorithm is that the choice of the document to broadcast depends not only on

the obvious factors of the size of the document and the number of requests for the document, but also on the

age of the requests. This insight was made more formal in [31] where is was shown that also broadcasting

the most popular document could produce arbitrarily bad schedules in the case that all documents are the

same size; further this result holds for even arbitrarily small loads. One possibility is a generalization of

the Longest Wait First (LWF), proposed in [18], that experimentally seems to perform well for unit sized

files [4]. LWF maintains a counter for each data item that is the sum over all unsatisfied requests for that
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page, of the elapsed time since that request. The algorithm LWF then always broadcasts the page with

highest counter. LWF can be implemented in logarithmic time per broadcast using the data structure given

in [32]. The generalization that we propose is to divide the counter by the file size.

A tight mathematical analysis of Broadcast Equipoise and LWF seems quite difficult. We are currently

experimentally evaluating these algorithms. At the same time, we have looked into flexible scheduling

schemes that exploit the semantics of the requested documents to aggregate requests that goes beyond the

exact match of requests of the current scheduling approaches which we accordingly called strict [51]. The

use of document semantics adds a new optimization dimension to the request aggregation process that allows

for further multicast efficiency and scalability.

For example, in the context of RODS as well as a general wireless OLAP environment, every requested

document is a summary table. An interesting property of summary tables which we call derivation de-

pendency, is that one summary table can be derived from one or more summary tables. This means that

a table requested by a client may subsume the table requested by another client. We propose two new,

heuristic scheduling algorithms that use this derivation dependency to both maximize the aggregated data

sharing between clients and reduce the broadcast length compared to the already existing techniques. The

first algorithm, called Summary Tables On-Demand Broadcast Scheduler STOBS [51], is based on the RxW

algorithm [1] and the second one, called Subsumption-Based Scheduler (SBS) [50], is based on the Longest

Total Stretch First (LTSF) algorithm [1]. Further, they differ on the used criterion for aggregate requests.

Otherwise, both STOBS and SBS are non-preemptive and considers the varying sizes of the summary ta-

bles. The effectiveness of the algorithms with respect to access time, power consumption and fairness were

evaluated using simulation.

3.2 Multicast Indexing

In multicast data dissemination, users monitor the multicast/broadcast channel and retrieve documents as

they arrive on the channel. This kind of access is sequential, as it is in tape drives. On the other hand, the

middleware combines one multicast push channel and one multicast pull channel, and so it must support

effective tuning into multiple multicast channels. To achieve effective tuning, the client needs some form of

directory information to be broadcasted along with data/documents, making the broadcast self-descriptive.

This directory identifies the data items on the broadcast by some key value, or URL, and gives the time

step of the actual broadcast. Further, such a directory not only facilitates effective search across multiple

channels but it also supports an energy efficient way to access data. The power consumption is a key issue for

both hand-held and mobile devices given their dependency on small batteries, but also for all other computer

products given the negative effects of heat. Heat adversely effects the reliability of the digital circuits and

increases costs for cooling especially in servers [53]. In order to access the desired data, a client has to be

in active mode, waiting for the data to appear on the multicast. New architectures are capable of switching

from active mode to doze mode which requires much less energy.
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In multicast push data dissemination, several broadcast organizations have been proposed to encode a

directory structure. These include incorporating hashing in broadcasts [29], using signature techniques [37]

and broadcasting index information along with data [28, 15, 16, 54]. Of these, broadcast indexing is the

simplest and most effective in terms of space utilization. The efficiency of accessing data on a multicast can

be characterized by two parameters.

� Tuning Time: The amount of time spent by a user in active mode (listening to channel) and

� Access Time: The total time that elapses from the moment a client requests data identified by ordering

key, to the time the client reads that data on channel.

Ideally, we would like to reduce both tuning time and access time. However, it is generally not possible

to simultaneously optimize both tuning time and access time. Optimizing the tuning time requires additional

information to be broadcast. On the other hand, the best access time is achieved when only data are broadcast

and without any indexing. Clearly, this is the worst case for tuning time. In this project, our goal is to develop

indexing schemes which provide the best balance between tuning and access time.

As part of our preliminary work, we have developed a new indexing scheme, called Constant-size I-

node Distributed Indexing (CI) [3], that performs much better with respect to tuning time and access time

for broadcast sizes in practical applications. This new scheme minimizes the amount of coding required for

constructing an index in order to correctly locate the required data on broadcast, thus decreasing the size of

the index and consequently access time as well. Our detailed simulation results indicate that CI, which is

a variant of the previously best performing Distributed Indexing (DI) [28, 54], outperforms it for broadcast

sizes of 12,000 or fewer data items, reducing access time up to 25%, tuning time by 15% and saving energy

up to 40%. Our experimental results on 1 to 5 channels also reveal that there is a tradeoff between the

various existing indexing schemes in terms of tuning and access time and that the performance of different

schemes is dependent on the size of the broadcast [2].

Given that CI and DI are currently the best performing indexing schemes, we plan to initially implement

these two schemes as part of the middleware. Besides optimizing existing schemes, one of our research

goals would be to develop a mixed-adaptive indexing scheme that would be essentially optimal over all

broadcast sizes.

3.3 Data Consistency and Currency

Presently, consistency and currency in both unicast and multicast data dissemination are similar to local

cache consistency which ensures that only the most recent committed value of an item is stored (dissem-

inated). As multicast-based data dissemination continues to evolve, more and more sophisticated client

applications will require reading current and consistent data despite updates at the server. For this reason,

several protocols have been recently proposed, including some of our own [49, 8, 45, 44, 36], with the goal

of achieving consistency and currency in broadcast environments beyond local cache consistency.
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All these protocols assume that the server is stateless and does not therefore maintain any client-specific

control information. To get semantic and temporal related information, clients do not contact the server

directly, instead concurrency control information, such as invalidation reports, is broadcast along with the

data. This is in line with the multicast push paradigm to enhance the server scalability to millions of clients.

When the scheduling algorithm selects a page to be multicast, there can be in general different versions of

that page that can be disseminated. The two obvious choices are

� Immediate-value broadcast: The value that is placed on the broadcast channel at time t for an item

x is the most recent value of x (that is the value of x produced by all transactions committed at the

server by t).

� Periodic-update broadcast: Updates at the server are not reflected on the broadcast content immedi-

ately, but at the beginning of intervals called broadcast currency intervals or bc-intervals for short.

In particular, the value of item x that the server places on the broadcast at time t is the value of x

produced by all transactions committed at the server by the beginning of the current bc-interval. Note

that this may not be the value of x at the server at the time x is placed in the broadcast medium if in

the interim x has been updated by the server.

In the case of periodic-update broadcast, often the bc-interval is selected to coincide with the broadcast

cycle, so that the value broadcast for each item during the cycle is the value of the item at the server at the

beginning of the cycle. In this case, clients reading all their data, for example, components of a complex

document, within a bc-interval are ensured to be both consistent and current with respect to the beginning

of the broadcast cycle. However, different components that are read from different broadcast cycles might

not be mutually consistent even if current, and hence when they are combined by the clients, the resulting

document may be one that had never existed in the server. The same problem exists also in the case of

immediate-value broadcast – consider immediate-value broadcast as a periodic-update broadcast with a bc-

interval of zero duration.

Our current investigation is directed towards the development of a general framework for correctness

in broadcast-based data dissemination environments [46]. As part of our preliminary results, we have in-

troduced the notion of the currency interval of an item in the readset of a transaction as the time interval

during which the value of the item is valid. Based on the currency intervals of the items in the readset, we

developed the notion of temporal spread of the readset and two notions of currency (snapshot and oldest-

value) through which we characterize the temporal coherency of a transaction. Further, in order to better

combine currency and consistency notions, we have developed a taxonomy of the existing consistency guar-

antees [10, 22, 57] and show that there are three versions for each definition of consistency. The first (Ci)

is the strongest one and requires serializability of all read-only client transactions with server transactions.

This means that there is a global serialization order including all read-only client transactions and (a subset

of) server transactions. The second version (Ci-S) requires serializability of some subset of client read-only
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transactions with the server transactions. This subset may for example consist of all transactions at a given

client site. The last version (Ci-I) requires serializability of each read-only client transaction individually

with the server transactions.

In the initial version of the middleware, we plan to implement three currency and consistency criteria:

the traditional local cache consistency using invalidation reports, update consistency [49] and multiversion

update consistency [44]. Our general objective is to investigate efficient ways to disseminate any control

information. For example, consistency information can utilize the broadcast indexing structures. It is also

our plan to expand our theoretical framework to include the case of a cache being maintained at the clients.

Our goal is to develop a model that will provide the necessary tools for arguing about the temporal and

semantic coherency provided by the various protocols to client transactions. In addition, it will provide the

basis for new protocols to be advanced.

4 Transport Adaptation Layer

Several underlying multicast transport protocols are possible, including basic IP multicast [17], single-

source multicast [26], reliable multicast [58], and end-to-end multicast [13]. Different multicast protocols

often present different API’s and different capabilities. It is unlikely that a single multicast mechanism

would be able to satisfy the requirement of all applications [58], and so the middleware must be able to

interact with various underlying multicast transport protocols. The objective of the Transport Adaptation

Layer (TAL) is to enable the middleware to interact with different types of multicast transport within a uni-

form interface. As a result, the TAL allows us to write the middleware with a unique multicast API while

retaining the flexibility as to the exact multicast transport. The TAL allows applications to select the most

appropriate transport layer and get the benefits of a common multicast middleware. The Java Reliable Mul-

ticast (JRM) Protocol [48] is an existing implementation that contains a TAL-like interface, the Multicast

Transport API (MTAPI). The MTAPI supports multiple underlying multicast protocols and allows for new

protocols to be seamlessly added.

An applications follows the following steps. Before activating the middleware, the application will call

the channel management API (e.g., in JRM) to:

� Choose the most appropriate multicast transport among those that are available.

� Interface with transport layer functions that resolve channel management issues, including the creation,

configuration, destruction, and, possibly, address allocation, of multicast channels upon requests.

� Interface with transport layer functions that support session management, including session advertising,

discovery, join, and event notification.

The application can then invoke a security API (as in JRM) to establish data confidentiality and integrity as

well as message, sender, and receiver authentication. At this stage, the application has a properly configured
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multicast channel, which will be passed to the data management middleware along with a description of the

target data set. Additionally, if the application also desires a multicast pull channel for the warm pages, it

creates and configures a second multicast channel through analogous invocations of the channel management

and security API’s and and passes it to the middleware. The middleware will use the TAL (e.g., MTAPI) to:

� Send and receive data from multicast groups.

� Obtain aggregate information from clients if the multicast transport layer supports cumulative feedback

from the clients.

The TAL is a thin layer that does not implement features that are missing or are inappropriate for the

underlying transport. The purpose of the TAL is to provide a common interface to existing protocols and not

to replace features that are not implemented in the given protocols. For example, the TAL does not provide

any security, but it simply interfaces with existing security modules in the underlying multicast layer.

While the transport adaptation layer aims at supporting diverse transport modules, the nature of the mid-

dleware and of the target applications that will run on it impose certain constraints on the types of transport

layers that can be supported. The most important one is that our middleware targets applications that need

to scale to a very large receiver group. Consequently, the transport must avoid the problem of ACK/NACK

implosion, through, for example, ACK aggregation [24] or NACK suppression [21, 23, 42]. Alternatively,

a reliable multicast transport can adopt open-loop reliability solutions such as cyclical broadcast [5] or

error-correcting codes [12]; open-loop solution are an especially good fit for asymmetric communication

environments such as satellites or heavily loaded servers. On the other hand, the middleware does not nec-

essarily need a multicast transport that provides Quality-of-Service guarantees, that accommodates multiple

interacting senders, that supports intermittent data flows, nor that provides secure delivery. Receivers can

join the multicast at different start times, but will not receive copies of data sent before their start time.

Finally, it should be noted that our goal is to to restrict a given application to a specific multicast proto-

col. An additional functionality of TAL is to integrate various multicast packages available so that clients

supporting different multicast protocols can communicate with each other through the middleware. Cur-

rently, two packages are being considered - JRMS that supports the TRAM and LRMP protocols and Your

Own Internet Distribution (YOID).

5 Scheduling in Layered Multicast Environments

While the previous sections have focused on each of the individual building blocks in isolation, a second

type of issues arises from the interaction of several components. Such interaction should be carefully tuned

to achieve optimal performance. In the past, however, multicast data management components have been

mostly designed, analyzed, and empirically evaluated in isolation, with the exception of [39] that addresses

the interaction of caching and scheduling and of [27] that focuses on wireless environments. We feel that
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several additional research issues arise from the interaction of the middleware components.

In this section, we will focus on one such issue, namely the interaction between multicast push schedul-

ing and layered multicast transport [41]. The purpose of layered multicast is to provide a mechanism for

receivers to adapt their data reception rate to available bandwidth. Therefore, layered multicast shares com-

mon goals with congestion control, with the significant difference that multicast algorithms should scale to

a large number of receivers. In a layered multicast scheme, data is multicast simultaneously on L different

channels (layers). The transmission rate rl at layer l is r� � r� � � and rl � �rl�� for � � l � L

(basically, the rates increase by a factor of 2 from one layer to the next). A receiver can subscribe to a

prefix of layers �� �� � � � � l, thereby selecting to receive data at a rate which is at least 1/2 of the bandwidth

available from the source to the receiver. Layered multicast leads to a different version of the multicast

push scheduling problem where the contents are scheduled on multiple channels and the bandwidth on each

channel is given by the rates rl. Unlike previous multichannel models (e.g., [7]), all contents are multicast

on layer 0 (to guarantee that all receivers can eventually get all the contents) and receivers do not necessarily

listen to all channels. Because of these added restrictions, it can easily be shown that the previously known

lower-bounds on the average waiting time hold also for the layered multicast setting. Furthermore, previ-

ous algorithms for the multichannel problem can be made to run within one layer, which, in conjunction

with the previous lower bound, proves that every c-approximation algorithm for the multichannel problem

becomes a �c-approximation algorithm for the layered multicast problem. In particular, the algorithm of

[33] gives a �� � ��-approximation algorithm that runs in polynomial time for any fixed � � � [38]. The

main open questions in this area are to find better approximation algorithms and to empirically verify their

performance.

6 Conclusion

The paper describes software components and research issues in the area of middleware support for data

dissemination over multicast channels. We reviewed the overall system design, and the current work on

multicast pull scheduling, indexing, data consistency, currency, and scheduling for layered multicast chan-

nels. We have developed a number of new heuristic scheduling algorithms for selecting the data items to

be broadcast at a given point in time and show using simulation that the new methods outperform existing

ones.

We have also identified new ways to organize data on a broadcast and proposed appropriate caching

techniques that ameliorate the negative effects due to any incompatibilities between a broadcast organization

and a client data access behavior [52]. Due to space limitation, we have not elaborated on these here.

Several components of our proposed middleware have been implemented (multicast push scheduling,

caching, and transport adaptation). These components are currently used to facilitate the development of a

prototype application based on the RODS system. Our goal is to evaluate the effectiveness of our middleware

12



in supporting the dissemination of critical information when outbreaks of diseases are detected.

The goals of this project stem from our long-term vision to provide fast and reliable information ac-

cess to the masses, taking into account the individual user’s specific needs. Every attempt is being made to

develop theoretical frameworks and then transfer them into pragmatic environments so that their impact is

far-reaching in the commercial as well as in the public health and homeland security sectors.
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