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Abstract
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and is based on a game-theoretical duality result by von Neumann. In this paper, we prove an
extension of the principle to the case when one of the players is further constrained by a set
of linear inequalities. The corresponding duality result is interpreted in a variety of algorith-
mic contexts, including multi-objective optimization problems, performance tail of randomized
algorithms, constrained adversaries, resource augmentation method, smoothed analysis, high-
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1 Introduction

Game theory is central to the design and the analysis of algorithms. Its relevance can ultimately
be attributed to the widespread adoption of the worst-case paradigm, which views the algorithm as
a player against an adversary that produces worst-case input instances. A striking application of
the game-theoretical viewpoint is Yao’s principle [26], which applies von Neumann’s original result
[25] to establish lower bounds on randomized algorithms. The elegance of the method ultimately
derives from its reliance on universal and abstract results in linear algebra.

In this paper, we prove an extension to the original duality result for the case when one of the
player is subject to additional constraints. The extension is applicable to several contexts in the
area of randomized algorithms, including multi-objective optimization problems [20], performance
tail of randomized algorithms [14], the resource augmentation method [11], smoothed analysis [23],
and loose-competitiveness [27]. The rest of this section discusses the consequences of our main
duality result for algorithm design and analysis.

Algorithms. Several optimization problem naturally lend themselves to a multi-objective formu-
lation, where algorithms can attempt to minimize any one of multiple objective functions. Several
methods have been proposed to deal with multi-objective problems, including the derivation of
exact [21] or approximate [20] Pareto equilibria. Our goal is to provide and demonstrate a general
method to prove lower bounds on the performance of randomized algorithms for multi-objective
optimization problems. In this case, the explicit construction of Pareto equilibria is not feasible
in that the game-theoretical formulation of the problem is typically too large. However, we can
abstractly exploit duality, much like in Yao’s principle where the linear program is not solved nu-
merically but duality gives us a general method to prove lower bounds. As an application of the
general method, we analyze the multi-objective version of the shut-down scheduling problem [15].
Furthermore, our method is general enough that we can apply it to the following non-standard
multi-objective optimization problem: find a randomized algorithm whose performance is good
both in the expectation and with high-probability. The performance tail is relevant both in a
theoretical and in an applied context. In applied fields, the expected performance of algorithms
is seldom considered a sufficient characterization of algorithm behavior, and, in particular, Service
Level Agreements between customers and suppliers almost always include clauses on both expected
and tail behavior [5]. From a theoretical standpoint, certain randomized algorithms, especially
within the Classify-and-Randomly-Select framework [1, 16], have optimal expected performance,
but fail to achieve a constant fraction of their expected payoff with constant probability [14]. In
this paper, we prove that the lower bound of [14] can be obtained as an application of our method.

Adversaries. Worst-case analysis often runs into the “triviality barrier”: algorithms are trivially
optimal in the worst-case but are not intuitively appealling [7]. A method to weaken worst-case
analysis is to impose additional constraints on the adversary. The idea of constrained adversaries
is well-known in Mathematical Economics [8, 10] and Control Theory [2], and it has been recently
and independently introduced into Computer Science [13]. The main idea behind constrained
adversaries is that the input instance is generated according to a worst-case distribution chosen
from a given class of distributions. In other words, the adversary has to satisfy an additional
set of constraints that define the set of feasible input distributions. In this paper, we model
constrained adversary literally in that we append a new set of linear constraints to the original
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linear programming formulation of the game. The technique fits our general approach once the

roles of the two players are exchanged.

For the purpose of applying the framework to algorithm design, we first consider an adversary
which is forced to choose a strategy = with probability at most b,. If the adversary were allowed
to be a worst-case probabilistic player, then such an adversary would be equivalent to conferring
the power of randomization onto the algorithm. Since the upper-bounded adversary is further
restricted, then the adversary should be equivalent to conferring the power of randomizatiom onto
the algorithm as well as other powers. We prove that the additional power is as follows: the optimal
cost on input z undergoes a relative increase d(x). Furthermore, the algorithm player can choose
any positive value for §(z) but it is charged a penalty proportional to Ep[d] for doing so, where
B is a certain canonical distribution derived from the bounds b;. We call the resulting model the
adversary cost increase model. The ability to increase the adversary cost immediately leads us
to compare upper-bounded adversary with the resource augmentation method (RAM) and with
smoothed analysis.

RAM and smoothed analysis. In the RAM, the algorithm resources are augmented as com-
pared to those given to the adversary [11]. Thus, the resource augmentation causes the adversary
cost to increase by §(x) on input z. On the other hand, if we were allowed to increase arbitrarily the
algorithm resources, we would often obtain the trivial result that the algorithm is super-optimal.
Therefore, it is critical that the amount of resource augmentation be compared directly to the per-
formance improvement. One such comparison is expressed by the penalty E[4] which is embedded
in the adversary cost increase model. The same argument holds mostly unchanged for smoothed
analysis, where the algorithm cost is reduced by a §(z) factor corresponding to its expected cost
in a neighborhood of the original instance x [23]. Thus, the two techniques of RAM and smoothed
analysis are given a unified interpretation in terms of the adversary cost increase model. In partic-
ular, results on randomized algorithms in either of the two models can be translated into results
on deterministic algorithms against an upper bounded adversary. The main open problem in this
paper is to deal with the non-linear trade-offs that are manifest in the RAM and in smoothed
analysis. A method to attack such non-linearities is loose competitiveness (see below), but we
conjecture that a more general theory should be possible.

Asymptotic analysis. The adversary cost increase method is related to the resource augmen-
tation method and to smoothed analysis in that it flattens away the contribution of worst-case
instances when such instances are only a small fraction of the input instances. An application of
such method arises in an asymptotic sense, that is, when the fraction of bad instances tends to
zero as the problem size increases. We will prove a general asymptotic result. However, the result
relies on the law of large numbers, which in general gives no guarantee on the speed of convergence
to the average or, in dual terms, it can require a heavily restricted upper-bounded adversary. In
specific applications, asymptotic results can be obtained with less restricted adversaries. For exam-
ple, we will easily show that results against mildly restricted adversaries follow immediately from
a high-probability characterization of the performance of a randomized algorithm. As an example
of a problem where the objective is to minimize a cost ratio, we analyze a version of the paging
problem [22] where the page request sequence is generated by combining i.i.d. hard phases, and
show that the asymptotic result is obtained even when the upper-bounded adversary is constrained
by an exponentially smaller extent than what we would get from the generic law of large numbers.
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Another application of asymtotic analysis is to deal with the non-linearity implicit in RAM. To

this end, we consider the loose competitiveness of the paging problem, where the adversary chooses
a value of the cache size. If the page set size tends to infinity and the adversary is upper bounded,
the difficult values of the cache size give a negligible contribution to the algorithm cost. Our result
can be viewed as the derandomization of the original result on loose competitiveness [27] in that
the previous result required both the cache size and the algorithm to be probabilistic, whereas we
only need the cache size to be random. However, the results are formally incomparable due to our
statement in terms of expectation of a ratio rather than ratio of expectations.

Lower-bounded adversaries. The upper-bounded adversaries have a very rich structure that
leads to their applicability to a variety of contexts. It is then natural to ask whether similar
results would also for lower-bounded adversaries, which are forced to choose an input instance with
probability at least b,. However, we easily show that lower-bounded adversaries are substantially
less interesting, and basically only force a trade-off between worst-case analysis and an average-case
analysis.

Contents. Section 2 introduces definitions and notation. Section 3 discusses our main duality
result, which is applied to algorithms in Section 4 and to adversaries in Section 5. Further details
on shut-down scheduling and lower-bounded adversaries are omitted from the body of the paper
and can be found in the appendix.

2 Preliminaries

In this paper, we model randomized algorithms and their worst-case behavior through two person
zero-sum games [4, 26]. Specifically, let Y be the set of instances of a given problem and X be the
set of all deterministic algorithms for the same problem. We assume that both Y and X are finite
and define n = | X| and m = |Y|. In general, a deterministic algorithm = € X will achieve a certain
level of “performance” on input y € Y. To model such performance considerations, we define
u(z,y) as the utility that algorithm z accrues on input y. A randomized algorithm is a probability
distribution G over X and its expected performance on input y is Eg[u(x,y)] (which will also be
denoted for simplicity as u(G,y)). A (worst-case) adversary chooses a y so as to minimize u(G,y),
and the objective of the algorithm designer is to find a G whose expected utility is

u* = max {minu(G, y)} . (1)

G YyeYy

Thus, the two-person zero-sum game (1) formulates the algorithm design problem. Game (1) can
be expressed as the following linear program

u* = max{u : Ap > ue,,elp=1,p >0},

where A = (ay;) is the m X n matrix with entries ay; = u(z,y) and e, = (1 1 ... 1)T is the
n-vector of 1’s. In the notation e,, we will omit the subscript n when the size of e is clear from
the context. Another notation used in the paper is that b = (b;) is a vector with an entry for
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each element in £ € X, which can also be regarded as a function from X to the reals. A simple

application of linear programming duality leads to
u* =min{u: ATq < ue,e"q=1,q >0},

and since q can be interpreted as a probability distribution over Y, we have von Neumann’s minimaz
principle [25]:
N .

ut = m}}n{ra?ea})((u(m,H)} , (2)
where u(z, H) = Eg[u(z,y)]- In particular, observe that if H is a probability distribution over Y,
then

*

which is Yao’s principle [26]: the utility of the best randomized algorithm on a worst-case input is no
more than the expected utility of the best deterministic algorithm on a random input. Typically, the
application of Yao’s principle requires a careful choice of the input distribution H to make inequality
(3) as tight as possible. Notice that formulation (1) and (2) are symmetric, and thus the role of
the algorithm and of the adversary can be switched. Therefore, we will talk about player I (which
chooses a probability distribution over X) and player IT (which chooses a probability distribution
over Y). As we subsequently identify player I with the algorithm or with the adversary, the duality
and game-theoretical results will be interpreted in different ways. The game (1) is defined for n and
m finite, but algorithm analysis is often concerned with the asymptotic behavior of algorithms. In
these cases, we consider an infinite sequence of programs (1) that are parameterized by a certain
value s. Typically, the parameter s is the input size in the case of off-line algorithms and is the
request sequence length in the case of on-line algorithms. Then, Y is the set of all instances of
size at most s and X is the set of all distinct algorithms on Y. The game value v* = u*(s) now
depends on the parameter s and our objective will be to obtain an asymptotic characterization of
the function u*(s). It is beyond the scope of this paper to examine games with infinitely many
strategies. A major thrust of this paper is to consider players that have additional constrains, as
we discuss in the next section.

3 Main Duality Result

We consider an additional set of strategies Y, for player II. We assume again that Y, is finite and
let m, = |Y,|. In many cases, ¥, C Y, but in other cases Y, — Y # 0 or even Y, = X. Let v(z,y)
be a payoff obtained by player I when player I uses strategy X and player II uses strategy y € Y.
We consider a game (1) with the additional constraint that the expected payoff of player I is not
negative:
5 def . .
= G,y): G,y) >0, . 4
Uy mgX{ggU( .Y) ;ﬂggv( Y) > } (4)
Proposition 3.1. Consider a game (4), and let A = (ay;) be an m x n matriz with ay, = u(z,y)
and B = (byg) an m¢ X n matriz with by, = v(z,y). Then,

u’ = min{u : ATq+ B"r < ue,e’q=1,q > 0,r > 0} .



Proof. The linear programming formulation of (4) is
u} = max{u : Ap > ue,Bp > 0,e’p=1,p >0} .
The dual of this linear program is the one in the claim, which completes the proof. O

Corollary 3.2. Let a > 0 be an interaction factor, H a probability distribution over Y, and H, a
probability distribution over Y,. Then for all z € X, u} < u(z, H) + av(z, Hy). Conversely, there
are H, H,, and « such that u), = u(z,H) + av(z, Hy).

Proof. Consider any choice of H, Hy, and « as in the statement of the corollary. Let p, = Pry[z]
and r; = aPry,[z] and observe that the resulting p and r are a feasible solution of the program
in the previous proposition.

Conversely, consider any feasible solution q,r,u for player II, and let o« = er. Observe that q
can be interpreted as a probability distribution H over X. We now turn to r and first we assume
that r = 0. Then, take « = 0 and H, to be any distribution over Y. Suppose now that r # 0.
Normalize r to o = e”r so as to interpret r as the probability distribution H, over Y, which
concludes the proof. O

The claims above generalize immediately for the case when there are multiple payoffs:

iy g i (G.0) < i 1(G9) 2 0, min (G) 2 0}

We can assume without loss of generality that the Y,,’s are disjoint, take Y =Y, U---UY,,, and
let v(z,y) =vj(z,y) ify € Yy,.
A general fact that we will use later on is:

Lemma 3.3. IfU > uy and G is a mized strategy for player I with the property that minycy, v(G,y) >
0, then there exists a y € Y with u(G,y) < U.

4 Algorithms

In this section, we examine the implications of Corollary 3.2 for randomized algorithms when
additional constraints are imposed. In particular, we demonstrate the general approach with an
detailed derivation of a lower bound for call admission on the line.

Given a line graph with n vertices and m = n — 1 edges (the definitions of n and m in this
section are unrelated to those in the rest of the paper), an on-line algorithm is presented with a
sequence of vertex pairs, each of which is termed a call. If the graph contains a path between
the two call endpoints, the algorithm has the option of accepting the call, in which case it deletes
all the edges in the path between the two call endpoints. The algorithm objective is to accept
the maximum possible number of calls. The best competitive ratio for a randomized algorithm is
O(logm) [1]. Define ¢(z,y) as the number of calls accepted by z on the input sequence y, and c*(y)
as the maximum number of calls that can be accepted from y. We use duality (Corollary 3.2) to
prove the following result from [14].
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Theorem 4.1. For any randomized strictly (c(logm — 1))-competitive algorithm for call admission

on the line of n nodes, and any constant probability of failure p bounded by p < P < 1/(4c), there
is a sequence y with c*(y) > (m/2)172% such that with probability at least p the algorithm fails to
achieve any constant fraction of the expected profit ratio.

Proof. We define suitable utility and payoff functions and cast the problem in terms of Corollary 3.2.
First, Y, is the set of call sequences on a line graph with n vertices and X is the set of deterministic
on-line algorithms. Let 9(z,y) = ¢(z,y)/c*(y) and v(z,y) = 9(z,y) — 1/(c(logm — 1)), so that the
constraint that minycy, v(G,y) > 0 implies that the on-line algorithm G is strictly (c(logm — 1))-
competitive. As for Y, it is the set of request sequences y with the property that c*(y) > (m/2)' ¢,
where € = 2¢p. Notice that 0 < € < 1/2, which is a fact that we will use later on in the proof.
Define m to be the largest power of 2 that is not larger than m, so that m < m < 2m. Let

?

(z.1) —1 if ¥(z,y) < m2!
u(z,y) = s
y 0 otherwise

Hence, E[u] = — Pr[v < m?~1]. Therefore, an adversary can force a randomized strictly (c(logm —
1))-competitive algorithm to achieve an m2¢~! = o(1/(clogm)) fraction of the optimal profit with
probability at least —u;. It remains to show that u; < —p.

In order to define the probability distributions H and H,, we first introduce the notion of
request classes. The ith request class (0 < i < logm) consists of the 2° calls from (j — 1) /2! + 1
to jm/28 +1 (1 < j < 2%). The ith request class contains 2¢ pairwise disjoint calls of size m /2¢.
Define £ = |elogm|. The probability distribution H, is to request the calls in the ith request
class (1 =1,2,...,k in the given order), where k is extracted uniformly at random between 0 and
£. The distribution H is to request all calls in the ith request classes for ¢ = 0,1,...,£ in the
same order as H, does, to select a call (u,v) uniformly at random in the /th request class and
to request all edges in the path from u to v as individual calls of unit length. We claim that
H is a distribution over Y: indeed, any such sequence y has optimum profit c*(y) = m/2¢ >
m /26108 — ml=€ > (m/2)1 €. If G fails to accept the requests of unit length, its payoff is at most
2t/m!=¢ < m€/m!'~¢ = m2~!. Consider a deterministic algorithm G that accepts ¢; calls from the
ith request class during H’s request sequence. The probability that G fails to accept the calls of
unit length is at least Zf:o 2tig; /2t = Zf:o ¢;/2' < —Ep[u]. Furthermore, H,’s request sequence
is always a prefix of H’s, and so the deterministic algorithm G accepts g; calls from the ith request
class during H,’s request sequence as well (0 < i < k). It follows that

Take a = (1 + £)/2, to obtain that

o €

uy < Eglul + aBEy, [v] - ———
v < Bulu] + aBp, [v] clogm—c~ 2c

Therefore, the probability that G fails to achieve a constant fraction of its expected profit ratio is

at least p, which concludes the proof. O



5 Adversaries

We will now turn to consider the case where the adversary chooses a worst-case probabilistic input
that satisfies a set of additional constraints. In this case, player I corresponds to the adversary
and player II to the algorithm. In this section, we consider upper-bounded adversaries, which are
constrained to choose a strategy « with probability no more than b,. The upper-bounded adversary
chooses a distribution G over X with the property that Prg[z] < b, so as to achieve payoff

.= i : < .
Uy = MAX {;rg}r/lu(G,y) %r[w] < bw}

We formulate upper-bounded adversaries in term of Proposition 3.1. If we define Y, = X and

b, —1 ifz=y
v(z,y) = .
by otherwise

then v(G,z) = by — Prg[z]. Hence, minycy, v(G,y) > 0 holds if and only if p, < b, for all z € X.
We now introduce definitions and certain assumptions that hold without loss of generality. First,
let b = (b;) and assume without loss of generality that 0 < b < e. Observe that if e’b = 1,
then the vector b forces p, = b,. We will assume without loss of generality that e’b > 1, and
let A =e’b —1 > 0. The quantity A can be interpreted as a measure of how far away b is from
a probability distribution. Indeed, observe that if A = 0, then the adversary is completely forced
to use a certain mixed strategy, whereas A > 0 leaves ample room of maneuver to the adversary.
Thus, A can also be interpreted as the strength of the constraint on the adversary. Finally, we let
b’ = b/(e’b) = b/(1 + )\) and interpret b’ as a probability distribution B over X. An upper-
bounded adversary is completely characterized by B and A, and so an equivalent definition is that
an upper-bounded adverary is a pair (B, )).

Definition 5.1. Denote by ]R(')" the set of non-negative reals and by R™ the set of positive reals.

Theorem 5.1. Consider a game (4) where player I is an upper-bounded adversary (B, ). Let H
be a probability distribution over Y andr: X — BS’. Then,

uj < ma{u(o, ) = r(@)} + (1 + N Eglr].

Proof Sketch. Establish the eigenvector of B and apply Proposition 3.1. O

The theorem implies the following fact for the performance of deterministic algorithms against
probabilitic upper-bounded adversaries.

Corollary 5.2. Let B and G be probability distributions over X with the property that Prg[z] <
(1 4+ X) Prg[z] for some A > 0. Let H be a probability distribution over Y and r: X — IRE)". Then,
there is a y € Y such that

u(G,y) < EIIE%}(({U(I’H) —r(z)}+ (1+ N)Eg[r] .
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The original question was to establish which powers are conferred by the upper-bounded ad-

versary onto the algorithm in addition to randomization. The answer lies in Theorem 5.1. The
algorithm can use randomization as well as can “borrow” a value r(z) to increase its performance
on an instances z. However, the expected amount of “borrowing” will contribute to the objec-
tive value. Of course, the algorithm can avoid any borrowing and fall back into the worst-case
probabilistic adversary. Therefore, the process of borrowing (i.e., the restricition to upper-bounded
adversaries) does not hamper the algorithm. The borrowing can work especially well when most
instances are easily solved and the worst-case performance is tied to the payoff in the presence of
few difficult instances. In this case, the algorithm can borrow to improve its own performance on
the hard instances and can pay back on the easy instances. If there are many more easy instances
than difficult one, the algorithm can keep the expected borrowing Ep[r| small and improve its
performance. Examples will be shown throughtout the rest of the paper.

We will especially consider the case when the utility u(x,y) can be expressed as the ratio of
the algorithm cost h(z,y) over the adversary cost g(z), which is the typical scenario whenever
approximation ratios or competitive ratios are of interest.

Corollary 5.3. Consider a game (4) where u(z,y) = h(z,y)/g9(z), h(z,y) > g(x) > 0 (for all
z € X andy €Y ), and player I is a upper-bounded adversary (B,)\) where A > 0. Then,

. . . h(z, H)
: < = - ' 7
g dmin o, )] < Pfe] < (14 V) Prla] | = in(1 + (1 + )Felo) mjnmaye S0
Proof Sketch. The main difficulty of the proof is to show that r # 0. One of the elements used to
prove this fact is Loomis’ lemma. O

The following definition formalizes the model in Corollary 5.3, namely the idea that the adver-
sary cost is inflated by a factor of 1 4+ § when algorithm and optimum costs are compared.

Definition 5.2. We will say that a probability distribution H over Y (a randomized algorithm) is
a u-approximation algorithm in the adversary cost increase model (B, \) if there exists a function ¢ :
X — R{ such that, forallz € X, h(z, H) < g5(z)/(1+ (1+))Eg[d]), where gs(z) = g(z)(1+5(z)).

The following corollary basically restates Corollary 5.3 and expresses the fundamental equiva-
lence of the upper-bounded and of the adversary cost increase models.

Corollary 5.4. If there exists a u-approrimation algorithm in the advesary cost increase model
(B, ), then for any probabilistic adversary G with the property that Prglz] < (1 + X) Prg[z] there
exists a deterministic algorithm y such that u(G,y) < u.

In the next sections, we relate the adversary cost increase model with other techniques to
analyze algorithm performance whose core method is to inflate the adversary’s cost.

5.1 Resource Augmentation Method and Perturbation-Based Analysis

In the resource augmentation method (RAM), the algorithm cost is compared to that of an ad-
versary that has less resources than the algortithm does [11]. Thus, the method gets its name by
augmenting the resources available to the algorithm as compared to those available to the adversary.
Equivalently, the adversary uses fewer resources than the algorithm does, which in turn implies that
the adversary profit gs(z) on an instance z is 1+d(x) > 1 times the optimum profit g(z) on instance
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z. The common practice is to fix the amount of resources available to the algorithm and to the

adversary and to analyze the resulting worst-case performance. Suppose now that the adversary
resources are not fixed but can be chosen in any arbitrary way with the objective of improving the
relative performance of the algorithm. Since the relative algorithm performance should improve
if we give the adversary less resources, the RAM method poses a trade-off between the relative
performance of algorithms and the amount of resource augmentation. Therefore, the RAM method
can be viewed as a bi-criterion optimization problem, where the algorithm performance should be
weighted against the amount of resource augmentation. We will examine the trade-off by combining
the two criteria in one objective function.

We now formalize the discussion above. In the most common cases, the performance metric
is the cost ratio h(z,y)/g(x), which the RAM will substitute with h(z,y)/gs(x) for some fixed
relative adversary cost increase function . We will consider a multiplicative penalty of the form
—(1 + M) Eg[d], where )\ is an appropriate weight factor and B is a given probability distribution
over X. We will denote the resulting problem as the RAM trade-off problem with parameters B
and A.

Corollary 5.5. The cost of the best randomized algorithm in the RAM trade-off problem with
parameters B and X\ is not smaller than the smallest approzimation factor w; of a randomized
algorithm in the adversary cost augmentation model (B, \).

Analogous consideration can be made for perturbation-based analysis, where the algorithm cost
on instance z is replaced by the expected algorithm cost on a set N(z) C z. For example, the set
N (z) can be taken as a neighborhood of z of a given fixed radius if the set X of instances is a metric
space [23]. The analysis presents a trade-off between the algorithm performance and the radius on
the neighborhood, where a zero radius specializes to worst-case analysis. The perturbation-based
trade-off is substantially equivalent to an upper-bounded adversary under appropriate hypotheses
on the trade-off definition. The argument is essentially similar to the one in Corollary 5.5, but with
the addede complication that d(z) can now be negative. Thus, we take § to be the positive part
of the expected cost in N(z). The long but mostly technical formalization of this claim is omitted
from this paper.

Both models can be formulated in terms of adversary cost increase functions, and, by Corollary
5.4, the game values are not smaller than the minimum cost ratio u(G,y) of a deterministic algo-
rithm y against a probabilistic and upper-bounded input distribution G. We remark that while the
adversary cost increase model takes into account the ratio of the expected costs for the algorithms
and for the adversary, the dual expresses a property of the expected value of the cost ratio. It is
an open question to investigate the relation between the two cost models (see [4]).

5.2 Asymptotic Analysis for Paging

The adversary cost increase method is related to the resource augmentation method and to pertur-
bation-based analysis in that it smooths away worst-case instances when such instances are only
a small fraction of the input instances. In this and in the following sections, we consider similar
scenarios that arise in an asymptotic sense, that is, when the fraction of bad instances tends to
zero as the problem size increases.

The first application of this method is the asymptotic analysis of the the paging problem [3]
when the working set size grows larger. In some sense, this application also illustrates a method
to deal with the non-linearity implied by RAM. We denote by n the total number of pages in a
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sequence 7, by k the cache size, and by m the length of a request sequence r (such notation is

independent of that used in the previous and following sections). The cost of a paging strategy y
on sequence r with a cache of size k is the number of times y evicts a page from the cache. It is
easy to see that such cost function is equivalent to the number of page faults except in a constant
additive factors. We will consider without loss of generality only sequences r where there are no
consecutive requests for the same page.

Lemma 5.6 ([6]). The randomized marking algorithm M is (2Hy)-competitive for the paging
problem, where Hy, is the kth harmonic number.

At an intuitive level, the dilemma of competitive paging is due to cache sizes k that are only
slightly smaller than the number n of pages. Indeed, if n < k, no paging algorithms ever evicts any
page, and so any paging algorithm is optimal. Conversely, if n > k, then all paging algorithms,
including the optimum, incur a high eviction rate, a situation which is often referred to as thrashing
[24]. Since all algorithms thrash, the relative performance of on-line algorithms is good. It is only
when 7 is slightly larger than k that the adversary can effectively leverage on its knowledge of the
future to achieve a large performance ratio. Therefore, there should be only few values cache sizes
that cause troubles to on-line paging strategies. In other words, if for any fixed request sequence r
the adversary chooses a cache size k with probability O(1/n), then there should be a deterministic
paging algorithm with good expected relative performance. The rest of this section will formalize
and prove this claim. In passing, we remark that a qualitatively similar claim is made within loose
competitiveness [27], and we will use some of those results in our arguments. The results on loose
competitiveness assumed that both the value of k£ and the paging algorithms should be probabilistic,
and Theorem 5.8 will prove that a similar result holds when the algorithm is deterministic (and
the value of k is chosen randomly).

In this analysis, the game is parameterized by the request sequence r. We set h(k,y) to be the
number of times that the replacement strategy y evicts a page when it process sequence r with a
cache of size k, g(k) to be the smallest number of evictions on sequence r when the cache size is k,
b a constant that depends only on k, d any positive real, and g(k) = max{c(k)g(z), m/n?} +b. We
will investigate the value of the game defined by h and g, and, to this end, we define ¢(n) = 5lnlnn
(n > 13).

Lemma 5.7. The randomized marking algorithm M is a (1 4+ o(1))-approzimation algorithm in
the adversary cost increase model (B, ) where B is the uniform distribution over {1,2,...,n} and

A=0(1).
Proof Sketch. Use the previous lemma and d(k) = 2Hy, if h(k, M) > g(k), 6(k) = 0 otherwise. [

Theorem 5.8. Consider the paging problem on a sequence r where the adversary chooses the cache
size k € {1,2,...,n} probabilistically subject to the additional constraint that Pr[k] = O(1/n).
Then, for any such an adversary, there is an deterministic paging algorithm y whose expected
relative performance is

h(k,y)

max{c(k)g(k), m/n%} + b

Proof. Combine the previous lemma with Corollary 5.4. O

<14o0(1).
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5.3 High-probability Analysis

Theorem 5.1 and its applications (resource augmentation, perturbation-based analysis, loose com-
petitiveness) show how few worst-cases instances are smoothed across more typical instances. In
particular, any high probability analysis of randomized algorithms can be interpreted in terms of
Theorem 5.1.

Proposition 5.9. Let H be an randomized algorithm. Then, H is a u(B, H)-approzimation algo-
rithm in the adversary cost increase model for all values of X with the property that

A=0 (maXZ?g’iﬁrﬂ;’H) Prlu(z, H) > cu(B, H)]) ,

where ¢ is a constant.

Proof Sketch. Similar to the proof of Lemma 5.7. U

We now turn to consider asymptotic analysis when the utility is a ratio h/g. A possible appli-
cation is when the instance z is a long request sequence. If the probability distribution B extracts
the requests independently and with the same distribution, then the law of large numbers should
show that the algorithm cost on x converges to the expected value with probability one. Therefore,
as long as z is long enough, its cost is concentrated around the expected value, and a small values
of § should smooth out any deviations. The intuition is formalized in Theorem 5.10. We start with
a definition.

Definition 5.3. A set X is said to be based on s phases that are i.i.d. relative to B if and only if

e An instance z € X is a string obtained as the concatenation of s symbols z1, 2, ...,z called
phases,

e The costs h and g have the properties that h(z,y) > 0, g(z) > 0, and that Eg[h(z,y)] and
Egg(x)] exist, are finite, and are positive,

e The profits are decomposable as h(z,y) < Y7, h(zi,y) and g(z) > >°7_, 9(zs),

e The distribution B over X has the property that each phase is extracted independently of all
other phases and with the same distribution.

Theorem 5.10. If the set of instance is based on s phases that are i.i.d. relative to B and A = O(1),
then the game value in the adversary cost increase model is no more than minycy Eg[h(z1,y)]/Eplg(z1)]+

o(1).

Actually, the previous theorem holds for A = o(1/Eg[6(s)]), but in general the law of large
number does not allow us to derive any stronger bound on A. We will consider the paging problem
under the i.i.d. model, and show that constant approximation ratios in the adversary cost increase
model are possible when A grows exponentially with s. We use the same notation as in Section 5.2.
We denote by n the total number of pages, by k& the cache size, and by m the length of a request
sequence . We assume that n = ak for some constant a > 1.

Definition 5.4 ([27]). Let = be a page request sequence. The first phase of z is the maximal
prefix of z containing requests to at most k distinct pages, and, recursively, the ith phase is the
maximal prefix of (¥ containing requests to at most & distinct pages, where z() is z with the first
1 — 1 phases removed.
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Since algorithms start with an empty cache, no eviction occurs during the first phase. We will

assume that the last phase contains requests to exactly k distinct pages, and it is easy to see that
such an additional assumption only affects the additive constant. A phase of z other than the first
will be called a reasonable phase. The first reasonable phase of z is the second phase of z, and so
on. We will denote by P, the number of reasonable phases of .

Definition 5.5. A request sequence is hard if no page request has been previously requested in
the current phase.

Such definition of hard sequences is less restrictive than the original one [18] and allows us
to consider “difficult” sequences for the randomized marking algorithm [6] without knowing the
algorithm’s random choices. Equivalently, a hard sequence induces an equivalence class of infinitely
many sequences, each of which causes the same cost to any deterministic marking algorithm.
Furthermore, if we fix the random choices of the randomized marking algorithm M, we obtain
a deterministic marking algorithm, and so any execution of M has exactly the same cost on all
request sequences in the same equivalence class. By the previous assumptions, the length of a hard
sequence z is m = k(P + 1). The probability distribution B is to extract uniformly at random a
hard sequence with P reasonable phases, and we will be interested in an asymptotic analysis as P
grows.

Theorem 5.11. Consider the paging problem with n = ak pages in the adversary cost increase
model and let f = (o —1)k/(ak — 1). Let B is the uniform distribution over hard sequences with P
reasonable phases and A = O (eF) where 2¢ < (Bk)?/(k — 1)%. Then, the marking algorithm is an
(14 o(1))-approzimation algorithm.

Proof Sketch. We first derive that the expected number of new requests in a phase is k(n—k)/(n—1).
Then, we use the Hoeffding bound for the probability that the average number of new requests is
far away from the average. This result and the choice of parameters yield that E[§] = o(1). O

Remark. The previous theorem can be improved to A ~ k¥ by using Var(N,) and a result by
Hoeffding [9].
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A Omitted Proofs

A.1 Main Duality Result

Proof of Lemma 3.3. Observe that minycy u(G,y) < maxg {minyey u(G,y) : Prglz] < by} = uyy
U.

LI IA

A.2 Shut-Down Scheduling

The shut-down scheduling problem is as follows. A set of n job is to be scheduled on one machine
starting at time 0 (the notation for n is independent of that in the previous and following sections).
Job i is characterized by a length /(i) and a profit p(i) and the objective of the scheduler is to
maximize the profit of the jobs fully completed before an initially unknown deadline D. Let V be
the ratio of the maximum over the minimum profit. There is an O(logV')-competitive algorithm
for shut-down scheduling and no better algorithm is possible [15].

Proposition A.1. Consider the shut-down scheduling problem with k41 objectives py, p1,p2,-- -, Dk,
and suppose that it is further requested that a randomized algorithm be O(klogV')-competitive in
the metrics p1,p2,...,pk. Then, the best randomized algorithm is ©(klogV')-competitive in the pg
metric.

Proof Sketch. Consider a set of instances and a deadline D with the property that only one job
can complete before D. The optimal choice of that one job depends on the value of D. Jobs profit
will range from 1 to V, a job i has non-unit profit in at most one metric, and for every metric
there is a set of jobs whose profit increases exponentially. Let ©;(z,y) be the profit accrued by the
deterministic algorithm z in the ith metric and v; = 9 — 1/(klog V). The probability distributions
H,, will be uniform among the jobs that have large profit according to p;. Therefore, for any
deterministic choice x of the first job, there is at most one metric where the algorithm can achieve
non-negligible profit, and that happens with probability 1/O(log V'). Observe that in the expression
of Corollary 3.2 there is a fixed term proportional to —(P — 1)/(PlogV) and that there is only
one profit p; that is going to contribute a positive term of 1/logV. Thus, the lower bound is
proven. As for the upper bound, choose a number i uniformily at random in 0, 1,..., %, and follow
an O(log V')-competitive algorithm for the p; metric. O

A.3 Upper Bounded Adversaries

The formulation above implies that the matrix B in Proposition 4 is B = be” — I, and so BT =
eb” — I. The following lemma establishes the values of eigenvalues and eigenvectors of B”.

Lemma A.2. The matriz BT = eb” — I has the properties that BTe = Ae and BTf = —f for all
vectors f with bTf = 0.

Corollary A.3. The matriz BT has a set of n linearly independent eigenvector, one of which is e
and the other n — 1 are a basis of the hyperplane orthogonal to b.

Proof. Observe that e is an eigenvector corresponding to the eigenvalue A, and any vector in
the hyperplane orhtogonal to b is an eigenvector corresponding to the eigenvalue —1. If e were
dependent on the other basis vectors, then e would lie in the hyperplane orthogonal to b, and so
e”b = 0, which contradicts the assumption e’'b > 1. Thus, the corollary is proven. O
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Corollary A.4. Any n-vector r can be expressed as r = ae — f where £ has the property that

b"f = 0. Moreover, b’r = a(1 + \) and BT'r = dae +f = (1 + N)ae —r.
Proof of 5.1. Apply Corollary A.4 to Proposition 3.1 to obtain that
uh =min{u: ATq+ BTr <ue,e’q=1,q>0,r > 0}
=min{u: ATq—r+ (1+Nae <ue,e’q=1,blr=a(l+)),q>
=min{fw+ (1 +Na: ATq—r <we,b’r=a(1+)),eflq=1,q>
=min{w +b’r: ATq—r <we,efq=1,q>0,r >0}

Since q can be interpreted as a probability distribution H, rasr : X — Ry, and b”r = (1+)) Eglr],
the theorem follows. O

Proof of 5.2. Combine Theorem 5.1 with Lemma, 3.3.
First, we need the following

Lemma A.5 ([17]). Let B be a mized strategy for player I and H a mized strategy for player II.
Then, mingcy u(B,y) < u(B, H).

Proof of Corollary 5.3. Consider a feasible solution q = (¢;), f = (fz), w, and « to the program
(5). Assume first that w # 0 and let §(z) = r,/w. Thus, the program can be rewritten as

Uy =min w (1 + Z bﬁ(x))

s.t. Z h(z,y)qy < wg(z)(1+6(z)) ze€X

yey
doay=1

yeyYy

d(z) >0 zeX
gy >0 yeyYy

which is equal to 1 + (1 + A)Ep[d] times the value of the unconstrained program (1) once the
adversary costs g(x) have been replaced by gs(z).

We now prove by contradiction that w # 0. Assume that w = 0 and let H be the randomized
algorithm defined by a probability vector q. Since u(z,y) > 0, we have that r; > >° .y u(z,y)gy >
0, and since b, > 0 we can assume without loss of generality that r, = Zer u(z,y)qy, and so
the objective value bTr is equal to (1 + A)u(B, H). Lemma A.5 entails that the objective value is
(1 4+ Nu(B,H) > mingey (1 + A)u(B,y). It follows that there is an optimal solution with w = 0
and q equal to zero except in one unit component. Therefore, there is an optimal solution where
r’ is a row of A that minimizes b r. By duality, b’r = max{u: Ap > ue,p < b,e’p =1,p > 0}.
In particular, the constraint corresponding to the row r’ gives p’r > b’r. However, r > 0 and
P < b, and so p = b. Therefore, A = 0, which contradicts the hypothesis. It is then proved that
w # 0, which completes the proof. O

Proof of Corollary 5.4. Combine Definition 5.2 and Corollaries 5.2 and 5.3. O
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A4 RAM

Proof of Corollary 5.5. Any § > 0 is feasible in the adversary cost augmentation model, but only
the §’s that correspond to resource values are feasible in the RAM trade-off problem. O

A.5 Asymptotic Paging

We defined cmore precisely as follows:

on) = {2]nn—2/5 if1<n<12

5Inlnn if n > 13

Lemma A.6. The functions c¢(n) and 2lnn — c(n) are increasing.

Lemma A.7 ([27]). Let M be randomized marking algorithm. Let c(n) be any function with the
property that both c(n) and 2Ilnn — c(n) are increasing. Then, for any d > 0 and for any b that
depends only on k, h(k,H) < g(k) ezcept for O((d + 1) exp(1 — c¢(n)/2)nlnn) values of k in the
interval X = {1,2,...,n}.

Proof. The main idea of the proof is that there are only few strategies for the adversary (i.e., few
values of k) that cause trouble to M. Thus, we chooses a function § to amortize those values of k
while keeping E[d] small. First, we set

i >
5(k) = 2H; if h(k,M) > g(k) '
0 otherwise

Lemma 5.6 gives that h(z, M) < 2Hyg(x), and so h(z, M) < 2Hyg(x) < 2Hyg(z) = gs(x) whenever
h(k, M) > c(k)g(k). Meanwhile, if h(k, M) < g(k) then h(k, M) < gs(k), so that on the whole, the
game value is 1 when the adversary cost g is inflated by 6. We will prove that (1 + A)E[d] can be
made arbitrarily small as n increases, which entails that M is a (1+ o(1))-approximation algorithm
in the adversary cost increase model. By Lemma A.7, there is a constant ¢ such that

Eg[0] < 2¢(d + 1)Hy exp (1 - c(z_n)) Inn < 2¢(d + 1)H, exp (1 - @) Inn,
and so
lim (1 + \)Ep[6] = lim 2¢(d + 1) exp (1 +In(1+A)+InH, +Inlnn — M) .
n—00 n—00 2

Observe that

lim 2In(1 4+ A) +2InH, +2Inlnn — ¢(n) < lim 2In(1 + A) +2In(In+1) + 2Inlnn — ¢(n)

n—oo n—oo

< lim 2In(1+A) 4+ 2In(2lnn) + 2Ilnlnn — ¢(n)

n—oo
= lim 2In(1+A)+2In2+4Inlnn — ¢(n)

n—o0

:—m,

and so lim,_, (1 + A)Ep[6] = 0, which concludes the proof. O
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Proof of Proposition 5.9. Let
maxgex u(z, H)

0 otherwise

ifu(z,H) > cu(B, H)

to prove the claim. O
As an example, we observe that

Theorem A.8 ([19]). Let Qs be the a random variable that represents the number of comparisons
ezecuted by the randomized quicksort algorithm and qs = E[Qs]. Then,

P |

Corollary A.9. The randomized quicksort algorithm runs achieves O(slog s) utility in the adver-

sary cost increase model when \ = sO(nns),

% _ 1‘ > 6] — s*(2+0(1))elnlns )
qs

A.6 Renewal Instances

Lemma A.10. If an instance x is extracted according to the distribution B from a set based on s
phases that are i.i.d. relative to B, h(z;,y) and g(z;) are independent and identically distributed
random variables with finite mean (1 < i < s).

Proof. The last condition in Definition 5.3 immediately implies that h(x;,y) and g(x;) are indepen-
dent and identically distributed. Moreover, the third condition and linearity of expectation give
Eg[h(zi,y)] < Eglh(z,y)]/s < oo, which shows that h(z;,y) has a finite mean. The same argument
for Elg(z;)] concludes the proof. O

Lemma A.11. If an instance x is extracted according to B from a set based on s phases that are
i.4.d. relative to B, then
EB[h(‘Tl,y)]

M) < g oG]

g9(z)(1 +4(x)) ,
where §(z) > 0 and lim,_, o, Ep[d(z)] = 0.

Proof. Since the h(z;,y)’s and g(z;)’s are independent and identically distributed random vari-

ables, we can apply the law of large numbers to obtain that lims_, h(z,y)/s < Eg[h(z1,y)] and

lims_,o g(z)/s > Eglg(z1)] > 0 with probability one. Therefore,
L hey) . h@y) s Bslh(ey)

S gm) ek s 9@ = Eslga)

(with probability one),

or, equivalently,
hz,y) _ Balh(ar,v)

= mr),
9@ = Felg@w)] ")
where lim;_, o (z) = 0 with probability one. In conjunction with Eg[h(z1,y)] > 0, this leads to

Ep[h(z1,y)]
Ep[g(x1)]

h(z,y) < g9(z)(1 + é(z)) ,
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where
_ Egplg(z1)] max .
2®) = B, ) @)} 20
Observe that
0] = 3(0) = oo waxgo, (o)) < 520w

Therefore, the events E;, = {Ve > 03s, > 0Vs > s, : |n(z)| < €} and Es5 = {Ve > 03s, > O0Vs > s :
|0(z)| < eEglh(z1,y)]/Eglg(x1)]} have the property that E, C E;. Since 1 = PrE, < PrE; <1,
we have Pr E5 = 1. However, Ej is the intersection of infinitely many events {Vs > s : 6(z) < €},
and so any such event must occur with probability one. It follows that for any € > 0, there is an s
such that when z is extracted from a set based on s phases that are i.i.d. relative to B, E[§(z)] < ¢,
and so lim,_,, F[6(z)] = 0, which concludes the proof. O

Proof of 5.10. The theorem is immediately proved by the combination of Corollary 5.3 and Lemma,
A.11. ]

A.7 Renewal Paging

Definition A.1 ([27]). A request is new within a reasonable phase if it has not been requested
yet in the current phase or in the previous one.

Lemma A.12 ([27]). The first request of a reasonable phase is new.

Lemma A.13 ([27]). The ezxpected cost of the marking algorithm during the ith reasonable phase
is no more than Ny (i)(Hy — Hy,(;) + 1), where Hy is the kth harmonic number. Moreover, g(x) >
N,P/2.

Lemma A.14 ([27]). The harmonic numbers have the property that H, — Hy < In(n/k) for all
n>k>1.

Let N, (i) be the number of new requests during the ith reasonable phase of z (1 <7 < P), and
N, = Zf: 1 Nz(i)/P. Let M be the randomized marking algorithm, which is a distribution over
the set Y of deterministic algorithms. Let h(z,y) be the cost of the deterministic algorithm y over
z and g(z) be the optimum cost (calculated as in [3]).

Lemma A.15. On a hard sequence z of length m = k(P + 1), h(z, M) < 2¢(z)(1 — In(N,/k)).

We consider a function
é(:L‘) { ! T = /

1 otherwise

where 8 = (a — 1)k/(ak — 1) is bounded by a constant independent of n, k, and P. Then, if
N, < Bk/2, Lemma A.15 leads to h(z, M) < 2¢(z)(1+Ink—In N,) < 2¢5(z), and if N; > Sk/2, then
h(z, M) < 2(1 +1n(2/5))gs(z). As a result, the marking algorithm achieves a constant competive
ratio if the optimum cost is inflated by a 1 + é(z) factor. It remains to estimate (1 + ) E[4].

Lemma A.16. Suppose that pages are requested uniformily at random. Then, for 1 < i < P,
the N (i)’s are independent and identically distributed, have finite variance, and E[N,(i)] = k(n —

k)/(n —1).
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Henceforth, we will use the notation y = E[N,(1)] = E[N,] = Sk.

Lemma A.17. Let x be a hard request sequence with P phases. Then,

prv <) <o (-5 (2))
where B = (a — 1)k/(ak — 1).

Proof of Lemma A.15. The cost of the marking algorithm on the first phase of z is naught. There-
fore,

h(z, M) <

R

~
Il
—

Ny (i) (Hg — Hy, () +1) (by Lemma A.13)

P
<) No() (1+Ink — In N, (i) (by Lemma, A.14)
=1 B
= PNy(1+1Ink) = ) Ny(i) In Ny (d) .
i=1

Observe that

P P . .
] , NP Nz(i) , Ng(i)
—§ Np(1) In Ny (1) = ——= § =1 9” log PN,
NP Ny (1) Ng(2) Ny(P)
= —log(PN, )
log e (H ( PN, PN, ' PN, 0g(PNo)

where H is the entropy function. Recall that under the constraint that Zf: 1 Ng(i) = PNy, the
entropy M is maximized if all the N;(i)’s are equal, and therefore

N, N,
h(z,M) < PN, — PN, lnf = PN, (1 —In f) ,

which, combined with the previous lemma, proves the claim. O

Proof of Lemma A.16. The first request of a reasonable phase is new by Lemma A.12. Denote by
A the set of pages requested in the phase other than the first requested page. Then, |[A| =k — 1
and new requests correspond to the pages of A that were not requested during the previous phase.
Hence, the number of new requests is equal to the hypergeometric random variable of extracting k—1
objects from n—1 of which n—1—% belong to a target set. Since the process is probabilistic, N, (%) is
independent of the identity of the requests during the previous phases. Moreover, the parameters of
the hypergeometric distribution are independent of ¢ and so the N;(7)’s are identically distributed.
Finally, the well known expression for the mean and variance of a hypergeometric random variable
concludes the proof. O
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Theorem A.18 ([9]). Let N(1),N(2),...,N(P) be independent random variables with finite mean,

finite variance, and with the property that a < N(1) < b (1 <i < P). Let N = Zle N(i)/P.
Then,
Pr[N — E[N] > t] < ¢ 2P¥/(b-a)

Proof of Lemma A.17. Let Ny = k — N, and Ny(i) = k — N,(i). Then, E[N,(i)] = k — p and
Var[N,(7)] = Var[N; ()] < co. We then have

Pr[Nw<%] — Pr N;ZM]
2 2
P fv;—(l—ﬁ)kzi—’“]
<Pr|Ny—(k—p) > %]
P [ Bk \?
< exp 5 527 (by Theorem A.18) ,
which proves the claim. O

Proof of Theorem 5.11. We have shown that the marking algorithm achieves a constant game value
if the adversary cost is inflated by a factor of 1 + §. It remains to estimate (1 + A)Eg[d]. Recall
that «, n, and k are independent of P. We have that

(14+MNEg[6] < (1+ N)exp <_§ (kﬂ%) ) Ink=0 (exp (g (ZC — (%) ))) =o0(1).

By using this expression in Corollary 5.3, we obtain the theorem. O

A.8 Lower-bounded Adversaries

We now turn to an adversary that chooses x with probability at least b,. A natural constraint
on the adversary is that z is chosen with probability at least b,. The adversary can satisfy this
constraint by choosing an z with probability b, and following a worst-case (mixed) strategy with
probability 1 — >y b,. We have proved that in fact the adversary has no better strategy than
that. The implication for randomized algorithms is a criterion whereby the algorithm will attempt
to minimize a convex combination of worst-case and average-case cost.

In this section, we will show that, in terms of H’s strategy, such constrained game is equivalent
to a different game, defined below, that embodies H’s attitude toward risk. First, however, we
need to make some reminders and considerations about rational behavior under risk. Suppose
that player II seeks to find a mixed strategy H that ming max,cx u(z,Y’), which is the classical
formulation of a two-person zero-sum game (2). In this case, player II is extremely averse to risk
in that its target strategy H must achieve minimum cost u against an adversary that adopts a
worst case strategy x. Suppose now that player 2 is only interested in the average-case cost of H,
that is, the player seeks a strategy H that ming u(B, H). In this case, the player can be thought
of being risk-seeking, in that if G deviates from B, then H will not be optimal in general, and
potentially arbitrarily worse than its average-case performance. Thus, worst-case performance and
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average-case performance appear to be two extreme cases in the spectrum of criteria that a rational

decision maker can adopt under risk. The two extreme criteria can also be blended, for example,
through a convex combination, so that player II seeks a H with

min (()\ max u(z, H)) +(1- A)u(B,H)) : (6)

H reX

where 0 < A < 1. In the case where A = 1, the criterion reduces to worst-case performance, and in
the case where A = 0, the criterion reduces to average-case performance. In this section, we will
show that player II optimal strategy under criterion (6) is the same as that for a game where player
1 has payoff u(z,y) but is constrained to use each deterministic strategy with probability at least
by

We now introduce definitions and certain assumptions that hold without loss of generality.
First, let b = (b,) and assume without loss of generality that 0 < b. Observe that if e’b = 1,
then the vector b forces p, = b,. We will assume without loss of generality that e’b < 1, and
let A\=1—e’b > 0. The quantity A can be interpreted as a measure of how far away b is from
a probability distribution. Indeed, observe that if A = 0, then the adversary is completely forced
to use a certain mixed strategy, whereas A\ ~ 1 leaves ample room of maneuver to the adversary.
Thus, A can also be interpreted as a measure of the weakness of the constraint on the adversary.
Finally, we let b’ = b/(eTb) = b/(1 — )\) and interpret b’ as a probability distribution B over X.
We impose the lower bounds on the probabilities by letting ¥,, = X and

v(m,y):{l_bz ife=y M)

—b, otherwise

As a result, the matrix B in Theorem 3.1 is the n x n matrix I — bel.
For comparison, recall that

Definition A.2 ([12]). A mixed strategy is said to be completely mized if all deterministic strate-
gies are chosen with positive probability.

Therefore, if b > 0, every feasible strategy is completely mixed and the game is completely
mixed.

Proposition A.19. Let A\=1-3" _+ b,. Then,

g {min (G, )+ Brla) > b, | = max {min((1 ~ Mu(B.0) + (G0) |

zeX

— min {(1 — Nu(B, H) + max \u(z, H)} .

Proof. Consider any feasible solution p and express it as p = b+c. Observe that e'c = 1—e’b = )
and let ¢/ = ¢/\. Therefore, u} = max{u : (1 — \)Ab’ + MAc' > ue,e’c’ = 1,¢ > 0}, which
proves the first part of the claim. Apply duality to this unconstrained game to obtain the second
equality. O

Remark. The proof above gives a direct proof of the second equality. However, that equality can
also be proven as an application of Proposition 3.1 with an argument similar to the one used for
upper-bounded adversaries (eigenvalues of the B matrix). The proof above can be thought of being
more direct in that it only uses linearity of expectation in a disguised manner.



