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Experimental Environment

In order to assess the packet dynamics of the network flows in the presence of filler, we used the ns network simulator (version 2.0) [26]. NS is an event driven simulator that simulates individual packets flowing over a network of hosts, links, and gateways. It provides endpoint agents (like CBR, FTP, Telnet, etc) that can use UDP or any of several types of TCP as their transport protocols [15]. In this chapter we describe the simulation we used in our experiments. Section 2.1 describes the simulated network and the properties of the simulated network components. Section 2.2 and section 2.3 describe the filler workload and the pre-existing workload respectively. In section 2.4 we describe how we partitioned Harvard traces into incoming and outgoing traffic flows and how to convert the traces into NS2 format. Section 2.5 lists the changing parameters in our simulations and gives the categories of experiments that we did. Section 2.6 explains the packet dynamics that we examined during the simulations. Finally, we conclude by giving a brief description of the simulations modules and how we process the simulation output.

2.1. The simulated network:

This study used the simple network shown in figure 2.1. The figure shows four network hosts (nodes 0, 1, 2, and 3) and two middle routers (nodes 4 and 5). We are concerned about the effect of the filler traffic on the center link (i.e, the link between node 4 and node 5). The four links between the hosts and the routers (namely 0 to 4, 2 to 4, 1 to 5, and 3 to 5) are configured to approximate a bandwidth of 100 Mbps and a latency of 1 millisecond. The center link, however, is going to be configured with different bandwidth and latency values. In general, the central link (including the attached buffers) is the performance bottleneck. All the links are duplex and each of the four hosts is occupied with a FIFO buffer. 
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Figure 2.1: The simulated network

Since different data flows will have varying priorities, the routers should be able to give higher precedence to the high priority flows over the low priority flows. This is implemented through a class based queuing (CBQ) [15] buffers at both routers. CBQ works by dedicating a separate queue for each class of flow and by assigning different priorities for these flow classes. In our experiments the filler traffic will flow between node 0 and node 1. Also, the pre-existing outgoing traffic will flow from node 2 to node 3 and the pre-existing incoming traffic will travel from 3 to node 2.

2.2. Filler workloads:

Two types of filler traffic were simulated in this study: Constant Bit Rate (CBR) and FTP/TCP. It is worth to mention that CBR works by injecting a constant number of bits to the network at a constant rate. We use UDP as a transport layer protocol to transfer the CBR datagrams from source to destination. Hence there is no congestion control mechanism or any kind of reply from the destination and the source simply injects the bits at a constant rate.

The other type of filler workload that we simulated is FTP/TCP workload. This approximates the transfer of an infinite size file using the FTP protocol. TCP is used as the transport layer protocol for this type of traffic. The sending rate is controlled by the TCP congestion control mechanism and the sender will wait for acknowledgments to transfer new packets or to retransmit dropped packets. Selective Acknowledgement TCP (SACK) was used [15]. It was determined to be a good choice because it is a commonly used, modern version, being supported on almost 40% of clients as of March 2000, and its usage is growing [2]. SACK TCP allows the receiver to return information to the sender about which packets were received, even if they were received out of order. Additionally, delayed acknowledgment was implemented, so that Acks could be delayed and aggregated at the receiving side. The advertised window was set to a very large value of 20,000, to simulate infinity. This is to guarantee that the advertised window is not a limiting factor in the experiments.

We also conduct a set of simulation without any filler traffic. This kind of experiments works as control experiments and is necessary to compare the simulated network with the original traces. These experiments are also important to show the differences and the changes in the throughput and utilization parameters when the filler traffic is used and when it is not. In other words, they act as a base line for many comparisons of measured parameters. These control experiments also prove the correctness of setup of the simulated network and the programs used to analyze the resulting simulations outputs as the results from these simulations we found consistent to the global packet dynamics of the original Harvard traces.

Moreover, experiments were executed which switched the filler source with the filler destination, thus reversing the flow of the filler traffic. Due to the symmetric nature of the simulated network, this resulted in unremarkable changes to the collected results.

2.3. Pre-existing workloads:

For pre-existing workloads we used Harvard traces [19]. These are the traces used by Adon Hwang in his thesis [18]. The traces were collected on a link between Harvard's main Faculty of Arts and Science (FAS) campus and the University Network Operations Center which is the umbrella organization overseeing the Internet link to Harvard. The publicly available trace datasets were subsets of the Harvard trace collected on March 13, and March 14 [18]. These are three distinct half hour datasets
:

 Trace1: starting at 8:39

 Trace2: starting at 12:39

 Trace3: starting at 16:39

Ethernet packets were collected on all links. All the trace datasets were collected during the operation of a 10-megabit Ethernet link. The traces were collected with the tcpdump utility [20]. Only the first 54 bytes (14 Ethernet, 20 IP and 20 TCP/UDP) were collected and post-processed. 

Hwang [18] determines the directionality of the traffic by using the network numbers encoded in the IP headers for source and destination hosts. Basically, packets with source network numbers 128.103 or 140.247 are considered to be outbound; packets with destination network numbers 128.103 or 140.247 are considered to be inbound; and the packets passing the observation point that are both originating and terminating within Harvard are ignored. Only packet headers are stored in the traces due to significant privacy concerns. Moreover, publicly available trace datasets have also tried not to reveal the actual IP addresses (because IP address can reveal significant personal information) by randomizing the network addresses. A single, unique ID replaces each IP address, and then that ID is used all over the traces to represent the same IP address. This randomization (replacing IP addresses by unique IDs) is done using sanitize [34]. Due to absence of real network address we were unable to use the Hwang scheme for partitioning traces datasets into incoming and outgoing traffic. However, we propose an accurate heuristic to partition the traffic. The proposal is described on the next section.

2.4. Partitioning the Harvard traces

The Harvard packet traces have been sanitized [34] and the actual IP addresses have been removed for security reasons. As a result, we cannot establish directly which packets are going in or out the Harvard campus. However, we could reconstruct packet direction from trace global characteristics that are reported in [18], including the total number of packets sent in each direction and the total number of bytes transmitted in each direction. Our reconstruction procedure works as follows. 

First, we construct a graph with a vertex for each IP address and we insert an edge between vertex u and vertex v if the trace has a packet going from IP u to IP v or from IP v to IP u. Since the traces report only packets crossing the Harvard link [18], the resulting graph is bipartite, with one side consisting of addresses within the Harvard campus and the other one consisting of addresses outside Harvard. Ideally, we would collect statistics on packet and byte traffic between the two address sets, and compare them with the corresponding statistics in [18] to determine which node set is inside and which one is outside campus. There are however two problems that prevent the direct application of this method. First, the statistics in [18] are in chart format and do not allow us to obtain precise figures. The second problem is that the graph is not connected (it consists of many bipartite components), and thus it allows multiple assignments of vertices to the same side of the campus link. To address this problem, we collect the following information for each connected bipartite component: 

· The number of packets ai and ai' flowing in the two directions (between the ith bipartite component).

· The total number of bytes bi and bi' flowing in the two directions (between the ith bipartite component).
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Figure 2.2 illustrates the bipartite components and the communication between them.

Figure 2.3: Communication between bipartite components

The components can be arranged in one of two ways: in the first way, ai packets of bi bytes are moving out of campus and ai' packets of bi' bytes are coming in. In the second way ai' packets of bi' bytes are moving out of campus and ai packets of bi bytes are coming in. 

We then phrase the problem as an integer linear program, that is, as the problem of minimizing a linear objective function subject to linear and integrality constraints. We introduce a binary decision variable xi that is one if and only if the component is arranged in the first way, with ai packets of bi bytes are moving out of campus and ai' packets of bi' bytes are coming in. On the other hand, xi is zero if the component is arranged in the second way, with ai' packets of bi' bytes are moving out of campus and ai packets of bi bytes are coming in. As a result, the total number of packets going out of campus is
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Where n is the number of connected components.

Analogously, the number of outgoing bytes is
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We now attempt to make a and b as close as possible to target numbers A of outgoing packets and B of outgoing bytes
. We then attempt to minimize a weighted sum of |a - A| and |b - B|.

In conclusion, we seek xi's that solve the following integer linear program:

Minimize: 
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We then solve the linear program with a 1% precision with the CPLEX solver. The results are very close to the global characteristics of the original traces that are reported in [18]. Table 2.1 shows a summary of the global characteristics of the original traces compared to the results obtained by our proposed method. The table shows that trace 2 dataset is the closest to the original trace in terms of the number of bytes transmitted and trace 3 is the closest in terms of the number of packets transmitted. Trace 1 was the worst among the others. However, it differs from the original trace only by 6.5 % packets and only by –2.8% bytes. 

	
	% Of outgoing packets
	% Of outgoing bytes

	Original
	55.6 %
	37.6 %

	Trace 1
	49.1 %
	40.4 %

	Trace 2
	53.3 %
	37.7 %

	Trace 3
	55.6 %
	35.3 %


Table2.1 original traffic characterizations compared to the proposed partitioning method.

After partitioning the traces into incoming and outgoing traffic, we draw our attention to convert the trace file into the format accepted by NS2 simulator. NS2 uses TrafficTrace object to generate traffic according to a trace file [15]. Each record in the trace file consists of two 32-bit field (i.e. binary format). The first contains the time in microseconds until the next packet is generated. The second contains the length in bytes of the next packet [15]. See appendix A for more details.

2.5. Changing parameters and Sets of experiments:

Since we want to examine the effect of filler traffic on the pre-existing traffic on the central link, we varied the link properties as well as some other properties. The parameters that we changed during the course of the simulations are: 

1. The bandwidth of the center link. Recall that the center link is a duplex link. Since the traces that we are using from Harvard are collected during the operation of a 10 Mbps link connecting Harvard to the Internet, we use 10 Mbps as our base value for the bandwidth. We also did simulations for 2Mbps, 3Mbps, 4Mbps, 6Mbps, 8Mbps and 15Mbps.

2. The latency of the center link. This is the amount of time it would take for a zero size packet to travel from one end of the line to the other end. We examined the effect of latency on the traffic by varying the latency from very low to very height latency values. Namely we did experiments for 3 ms, 10 ms, 20 ms, 30 ms, 40 ms, and 250 ms. 20 ms is our base value for the latency.

3. The size of the filler buffer. The filler buffer is basically the buffer size that is used to store the filler packets when they arrive at the router. It’s worth mentioning that, in NS2 the buffer size is determined by the number of packets that it can hold [15]. Since we supply the buffer size to the simulation in kilobytes, we need to convert the kilobytes into packets by simply dividing the bytes by the packet size:

Buffer size (in packets) = buffer bytes / packet size

We use buffers of different sizes. Namely, 4 KB, 8KB, 16KB and 32KB. We also set the base value to 16 KB.

4. CBR packet sizes: this parameter is present only when the CBR is used as the filler workload. It determines the size of the packet that CBR is going to inject into the network. Three different values are used: 576 Bytes, 1500 Bytes and 4500 bytes. The base value is chosen to be 576 Bytes.

5. CBR rate: the rate at which the CBR packets are injected to the network. Again this parameter is only for CBR filler workload. Different rates are used: 1 Mbps, 2Mbps, 4 Mbps, 6 Mbps, 8 Mbps, 9 Mbps and 10 Mbps. 6 Mbps is chosen to be the base rate.

We also did experiments with filler buffer switched (i.e. setting the filler source to be the destination and setting the filler destination to be the source). This is to see how the direction of the filler buffer effects the pre-existing traffic. Overall, we can divide the experiments into three main categories: no filler experiments, CBR experiments, and FTP experiments. Experiments are conducted by varying only one parameter at a time while fixing the rest to the base values. Since each simulation produces one output trace file that is going to be post processed later, total simulations will result in a large number of output files (88 output files for each trace). Thus, to easily track the files, we give each output file a unique code through which we can identify what parameters are used to produce this output file. We named each output file as outabcd.txt, where the character a represents the trace number 1, 2 or 3. The character b is the experiment type: 1 for CBR, 2 for no filler and 3 for FTP filler. The string cd is two digits representing the simulation number with some specific parameter values on a given trace on a given filler type
.

2.6. Definitions and metrics examined:

There are many network metrics that are significantly important. For this study we take the following only consider the following packet dynamics:

· Average delay. For each flow of traffic, this metric reflects the average time it takes for a packet to be sent, from the time it is enqueued into the buffer on one end of the center link, until it is received at the other end of the center link. This is simply done by summing up the queuing delay and the transmission delay for the all transmitted packets and then averaging the sum over the total number of received packets. This metric measures the delay on the center link only.

· Average bandwidth (center link) utilization. For each traffic flow we aggregate the total number of bytes transmitted over the time of the simulation. Notice here we only count the bytes that are actually on the line (i.e. packets that are dropped from the queues are not aggregated). This is simply done by summing up the total bytes sent (total bytes – dropped bytes) and then dividing by the total simulation time. The total simulation time is the time difference between the first received packet and the last received packet. Normally throughput varies from utilized bandwidth because utilized bandwidth is a measure of the total number of bytes sent, whereas throughput does not include duplicate packets, which have been resent due to being dropped. However, in these experiments, utilized bandwidth is the same the throughput because the only dropped packets are dropped before they are sent across the center link. 

· Dropped packets: this is the percentage of the dropped packets from the total packets transmitted. Notice that packets get dropped only from the queues at node 4 or at node 5. Dropped packets are indicated by a “d” on the first column of the simulation output file.

· Finally, we also aggregate the transferred amount of bytes (for each flow) every 0.1 seconds. This aggregation forms a time series of 18000 observations, which are used for time series analysis of the traffic and, in particular, for the self-similarity of the traffic by calculating the self-similarity parameter (Hurst parameter).

The examined metrics (also called packet dynamics) are charted over the experiments, for a given changing parameter. Each of these result categories were plotted separately based on which type of traffic (pre-existing and filler) and which direction, to show how the filler traffic in one direction affects the pre-existing traffic in both directions.

To better understand how we exactly measure these metrics, its important to know the format of the simulations output files. All the above metrics are calculated by parsing the NS2 simulation output files. An example of an output trace file might appear as follow:

+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

r 1.84471 2 1 cbr 210 ------- 0 3.0 1.0 195 600

r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602

+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

- 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

r 1.84609 0 2 cbr 210 ------- 0 0.0 3.1 225 610

+ 1.84609 2 3 cbr 210 ------- 0 0.0 3.1 225 610

d 1.84609 2 3 cbr 210 ------- 0 0.0 3.1 225 610

- 1.8461 2 3 cbr 210 ------- 0 0.0 3.1 192 511

r 1.84612 3 2 cbr 210 ------- 1 3.0 1.0 196 603

+ 1.84612 2 1 cbr 210 ------- 1 3.0 1.0 196 603

Here we see 12 trace entries, four enqueue operations (indicated by “+” in the first column), three dequeue operations (indicated by “-“), four receive events (indicated by “r”), and one drop event (indicated by “d”). The simulated time (in seconds) at which each event occurred is listed in the second column. The next two fields indicate between which two nodes tracing is happening. The next field is a descriptive name for the type of packet seen (TCP, ACK, UDP, or CBR). The next field is the packet size as encoded in its IP header. The next four characters represent special flag bits, which may be enabled. The next field gives the IP flow identifier field as defined for IP version 6. The subsequent two fields indicate the packets source and destination node addresses respectively. The following field indicates the sequence number. The last field is a unique packet identifier. Each new packet created in the simulation is assigned a new unique identifier.

2.7. Simulation models and output processing:

The language used by NS2 to write the simulation models is TCL. TCL stands for Tool Command Language. As a scripting language, TCL has been around for a few years now, gaining a following for its ease of use and handy graphics tools [40].

We wrote three modules to carry out the simulations, a module for each kind of the three types of simulations that we defined in section 2.5. Here we give a brief description of the models. A complete listing of all modules can be found at appendix B.

· Exp1.tcl: this TCL file simulates the set of experiments with CBR filler traffic. This model takes six parameters representing all the changing parameters plus the name of the output file. Simulations modeled by this file can be invoked as follows:

%ns Exp1.tcl <BW> <Latency> <Buffer Size> <CBR Rate> <Pkt. Size> <Out file>
Where <out file> is the name of the file where the simulations output is going to be written. 

· Exp2.tcl: this simulates the set of experiments where there is no filler traffic. Like the previous model, some parameters are supplied to this model. These parameters are the bandwidth and the latency. No other information is given because there is no filler traffic involved. The usage of the model takes the following format:

%ns Exp2.tcl <BW> <Latency>  <Out file>
· Exp3.tcl: This last model simulates the experiments with FTP filler traffic. In addition to the bandwidth and the latency of the link, this model also takes (as parameters) the filler buffer size in kilobytes. The usage of the model takes the following format:

%ns Exp3.tcl <BW> <Latency> <Buffer Size> <Out file>
In addition to the above three models, we also wrote two models (exp1a.tcl and exp3a.tcl) to simulate the cases where we switch between the filler source and filler destination. Exp1a.tcl and exp3a.tcl takes exactly the same parameters as exp1.tcl and exp3.tcl respectively. They simply simulate the same network with the same settings except that the filler source and destination are now switched.

All the above-described methods have the same structure. Each of them starts by checking that the user supplied the right number of arguments. If correct arguments are given in correct format, the model proceeds by initializing variables, redirecting the simulation output to a post-processing program [16] and defining a finish procedure. Next, it builds the simulated network by defining the nodes, the links between them and the link properties. As mentioned before, the buffers attached to the center link are of type CBQ and so the next step will be to create a CBQ type link and define all the flow classes, buffers and there properties such as the priority of each class of flow. Next, the pre-existing input files are initialized. The next step is to create the transport agents and attach them to each node. The transport agent used for the pre-existing traffic is UDP. This is because the original traces contain all the information and communication and we do not want the transport layer to add any more headers or to interfere with the actual pattern of the pre-existing traffic. The CBR filler traffic uses a UDP agent simply because we want to send bits in a constant rate regardless the condition of the receiver or the network. For the FTP, we use TCP as the transport protocol. In this case the shape of the filler traffic will depend on the feedback from the destination reflecting the condition of the destination and the network. This is done through the TCP congestion control mechanism.

The models then proceed by attaching the application level agents (CBR, FTP, Pre-existing trace files) to the transport agents. Finally, each models schedules the events of the simulations. Namely, telling the simulator when to start the agents, when to stop them and when to call the finish procedure.

It’s also worth mentioning that we only trace the packets on the center link. This is because of two good reasons: first, due to the huge amount of space needed to store all packet traces over all links, we limit the traces only for the packets crossing the center links. This technique reduces the space requirements to about one fifth of the space needed to store the traces for all links. The second reason is that, the other four links are very high-speed links and we are sure that they are not the bottleneck of the simulated network. In other words, the bottleneck in our simulated network is the center link and the buffers associated with it.

an' Packets, bn' Bytes





an Packets,bn Bytes





a2' Packets, b2' Bytes





a2 Packets,b2 Bytes





a1' Packets, b1' Bytes





a1 Packets,b1 Bytes





� EMBED PBrush  ���








� We use Trace {1, 2, and 3} as the labels in figures denoting each respective trace data set.


� A and B are the number of outgoing packets and outgoing bytes respectively. They are obtained from [17]


� See appendix A1 for a complete lest of parameters, experiments and output files.
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